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Abstract. Automata learning has been successfully applied in the verifi-
cation of hardware and software. The size of the automaton model learned
is a bottleneck for scalability, and hence optimizations that enable learning
of compact representations are important. This paper exploits monads,
both as a mathematical structure and a programming construct, to design
and prove correct a wide class of such optimizations. Monads enable the
development of a new learning algorithm and correctness proofs, building
upon a general framework for automata learning based on category the-
ory. The new algorithm is parametric on a monad, which provides a rich
algebraic structure to capture non-determinism and other side-effects.
We show that this allows us to uniformly capture existing algorithms,
develop new ones, and add optimizations.
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1 Introduction

The increasing complexity of software and hardware systems calls for new scalable
methods to design, verify, and continuously improve systems. Black-box inference
methods aim at building models of running systems by observing their response to
certain queries. This reverse engineering process is very amenable for automation
and allows for fine-tuning the precision of the model depending on the properties
of interest, which is important for scalability.

One of the most successful instances of black-box inference is automata learn-
ing, which has been used in various verification tasks, ranging from finding bugs
in implementations of network protocols [15] to rejuvenating legacy software [29].
Vaandrager [30] has written a comprehensive overview of the widespread use of
automata learning in verification.

A limitation in automata learning is that the models of real systems can
become too large to be handled by tools. This demands compositional methods
and techniques that enable compact representation of behaviors.
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In this paper, we show how monads can be used to add optimizations to
learning algorithms in order to obtain compact representations. We will use as
playground for our approach the well known L* algorithm [2], which learns a
minimal deterministic finite automaton (DFA) accepting a regular language by
interacting with a teacher, i.e., an oracle that can reply to specific queries about
the target language. Monads allow us to take an abstract approach, in which
category theory is used to devise an optimized learning algorithm and a generic
correctness proof for a broad class of compact models.

The inspiration for this work is quite concrete: it is a well-known fact that
non-deterministic finite automata (NFAs) can be much smaller than deterministic
ones for a regular language. The subtle point is that given a regular language,
there is a canonical deterministic automaton accepting it—the minimal one—but
there might be many “minimal” non-deterministic automata accepting the same
language. This raises a challenge for learning algorithms: which non-deterministic
automaton should the algorithm learn? To overcome this, Bollig et al. [11]
developed a version of Angluin’s I* algorithm, which they called NL*, in which
they use a particular class of NFAs, Residual Finite State Automata (RFSAs),
which do admit minimal canonical representatives. Though NL* indeed is a first
step in incorporating a more compact representation of regular languages, there
are several questions that remain to be addressed. We tackle them in this paper.

DFAs and NFAs are formally connected by the subset construction. Under-
pinning this construction is the rich algebraic structure of languages and of the
state space of the DFA obtained by determinizing an NFA. The state space of
a determinized DFA—consisting of subsets of the state space of the original
NFA—has a join-semilattice structure. Moreover, this structure is preserved in
language acceptance: if there are subsets U and V, then the language of U UV is
the union of the languages of the first two. Formally, the function that assigns to
each state its language is a join-semilattice map, since languages themselves are
just sets of words and have a lattice structure. And languages are even richer:
they have the structure of complete atomic Boolean algebras. This leads to
several questions: Can we exploit this structure and have even more compact
representations? What if we slightly change the setting and look at weighted
languages over a semiring, which have the structure of a semimodule (or vector
space, if the semiring is a field)?

The latter question is strongly motivated by the widespread use of weighted
languages and corresponding weighted finite automata (WFAs) in verification,
from the formal verification of quantitative properties [13,17,25], to probabilistic
model-checking [5], to the verification of on-line algorithms [1].

Our key insight is that the algebraic structures mentioned above are in fact
algebras for a monad T'. In the case of join-semilattices this is the powerset
monad, and in the case of vector spaces it is the free vector space monad. These
monads can be used to define a notion of T-automaton, with states having the
structure of an algebra for the monad 7', which generalizes non-determinism as
a side-effect. From T-automata we can derive a compact, equivalent version by
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taking as states a set of generators and transferring the algebraic structure of
the original state space to the transition structure of the automaton.

This general perspective enables us to generalize L* to a new algorithm L%,
which learns compact automata featuring non-determinism and other side-effects
captured by a monad. Moreover, L%, incorporates further optimizations arising
from the monadic representation, which lead to more scalable algorithms.

We start by giving an overview of our approach, which also states our main
contributions in greater detail and ends with a road map of the rest of the paper.

2 Overview and Contributions

In this section, we explain the original L* algorithm and discuss the challenges
in adapting the algorithm to learn automata with side-effects, illustrating them
through a concrete example—NFAs. We then highlight our main contributions.

L* algorithm. This algorithm learns the minimal DFA accepting a language
L C A* over a finite alphabet A. It assumes the existence of a minimally adequate
teacher, which is an oracle that can answer two types of queries: 1. Membership
queries: given a word w € A*, does w belong to £7 and 2. Equivalence queries:
given a hypothesis DFA H, does H accept £? If not, the teacher returns a coun-
terexample, i.e., a word incorrectly classified by H. The algorithm incrementally
builds an observation table made of two parts: a top part, with rows ranging
over a finite set S C A*; and a bottom part, with rows ranging over S - A
(- is pointwise concatenation). Columns range over a finite E C A*. For each
u € SUS-Aand v € F, the corresponding cell in the table contains 1 if and only
if wv € L. Intuitively, each row u contains enough information to fully identify
the Myhill-Nerode equivalence class of u with respect to an approximation of
the target language—rows with the same content are considered members of the
same equivalence class. Cells are filled in using membership queries.

As an example, and to set notation, consider the table below over A = {a, b}.
It shows that £ contains the word aa and does not contain the words ¢ (the
empty word), a, b, ba, aaa, and baa.

—L£

€ a aa
S[elo0 1 rows: S — 2F rowi(u)(v) =1 <= uwv el
al01 0 rowp: S — (25)4 rowy(u)(a)(v) =1 <= uav € £

S Alyloo o

We use functions row; and row, to describe the top and bottom parts of the
table, respectively. Notice that S and S - A may intersect. For conciseness, when
tables are depicted, elements in the intersection are only shown in the top part.

A key idea of the algorithm is to construct a hypothesis DFA from the different
rows in the table. The construction is the same as that of the minimal DFA from
the Myhill-Nerode equivalence, and exploits the correspondence between table
rows and Myhill-Nerode equivalence classes. The state space of the hypothesis
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1 S, E <+ {e}
2 repeat
3 while the table is not closed or not consistent
4 if the table is not closed
5 find t € S,a € A such that rowy(t)(a) # row(s) for all s € S
6 S+ SU{ta}
7 if the table is not consistent
8 find s1,82 € S, a € A, and e € E such that
rowe(s1) = rowe(s2) and rows(s1)(a)(e) # rows(s2)(a)(e)
9 E + EU{ae}
10 Construct the hypothesis H and submit it to the teacher
11 if the teacher replies no, with a counterexample z
12 S <+ S U prefixes(z)

13 until the teacher replies yes
14 return H

Fig. 1: I* algorithm.

DFA is given by the set H = {row(s) | s € S}. Note that there may be
multiple rows with the same content, but they result in a single state, as they
all belong to the same Myhill-Nerode equivalence class. The initial state is
row;(¢), and we use the € column to determine whether a state is accepting:
row:(s) is accepting whenever row(s)(e) = 1. The transition function is defined
as row¢(s) - rowp(s)(a). (Notice that the continuation is drawn from the bottom
part of the table). For the hypothesis automaton to be well-defined, e must be in
S and E, and the table must satisfy two properties:

— Closedness states that each transition actually leads to a state of the
hypothesis. That is, the table is closed if for all ¢ € S and a € A there is
s € S such that row(s) = rowp(t)(a).

— Consistency states that there is no ambiguity in determining the transitions.
That is, the table is consistent if for all s1, so € S such that row(s1) = rowy(ss2)
we have rowp,(s1) = rowp(s2).

The algorithm updates the sets S and E to satisfy these properties, constructs a
hypothesis, submits it in an equivalence query, and, when given a counterexample,
refines the hypothesis. This process continues until the hypothesis is correct. The
algorithm is shown in Fig. 1.

Ezample Run. We now run the algorithm with the target language £ = {w €
{a}* | |lw| # 1}. The minimal DFA accepting £ is

M= —O——0O—0r )

Initially, S = E = {e}. We build the observation table given in Fig. 2a. This
table is not closed, because the row with label a, having 0 in the only column,
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€ ca

ell el10

e a al0 al0 1

€ ell aall aall 1

el al0 m aaa|l aaall 1

al0 aall a aaaa|l aaaall 1
(a) (b) (c) (d) (e)

Fig.2: Example run of I* on £ = {w € {a}* | |w| # 1}.

does not appear in the top part of the table: the only row ¢ has 1. To fix this, we
add the word a to the set S. Now the table (Fig. 2b) is closed and consistent,
so we construct the hypothesis that is shown in Fig. 2c and pose an equivalence
query. The teacher replies no and informs us that the word aaa should have been
accepted. L* handles a counterexample by adding all its prefixes to the set S. We
only have to add aa and aaa in this case. The next table (Fig. 2d) is closed, but
not consistent: the rows € and aa both have value 1, but their extensions a and
aaa differ. To fix this, we prepend the continuation a to the column € on which
they differ and add a - € = a to E. This distinguishes row;(g) from row;(aa), as
seen in the next table in Fig. 2e. The table is now closed and consistent, and the
new hypothesis automaton is precisely the correct one M.

As mentioned, the hypothesis construction approximates the theoretical
construction of the minimal DFA, which is unique up to isomorphism. That is,
for S = E = A* the relation that identifies words of S having the same value in
row; is precisely the Myhill-Nerode’s right congruence.

Learning non-deterministic automata. As is well known, NFAs can be
smaller than the minimal DFA for a given language. For example, the language
L above is accepted by the NFA

n= ~(O0__Oee ©)

a

which is smaller than the minimal DFA M. Though in this example, which we
chose for simplicity, the state reduction is not massive, it is known that in general
NFAs can be exponentially smaller than the minimal DFA [24]. This reduction
of the state space is enabled by a side-effect—mon-determinism, in this case.
Learning NFAs can lead to a substantial gain in space complexity, but it is
challenging. The main difficulty is that NFAs do not have a canonical minimal
representative: there may be several non-isomorphic state-minimal NFAs accept-
ing the same language, which poses problems for the development of the learning
algorithm. To overcome this, Bollig et al. [11] proposed to use a particular class
of NFAs, namely RFSAs, which do admit minimal canonical representatives.
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However, their ad-hoc solution for NFAs does not extend to other automata, such
as weighted or alternating. In this paper we present a solution that works for
any side-effect, specified as a monad.

The crucial observation underlying our approach is that the language semantics
of an NFA is defined in terms of its determinization, i.e., the DFA obtained by
taking sets of states of the NFA as state space. In other words, this DFA is defined
over an algebraic structure induced by the powerset, namely a (complete) join
semilattice (JSL) whose join operation is set union. This automaton model does
admit minimal representatives, which leads to the key idea for our algorithm:
learning NFAs as automata over JSLs. In order to do so, we use an extended
table where rows have a JSL structure, defined as follows. The join of two rows
is given by an element-wise or, and the bottom element is the row containing
only zeroes. More precisely, the new table consists of the two functions

row! : P(S) — 2P rowﬁ: P(S) — (2E)4

given by row! (U) = \/{row(s) | s € U} and rowg(U)(a) = \/{rowp(s)(a) | s € U}.
Formally, these functions are JSL homomorphisms, and they induce the following
general definitions:

— The table is closed if for all U C S, a € A there is U’ C S such that rowg(U’) =
rowg(U)(a).

— The table is consistent if for all Uy, U C S s.t. row! (U) = row{(Us) we have
rowg(Ul) = rowﬁ(Ug).

We remark that our algorithm does not actually store the whole extended table,
which can be quite large. It only needs to store the original table over S because
all other rows in P(S) are freely generated and can be computed as needed,
with no additional membership queries. The only lines in Fig. 1 that need to be
adjusted are lines 5 and 8, where closedness and consistency are replaced with
the new notions given above. Moreover, H is now built from the extended table.

Optimizations. In this paper we also present two optimizations to our algorithm.
For the first one, note that the state space of the hypothesis constructed by the
algorithm can be very large since it encodes the entire algebraic structure. We
show that we can extract a minimal set of generators from the table and compute
a succinct hypothesis in the form of an automaton with side-effects, without any
algebraic structure. For JSLs, this consists in only taking rows that are not the
join of other rows, i.e., the join-irreducibles. By applying this optimization to this
specific case, we essentially recover the learning algorithm of Bollig et al. [11].
The second optimization is a generalization of the optimized counterexample
handling method of Rivest and Schapire [28], originally intended for I* and
DFAs. It consists in processing counterexamples by adding a single suffiz of the
counterexample to F, instead of adding all prefixes of the counterexample to S.
This can avoid the algorithm posing a large number of membership queries.
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__1& __|ea

ell el10

€ a al0 al0 1
ell aal|l aall 1
a|0 a @ aaa|l aaall 1

(a) (b) () (d) (e)
Fig. 3: Example run of the L* adaptation for NFAs on £ = {w € {a}* | |w| # 1}.

Ezample Revisited. We now run the new algorithm on the language £ = {w €
{a}* | |w| # 1} considered earlier. Starting from S = E = {e}, the observation
table (Fig. 3a) is immediately closed and consistent. (It is closed because we have
row! ({a}) = row?(0).) This gives the JSL hypothesis shown in Fig. 3b, which
leads to an NFA hypothesis having a single state that is initial, accepting, and has
no transitions (Fig. 3c). The hypothesis is incorrect, and the teacher may supply
us with counterexample aa. Adding prefixes a and aa to S leads to the table in
Fig. 3d. The table is again closed, but not consistent: row!({a}) = row! (), but
rowf ({a})(a) = row!({aa}) # row! () = row!(0)(a). Thus, we add a to E. The
resulting table (Fig. 3e) is closed and consistent. We note that row aa is the union
of other rows: row!({aa}) = row!({e,a}) (i.e., it is not a join-irreducible), and
therefore can be ignored when building the succinct hypothesis. This hypothesis
has two states, € and a, and indeed it is the correct one N.

Contributions and road map of the paper. After some preliminary notions
in Section 3, we present the main contributions:

— In Section 4, we develop a general algorithm L7., which generalizes the NFA
one presented in Section 2 to an arbitrary monad T capturing side-effects, and
we provide a general correctness proof for our algorithm.

— In Section 5, we describe the first optimization and prove its correctness.

— In Section 6 we describe the second optimization. We also show how it can be
combined with the one of Section 5, and how it can lead to a further small
optimization, where the consistency check on the table is dropped.

— Finally, in Section 7 we show how L%, can be applied to several automata
models, highlighting further case-specific optimizations when available.

3 Preliminaries

In this section we define a notion of T-automaton, a generalization of non-
deterministic finite automata parametric in a monad 7. We assume familiarity
with basic notions of category theory: functors (in the category Set of sets and
functions) and natural transformations.

Side-effects can be conveniently captured as a monad. A monad T = (T, n, i)
is a triple consisting of an endofunctor 7" on Set and two natural transformations:
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a unit n: Id = T and a multiplication p: T? = T, which satisfy the compatibility
laws ponp =idp =poTn and poupr = poTpu.

Ezample 1 (Monads). An example of a monad is the triple (P, {—},J), where
P denotes the powerset functor associating a collection of subsets to a set, {—}
is the singleton operation, and | is just union of sets. Another example is the
triple (V(—), e, m), where V(X) is the free semimodule (over a semiring S) over
X, namely {¢ | ¢: X — S having finite support}. The support of a function
w: X — S is the set of z € X such that p(z) # 0. Then e: X — V(X) is the
characteristic function for each z € X, and m: V(V (X)) — V(X) is defined for

o € V(V(X)) and & € X as m(p)(x) = ey (x) #(0) X $(x).

Given a monad T, a T-algebra is a pair (X, h) consisting of a carrier set
X and a function h: TX — X such that houx = hoTh and honx = idx.
A T-homomorphism between two T-algebras (X,h) and (Y, k) is a function
f: X — Y such that foh = koT f. The abstract notion of T-algebra instantiates
to expected notions, as illustrated in the following example.

Ezample 2 (Algebras for a monad). The P-algebras are the (complete) join-
semilattices, and their homomorphisms are join-preserving functions. If S is a
field, V-algebras are vector spaces, and their homomorphisms are linear maps.

We will often refer to a T-algebra (X, h) as X if h is understood or if its
specific definition is irrelevant. Given a set X, (T X, ux) is a T-algebra called
the free T'-algebra on X. One can build algebras pointwise for some operations.
For instance, if Y is a set and (X,x) a T-algebra, then we have a T-algebra
(XY, f), where f: T(XY) — XY is given by f(W)(y) = (x o T(evy))(W) and
evy: XY — X by evy(g) = g(y). If U and V are T-algebras and f: U — V is
a T-algebra homomorphism, then the image img(f) of f is a T-algebra, with
the T-algebra structure inherited from V. The following proposition connects
algebra homomorphisms from the free T-algebra on a set U to an algebra V' with
functions U — V. We will make use of this later in the section.

Proposition 3. Given a set U and a T-algebra (V,v), there is a bijective corre-
spondence between T-algebra homomorphisms TU — V and functions U — V:
for a T-algebra homomorphism f: TU — V, define fT = fon: U — V; for
a function g: U — V, define g* = voTg: TU — V. Then ¢* is a T-algebra
homomorphism called the free T-extension of g, and we have fi* = f and ¢*f = g.

We now have all the ingredients to define our notion of automaton with side-
effects and their language semantics. We fix a monad (T, n, 1) with T' preserving
finite sets, as well as a T-algebra O that models outputs of automata.

Definition 4 (T-automaton). A T-automaton is a quadruple (Q,5: Q@ —
Q4,out: Q — O,init € Q), where Q is a T-algebra, the transition map § and
output map out are T-algebra homomorphisms, and init is the initial state.

Ezample 5. DFAs are Id-automata when O = 2 = {0,1} is used to distinguish
accepting from rejecting states. For the more general case of O being any set,
DFAs generalize into Moore automata.
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Ezample 6. Recall that P-algebras are JSLs, and their homomorphisms are join-
preserving functions. In a P-automaton, @ is equipped with a join operation, and
Q* is a join-semilattice with pointwise join: (f V g)(a) = f(a) V g(a) for a € A.
Since the automaton maps preserve joins, we have, in particular, (¢ V g2)(a) =
0(q1)(a) V §(g2)(a). One can represent an NFA over a set of states S as a P-
automaton by taking Q = (P(S),J) and O = 2, the Boolean join-semilattice
with the or operation as its join. Let init C S be the set of initial states and
out: P(Q) — 2 and §: P(S) — P(S)# the respective extensions (Proposition 3)
of the NFA’s output and transition functions. The resulting P-automaton is
precisely the determinized version of the NFA.

More generally, an automaton with side-effects given by a monad T always
represents a T-automaton with a free state space.

Proposition 7. A T-automaton of the form ((TX, ux),d,out,init), for any set
X, is completely defined by the set X with the element init € TX and functions

6T X = (TX)A out™ X — O.

We call such a T-automaton a succinct automaton, which we sometimes
identify with the representation (X,d', out’,init). These automata are closely
related to the ones studied in [18].

A (generalized) language is a function £: A* — O. For every T-automaton
we have an observability and a reachability map, telling respectively which state
is reached by reading a given word and which language each state recognizes.

Definition 8 (Reachability /Observability Maps). The reachability map of
a T-automaton A is a function rg4: A* = Q inductively defined as: r4(g) = init
and r4(ua) = §(rq(u))(a). The observability map of A is a function o4: Q —
04" given by: 04(q)(e) = out(q) and 04(q)(av) = 04(5(q)(a))(v).

The language accepted by A is the map L4 = o4(init) =outgory: A* — O.

Example 9. For an NFA A represented as a P-automaton, as seen in Example 6,
04(q) is the language of ¢ in the traditional sense. Note that ¢, in general, is a
set of states: 04 (q) takes the union of languages of singleton states. The set £ 4
is the language accepted by the initial states, i.e., the language of the NFA. The
reachability map 74 (u) returns the set of states reached via all paths reading u.

Given a language £: A* — O, there exists a (unique) minimal T-automaton
M, accepting £, which is minimal in the number of states. Its existence follows
from general facts. See for example [19)].

Definition 10 (Minimal T-Automaton for ). Let t;: A* — O*" be the
function giving the residual languages of £, namely tg;(u) = lv.L(uwv). The
minimal T-automaton My accepting £ has state space M = img(t%), initial state
init = ¢4 (¢), and T-algebra homomorphisms out: M — O and §: M — M4 given
by out(t; (U) = £(U) and 6(t; (U))(a)(v) = 15 (U) (av).
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In the following, we will also make use of the minimal Moore automaton
accepting £. Although this always exists—by instantiating Definition 10 with
T = ld—it need not be finite. The following property says that finiteness of
Moore automata and of T-automata accepting the same language are related.

Proposition 11. The minimal Moore automaton accepting L is finite if and
only if the minimal T -automaton accepting L is finite.

4 A General Algorithm

In this section we introduce our extension of L* to learn automata with side-effects.
The algorithm is parametric in the notion of side-effect, represented as the monad
T, and is therefore called L7.. We fix a language £: A* — O that is to be learned,
and we assume that there is a finite T-automaton accepting £. This assumption
generalizes the requirement of L* that £ is regular (i.e., accepted by a specific
class of T-automata, see Example 5).

An observation table consists of a pair of functions

row;: S — OF rowy: S — (0OF)4

given by row;(s)(e) = L(se) and rowy(s)(a)(e) = L(sae), where S, E C A* are
finite sets with ¢ € S N E. For O = 2, we recover exactly the L* observation
table. The key idea for L%, is defining closedness and consistency over the free
T-extensions of those functions.

Definition 12 (Closedness and Consistency). The table is closed if for all
U eT(S) and a € A there exists a U' € T(S) such that row!(U") = rowﬁ(U)(a).
The table is consistent if for all Uy, Uy € T(S) such that row! (Uy) = row! (Us) we
have rowg(Ul) = rowﬁb(Ug).

For closedness, we do not need to check all elements of T'(S) x A against
elements of T'(S), but only those of S x A, thanks to the following result.

Lemma 13. If for all s € S and a € A there is U € T(S) such that row?(U) =
rowy(s)(a), then the table is closed.

Ezxzample 14. For NFAs represented as P-automata, the properties are as presented
in Section 2. Recall that for T'= P and O = 2, the Boolean join-semilattice, rowtlj
and rowg describe a table where rows are labeled by subsets of S. Then we have, for
instance, row! ({s1,s2})(€) = rows(s1)(e) V rowe(s2)(e), i.e., row!({s1, s2})(e) = 1
if and only if L(s1e) = 1 or L(sze) = 1. Closedness amounts to check whether
each row in the bottom part of the table is the join of a set of rows in the top
part. Consistency amounts to check whether, for all sets of rows Uy, Us C S in
the top part of the table whose joins are equal, the joins of rows U; - {a} and
Us - {a} in the bottom part are also equal, for all a € A.
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1 S, E <+ {e}
2 repeat
3 while the table is not closed or not consistent
4 if the table is not closed
5 find s € S, a € A such that rowy(s)(a) # row! (U) for all U € T(S)
6 S+ SU{sa}
7 if the table is not consistent
8 find U1,Uz € T(S), a € A, and e € E such that
row! (U1) = row! (Uz) and row? (U1)(a)(e) # rowf (Uz)(a)(e)
9 E + EU{ae}
10 Construct the hypothesis H and submit it to the teacher
11 if the teacher replies no, with a counterexample z
12 S+ S U prefixes(z)

13 until the teacher replies yes
14 return H

Fig. 4: Adaptation of L* for T-automata.

If closedness and consistency hold, we can define a hypothesis T-automaton

H, with state space H = img(rowg), init = row; (), and output and transitions

out: H— O out(row? (U)) = row (U)(e)
6: H— HA §(rowi (U)) = rowﬁb(U).

The correctness of this definition follows from the abstract treatment of [21],
instantiated to the category of T-algebras and their homomorphisms.

We can now give algorithm Lf.. Similarly to the example in Section 2, we only
have to adjust lines 5 and 8 in Fig. 1. The resulting algorithm is shown in Fig. 4.

Correctness. Correctness for LT, amounts to proving that, for any target language
L, the algorithm terminates returning the minimal T-automaton M, accepting
L. As in the original L* algorithm, we only need to prove that the algorithm
terminates, that is, that only finitely many hypotheses are produced. Correctness
follows from termination, since line 13 causes the algorithm to terminate only if
the hypothesis automaton coincides with M.

In order to show termination, we argue that the state space H of the hypothesis
increases while the algorithm loops, and that H cannot be larger than M, the
state space of M. In fact, when a closedness defect is resolved (line 6), a row
that was not previously found in the image of row.lci : T(S) — OF is added, so the
set H grows larger. When a consistency defect is resolved (line 9), two previously
equal rows become distinguished, which also increases the size of H.

As for counterexamples, adding their prefixes to S (line 11) creates a consis-
tency defect, which will be fixed during the next iteration, causing H to increase.
This is due to the following result, which says that the counterexample z has a
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prefix that violates consistency. Note that the hypothesis H in the statement
below is the hypothesis obtained before adding the prefixes of z to S.

Proposition 15. If z € A* is such that Lg¢(2) # L£(z) and prefixes(z) C S, then
there are a prefix ua of z, with u € A* and a € A, and U € T(S) such that
rows (1) = row? (U) and rowy (u)(a) # rowg(U)(a).

Now, note that by increasing S or FE, the hypothesis state space H never
decreases in size. Moreover, for S = A* and £ = A*, rowfc1 = tﬁL. Therefore, since

H and M are defined as the images of rowlcj and tﬁL, respectively, the size of
H is bounded by that of M. Since H increases while the algorithm loops, the
algorithm must terminate and is thus correct.

Note that the learning algorithm of Bollig et al. does not terminate using this
counterexample processing method [10, Appendix F]. This is due to their notion
of consistency being weaker than ours: we have shown that progress is guaranteed
because a consistency defect, in our sense, is created using this method.

Query complexity. The complexity of automata learning algorithms is usually
measured in terms of the number of both membership and equivalence queries
asked, as it is common to assume that computations within the algorithm are
insignificant compared to evaluating the system under analysis in applications.
The cost of answering queries themselves is not considered, as it depends on the
implementation of the teacher, which the algorithm abstracts from.

The table is a T-algebra homomorphism, so membership queries for rows
labeled in S are enough to determine all other rows. We measure the query
complexities in terms of the number of states n of the minimal Moore automaton,
the number of states ¢ of the minimal T-automaton, the size k of the alphabet,
and the length m of the longest counterexample. Note that ¢t cannot be smaller
than n, but it can be much bigger. For example, when T' = P, t may be in O(2").3

The maximum number of closedness defects fixed by the algorithm is n, as a
closedness defect for the setting with algebraic structure is also a closedness defect
for the setting without that structure. The maximum number of consistency
defects fixed by the algorithm is ¢, as fixing a consistency defect distinguishes two
rows that were previously identified. Since counterexamples lead to consistency
defects, this also means that the algorithm will not pose more than ¢ equivalence
queries. A word is added to S when fixing a closedness defect, and O(m) words
are added to S when processing a counterexample. The number of rows that we
need to fill using queries is therefore in O(¢tmk). The number of columns added
to the table is given by the number of times a consistency defect is fixed and
thus in O(t). Altogether, the number of membership queries is in O(t>mk).

3 Take the language {a?}, for some p € N and a singleton alphabet {a}. Its residual
languages are ) and {a’} for all 0 < 4 < p, thus the minimal DFA accepting the
language has p 4 2 states. However, the residual languages w.r.t. sets of words are all
the subsets of {&,a,aa,...,aP}—hence, the minimal T-automaton has 2P*! states.
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5 Succinct Hypotheses

We now describe the first of two optimizations, which is enabled by the use of
monads. Our algorithm produces hypotheses that can be quite large, as their
state space is the image of rowg, which has the whole set T'(.S) as its domain. For
instance, when T' = P, T'(S) is exponentially larger than S. We show how we can
compute succinct hypotheses, whose state space is given by a subset of S. We
start by defining sets of generators for the table.

Definition 16. A set S’ C S is a set of generators for the table whenever for
all s € S there is U € T(S") such that row(s) = row? (U).*

Intuitively, U is the decomposition of s into a “combination” of generators.
When T = P, S’ generates the table whenever each row can be obtained as the join
of a set of rows labeled by S’. Explicitly: for all s € S there is {s1,...,s,} C 5’
such that rows(s) = rowf ({s1,...,5,}) = rowe(s1) V- V rowe(s,).

Recall that H, with state space H, is the hypothesis automaton for the table.
The existence of generators S’ allows us to compute a T-automaton with state
space T'(S") equivalent to H. We call this the succinct hypothesis, although T'(S”)
may be larger than H. Proposition 7 tells us that the succinct hypothesis can be
represented as an automaton with side-effects in T' that has S’ as its state space.
This results in a lower space complexity when storing the hypothesis.

We now show how the succinct hypothesis is computed. Observe that, if
generators S’ exist, row? factors through the restriction of itself to 7(S’). Denote
this latter function fowy’. Since we have T(8') C T(S), the image of row,’
coincides with img(rowii ) = H, and therefore the surjection restricting fow," to
its image has the form e: T(S") — H. Any right inverse i: H — T'(S’) of the
function e (that is, e o4 = idg, but whereas e is a T-algebra homomorphism, i
need not be one) yields a succinct hypothesis as follows.

Definition 17 (Succinct Hypothesis). The succinct hypothesis is the T-
automaton 8 = (T'(S’), 4, out, init) given by init = i(row(e)) and
out': 8 —» O out’(s) = row,(s)(e)
6t 8" — T (8HA 61(s)(a) = i(rowp(s)(a)).

This definition is inspired by that of a scoop, due to Arbib and Manes [4].
Proposition 18. Any succinct hypothesis of H accepts the language of H.

We now give a simple procedure to compute a minimal set of generators, that
is, a set S’ such that no proper subset is a set of generators. This generalizes
a procedure defined by Angluin et al. [3] for non-deterministic, universal, and
alternating automata.

* Here and hereafter we assume that 7(S’) C T(S), and more generally that T
preserves inclusion maps. To eliminate this assumption, one could take the inclusion
map f: S’ < S and write row! (T(f)(U)) instead of row?(U).
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Proposition 19. The following algorithm returns a minimal set of generators
for the table:

S+ S
while there are s € 8" and U € T(S"\ {s}) s.t. row! (U) = rowy(s)
S S\ {s}

return S’

To determine whether U as in the above algorithm exists, one can always
naively enumerate all possibilities, using that T preserves finite sets. This is what
we call the basic algorithm. For specific algebraic structures, one may find more
efficient methods, as we show in the following example.

Ezxample 20. Consider the powerset monad T' = P. We now exemplify two ways
of computing succinct hypotheses, which are inspired by canonical RFSAs [16].
The basic idea is to start from a deterministic automaton and to remove states
that are equivalent to a set of other states. The algorithm given in Proposition 19
computes a minimal S’ that only contains labels of rows that are not the join
of other rows. (In case two rows are equal, only one of their labels is kept.) In
other words, as mentioned in Section 2, S’ contains labels of join-irreducible rows.
To concretize the algorithm efficiently, we use a method introduced by Bollig et
al. [11], which essentially exploits the natural order on the JSL of table rows. In
contrast to the basic exponential algorithm, this results in a polynomial one.’
Bollig et al. determine whether a row is a join of other rows by comparing the
row just to the join of rows below it. Like them, we make use of this also to
compute right inverses of e, for which we will formalize the order.

The function e: P(S") — H tells us which sets of rows are equivalent to a
single state in H. We show two right inverses H — P(S’) for it. The first one,

i1(h) = {s € S | row(s) < h},

stems from the construction of the canonical RFSA of a language [16]. Here we

use the order a < b <= a Vb= b induced by the JSL structure. The resulting

construction of a succinct hypothesis was first used by Bollig et al. [11]. This

succinct hypothesis has a “maximal” transition function, meaning that no more

transitions can be added without changing the language of the automaton.
The second inverse is

ia(h) = {s € S’ | rowy(s) < h and for all s € S’ s.t. row(s) < row(s’) < h
we have row,(s) = row.(s")},

resulting in a more economical transition function, where some redundancies are
removed. This corresponds to the simplified canonical RFSA [16].

Ezample 21. Consider T = P, and recall the table in Fig. 3e. When S’ = S, the
right inverse given by i; yields the succinct hypothesis shown below.

5 When we refer to computational complexities, as opposed to query complexities, they
are in terms of the sizes of S, F, and A.
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Note that i1 (rowi(aa)) = {e, a,aa}. Taking iy instead, the succinct hypothesis
is just the DFA (1) because is(rowi(aa)) = {aa}. Rather than constructing a
succinct hypothesis directly, our algorithm first reduces the set S’. In this case,
we have row;(aa) = row!({e, a}), so we remove aa from S'. Now i and i coincide
and produce the NFA (2). Minimizing the set S’ in this setting essentially comes
down to determining what Bollig et al. [11] call the prime rows of the table.

Remark 22. The algorithm in Proposition 19 implicitly assumes an order in
which elements of S are checked. Although the algorithm is correct for any such
order, different orders may give results that differ in size.

6 Optimized Counterexample Handling

The second optimization we give generalizes the counterexample processing
method due to Rivest and Schapire [28], which improves the worst case complexity
of the number of membership queries needed in L*. Maler and Pnueli [26] proposed
to add all suffixes of the counterexample to the set E instead of adding all
prefixes to the set S. This eliminates the need for consistency checks in the
deterministic setting. The method by Rivest and Schapire finds a single suffix of
the counterexample and adds it to E. This suffix is chosen in such a way that
it either distinguishes two existing rows or creates a closedness defect, both of
which imply that the hypothesis automaton will grow.

The main idea is finding the distinguishing suffix via the hypothesis automaton
H. Given u € A*, let g, be the state in H reached by reading u, i.e., g, = r9¢(u).
For each g € H, we pick any U, € T(S) that yields ¢ according to the table, i.e.,
such that rowg(Uq) = ¢q. Then for a counterexample z we have that the residual
language w.r.t. U,, does not “agree” with the residual language w.r.t. z.

The above intuition can be formalized as follows. Let R: A* — O4™ be given
by R(u) = tﬁL (Ug,) for all u € A*, the residual language computation. We have
the following technical lemma, saying that a counterexample z distinguishes the
residual languages t.(z) and R(z).

Lemma 23. If z € A* is such that Lg¢(z) # L(z), then tg(2)(e) # R(2)(e).

We assume that U, = n(e). For a counterexample z, we then have R(e)(z) =
tz(e)(z) # R(z)(e). While reading z, the hypothesis automaton passes a sequence
of states qugy; GuysQuss- - - squ, ;» where ug = €, u, = 2z, and u;4+; = u;a for some
a € A is a prefix of z. If z were correctly classified by H, all residuals R(u;)
would classify the remaining suffix v of z, i.e., such that z = w;v, in the same
way. However, the previous lemma tells us that, for a counterexample z, this is
not case, meaning that for some suffix v we have R(ua)(v) # R(u)(av). In short,
this inequality is discovered along a transition in the path to z.
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Corollary 24. If z € A* is such that Lac(z) # L(z), then there are u,v € A*
and a € A such that uav = z and R(ua)(v) # R(u)(av).

To find such a decomposition efficiently, Rivest and Schapire use a binary
search algorithm. We conclude with the following result that turns the above
property into the elimination of a closedness witness. That is, given a coun-
terexample z and the resulting decomposition uav from the above corollary, we
show that, while currently rowE(Uqua) = rowﬁ(Uqu)(a), after adding v to E we
have row! (U,,.)(v) # rowf)(Uqu)(a) (v). (To see that the latter follows from the
proposition below, note that for all U € T(S) and e € E, rowf(U)(e) = tﬁL (U)(e)
and for each a’ € A, rowub(U) (a’)(e) = tﬁL (U)(d’e).) The inequality means that
either we have a closedness defect, or there still exists some U € T'(.S) such that
row! (U) = rowﬁb(Uqu)(a). In this case, the rows row!(U) and rowﬂ(qu) have
become distinguished by adding v, which means that the size of H has increased.
A closedness defect also increases the size of H, so in any case we make progress.

Proposition 25. If z € A* is such that Lg¢(2) # L(z), then there are u,v € A*
and a € A such that row’ (U,,,) = rowﬁ(Uqu)(a) and tﬁL (Ug,.)(0) # tﬁL (Ug, ) (av).

We now show how to combine this optimized counterexample processing
method with the succinct hypothesis optimization from Section 5. Recall that the
succinct hypothesis 8 is based on a right inverse i: H — T'(S’) of e: T(S") — H.
Choosing such an i is equivalent to choosing U, for each ¢ € H. We then
redefine R using the reachability map of the succinct hypothesis. Specifically,
R(u) = t*, (rs(u)) for all u € A*.

Unfortunately, there is one complication. We assumed earlier that U, = n(e),
or more specifically R(g)(z) = £(z). This now may be impossible because we do
not even necessarily have ¢ € S’. We show next that if this equality does not
hold, then there are two rows that we can distinguish by adding z to E. Thus,
after testing whether R(e)(z) = £(z), we either add z to E (if the test fails) or
proceed with the original method.

Proposition 26. If z € A* is such that R(e)(z) # £(z), then row! (initg) =
rowy(g) and tﬁL (initg)(2) # to(e)(2).

To see that the original method still works, we prove the analogue of Proposi-
tion 25 for the new definition of R.

Proposition 27. If z € A* is such that Lg(z) # L(z) and R(e)(z) = L(z), then
#

there are u,v € A* and a € A such that rowtﬁ(rg(ua)) = rowb(rg(u))(a) and

th (rl (ua)) (v) # & (ri(u)) (av).

Ezxample 28. Recall the succinct hypothesis 8 from Fig. 3c for the table in Fig. 2a.
Note that S’ = S cannot be further reduced. The hypothesis is based on the right
inverse i: H — P(S) of e: P(S) — H given by i(rows(¢)) = {¢} and i(rowf(0)) =
(0. This is the only possible right inverse because e is bijective. For the prefixes
of the counterexample aa we have rs(e) = {¢} and rs(a) = rs(aa) = (). Note
that t% ({e})(aa) = 1 while t¢(0)(a) = tz (0)(c) = 0. Thus, R(¢)(aa) # R(a)(a).
Adding a to F would indeed create a closedness defect.
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Query complexity. Again, we measure the membership and equivalence query
complexities in terms of the number of states n of the minimal Moore automaton,
the number of states ¢ of the minimal T-automaton, the size k of the alphabet,
and the length m of the longest counterexample.

A counterexample now gives an additional column instead of a set of rows,
and we have seen that this leads to either a closedness defect or to two rows
being distinguished. Thus, the number of equivalence queries is still at most ¢,
and the number of columns is still in O(¢). However, the number of rows that we
need to fill using membership queries is now in O(nk). This means that a total
of O(tnk) membership queries is needed to fill the table.

Apart from filling the table, we also need queries to analyze counterexamples.
The binary search algorithm mentioned after Corollary 24 requires for each
counterexample O(logm) computations of R(z)(y) for varying words x and y.
Let r be the maximum number of queries required for a single such computation.
Note that for u,v € A*, and letting a: TO — O be the algebra structure on O,
we have R(u)(v) = a(T(ev, o tz)(Uy,)) for the original definition of R and

u

R(u)(v) = a(T(ev, o tc)(r§(w)))

in the succinct hypothesis case. Since the restricted map T'(ev, otg): T'S — TO
is completely determined by ev, ots: S — O, r is at most |S|, which is bounded
by n in this optimized algorithm. For some examples (see for instance the writer
automata in Section 7), we even have r = 1. The overall membership query
complexity is O(tnk + trlogm).

Dropping Consistency. We described the counterexample processing method
based around Proposition 25 in terms of the succinct hypothesis & rather than the
actual hypothesis H by showing that R can be defined using 8. Since the definition
of the succinct hypothesis does not rely on the property of consistency to be
well-defined, this means we could drop the consistency check from the algorithm
altogether. We can still measure progress in terms of the size of the set H, but it
will not be the state space of an actual hypothesis during intermediate stages.
This observation also explains why Bollig et al. [11] are able to use a weaker
notion of consistency in their algorithm. Interestingly, they exploit the canonicity
of their choice of succinct hypotheses to arrive at a polynomial membership query
complexity that does not involve the factor t.

7 Examples

In this section we list several examples that can be seen as T-automata and hence
learned via an instance of LY.. We remark that, since our algorithm operates on
finite structures (recall that T preserves finite sets), for each automaton type one
can obtain a basic, correct-by-construction instance of L, for free, by plugging the
concrete definition of the monad into the abstract algorithm. However, we note
that this is not how L% is intended to be used in a real-world context; it should be
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seen as an abstract specification of the operations each concrete implementation
needs to perform, or, in other words, as a template for real implementations.

For each instance below, we discuss whether certain operations admit a
more efficient implementation than the basic one, based on the specific algebraic
structure induced by the monad. Due to our general treatment, the optimizations
of Sections 5 and 6 apply to all of these instances.

Non-deterministic automata. As discussed before, non-deterministic automata
are P-automata with a free state space, provided that O = 2 is equipped with
the “or” operation as its P-algebra structure. We also mentioned that, as Bollig
et al. [11] showed, there is a polynomial time algorithm to check whether a
given row is the join of other rows. This gives an efficient method for handling
closedness straight away. Moreover, as shown in Example 20, it allows for an
efficient construction of the succinct hypothesis. Unfortunately, checking for
consistency defects seems to require a number of computations exponential in
the number of rows. However, as explained at the end of Section 6, we can in
fact drop consistency altogether.

Universal automata. Just like non-deterministic automata, universal automata
can be seen as P-automata with a free state space. The difference is that the
P-algebra structure on O = 2 is dual: it is given by the “and” rather than the “or”
operation. Universal automata accept a word when all paths reading that word
are accepting. One can dualize the optimized specific algorithms for the case of
non-deterministic automata. This is precisely what Angluin et al. [3] have done.

Partial automata. Consider the maybe monad Maybe(X) = 1+ X, with natural
transformations having components nx: X - 1+ X and px: 1+1+X - 14X
defined in the standard way. Partial automata with states X can be represented as
Maybe-automata with state space Maybe(X) = 1+ X, where there is an additional
sink state, and output algebra O = Maybe(1) = 1 + 1. Here the left value is for
rejecting states, including the sink one. The transition map §: 1+ X — (14 X)4
represents an undefined transition as one going to the sink state. The algorithm
Llaybe 15 mostly like L*, except that implicitly the table has an additional row
with zeroes in every column. Since the monad only adds a single element to each
set, there is no need to optimize the basic algorithm for this specific case.

Weighted automata. Recall from Section 3 the free semimodule monad V', sending
a set X to the free semimodule over a finite semiring S. Weighted automata over
a set of states X can be represented as V-automata whose state space is the
semimodule V(X), the output function out: V(X) — S assigns a weight to each
state, and the transition map 6: V(X) — V(X)* sends each state and each input
symbol to a linear combination of states. The obvious semimodule structure on
S extends to a pointwise structure on the potential rows of the table. The basic
algorithm loops over all linear combinations of rows to check closedness and over
all pairs of combinations of rows to check consistency, making them extremely
expensive operations. If S is a field, a row can be decomposed into a linear
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combination of other rows in polynomial time using standard techniques from
linear algebra. As a result, there are efficient procedures for checking closedness
and constructing succinct hypotheses. It was shown by Van Heerdt et al. [21]
that consistency in this setting is equivalent to closedness of the transpose of
the table. This trick is due to Bergadano and Varricchio [7], who first studied
learning of weighted automata.

Alternating automata. We use the characterization of alternating automata due
to Bertrand and Rot [9]. Recall that, given a partially ordered set (P, <), an
upset is a subset U of P such that, if x € U and = < y, then y € U. Given
Q@ C P, we write TQ for the upward closure of @, that is the smallest upset of
P containing ). We consider the monad A that maps a set X to the set of all
upsets of P(X). Its unit is given by nx(x) =1{{z}} and its multiplication by

pux(U) ={V C X | Iwev Vyew Izey Z C V}.

Algebras for the monad A are completely distributive lattices [27]. The sets of
sets in A(X) can be seen as DNF formulae over elements of X, where the outer
powerset is disjunctive and the inner one is conjunctive. Accordingly, we define
an algebra structure 8: A(2) — 2 on the output set 2 by letting (U) = 1 if
{1} € U, 0 otherwise. Alternating automata with states X can be represented as
A-automata with state space A(X), output map out: A(X) — 2, and transition
map &: A(X) — A(X)4, sending each state to a DNF formula over X. The only
difference with the usual definition of alternating automata is that A(X) is not
the full set PP(X), which is not a monad [23]. However, for each formula in
PP(X) there is an equivalent one in A(X).

An adaptation of L* for alternating automata was introduced by Angluin et
al. [3] and further investigated by Berndt et al. [8]. The former found that given
arow r € 2F and a set of rows X C 2F, r is equal to a DNF combination of rows
from X (where logical operators are applied component-wise) if and only if it is
equal to the combination defined by Y = {{x € X | z(e) = 1} | e € EAr(e) = 1}.
We can reuse this idea to efficiently find closedness defects and to construct the
hypothesis. Even though the monad A formally requires the use of DNF formulae
representing upsets, in the actual implementation we can use smaller formulae,
e.g., Y above instead of its upward closure. In fact, it is easy to check that DNF
combinations of rows are invariant under upward closure. Similar as before, we
do not know of an efficient way to ensure consistency, but we could drop it.

Writer automata. The examples considered so far involve existing classes of
automata. To further demonstrate the generality of our approach, we introduce
a new (as far as we know) type of automaton, which we call writer automaton.
The writer monad Writer(X) = M x X for a finite monoid M has a unit
nx: X — M x X given by adding the unit e of the monoid, nx(z) = (e, z), and
a multiplication px: M x M x X — M x X given by performing the monoid
multiplication, px(m1, ma, ) = (mimae,x). In Haskell, the writer monad is used
for such tasks as collecting successive log messages, where the monoid is given by
the set of sets or lists of possible messages and the multiplication adds a message.
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The algebras for this monad are sets Q@ equipped with an M-action. One may
take the output object to be the set M with the monoid multiplication as its action.
Writer-automata with a free state space can be represented as deterministic
automata that have an element of M associated with each transition. The
semantics is as expected: M-elements multiply along paths and finally multiply
with the output of the last state to produce the actual output.

The basic learning algorithm has polynomial time complexity. To determine
whether a given row is a combination of rows in the table, i.e., whether it is given
by a monoid value applied to one of the rows in the table, one simply tries all of
these values. This allows us to check for closedness, to minimize the generators,
and to construct the succinct hypothesis, in polynominal time. Consistency
involves comparing all ways of applying monoid values to rows and, for each
comparison, at most |A| further comparisons between one-letter extensions. The
total number of comparisons is clearly polynomial in [M]|, |S]|, and |A|.

8 Conclusion

We have presented L¥,, a general adaptation of L* that uses monads to learn an
automaton with algebraic structure, as well as a method for finding a succinct
equivalent based on its generators. Furthermore, we adapted the optimized
counterexample handling method of Rivest and Schapire [28] to this setting
and discussed instantiations to non-deterministic, universal, partial, weighted,
alternating, and writer automata.

Related Work. This paper builds on and extends the theoretical toolkit of
Van Heerdt et al. [21,19], who are developing a categorical automata learning
framework (CALF) in which learning algorithms can be understood and developed
in a structured way.

An adaptation of L* that produces NFAs was first developed by Bollig et al. [11].
Their algorithm learns a special subclass of NFAs consisting of RFSAs, which
were introduced by Denis et al. [16]. Angluin et al. [3] unified algorithms for NFAs,
universal automata, and alternating automata, the latter of which was further
improved by Berndt et al. [8]. We are able to provide a more general framework,
which encompasses and goes beyond those classes of automata. Moreover, we
study optimized counterexample handling, which [3,11,8] do not consider.

The algorithm for weighted automata over an arbitrary field was studied in
a category theoretical context by Jacobs and Silva [22] and elaborated on by
Van Heerdt et al. [21]. The algorithm itself was introduced by Bergadano and
Varricchio [7]. The theory of succinct automata used for our hypotheses is based
on the work of Arbib and Manes [4], revamped to more recent category theory.

Future Work. Whereas our general algorithm effortlessly instantiates to monads
that preserve finite sets, a major challenge lies in investigating monads that do
not enjoy this property. The algorithm for weighted automata generalizes to an
infinite field [7,22,21] and even a principal ideal domain [20]. However, for an



Learning Automata with Side-Effects 21

infinite semiring in general we cannot guarantee termination, which is because a
finitely generated semimodule may have an infinite chain of strict submodules [20].
Intuitively, this means that while fixing closedness defects increases the size of the
hypothesis state space semimodule, an infinite number of steps may be needed
to resolve all closedness defects. In future work we would like to characterize
more precisely for which semirings we can learn, and ideally formulate this
characterization on the monad level.

As a result of the correspondence between learning and conformance test-
ing [6,21], it should be possible to include in our framework the W-method [14],
which is often used in case studies deploying L* (e.g. [12,15]). We defer a thorough
investigation of conformance testing to future work.
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A Omitted proofs

Proposition 11. The minimal Moore automaton accepting £ is finite if and
only if the minimal T -automaton accepting L is finite.

Proof. The left to right implication is proved by freely generating a T-automaton
from the Moore one via the monad unit, and by recalling that T" preserves finite
sets. The resulting T-automaton accepts £ and is finite, therefore any of its
quotients, including the minimal T-automaton accepting £, is finite. Analogously,
the right to left implication follows by forgetting the algebraic structure of the
T-automaton: this yields a finite Moore automaton accepting L. O

Lemma 13. If for all s € S and a € A there is U € T(S) such that row?(U) =
rowy(s)(a), then the table is closed.

Proof. Let m: img(rowf) < OF be the embedding of the image of row! into its
codomain. According to Van Heerdt et al. [21], the definition of closedness given
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in Definition 12 amounts to requiring the existence of a T-algebra homomorphism
close making the following diagram commute:

close i X‘Ng (3)

img(rowf)A — (OF)A

It is easy to see that the hypothesis of this lemma corresponds to requiring
the existence of a function close’ making the diagram below on the left in Set

comimute.
, rowb
S T (close”)
1 w
|
<+

T (img(row!)4) —— T((0F)4)

T(m?) l

— (04

img(row! )4 —— (OF)4 l
m
img(row})4
This diagram can be made into a diagram of T-algebra homomorphisms as on
the right, where the compositions of the left and right legs give respectively
close™ and rowub. This diagram commutes because the top triangle commutes by

functoriality of T, and the bottom square commutes by m* being a T-algebra
homomorphism. Therefore we have that (3) commutes for close = close’®. O

Proposition 15. If z € A* is such that Ls¢(2) # L(z) and prefixes(z) C S, then
there are a prefix ua of z, with u € A* and a € A, and U € T(S) such that
rowe (1) = row! (U) and rowp(u)(a) # rowﬁ(U)(a).

Proof. Note that

row;(z)(e) = £(z)
# Lgc(2)
= outgc(rsc(2))

= r3c(2)(€)

so rowy(z) # rac(z). Let p € A* be the smallest prefix of z satisfying row(p) #
r9c(p). We have row(e) = initge = rgc(e), so p # € and therefore p = ua
for certain u € A* and a € A. Let S’ C S be the set from which H was
constructed—recall that we added prefixes(z) to S after constructing H. Choose
any U € T(S') such that row! (U) = rq¢(u), which is possible because H is the
image of rowii restricted to the domain T'(S”). By the minimality property of p

definition of row;)
assumption)
Definition of Lg)

definition of outg),

(
(
(
(
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we have rowy(u) = rg¢(u) = row! (U). Furthermore,

rowp(u)(a) = row(ua) (definitions of row; and rowy)
# roc(ua) (ua = p and row(p) # r3¢(p))
= d9¢(roc(u))(a) (definition of rg¢)
= dg¢(rowf (1)) (a) (rac(u) = rowf (1))
rowb( )(a) (definition of dq¢). O

Proposition 18. Any succinct hypothesis of H accepts the language of H.

Proof. Assume a right inverse i: H — T(S’) of e: T(S") — H. We first prove
03¢ 0 ¢ = 0g, by induction on the length of words. For all U € T'(S’), we have

o3¢(e(U))(g) = outgc(e(U)) (definition of og¢)
= outgc(row! (7)) (definition of e)
= row! (U)(e) (definition of outg)
= outg(U) (definition of outs)
=o0g(U)(e) (definition of og).

Now assume that for a given v € A* and all U € T'(S") we have og¢(e(U))(v) =
0s(U)(v). Then, for all U € T(S") and a € A,

og¢(e(U))(av) = 03¢(d3¢(e(U))(a))(v)
(U)(@))(v)
= oﬁ(rowb(U (a))(v) definition of dg¢)

(
(
(
= (oscocoi)(rowj(U)(a)(v)  (eci=idn)
(
(
(

definition of og¢)

= 0g¢(0g¢(row definition of e)

)
d
)

= (0g 0i)(r wﬁb(U) induction hypothesis)
= 0s(ds(U)(a))(v)

= 0s(U)(av)

definition of dg)

definition of og).
From this we see that

os(initg) = (0s 0% o rowy)(g) (definition of inits)
= (0g¢ 0 e 0 i orowy)(e) (03—(06_05)
= (0g¢ o rowy)(e) (

(

= og¢(initgc) definition of initg¢). O

Proposition 19. The following algorithm returns a minimal set of generators
for the table:

S+ S
while there are s € 8" and U € T(S"\ {s}) s.t. row! (U) = rowy(s)
S« S\ {s}

return S’
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Proof. Minimality is obvious, as S’ not being minimal would make the loop guard
true.

We prove that the returned set is a set of generators. For clarity, we denote
by dg/: S — T(S’) the function associated with a set of generators S’. The main
idea is incrementally building dg while building S’. In the first line, S is a set
of generators, with dg = ng: S — T(S). For the loop, suppose S’ is a set of
generators. If the loop guard is false, the algorithm returns the set of generators
S’. Otherwise, suppose there are there are s € S” and U € T(S” \ {s}) such that

row! () = rowy(s). Then there is a function

, , N R ifs' =s
f:S _>T(S \{S}) f(S)_{’f](S/) ifS/#S

that satisfies rows(s') = row?(f(s')) for all s/ € ', from which it follows that
row! (U') = rowi(f1(U")) for all U’ € T(S'). Then we can set dsn sy to f#o
dg: S — T(S"\{s}) because row(s") = rowf(ds/\{s}(s’)) for all s’ € S. Therefore,
S’ \ {s} is a set of generators. O
Lemma 23. If z € A* is such that Lqc(2) # L(2), then ts(2)(e) # R(2)(e).

Proof. We have

te(2)(e) = L(2) (definition of ¢z )
# Lac(2) (assumption)
= (outg¢ o r9¢)(2) (definition of Lg¢)
= rgc(2)(e) (definition of outgq)
=q.(e) (definition of ¢,)
= row!(U,.)(e) (definition of Uy, )
= tﬁﬁ (Uq.)(e) (definitions of row; and )
=R(z)(e) (definition of R). O

Proposition 25. If z € A* is such that Lq¢(2) # L(z), then there are u,v € A*
and a € A such that rowg(Uqw) = rowﬁb(Uqu)(a) and tﬁL (Uguo)(0) # tﬁL(Uqu)(av).

Proof. By Corollary 24 we have u,v € A* and a € A such that R(ua)(v) #
R(u)(av). This directly yields the inequality by the definition of R. Furthermore,

rows(Ug,..) = Gua (definition of Uy,,)
= rg¢(ua) (definition of gyq)
= dg¢(roc(u))(a) (definition of rg¢)
= d9¢(qu)(a) (definition of g,)
= dyc(row? (U,,))(a) (definition of Uy,)
= rowub(Uqu)(a) (definition of dq¢). O
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Proposition 26. If z € A* is such that R(e)(z) # £(z), then row! (initg) =
rowy(g) and tﬁL (inits)(2) # to(e)(2).

Proof. We have row! (initg) = row? (i(rows())) = rows(¢) by the definitions of
initg and ¢, and

t% (i(rowe (£)))(2) = t4 (inits ) (2) (definition of initg)
=% (r5(¢))(2) (definition of rg)
= R(e)(z) (definition of R)
# L(2) (assumption)
=t (e)(2) (definition of ¢.). O
Lemma 29. If z € A* is such that Ls(z) # L(z) and R(e)(z) = L(z), then

R(e)(2) # R(2)(e).
Proof. We have

R(e)(z) = L(z) (assumption)
# Lg(2) (counterexample)
= (outg o rs)(z) (definition of Lg)
= (row! o rs)(z)( £) (definition of outg)
=% (rh(2))(e) (definition of row?)
= R(z)(e) (definition of R). O

Corollary 30. If z € A* is such that Ls(z) # L(z) and R(e)(z) = L(z), then
there are u,v € A* and a € A such that uav = z and R(ua)(v) # R(u)(av).

Proposition 27. If z € A* is such that Lg(z) # L(z) and R(e)(z) = L(z), then
there are u,v € A* and a € A such that rowf(rg(ua)) = rowf)(r;(u))(a) and
% (rf (ua))(v) # t (rf (u)) (av).
Proof. Let u, a, and v be as in Corollary 30. Thus,
t (rf (ua)) (v) = R(ua)(v) # R(u)(av) = £ (rk (u))(av).
Furthermore, since for all s € .S and b € A we have
((rowf)™ 0 6§)(5)(b) = rowf (55 (s) (b))
= (row? o ) (rowp(s)(b)) (definition of 53;)
= rowp(s)(b) (definition of 1),

it follows that (rowtjj YA 08 = rowﬁ. Therefore,

rowﬁ(rjg(ua)) FOWt(5s(TS(u))(a)) (definition of rg)
= ((rowf)™ 0 d5)(rf (u))(a)
= rowf (rf (u))(a). O
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