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Abstract 

Model-based online optimisation has not been widely applied to bioprocesses due to the 

challenges of modelling complex biological behaviours, low-quality industrial measurements, 

and lack of visualisation techniques for ongoing processes. This study proposes an innovative 

hybrid modelling framework which takes advantages of both physics-based and data-driven 

modelling for bioprocess online monitoring, prediction, and optimisation. The framework 

initially generates high-quality data by correcting raw process measurements via a physics-

based noise filter (a generally available simple kinetic model with high fitting but low 

predictive performance); then constructs a predictive data-driven model to identify optimal 

control actions and predict discrete future bioprocess behaviours. Continuous future process 

trajectories are subsequently visualised by re-fitting the simple kinetic model (soft sensor) 

using the dada-driven model predicted discrete future data points, enabling the accurate 

monitoring of ongoing processes at any operating time. This framework was tested to 

maximise fed-batch microalgal lutein production by combining with different online 

optimisation schemes and compared against the conventional open-loop optimisation 

technique. The optimal results using the proposed framework were found to be comparable to 

the theoretically best production, demonstrating its high predictive and flexible capabilities as 

well as its potential for industrial application.  

 

Keywords: machine learning; data recalibration; kinetic modelling; bioprocess optimisation; 

fed-batch operation.  
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1. Introduction 

With the rapid development of digital computing technologies, industrially focused 

mathematical modelling tools have been extensively applied to chemical engineering systems 

for process simulation, optimisation, control, and design (Marchetti, François, Faulwasser, & 

Bonvin, 2016; Voll & Marquardt, 2012; Zhang, del Rio-Chanona, & Shah, 2017). Strong 

global demand for innovative biotechnologies to sustainably produce energy, food, 

pharmaceuticals, and platform chemicals (Harun et al., 2018; Jeandet, Vasserot, Chastang, & 

Courot, 2013; Jing et al., 2018) has opened up great opportunities for computer-aided 

technologies in various bio-production industries e.g. fermentation and photo-production 

(Jing et al., 2018; Wagner, Lee-Lane, Monaghan, Sharifzadeh, & Hellgardt, 2019). As most 

bioprocesses rely on microorganisms to synthesise the desired products, the simulation of the 

complex microbial activities has become a critical task, requiring the use of state-of-the-art 

process systems engineering tools for bioprocess optimisation and scale-up.  

Bio-production systems are traditionally simulated using kinetic models which simplify the 

large number of metabolic reactions into small sets of differential equations (Bernard, 

Dochain, Genovesi, Gouze, & Guay, 2008). This approach has been highly successful for 

modelling fermentation processes. More recently, kinetic models have been integrated into 

cutting-edge online optimisation and state estimation frameworks to improve the productivity 

of fed-batch systems for biorenewable production (Ehecatl Antonio del Rio-Chanona, Zhang, 

& Vassiliadis, 2016). Most of these kinetic models are built upon a few classic models such 

as the Monod model, the Droop model, and the Logistic model (Vatcheva, de Jong, Bernard, 

& Mars, 2006). Despite adopting simple mathematical structures and having initially been 

proposed to describe distinct mechanistic hypotheses, these classical models continue to be 

widely applied in modern industries due to their good data-fitting abilities across a wide 

range of bioprocesses. This is attributed to the qualitative similarities in behaviour observed 
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for different species of microorganisms exposed to similar cultivation conditions, thanks to 

their delicate metabolic regulation mechanisms. 

Despite their excellent data-fitting capability, classic kinetic models possess poor predictive 

capabilities for complex biological systems, e.g. algal photo-production or microbial 

consortia wastewater treatment (Del Rio‐Chanona, Cong, Bradford, Zhang, & Jing, 2018; 

Zhang et al., 2015). This is caused by the construction principles of the kinetic models 

themselves, which lump hundreds of metabolic pathways into a few parameters which are 

assembled in a simple model structure. As intracellular metabolic pathways are strongly 

dependent on the cultivation conditions, any changes in these conditions also have a 

substantial impact on the values of the model parameters. Because of this, model parameters 

estimated from one specific set of data may no longer apply to the same system operated 

under a different operating condition, even if the model structure is applicable in both cases 

(Adesanya, Davey, Scott, & Smith, 2014; Fouchard, Pruvost, Degrenne, Titica, & Legrand, 

2009). To address this challenge, elaborate predictive kinetic models have been proposed, 

which embed additional parameters into the classic kinetic models to account for specific 

biochemical mechanisms. However, this approach causes highly complex model structures 

and introduces issues with parameter estimation, model identifiability, amongst others 

(Bernard et al., 2008; Zhang et al., 2016). Moreover, the flexibility of these models is greatly 

compromised as they are designed for one specific system, and the lack of knowledge of the 

underlying processes hampers the effective construction of predictive kinetic models. Hence, 

kinetic modelling is not always suitable for complex bioprocess prediction. 

In recent years, data-driven modelling has been considered as an alternative to kinetic 

modelling. Compared to kinetic models, data-driven models contain more parameters and 

structures for data regression, enabling the inclusion of distinct process behaviours collected 

at different operating conditions in a single model. This allows the model to accurately 
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interpolate the performance of untested new processes operated over a wide range of 

operating conditions. Given the large size of accumulated data, models based on machine 

learning, particularly artificial neural networks, have been adopted to simulate bacterial 

fermentation and algal photo-production (Dineshkumar et al., 2015; del Rio-Chanona et al., 

2017). Other advanced neural networks such as recurrent and convolutional neural networks 

have also been used to simulate the production of different biochemical (Valdez-Castro, et al., 

2003). Moreover, through the use of stochastic optimisation, data-driven models have been 

adopted to optimise long-term fed-batch processes, causing considerable increases in 

production of different metabolites and yielding highest intracellular contents of bioproducts 

reported to date (Ehecatl Antonio del Rio-Chanona, Manirafasha, Zhang, Yue, & Jing, 2016; 

Dineshkumar et al., 2015). Since 2018, Gaussian Process regression, another technique 

popularised by the machine learning community, was successfully applied for bioprocess 

modelling and optimisation  and online monitoring (Bradford, Schweidtmann, Zhang, Jing, & 

del Rio-Chanona, 2018; Tulsyan, Garvin, & Ündey, 2018). 

Nonetheless, data-driven models are heavily reliant on the quality and quantity of datasets, 

currently limiting their application to industrial biosystems. Industrial datasets often contain 

large measurement errors and systematic noise, and it is not feasible to frequently measure all 

state variables (e.g. biomass concentration) at regular time intervals over the entire course of 

operation (Baughman & Liu, 1995). Secondly, most data-driven models calculate the values 

of state variables at fixed, pre-specified time intervals. However, data sampled at a plant are 

often obtained at different time intervals subject to the availability and efficiency of the 

analysis equipment, causing additional obstacles (i.e. missing information) for data-driven 

model construction. In addition, as many bioproducts are manufactured periodically, the 

number of accumulated datasets for a specific operation can be much lower than for a 

continuously operated chemical plant. This lack of high-quality datasets severely hampers the 
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application of data-driven models to industrial bioprocesses. Another particular challenge 

with data-driven models is that they are not based on physical mechanisms and are 

predominantly used to interpolate steady-state chemical processes (Baughman & Liu, 1995). 

Therefore, their effectiveness in estimating unknown dynamic processes for biochemical 

plants has been poorly explored so far. 

In order to address the limitations of physics-based and data-driven models and to facilitate 

their application to industrial bioprocesses, this study proposes an innovative hybrid 

modelling framework that exploits advantages of both modelling approaches and can be 

easily integrated into several online optimisation strategies. In specific, algal lutein synthesis 

is chosen as the case study due to its high complexity and increasing market demand. 

2. Methodology 

2.1 Principles of the hybrid modelling framework  

The innovation of this study is to combine the high data-fitting capability of kinetic models 

with the interpolation power of data-driven models to form a hybrid modelling framework to 

simulate generic industrial bioprocesses. Given that data-driven models require high quality 

data, which are rarely available for bioprocesses, it is sensible to initially use a generally 

available simple kinetic model, based on fundamental biochemical theories, to reduce noise 

and inconsistencies of individual industrial raw datasets. The main reason for selecting a 

classic kinetic model as the noise filter is that these models have become well established and 

provide good fits to most existing bioprocesses (for single datasets). In addition, kinetic 

models can be used to generate data in continuous time to complete missing data points from 

plant records required for data-driven model construction. At the same time, the simple 

structure of these models avoids the numerical issues associated with parameter estimations 

of more elaborate predictive kinetic models, which are difficult to construct and do not 

currently exist for most bioprocesses.  



7 
 

Once high-quality datasets have been obtained from the kinetic model, they can be combined 

together to construct a data-driven model which is capable of simulating process dynamics 

over a broad operational range. The key reason for developing this new data-driven model for 

process prediction instead of simply applying the initial classic kinetic model is that, as will 

be shown in Section 3.1.1, the kinetic model parameters values are substantially different for 

each specific experimental dataset. Thus, parameters estimated from one dataset cannot be 

used to calculate the process dynamics under another cultivation condition. This means that 

the classic or simple kinetic model does not qualify as a predictive model, since it is unlikely 

to identify a single set of parameter values that allows the kinetic model to fit well multiple 

datasets obtained under different operating conditions.  

It is worth emphasising that this conclusion also holds for many recently developed elaborate 

kinetic models, whose predictive powers have been found to remain restricted to narrow 

operational ranges even after embedding additional parameters and modifying the original 

model structures (Adesanya et al., 2014; Fouchard et al., 2009). Although several online 

parameter estimation techniques can be used to synchronise parameter values, they are 

mainly used for tuning purpose and therefore not applicable to the current case. Based on 

these observations, kinetic models do not appear to be well suited for the estimation of new 

process dynamics. Instead, it is vital to select a model which can accurately interpolate 

process data over a broad operational spectrum (e.g. data-driven models).  

Once constructed, the data-driven model can be used to predict future process behaviours and 

identify optimal control actions by exploiting stochastic optimisation. The predictions from 

the data-driven model are then fed back to the classic kinetic model (acting as a soft sensor) 

to re-estimate the kinetic model parameters and forecast the full continuous trajectories of 

future processes, facilitating the visualisation and monitoring of the ongoing plant. The 

reason for using the kinetic model instead of the data-driven model as the soft sensor is that 
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data-driven models can only estimate discrete process points, whereas kinetic models can 

predict the continuous process behaviour over the entire operation cycle.  

2.2 Procedures to construct and execute the framework 

The hybrid modelling framework consists of three levels as exhibited in Fig. 1: a bottom-

level (Level 1) where raw data is collected from the process plant (i.e. the real system), a 

middle-level (Level 2) at which a simple kinetic model is adopted to correct and generate 

missing data points, and a top-level (Level 3) where a data-driven model is exercised to 

incorporate different process behaviours and predict optimal control strategies. Procedures to 

construct and apply this framework are explained in detail in the following sections. This 

framework incorporates the advantages of both kinetic and data-driven modelling strategies, 

whilst overcoming the limitations of each individual approach. The kinetic model plays a 

vital role in generating high quality data and visualising future process behaviours. Given its 

knowledge-based nature, it is superior to other statistic regression models. Meanwhile, the 

data-driven model takes advantage of the filtered data and is used to estimate the optimal 

operating conditions for the process. To illustrate the efficiency of this framework, a case 

study on the optimisation of fed-batch microalgal lutein production is also presented here. 

2.3 Construction of the hybrid modelling framework  

2.3.1 Setup of computational experiments 

Lutein is a primary carotenoid and a high-value bioproduct that has shown great potential in 

pharmaceutical and food industries. Following the discovery of a lutein-producing thermo-

tolerant microalgae strain, Desmodesmus sp. F51, which can achieve 10 times higher 

intracellular concentrations than the traditional lutein producing plant, marigold flowers (Xie 

et al., 2013), there has been an increasing economic drive to use microalgae for industrial 

lutein production. Previous works have shown that lutein synthesis is primarily dependent on 

light intensity and nitrate concentration (Xie et al., 2013; del Rio-Chanona et al., 2017). 
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Whilst nitrates are essential for lutein synthesis, lutein production is suppressed at high nitrate 

concentrations. A different behaviour is observed for light intensity; low light intensities 

favour lutein accumulation but stifle biomass growth. Therefore, lutein accumulation in the 

cells has to be balanced against biomass growth to achieve the best overall productivities. To 

complicate matters more, light absorption by the microalgae cells causes light attenuation 

within the system, resulting in non-uniform local light intensities inside the bioreactor. In 

practice, incident light intensities are often kept constant during a fed-batch process and 

lutein synthesis is exclusively controlled by regulating the inflow rate of nitrate. 

A complex mechanistic model was previously designed to simulate the effects of light 

intensity, nitrate concentration and light attenuation on biomass growth and lutein production 

(del Rio-Chanona et al., 2017) and is presented in Eq. (1a)-(1f). To test the performance of 

the newly proposed hybrid modelling framework, computational experiments were used in 

this work as the initial investigation. The mechanistic model was used to generate three 

computational datasets at different operating conditions (limited, medium, and excessive 

nitrate concentration, respectively). Each dataset was modelled for a total duration of 7 days, 

with a constant incident light intensity of 750 μmol m-2 s-1. After 48 hours, a 0.2M nitrate 

feed was started at different flowrates for each computational experiment. Detailed operating 

conditions of these computational experiments are listed in Table 1. To account for the high 

measurement noise and irregular sample pattern expected for industrial experiments, data 

points were collected at irregular time steps and a 10% error (denoting measurement error in 

real plants) was applied. Raw data generation was implemented in Mathematica 11.  
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where 𝑐!, 𝑐#, and 𝑐) are concentration of biomass, nitrate, and lutein, respectively, 𝐹&' and 

𝑐#,&' are nitrate inflow rate and concentration, respectively, 𝑧 is distance from light source, 𝐿 

is width of the reactor. Other kinetic parameters are listed in Table 2. 

2.3.2 Generation of high quality data  

The raw datasets obtained in Section 2.3.1 contain high levels of noise and are incomplete (i.e. 

missing data points). To enable their use for the construction of the data-driven model, they 

are initially sent to the middle-level of the framework to filter out noise and add missing data 

points by using a simple kinetic model. The simple model selected in this work is a hybrid of 

the Monod and Logistic models (Del Rio‐Chanona et al., 2018). Its structure is presented in 

Eq. (2a)-(2c), with symbols denoting same physical meanings to those in Eq. (1a)-(1f). 

Compared to the original mechanistic model which has 15 parameters, this simple kinetic 

model only contains 6 parameters with a much less nonlinear structure. Given that the data-

fitting capability of kinetic models is limited to specific sets of operating conditions, it is 

essential to process each dataset individually. This means that the raw datasets should be fed 

into the kinetic model separately, so that the best set of model parameters is identified for 

each single dataset. This allows the kinetic model to retrieve as much of the authentic 

behaviours of each process as possible, maximising the quality of the corrected datasets.  
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where 𝑌)/! is lutein yield coefficient and 𝜇" is average specific cell growth rate.  

In practice, data rectification was addressed by successively estimating the kinetic model 

parameters for each raw dataset using a nonlinear least-squares optimisation algorithm. The 

model was discretised and transformed into a nonlinear programming problem. Orthogonal 

collocation over finite elements in time was used as the discretisation method. Values of 

parameters were estimated using the interior point nonlinear optimisation solver IPOPT. The 

execution was programmed in Python using Pyomo (Hart, Laird, Watson, & Woodruff, 2012). 

As the model was used to fit each dataset separately, in total, parameter estimation was 

carried out three times to generate three sets of parameter values. The results are shown in 

Section 3.  

2.3.3 Data-driven model construction 

The successful construction of data-driven models is strongly dependent on how the training 

data is formed to seek the best model structure. Hence, once high-quality datasets (replacing 

the original three sets) were generated at the framework middle-level, they were utilised to 

build a high-fidelity machine learning based model. The high-quality datasets have regular 

time steps to facilitate the construction of the data-driven model, set to 6 hours in the present 

work. Artificial neural network (ANN) was chosen as the data-driven model. It was designed 

to predict changes of state variables within one time interval from the current time, using the 

previous values of state variables and nitrate feed flowrates. By successively applying this 

ANN, future values of state variables are predicted multiple time steps ahead. 
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ANN requires a large number of datasets to guarantee its interpolation power (Baughman & 

Liu, 1995), and its accuracy greatly depends on the selection of model hyperparameters (e.g. 

number of neurons, layers, training epochs). Thus, several strategies developed in our recent 

research have been adopted here. The first is to create a large size of artificial datasets by 

embedding adequate random noise into the three sets of high quality data. It is worth noting 

that this random noise is used for ANN training (Level 3) and should not be confused with the 

measurement error present in the low quality data obtained from the real plant (Level 1). The 

augmentation of datasets has been confirmed to significantly reinforce ANN’s accuracy and 

relief the pressure from real plant data acquisition (Tulsyan et al., 2018). Data augmentation 

can also be interpreted as a regularisation strategy, which is far more intuitive, and hence 

easier to implement correctly, than traditional penalising strategies. The magnitude of random 

noise is specific to each system; it should be large enough for the ANN to distinguish 

between each dataset but small enough not to disguise the real process behaviour. In this 

study, this random noise was identified to be 5%, and 100 artificial datasets were generated 

for each high quality dataset. Once augmented, all datasets were normalised before 

employing them to train the ANN. An alternative strategy would be the use of advanced 

artificial data augmentation techniques e.g. Generative Adversarial Networks (GANs) 

(Antoniou, et. al, 2017). However, as they involve more complicated training frameworks 

and their applicability to chemical processes has not been investigated, they were not used 

here but will be explored in the future.  

The second strategy is to adopt a hyperparameter selection framework which determines the 

optimal trade-off between variance and bias. Increasing hyperparameters complicate the 

model structure, leading to a better fit of training datasets. However, this will increase the 

likelihood of over-fitting and worsen the model’s prediction accuracy. In addition, higher 

model complexity also causes higher computational cost. Another strategy used is the k-fold 
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method, where a selection of k-1 from the k datasets is used to train an ANN and the 

remaining dataset is used to evaluate the maximum prediction error of this model. Then, 

another k-1 set is selected to repeat this procedure until the best model is found. Detailed 

explanations of these methods and their implementations have been illustrated in recent 

studies (Bradford et al., 2018; Del Rio‐Chanona et al., 2018). Data augmentation and ANN 

construction were executed in Mathematica 11. 

2.4 Online optimisation using the hybrid modelling framework 

To demonstrate the performance of this hybrid modelling framework, a new computational 

experiment was designed for an online optimisation framework. Consistent with the initial 

dataset generation experiments (Section 2.3.1), this experiment was run for a total duration of 

7 days and a nitrate feed was established after 48 hours. The hybrid modelling framework 

was used to administer the optimal actions (nitrate inflow rate). Similar to real industrial 

implementations, nitrate inflow rate in this experiment can change once every 6 hours. The 

detailed operating conditions and bounds on nitrate inflow rates are shown in Table 1. For the 

optimisation of the process, this framework was incorporated into an EMPC or a MPC 

framework. A brief overview of EMPC and MPC is presented next. 

2.4.1 Introduction to model predictive control strategies 

Model predictive control (MPC) has been widely used in chemical industries. It contains four 

levels as shown in Fig. 2(a). The top-level determines set-points by means of steady-state 

optimisation from the plant overarching decisions. These high-level set-points are used to 

find a temporary trajectory (process set-points) over a certain horizon at a unit level. During 

the ongoing process, future optimal control actions within this horizon are predicted via a 

dynamic model in the MPC-level to follow the set-points and are delivered to the bottom-

level for execution at the next time step. This procedure is repeated successively to renew 

control decisions (Maciejowski, 2002). MPC is applied in steady-state operation and requires 
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the availability of a process reference trajectory. This, however, cannot be easily satisfied in 

bioprocesses as they are often operated dynamical. Due to the complexity and stochastic 

nature of metabolic networks, it is unlikely that MPCs can predict optimal trajectories which 

can be easily followed by the bioprocess. Hence, economic model predictive control (EMPC) 

was developed to replace MPC by applying an economic index to merge the set-point 

optimisation and predictive control levels (Ehecatl Antonio del Rio-Chanona, Zhang, et al., 

2016), reducing the number of framework levels to three (Fig. 2(a)). 

When applying model predictive control strategies for the online optimisation of bio-

production systems, it is particularly important that the dynamic model is accurate. Therefore, 

a finite-data estimation window least-squares method (FDWLS) was integrated into the 

EMPC framework in this work so that newly measured plant data can be used to improve the 

model accuracy (Fig. 2(b)). After each time step, and prior to identifying future control 

actions, data acquired from the ongoing process (i.e. time T-k to T in Fig. 2(b)) was used to 

tune the data-driven model and minimise model-plant mismatch. The modified model was 

then utilised to predict optimal operating conditions over the next control horizon. Through 

this integrated framework, model accuracy and optimal control actions can be frequently 

synchronised. Finally, the top-level, plant-wide static optimisation, in MPC and EMPC was 

excluded as the current study does not cover system-wide online optimisation. 

2.4.2 Identification of future control actions using the data-driven model 

The ANN was used to predict optimal control actions during the ongoing process. For EMPC, 

the objective is to maximise lutein production at the end of the control horizon. A penalty 

was also added to punish large variations between adjacent control actions and to alleviate the 

sensitive response of algal metabolic network. The EMPC problem is shown in Eq. (3a)-(3b).  

																																											max
8"#(9)
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subject to:  

process dynamics (formulated by the ANN) 

																																																																		0.0 ≤ 𝐹&'(𝑡) ≤ 1000	µL h-1																																												(3𝑏) 

where 𝑡8:;<  is the final time of the control horizon, ∆𝐹&',& = 𝐹&',&.5 − 𝐹&',& , 𝐹&',&  is the ith 

control action in the control horizon, 𝑁 is the total number of control actions in the control 

horizon, 𝜎& > 0  is the penalty coefficient to reduce deviation between the two adjacent 

controls, and 𝑐),=(𝑡8:;<) is lutein production in Exp. 3. 

To test the effectiveness of this modelling framework for MPC, the track of a previous 

computational experiment that yields the highest lutein production (Exp. 3) was used as the 

MPC reference trajectory. Given that the new process aims to enhance lutein production 

instead of reproducing previous results, the MPC objective was set such that at each time step 

lutein production in the ongoing process at the end of the control horizon (𝑡>:;<) should be 

close to 1.2 times of that in Exp. 3 (based on the maximum theoretical production predicted 

by offline optimisation in Section 3.2.2). This objective function is formulated as Eq. (3c). 

																		 min
8"#(9)

							S𝑐)(𝑡8:;<) − 1.2 ∙ 𝑐),=(𝑡8:;<)T
4
+:5∆𝐹&',&(𝑡)7

4 ∙ 𝜎&

#*5

&75

																								(3𝑐) 

The length of the control (and prediction) horizon in this work was fixed to 2 days, similar to 

the industrial setup, thus the framework estimated 8 control actions during each iteration. A 

hybrid stochastic optimisation algorithm was designed to optimise the ANN chain, where 

random search was initially executed to narrow down the solution space and then simulated 

annealing was applied to refine the optimal solution (Ehecatl Antonio del Rio-Chanona et al., 

2018). This was executed in Mathematica 11. Discrete future process behaviours (i.e. future 

data points) were also simultaneously estimated by the ANN once control actions were 

determined. 

2.4.3 Visualisation of future process trajectory 
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The simple kinetic model (Eq. (2a)-(2c)) in the middle-level of the hybrid modelling 

framework was then used to generate the continuous future process behaviours. This was 

achieved by re-fitting its model parameters using the ANN predicted data points. In such a 

way, full future trajectories of state variables are visualised throughout the control horizon, 

and the simple kinetic model acts as a soft sensor. Through this approach, samples from the 

ongoing plant can be taken at any time for monitoring purposes, improving the flexibility of 

data measurement and analysis. Measured data were then compared against predicted process 

trajectories to verify the accuracy of the hybrid modelling framework. Finally, new data 

measured from the plant were collected at the end of each day to refine the accuracy of the 

modelling framework through FDWLS, and optimal control actions over the next 24 hours 

were updated and executed into the ongoing process. The length of the FDWLS was chosen 

as 2 days. Process trajectory visualisation and FDWLS were carried out in Mathematica 11. 

3. Results and discussion 

3.1 Results of the hybrid modelling framework construction 

3.1.1 Results of high quality data generation 

The three sets of parameter values for the simple kinetic model fitted to the three sets of raw 

computational data are listed in Table 3, and fitting results for individual datasets are shown 

in Fig. 3. From Table 3, it is seen that values of most model parameters change substantially 

between the three different datasets (except for 𝑢" and 𝑘$), confirming the challenge of using 

a single set of parameter values to simulate the distinct behaviours of same system operated 

under different conditions. The excellent data fits displayed in Fig. 3 show that the simple 

kinetic model does not only fit all three individual sets of experimental data (Fig. 3(c)), but 

that it is also capable of effectively removing large levels of noise as the model regression 

curves closely follow the “true” data points (without measurement error) (Fig. 3(a) and 3(b)).  

In specific, average deviations between the model simulation result and the true data for 
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concentrations of biomass, lutein, and nitrate are 4.6%, 4.1%, and 8.4%, respectively, with 

the largest deviation being 5.8%, 5.2%, and 12.6%, respectively. Thus, it can be concluded 

that a simple kinetic model can well screen raw datasets for high quality data generation.  

3.1.2 Results of the data-driven model construction 

As described in Section 2.3.3, high quality datasets were extracted from the regression results 

of the simple kinetic model at fixed time intervals of 6 hours. Through the use of different 

hyperparameter selection strategies, the best structure of the current ANN was found to 

enclose two hidden layers with 4 neurons in the input layer, 3 neurons in the output layer, 20 

neurons in the first hidden layer, and 15 neurons in the second hidden layer. As the ANN has 

only been trained with changes of state variables over one time interval (6 hours), it is 

essential to verify its predictive capability over a longer time span (i.e. 48 hours). This is 

because the purpose of the hybrid modelling framework for online optimisation is to identify 

optimal control actions over the entire control horizon (2 days).   

Hence, the ANN was tested by predicting the process behaviours of the three computational 

experiments (Exp. 1 to Exp. 3) over the whole operation time course using only the initial 

conditions and nitrate feed rates (Fig. 4). It can be seen that the ANN can accurately predict 

the entire process behaviour under different operating conditions, indicating its great 

predictive power for process online optimisation. Attention should be paid to the fact that 

ANN is not the only data-driven model that can be used in this framework. If the process is 

governed by multiple physical mechanisms, e.g. biological kinetics and fluid dynamics, other 

models e.g. recurrent neural network can also be applied (Baughman & Liu, 1995). 

3.2 Results of online optimisation 

3.2.1 Accuracy of the modelling framework for online optimisation 

The modelling framework was used to optimise lutein production in the new computational 

fed-batch process (Online Exp. in Table 1). Consistent with industrial operational practices, 
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the process was initially operated as a batch system to facilitate biomass growth. After 48 

hours a nitrate feed was established to replenish the concentration of this nutrient inside the 

reactor to maintain cell growth and lutein production until Day 7 (feed rate re-adjusted every 

6 hours). The prediction results of the current framework integrated with FDWLS and EMPC 

after 48 hour are shown in Fig. 5.  

At the end of Day 2, the modelling framework was retuned using the process data obtained 

over the previous day using FDWLS, before the ANN was used to predict the optimal nitrate 

feed rates and the associated discrete process behaviours for Days 3 and 4 (black points in Fig. 

5). These data points were then fed into the simple kinetic model to generate continuous 

process trajectories over these days (lines in Fig. 5) and the new estimated values of the 

kinetic model parameters (listed in Table 3). Consistent with the conclusion from Section 

3.1.1, the values of these parameters are significantly different compared to those from the 

previous experiments. On Day 3, the optimal control actions predicted after 48 hours (end of 

Day 2) were implemented into the ongoing process. Over the course of this day, the process 

samples were measured by the ongoing computational experiment at irregular time intervals 

(red points in Fig. 5) to compare against the framework predictions.  

From the figure, it is seen that these measurements (containing 10% error) are closely aligned 

to the framework predictions, suggesting the high accuracy and predictive capability of the 

hybrid modelling framework. In addition, average deviations between the visualisation result 

of the re-fitted simple kinetic model and the “true” process behaviour (calculated using the 

complex mechanistic model without 10% measurement error) are 5.1%, 11.7%, and 2.6% for 

the concentration of biomass, nitrate, and lutein, respectively. The modelling framework 

alongside the FDWLS and EMPC frameworks was then repeated until the end of the process.  

3.2.2 Efficiency of different process optimisation strategies 
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To analyse the performance of EMPC and MPC in the current system, the original complex 

model (Eq. (1a)-(1f)) which was used to predict the computational datasets used in this study 

was also utilised to optimise the new computational process prior to its experimentation. This 

optimisation approach is known as offline optimisation (open-loop optimisation) and predicts 

the best theoretically possible optimisation scheme (without any process disturbances or 

model-plant mismatches). Hence, the offline optimisation result was used as the benchmark 

for examining the online optimisation performance. In addition, to explore the maximum 

lutein production, the penalty term in Eq. (3a), which accounts for the dramatic changes of 

control actions, was removed from the offline optimisation. However, it is important to stress 

that in most cases offline optimisation is not feasible due to a lack of accurate complex 

kinetic models and the frequent occurrence of process disturbances.  

The optimisation results of EMPC and the open-loop optimisation are compared in Fig. 6. It 

is seen that both schemes give similar final lutein yields of 5.0 mg L-1 (Fig. 6(c)). However, 

for most of the production period, the process optimised by EMPC shows the higher lutein 

yields except for the final stages of operation. This is explained by the design of the EMPC, 

which aims to optimise lutein production at the end of the control horizon (48 hours) instead 

of the end of the entire operation. Although extending the duration of the control horizon may 

improve the overall control scheme, it will increase the computational requirements of the 

process optimiser making it more expensive and difficult to manage. As a result, this trade-

off should be carefully balanced. It is also observed that control action changes determined 

by the EMPC framework are less abrupt than those from the offline optimisation scheme (Fig. 

6(d)). This is particularly advantageous for the optimisation of bioprocesses, where rapid 

changes to the culture environment can greatly disturb the microbial metabolic activities 

causing the system to become unstable. Thus, the high lutein production predicted through 

the open-loop optimisation may not be achievable in practice.  
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The MPC guided process was found to give similar lutein yields to the EMPC derived 

process, thus not presented in detail. Practical concerns associated with the two optimisation 

approaches (e.g. stability) have been described in previous work (Maciejowski, 2002). It is, 

however, important to stress that it is challenging to find a suitable MPC reference trajectory 

for general bioprocesses. One practical reason is that it is difficult to guarantee consistent 

initial operating conditions and initial cellular metabolic activities between different batches, 

both of which have decisive impacts on cell growth and product formation. As a result, 

EMPC may represent the better choice for industrial bioprocess online optimisation.  

Conclusion 

Overall, it is concluded that this hybrid modelling framework represents an effective strategy 

to resolve practical issues associated with the optimisation of industrial biosystems, including 

the low quality and quantity of available data, lack of knowledge of the physical mechanisms 

of the process, high costs of frequent sampling and online measurements, and challenges in 

pre-determining set-points for fed-batch operations. When combined with advanced model 

adaptation and online optimisation schemes, this study has shown that the hybrid modelling 

framework provides high predictive and flexible capabilities, indicating its suitability for 

industrial application. Most importantly, the optimal results from the online optimisation 

framework are almost identical to those obtained from the best theoretically possible 

optimisation scenario which does not account for system disturbances, measurement noise, or 

model-plant mismatches. This directly suggests the potential of the current framework for the 

simulation and optimisation of complex biosystems. Moreover, this framework can be easily 

adapted to include multi-objective optimisation to find optimal solutions based on different 

criteria, such as operating conditions and other system requirements. 

Regarding the structure of the hybrid modelling framework, it is important to note that the 

simple kinetic model provides a critical function to enable the use of low quality raw data for 
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the construction of the high-fidelity data-driven model as well as the visualisation of future 

process behaviours during online optimisation. It is envisaged that through the development 

of cutting-edge hybrid modelling techniques, the design of efficient optimisation algorithms 

for data-driven models will become a critical task for future biochemical engineering research. 

Moreover, it is worth highlighting that the current hybrid modelling framework aims to 

provide a general structure for industrial bioprocess digitalisation and optimisation, and it can 

take advantages of different physical and data-driven modelling techniques to improve its 

capability. For instance, autoassociative neural network (AANN) can be used to replace the 

simple kinetic model for noise filtering (Baughman & Liu, 1995); current advances in 

machine learning based dynamic model structure discovery can be implemented at the top-

level to identify the best physical model structure for process prediction and visualisation; 

reinforcement learning can be used as an alternative approach for automatic process optimal 

control (Petsagkourakis, Sandoval, Bradford, Zhang, & del Rio-Chanona, 2019). Other 

techniques such as Gaussian processes (Bradford et al., 2018; Tulsyan et al., 2018) can be 

also adopted to estimate the uncertainty of model predictions for product quality control and 

process monitoring. The best combination of these modelling, visualisation and optimisation 

strategies should be extensively studied to consolidate efficiency of the current hybrid 

modelling framework.      
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Table 1: Operating conditions of the computational experiments (Exp. 1-3, used for data 

generation) and the online computational experiment. 

 Exp. 1 Exp. 2 Exp. 3 Online Exp. 

Initial biomass conc. (g L-1) 0.2 0.2 0.2 0.2 

Incident light intensity (μmol m-2 s-1) 750 750 750 750 

Nitrate feed conc. (mol L-1) 0.2 0.2 0.2 0.2 

Nitrate feed rate (μL h-1) 100 500 1000 [0.0, 1000] 

Operating time (h) 168 168 168 168 
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Table 2: List of kinetic model parameters. Their values can be found in the previous work 

(del Rio-Chanona et al., 2017). 

𝑢"  cell specific growth rate 𝑢$  cell specific decay rate 

𝑌#/!  nitrate yield coefficient 𝑘"  lutein synthesis rate constant 

𝑘$  lutein consumption rate constant 𝐼"  incident light intensity 

𝑘3  light saturation term (cell growth) 𝑘3)  light saturation term (lutein synthesis) 

𝑘&  light inhibition term (cell growth) 𝑘&)  light inhibition term (lutein synthesis) 

𝜏  cell absorption coefficient 𝐾?  bubble scattering coefficient 

𝐾#, 𝐾#) nitrate half-velocity constant for cell growth and lutein synthesis, respectively 

𝑢2, 𝑘2  maximum specific growth rate and lutein synthesis rate constant, respectively 

𝐼&  local light intensity at a distance of '∙)
5"

 from the bioreactor exposure surface 
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Table 3: Values of kinetic model parameters estimated using different experimental dataset 

Parameter Exp. 1 Exp. 2 Exp. 3 Online experiment 

𝑢", h-1 0.0268 0.0243 0.0231 0.0223 

𝑢$, L g-1 h-1 0.0267 8.85×10-3 7.45×10-3 3.30×10-3 

𝑌#/!, mg g-1 560.4 444.1 571.4 505.1 

𝐾#, mg L-1 37.13 3.978 0.977 6.416 

𝑌)/!, mg g-1 4.420 4.048 4.112 5.698 

𝑘$, L g-1 h-1 0.021 0.018 0.017 0.024 
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Figure 1: Schematic of the hybrid modelling framework. 
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Figure 2: Schematics of MPC, EMPC, and FDWLS. (a): A general framework of MPC and 

EMPC. (b): The integrated framework of FDWLS and EMPC. 
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Figure 3: Fitting result of the simple kinetic model. Line: kinetic model simulation 

(regression) result. Red point: raw data points (with 10% measurement error). Black point 

(open circle): “true” data points without measurement error. (a) and (b): Kinetic model fitting 

result of biomass concentration and lutein production for Exp. 1, respectively. (c): Nitrate 

concentration fitted by the kinetic model for all the three experiments (Exp. 1-Exp. 3).  
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Figure 4: ANN simulation result over the entire experimental operation course using only 

initial operating conditions and nitrate inflow rates. (a): biomass concentration, (b): nitrate 

concentration, (c): lutein production. Points: ANN prediction result of Exp. 1 (black) and Exp. 

3 (blue). Lines: Continuous process behaviour of Exp. 1 (black) and Exp. 3 (blue) simulated 

based on the simple kinetic model (high quality data).  
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Figure 5: Prediction of the hybrid modelling framework after 48 hours (end of Day 2). (a): 

biomass concentration. (b): nitrate concentration. (c): lutein production. Black (empty) points: 

data-driven model prediction (discrete future process behaviours) over a fixed time interval 

(48th – 84th hour). Line: continuous future process behaviours visualised by the simple kinetic 

model (soft sensor) through parameter re-estimation. Red points: samples measured from the 

plant at random times during Day 3 (48th – 72nd hour) with 10% measurement error. 
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Figure 6: Optimisation result of the EMPC guided process and the open-loop optimisation 

derived process (the theoretically best process performance without process disturbance, 

measurement noise, and model-process mismatch). (a): biomass concentration. (b): nitrate 

concentration. (c): lutein production. (d): nitrate inflow rate. Solid line: trajectory of the 

EMPC derived process; dashed line: trajectory of the open-loop optimisation derived process. 

 


