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ABSTRACT
Position bias is a critical problem in information retrieval when
dealing with implicit yet biased user feedback data. Unbiased rank-
ing methods typically rely on causality models and debias the user
feedback through inverse propensity weighting. While practical,
these methods still suffer from two major problems. First, when
inferring a user click, the impact of the contextual information, such
as documents that have been examined, is often ignored. Second,
only the position bias is considered but other issues resulted from
user browsing behaviors are overlooked. In this paper, we propose
an end-to-end Deep Recurrent Survival Ranking (DRSR), a unified
framework to jointly model user’s various behaviors, to (i) consider
the rich contextual information in the ranking list; and (ii) address
the hidden issues underlying user behaviors, i.e., to mine observe
pattern in queries without any click (non-click queries), and to
model tracking logs which cannot truly reflect the user browsing
intents (untrusted observation). Specifically, we adopt a recurrent
neural network to model the contextual information and estimates
the conditional likelihood of user feedback at each position.We then
incorporate survival analysis techniques with the probability chain
rule to mathematically recover the unbiased joint probability of
one user’s various behaviors. DRSR can be easily incorporated with
both point-wise and pair-wise learning objectives. The extensive
experiments over two large-scale industrial datasets demonstrate
the significant performance gains of our model comparing with the
state-of-the-arts.
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1 INTRODUCTION
Nowadays, information systems have become a core part for the
personalized online services, such as search engines and recom-
mender systems, where machine learning is the key technique for
the success [3]. Among them, learning-to-rank [29] is a fundamen-
tal approach which learns to present a ranked list of items as the
most relevant to the user query or most likely preferred by the
target user. However, there is no ground truth except expensive
labeled data from human experts for training a ranker, which facili-
tates the usage of implicit user feedbacks [20, 42], i.e., user clicks
[21, 42] and browsing logs [2, 42]. Although the usage of the im-
plicit user feedback alleviates data labeling cost, it introduces the
data bias problem [2, 21]. As shown in Figure 1, taking position
bias as an example, a user typically observes the presented item
list from top to down, in such a way the attention of the user drops
rapidly and the user may observe and click more likely on the top
presented items than the bottom ones [20]. Simply optimization for
the ranking performance based on the implicit feedback data may
result the ranking function in learning the presenting order, rather
than the true relevance or the real user preferences. To tackle such
a bias issue, many researchers have explored the potential tech-
nical approaches in training a high efficient model with unbiased
learning-to-rank.

One line of the research is based on counterfactual learning
[1, 18], which treats the click bias as the counterfactual factor [35]
and debiases the user feedbacks through inverse propensity weight-
ing (IPW) [21, 42]. For instance, Ai et al. [2] and Hu et al. [17]
respectively proposed to employ the dual learning method for
jointly estimating position bias and training a ranker. However,
these methods either focus on the position of the item while ig-
noring the contextual information of the given ranking list, e.g.,
the content of the previous items may influence the observation of
the next item [2, 17], or optimize the ranking performance directly
while neglecting the nature of the user browsing behaviors, e.g., the
click always happens at the observed item [21, 42]. Another line of
research investigates user browsing behavior model [7, 10, 38, 39],
where several basic assumptions about the user browsing behaviors
are adopted to maximize the likelihood of the observations. For
example, Fang et al. [12] extended position-based model and pro-
posed an estimator based on invention harvesting, which, however,
only considers the query-level contents (e.g., query feature) rather
than the document-level contextual information (e.g., the previous
observed documents).

More importantly, the prior works often focus on addressing
the gap between user behavior and true preferences, while leaving
latent issues hidden in the user behaviors, to be unsolved: (i) As
Figure 1 illustrated, when the user starts a search with a query, she
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may stop browsing by interruption or end the search session due
to lack of interest, which leaves many queries without any user
click behavior, often referred as non-click queries. It is imprac-
tical to mine click patterns in these non-click queries. However,
these queries contain large amount of observe patterns, e.g., users
are often impatient and only observe several top documents when
selecting daily items such as fruits; while becoming patient and
browse several sessions before click when selecting luxury items
such as phones. Different from recent investigations on abandoned
queries, defined as Web search queries without hyperlink clicks,
we here mainly focus on mining observe patterns instead of distin-
guishing bad and good abandonment [27, 36]. (ii) When the user
scrolls down the page and observes the presented items, the system
may track (through check points) that the user has observed until
the last position of the screen. However, this may not be true since
the user would have stopped and lost her attention before checking
the items on the last positions. It is not realistic to set eyetracking
for each user during each of her visit [20]. Hence, the tracking
logs of the user browsing history cannot truly tell that the users
are actually checking the contents, and we called these noisy logs
untrusted observations, as Figure 1 shows.

Based on the above analysis, when designing unbiased learning-
to-rank algorithm, the current state-of-the-art methods have not
well solved, even may not been aware of, the following challenges,
which we address in this paper: (C1) The user behaviors contain
various and highly correlated patterns based on the contextual
information. (C2) There are large scale of latent observe patterns
hidden in the non-click queries. (C3) The untrusted observa-
tion, another unsolved issue, is caused by limitation of tracking
logs.

To tackle these challenges, we propose a novel framework called
deep recurrent survival ranking (DRSR) to formulate the unbiased
learning-to-rank task as to estimate the probability distribution of
user’s conditional click rate. To capture user behavior pattern, we
combine survival model and recurrent neural network (RNN) in
DRSR framework. Specifically, the RNN architecture incorporates
all the top-down contents in the ranking list as contextual informa-
tion, while the survival model derives the joint probability of user
behavior via the probability chain rule, which enables modeling
both observed and censored user behavior patterns (C1). We then
assume that a user’s favored documents in the non-click queries
could hide in unobserved ones out of browsing scope. This is similar
to those patients who leave the hospital and die out of investiga-
tion period. Hence, we can leverage survival analysis techniques
[8, 22? ] via treating non-click logs as censored data of clicked ones
where the censorship occurs in the click behavior (C2). In seeking
a proper way to measure relevance for untrusted observation, we
model conditional probability and design a novel objective function
to learn relative relevance between trusted and untrusted feedbacks
in pair-wise setting (C3).

The major contributions of this paper can be outlined as follows.
• We propose an innovative framework to jointly capture the
correlation of user behaviors and train an unbiased rank with
contextual information of the rank list.

• We incorporate cascade model with survival analysis to deeply
mine hidden user observe patterns in non-click queries.
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Figure 1: Illustration of user various behaviors (i.e., click and
non-click case) when browsing document list as shown in
the left side. Notations are provided in the right side.

• We provide a Pairwsie Debiasing training scheme to model rela-
tive relevance between trusted and untrusted observations.
Extensive experiments on Yahoo search engine and Alibaba rec-

ommender system datasets demonstrate the superiority of DRSR
over state-of-the-arts. To the best of our knowledge, in the unbi-
ased learning-to-rank task, it is the first work providing adaptive
user behavior modeling using contextual information with survival
analysis.

2 RELATEDWORK

Unbiased Learning to Rank. Learning to rank [29] is a funda-
mental technique for information systems, such as search engine,
recommender system and sponsored search advertising. There are
two streams of unbiased learning to rankmethodologies. One school
is based on some basic assumptions about the user browsing be-
haviors [7, 10, 38, 39]. These models maximize the likelihood of the
observations in the history data collected from the user browsing
logs. Recently, Fang et al. [12] extended position-based model and
proposed an effective estimator based on invention harvesting. As
is discussed in [21], these model only model user behavior patterns
without sufficient optimization for learning to rank problem. The
other school derived from counterfactual learning [21, 43] which
treats the click bias as the counterfactual factor [35] and debias the
user feedback through inverse propensity weighting [42]. Recently,
Ai et al. [2] and Hu et al. [17] respectively proposed to employ
the dual learning method for jointly estimating position bias and
training a ranker. However, these prior works often ignore the rich
contextual information in query and omit user’s various behaviors
except click. In this paper, we propose an innovative approach a
novel cascade model adaptive in both point-wise and pair-wise set-
ting. In addition to taking joint consideration of click and non-click
data via survival analysis, we also model the whole ranking list
through recurrent neural network.



Table 1: A summary of notations in this paper.

q, Dq , Cq , Oq , D Query q and set of documents Dq associated with click information Cq and observe information Oq .
Dataset D for all query, formulated as D = {(q,Cq ,Oq ,Dq )}.

i , di , xi , ri , ci , oi Position i and i-th document di in Dq with feature vector xi , relevance information ri , click information ci
and observe information oi . Note that we utilize binary value here and can obtain oi = 1 from ci = 1.

pi , hi ,W (i), S(i) At i-th document di , click probability (P.D.F) pi and relevance probability (conditional probability) hi as
defined in Eqs. (7). and (8). observe probability (C.D.F.) S(i) and unobserve probability (C.D.F.)W (i) as
defined in Eqs. (5) and (6).

D+q , D−
q , D∗

q , Iq Real positive document set D+q document set D−
q and uncertain document set D∗

q the whole document set
Dq formulated as Dq = D+q

⋃
D−
q
⋃

D∗
q , Iq denotes the set of document pairs (di , dj ). where di , dj are

sampled from two sets of D+q , D−
q , D∗

q .

Survival Analysis. In the field of learning-to-rank, deep learning-
based sequential algorithms have won much attention and sur-
passed several traditional models via considering the time infor-
mation of each interaction [11]. However, the event occurrence
information may be missed, due to the limitation of the observa-
tion period or track procedure [41], which is called censorship.
A key technique addressing censorship is to estimate the proba-
bility of the event occurrence at each time typically studied by
survival analysis. There are two main streams of survival analysis.
The first view is based on traditional statistics scattering in three
categories. Non-parametric methods [5, 22] are solely based on
counting statistics. Semi-parametric methods [8, 37] assume some
base distribution functions with the scaling coefficients. Parametric
models [26] assume that the survival time or its logarithm result fol-
lows a particular theoretical distribution. These methods either base
on statistical counting information or pre-assume distributional
forms for the survival rate function, which generalizes not very
well in real-world situations. The second school of survival analysis
takes from machine learning perspective. These machine learn-
ing methodologies include survival random forest [13], Bayesian
models [30], support vector machine [25] and multi-task learning
solutions [4, 28]. Recently, Ren et al. [32, 33] proposed a recurrent
neural network model which captures the sequential dependency
patterns between neighboring time slices and estimates the survival
rate through the probability chain rule. In this paper, we extend
the methodology of the survival analysis to provide fine-grained
unbiased ranking list in a unified learning objective without making
any distributional assumptions.

3 PRELIMINARY
3.1 Point-wise Unbiased Learning-to-Rank
The fundamental task in learning-to-rank scenarios is to learn a
ranker f which assigns a score r to the document d according to
item feature x . Then, the documents with respect to the query q
return the list in descending order of their scores. Let q denotes the
query and Dq the set of documents associated with q. We consider
three subsets contained in the set of documents Dq as follows:
• D+q : set of the real positive documents that user has expressed her
feedback on, i.e., observed and clicked.

• D−
q : set of the real negative documents that user has seen but not

given her feedback on, i.e., observed and unclicked.
• D∗

q : set of the uncertain documents that user feedback is unclear
due to user’s leave behavior, i.e., untrusted.

We describe di the i-th document in Dq and xi the feature vector
of di . Let ri represent the relevance of di . For simplicity we only
consider binary relevance here, i.e., ri = 1, ri = 0 and ri =?, where
? ∈ {0, 1} but unknown for those untrusted documents; and one
can easily extend it to the multi-level relevance case. In the point-
wise setting, the risk function in learning is defined on a single data
point x as

R(f ) =
∫
q

∫
di ∈D+q

L(f (xi ), ri ) dP(xi , ri ), (1)

where f denotes a ranker, L(f (xi ), ri ) denotes a point-wise loss
function and P(xi , ri ) denotes the probability distribution on xi
and ri . The goal of learning-to-rank is to find the optimal ranker
f that minimizes the loss function. Traditionally, the ranker is
learned with labeled data containing user browsing logs. However,
click data is indicative of individual users’ relevance judgments,
but is also noisy and biased [2, 21]. This is what we call biased
learning-to-rank.

3.2 Pair-wise Unbiased Learning-to-Rank
Traditionally, in the pairwise setting, the ranker f is still defined
on a query document pair (x , r ), and the loss function is defined on
two data points: positive document di and negative document dj .
We here also take those untrusted documents into consideration.
Specially, we sample di and dj from three candidate sets, i.e., D+q ,
D−
q and D∗

q instead of only from the first two sets. Let q denote
a query. Let xi and x j denote the feature vectors from di and dj
respectively. Let ri and r j represent the document di and document
dj respectively. Let Iq denote the set of document pairs (di , dj ).
Similarly, for simplicity we only consider binary relevance here.
The risk function is defined as

R(f ) =
∫
q

∫
(di ,dj )∈Iq

L(f (xi ), ri , f (x j ), r j ) dP(xi , ri ,x j , r j ), (2)

where L(f (xi ), ri , f (x j ), r j ) denotes a pair-wise loss function.

3.3 Problem Formulation
The key question in any unbiased learning-to-rank algorithm is
how to fill the gap between click and relevance. Given the fact
that users click a search document di (ci = 1) only when it is both
observed (oi = 1) and perceived as relevant (ri = 1), most recent
works [2, 21, 42, 43] formulate the problem as P(ci = 1|x) = P(ci =
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Figure 2: Illustration of Deep Recurrent Survival Ranking model. Note that we mine click patterns in click case and observe
patterns in both click and non-click cases.

1|oi = 1;x) · P(oi = 1|x) , where we can define relevance as

P(ri = 1|x) � P(ci = 1|oi = 1;x) = P(ci = 1|x)
P(oi = 1|x) . (3)

The task of biased learning-to-rank is to estimate click and return
a ranking list according to P(ci = 1|x), while the aim of unbiased
learning to rank is to derive relevance from click data and provide
a ranking list according to P(ri = 1|x).

Many click models [7, 10, 15] have investigated how to model
the impact from previous clicked document. To simplify, we only
study the session with single click here. One can easily extend
into multiple click session via truncating multiple one into several
single ones. Actually, this sequence truncation method, over the
sequential data with multiple events, has been widely used in many
works covering various fields such as recommender system [19],
conversion attribution [31] and survival analysis [32], which trun-
cates the raw sequences according to the events of interest (i.e.,
click in our case).

4 METHODOLOGY
4.1 Survival Model
In the field of survival analysis [28, 32], we investigate the prob-
ability of death event z happening at each time. Analogously, we
here investigate the probability of click event z happening at each
document. Let z = i denote that event z happens at i-th document
di , and z ≥ i denote that event z happens after i-th document di .
We then analyze the patient’s investigation on underlying survival
period, where a patient will keep ‘survival’ until she leaves hospital
or meets ‘death’. Actually, user behaviors on browsing are very
similar, where a user will keep observing until she leaves due to
lost of interest or clicks due to success in finding a worthwhile
document. Hence, we find that click at each item corresponds to
the ‘death’ status of one patient [46], and define click probability,
the probability density function (P.D.F.) of click occurring at i-th
document di , as

pi � P(ci = 1) � P(z = i), (4)

where z denotes the position of clicked document. Also, we see
that observe at each item corresponds to the ‘survival’ status of one
patent [46]. Hence, we can derive the observe probability at i-th
document di as the cumulative distribution function (C.D.F.), since

user will keep browsing until she finds and clicks a favored one, as

S(i) � P(oi = 1) � P(z ≥ i) =
∑
τ ≥i

P(z = τ ), (5)

which represents the probability of the click event occurring after
document di , i.e., probability of observing di . Then it’s straight-
forward to define the unobserve probability, i.e., the probability of
event occurring before the document di , as

W (i) � P(oi = 0) � P(z < i) =
∑
τ <i

P(z = τ ). (6)

Hence, click probability function at the i-th document can be calcu-
lated as

pi = P(z = i) =W (i + 1) −W (i)
= [1 − S(i + 1)] − [1 − S(i)]
= S(i) − S(i + 1).

(7)

We define the relevance probability as conditional click probability
according to Eq. (3), the click probability at document di given that
the previous document di−1 is observed, as

hi � P(ri = 1) = P(ci = 1)
P(oi = 1) =

P(z = i)
P(z ≥ i) =

pi
S(i) , (8)

which also means the probability that the click occurring docu-
ment z lies at di given the condition that z is larger than the last
observation boundary.

For those non-click logs caused by user leave behavior, we as-
sume that user’s favored document (i.e., click) hides in the future
session. A similar scenario can be found in survival analysis when
a patient leaves hospital and finally meets ‘death’ sometime after
investigation period. Hence, we can regard these non-click logs as
the censored clicked queries where censorship occurs in click. Note
that the data logs of unbiased learning-to-rank are represented as
a set of triple {(x , z, l)}, where x is the feature of the item and l is
the browse length. Here z is the position of clicked document dz if
the user clicks in this browsing behavior, but z is unknown (and we
marked z as null) in those non-click browsing histories. Different
from traditional causality models [7, 9], survival model is able to
capture observe patterns in both click and non-click queries.

4.2 Deep Recurrent Survival Ranking Model
Based on survival model, we introduce our DRSR based on recurrent
neural network fθ with the parameter θ , which captures the sequen-
tial patterns for conditional click probability hi at every document
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Figure 3: Intuition behind C.D.F. losses. The left and right
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di . This structure also enables DRSR to take contextual information
(i.e., observed documents) into consideration. The detailed struc-
ture of DRSR is illustrated in Figure 2. At each document di , the
i-th RNN cell predicts the conditional click probability hi given the
document feature xi as

hi = P(z = i | z ≥ i,x ;θ ) = fθ (xi | bi−1), (9)

where fθ is the RNN function taking x as input and hi as output.
bi−1 is the hidden vector calculated from the last RNN cell. In our
paper we implement the RNN function as a standard LSTM unit
[16], which has been widely used in sequence data modeling.

From Eqs. (6), (5), (8) and (9), we can easily derive the observe
probability functionW (i) and the unobserve probability function
S(i) as

S(i |x ;θ ) = P(i ≤ z |x ;θ ) = P(z , 1, z , 2, . . . , z , i − 1|x ;θ )
= P(z , 1|x1;θ ) · P(z , 2|z , 1,x2;θ ) · · ·
· P(z , i − 1|z , 1, . . . , z , i − 2,xi−1;θ )

=
∏
τ :τ <i

[1 − P(z = τ |z ≥ τ ,xτ ;θ )] =
∏
τ :τ <i

(1 − hτ ),

(10)

W (i |x ;θ ) = P(i > z |x ;θ ) = 1 − S(i |x ;θ ) = 1 −
∏
τ :τ <i

(1 − hτ ). (11)

Here we use probability chain rule to calculate unobserve probability
S(i) at the given document di through multiplying the conditional
unclick probability (1 − hτ ), i.e., inverse of the conditional click
probability.

Moreover, taking Eqs. (7) and (8) into consideration, the probabil-
ity of clicked document dz directly lying at di , i.e., click probability
at document di can written as

pi = P(z = i |x ;θ ) = hi
∏
τ :τ <i

(1 − hτ ). (12)

4.3 Point-wise Loss Function
In point-wise setting, since there is no ground truth of either event
probability distribution or relevance information, here wemaximize
the log-likelihood over the empirical data distribution to learn our
deep model.

The first type of loss is based on the click probability (P.D.F.) and
it aims to minimize negative log-likelihood of the click document

dj over the clicked logs as

Lpoint(z) = −log
∏

(x ,z)∈Dclick

P(z = j |x ;θ ) = −log
∏

(x ,z)∈Dclick

pj

= −log
∏

(x ,z)∈Dclick

[hj
∏
τ :τ <i

(1 − hτ )]

= −
∑

(x ,z)∈Dclick

[log hj +
∑
τ :τ <i

log(1 − hτ )],

(13)
where j is the position of true clicked document dj given the feature
vector x .

The second type of loss is based on the observe probability (C.D.F.).
There are two motivations about the second loss corresponding to
these two cases. Let z and l represent clicked document position
and browse length respectively. As is shown in Figure 3, the left
sub-figure is the click case where z has been known and z ≤ l ; The
right sub-figure is the non-click case where z is unknown (censored)
but we only have the knowledge that z > l .

For the click cases as the left part of Figure 3, we need to “push
up” the observe probability for the document whose position is in
range of [0, l], while “pull down” the observe probability for the
document whose position is in range of [l ,∞). Thus, on one hand,
we adopt the loss over the click cases that

Lclick = −log
∏

(x ,l )∈Dclick

P(l ≥ z |x ;θ )

≈ −log
∏

(x ,l )∈Dclick

W (l |x ;θ )

= −
∑

(x ,l )∈Dclick

log [1 −
∏
τ :τ <l

(1 − hτ )].

(14)

As for the non-click cases in the right part of Figure 3, we just
need to “push up” the observe probability since we have no idea
about true click document but we only know that z > l . On the
other hand, we just adopt the loss over the non-click dataset as

Lnon-click = −log
∏

(x ,l )∈Dnon-click

P(z > l |x ;θ )

≈ −log
∏

(x ,l )∈Dnon-click

S(l |x ;θ )

= −
∑

(x ,l )∈Dnon-click

∑
τ :τ <l

log (1 − hτ ).

(15)

4.4 Permutation Document Model
Different from traditional pair-wise methods where binary classifi-
cation accompanied with logistic regression is proposed to model
relative relevance, as Figure 4 shows, we here model the relative rel-
evance via three conditional probabilities: click probability (P.D.F.):
(i) P(z = j |z ≥ i) for positive document dj ; (ii) P(z = i |z ≥ j)
for negative document di ; and observe probability (C.D.F.): (iii)
P(z ≥ k |z ≥ i) for untrusted document dk . As Figure 4 shows,
the first one indicates the probability of user clicking document dj
given she has browsed document di ; the second one represents how
likely user click document di given she has observed document dj ;
while the third one means the probability of user going on browsing
document dk after observing document di .



It should be noted that only the first conditional probability is
accessible to be measured since we can only obtain original order 0
(o1 in Figure 4). In order to get rerank 1 (r1) and rerank 2 (r2), we
need to permute the documents. Recall that users often browse from
the top to bottom, which may result in that higher the document
ranked, more likely it to be clicked. We are able to move clicked
document dj forward since it will not change click behavior. By this
way, we obtain r1. Considering there may exist relevant documents
in those untrusted observations, we consider to move untrusted
document dk forward to get r2. Note that moving dk forward and
dj backward may change click behavior, we here model observe
probability instead. This technique to mine more potential order
based on an original order is inspired by XLNet [44], so we call it
permutation document modeling.

By this way, our model is able to (i) consider documents’ dis-
play order in pair-wise setting by modeling relative relevance with
conditional probability; (ii) take both trusted and untrusted observa-
tion into consideration; (iii) conduct training procedure with more
dependency pairs.
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Figure 4: Illustration of permutation document modeling,
where documents here are sampled from different subsets
in the right side. Double sided arrow denotes exchange or-
der operation.

4.5 Pair-wise Loss Functions
Different from point-wise loss functions, pair-wise loss functions
can preserve relative information, e.g., relative relevance can be
drawn from user’s action to document dj given she has browsed
document di . There are three pair-wise loss functions for posi-
tive, negative and untrusted documents respectively based on the
analysis in Section 4.4.

In order to maximize log-likelihood of click probability (P.D.F.):
P(z = j |z ≥ i), i.e., clicking relevant document dj after observing
irrelevant document di , we formulate the first pair-wise loss based
on o0 query in Figure 4 as

Lpair(o0) = −log
∏

(di ,dj )∈Iq
P(z = j |z ≥ i,x ;θ )

= −log
∏

(di ,dj )∈Iq

P(z = j |x ;θ )
P(z ≥ i)|x ;θ ) = −log

∏
(di ,dj )∈Iq

pj

S(i |x ;θ )

= −
∑

(di ,dj )∈Iq
{[log hj

∑
τ :τ <j

log(1 − hτ )] −
∑
τ :τ <i

log(1 − hτ )}.

(16)

In r1 query, we need to minimize log-likelihood of click probability
(P.D.F.): P(z = i |z ≥ j), i.e., clicking irrelevant document di after
observing relevant document dj and form the second pair-wise loss
function as

Lpair(r1) = log
∏

(di ,dj )∈Iq
P(z = i |z ≥ j,x ;θ )

= log
∏

(di ,dj )∈Iq

P(z = i |x ;θ )
P(z ≥ j)|x ;θ ) = log

∏
(di ,dj )∈Iq

pi
S(j |x ;θ )

=
∑

(di ,dj )∈Iq
{[log hi

∑
τ :τ <i

log(1 − hτ )] −
∑
τ :τ <j

log(1 − hτ )}.

(17)
For r2 query, we measure the relative relevance between trusted

(i.e., relevant and irrelevant) and untrusted documents via user
observe behavior. Specially, we evaluate observe probability (C.D.F.):
P(z ≥ k |z ≥ i), i.e., probability of user going browsing dk after she
has observed di as

Lpair(r2) = −log
∏

(di ,dk )∈Iq
P(z ≥ k |z ≥ i,x ;θ )

= −log
∏

(di ,dk )∈Iq

P(z ≥ k |x ;θ )
P(z ≥ i |x ;θ ) = −log

∏
(di ,dk )∈Iq

S(k |x ;θ )
S(i |x ;θ )

= −
∑

(di ,dk )∈Iq
[
∑

τ :τ <k
log (1 − hτ ) −

∑
τ :τ <i

log (1 − hτ )].

(18)

4.6 Model Realization
In this section, we unscramble some intrinsic properties of our deep
model and analyze the model efficiency in this section.

Properties of Loss Function. First of all, we take the view of click
prediction of our methodology. As is known that there is a click
status, i.e., an indicator of click event, for each sample as

ω =

{ 1 if l ≥ z

0 otherwise l < z.
(19)

Hence, taking Eqs. (14) and (15) altogether and we may find that
combination of Lclick and Lnon-click describes the classification of
click status at document dl of each sample as

L2 = Lclick + Lnon-click

= −log
∏

(x ,l )∈Dclick

P(l ≥ z |x ;θ ) − log
∏

(x ,l )∈Dnon-click

P(z > l |x ;θ )

≈ −log
∏

(x ,l )∈D
[W (l |x ;θ )]ω · [1 −W (l |x ;θ )]1−ω

= −
∑

(x ,l )∈D
{ω · logW (l |x ;θ ) + (1 − ω) · log [1 −W (l |x ;θ )]},

(20)
which is the cross entropy loss for predicting click status at time t
given x over all the data D = Dclick ∪ Dnon-click .

Combining all the objective functions and our goal is to minimize
the negative log-likelihood over all the data samples including both



clicked and non-click data as
argmin

θ
αL1 + (1 − α)L2

where L1 =
{
Lpoint(z) point-wise
Lpair(o0) + Lpair(r1) + Lpair(r2) pair-wise,

(21)

where the hyper-parameter α controls the order of magnitudes of
the gradients from the two losses at the same level to stabilize the
model training.

In the traditional and related works, they usually adopt only
L1 based on click probability (P.D.F.) in unbiased learning-to-rank
field [17] for click prediction or Lnon-click in survival analysis field
[8, 23] for censorship handling. We propose a comprehensive loss
function which learns from both click logs and non-click logs. From
the discussion above, Lclick and Lnon-click collaboratively learns the
data distribution from the observe probability (C.D.F.) view.

Model Efficiency. As shown in Eq. (9), each recurrent unit fθ
takes (x , zl , bl−1) as input and outputs probability scalar hl and
hidden vector bl to the next unit. Let L be the maximal browse
length, so the calculation of the recurrent units will run for max-
imal L times. We assume the average case time performance of
recurrent units fθ is O(C), which is related to the implementation
of the unit [45], recurrent skip coefficients, yet can be paralleled
through GPU processor. The subsequent calculation is to obtain the
multiplication results of hl or (1 − hl ) to get the results of pz and
S , as that in Figure 2, whose complexity is O(L). Thus the overall
time complexity isO(CL)+O(L) = O(CL), which is the same as the
original recurrent neural network model.
4.7 Learning Algorithm
We provide the learning algorithm of DRSR in Algorithm 1. It
should be noted that we calculate loss function L(θ ) with P(c = 1)
in training procedure since only click data is available; while we
use P(r = 1) in inference procedure, which is actually the core of
unbiased learning-to-rank.

Algorithm 1 Deep Recurrent Survival Ranking (DRSR)
Require: dataset D = Dclick ∪ Dnon-click;
Ensure: unbiased ranker fθ with parameter θ
1: Initialize all parameters.
2: repeat
3: Randomly sample a batch B from D
4: for each point dq or pair (di ,dj ) ∈ Iq in B do
5: Calculate P(r = 1) and P(c = 1) using Eqs. (9) and (12).
6: end for
7: Compute corresponding L(θ ) according to Eq. (21).
8: Update θ by minimizing L(θ ).
9: until convergence

5 EXPERIMENTS
In this section, we present the experimental setup and the corre-
sponding results under various evaluation metrics. Furthermore,
we look deeper into our model and analyze some insights of the ex-
periment results. Moreover, we have also published our code1. We
start with three reasearch questions (RQ) to lead the experiments
and the following discussions.
1Reproducible code link: https://github.com/Jinjiarui/DRSR.

• (RQ1) Compared with the baseline models, does DRSR achieve
state-of-the-art performance in unbiased learning-to-rank?

• (RQ2) Are debiased method, i.e., survival model, truely necessary
for improving performance?

• (RQ3) Can DRSR learn robustly under different situtation, i.e.,
simulation, bias degree and number of data?

5.1 Datasets and Experiment Flow
We conduct our experiment on Yahoo search engine dataset named
Yahoo! learning-to-rank challenge dataset andAlibaba recommender
system dataset. We choose NDCG at position 1, 3, 5 and MAP as
evaluation measures in relevance ranking.

Data Description. Two large-scale real-world datasets2 are used
in our experiments.
• Yahoo search engine dataset is one of the largest benchmark
dataset widely used in unbiased learning-to-rank [2, 17]. It consists
of 29,921 queries and 710k documents. Each query document
pair is represented by a 700-dimensional feature vector manually
assigned with a label denoting relevance at 5 levels [6].

• Alibaba recommender system dataset is a proprietary dataset
where we regard each user and item information as query and
document feature respectively. Similar approaches can be found
in [40, 47]. It contains 178,839 queries and 3,133k documents. Each
query document pair is represented by a 1750-dimensional feature
vector and assigned with a binary label denoting relevance.

Click Data Generation. The click data generation process in [2,
17] is followed. First, one trains a Rank SVM model using 1% of the
training data with relevance labels. Next, one uses trained model
to create an initial ranking list for each query. Then, one simulates
user browsing process and samples clicks from the initial list. We
utilize two simulation model here:
• PBM [34] simulates this user browsing behavior based on the as-
sumption that the bias of a document only depends on its position,
which can be formulated as P(oi ) = ρτi , where ρi represents posi-
tion bias at position i and τ ∈ [0,+∞] is a parameter controlling
the degree of position bias. The position bias ρi is obtained from
an eye-tracking experiment in [20] and the parameter τ is set as 1
by default. It also assumes that a user decides to click a document
di according to probability P(ci ) = P(oi ) · P(ri ).

• CCM [14] is a cascademodel, which assumes that the user browses
the search results in a sequential order from top to bottom. The
user browse behaviors are both conditioned on current and past
documents, as P(ci = 1|oi = 0) = 0, P(ci = 1|oi = 1, ri ) = P(ri ),
P(oi+1 = 1|oi = 0) = 0, P(oi+1 = 1|oi = 1, ci = 0) = γ1, P(oi+1 =
1|oi = 1, ci = 1, ri ) = γ2 · (1 − P(ri )) + γ3 · P(ri ). The parameter is
obtained from experiment in [14] with γ2 = 0.10 and γ3 = 0.04 for
navigational queries (Yahoo search engin); γ2 = 0.40 and γ3 = 0.27
for informational queries (Alibaba recommender system). γ1 is set
as 0.5 by default.
The probability of relevance P(ri ) is calculated by P(ri ) = ϵ +

(1 − ϵ) · 2yi −1
2ymax−1 , where yi ∈ [0, 4] represents relevance level. The

parameter ϵ denotes click noise and is set as 0.1 as default.

2Dataset download link: http://webscope.sandbox.yahoo.com.

https://github.com/Jinjiarui/DRSR
http://webscope.sandbox.yahoo.com


Table 2: Comparison of different unbiased learning-to-rank methods under Yahoo Search Engine and Alibaba Recommender
System. CCM is utilized as click generation model. * indicates p-value < 0.001 in significance test vs the best baseline.

Ranker Debiasing Method Yahoo Search Engine (CCM) Alibaba Recommender System (CCM)
MAP NDCG@1 NDCG@3 NDCG@5 MAP NDCG@1 NDCG@3 NDCG@5

DRSR (Ours)

Labeled Data 0.861 0.747 0.759 0.771 0.850 0.737 0.741 0.755
Pairwise Debiasing 0.842∗ 0.719∗ 0.721∗ 0.737∗ 0.831∗ 0.684∗ 0.685∗ 0.707∗

Pointwise Debiasing 0.839∗ 0.713∗ 0.717∗ 0.730∗ 0.830∗ 0.682∗ 0.684∗ 0.706∗

Regression-EM [43] 0.829 0.679 0.685 0.701 0.820 0.657 0.668 0.673
Click Data 0.817 0.636 0.652 0.667 0.810 0.613 0.627 0.658

LambdaMART

Labeled Data 0.854 0.745 0.745 0.757 0.847 0.729 0.732 0.743
Ratio Debiasing [17] 0.830 0.688 0.685 0.699 0.821 0.661 0.669 0.674
Regression-EM [43] 0.826 0.669 0.676 0.691 0.818 0.636 0.651 0.667

Click Data 0.813 0.628 0.646 0.673 0.804 0.603 0.618 0.646

DNN

Labeled Data 0.831 0.677 0.685 0.705 0.824 0.674 0.679 0.693
Dual Learning Algorithm [2] 0.825 0.672 0.678 0.691 0.814 0.629 0.647 0.674

Regression-EM [43] 0.823 0.665 0.669 0.687 0.813 0.628 0.645 0.672
Click Data 0.809 0.611 0.619 0.648 0.801 0.600 0.612 0.641

5.2 Compared Settings
We made comprehensive comparisons between our model and the
baselines. The baselines are created by combining the learning-to-
rank algorithm with the state-of-the-art debiasing methods.
• Regression-EM: Wang et al. [43] proposed regression-based EM
method where position bias is estimated directly from regular
production clicks.

• Dual Learning Algorithm: Ai et al. [2] proposed a dual learning
which can jointly learn a ranker and conduct debiasing of click
data.

• Ratio Debiasing: Hu et al. [17] proposed an unbiased pair-wise
learning-to-rank based on inverse propensity weight (IPW) [42].

• Point-wise Debiasing: Our proposed debiasing method DRSR
which is adapted in point-wise setting.

• Pair-wise Debiasing: Our proposed debiasing method DRSR
which is adapted in pair-wise setting.

• Click Data: We utilize the raw click data without debiasing to
train the ranker, whose performance is regarded as a lower bound.

• Labeled Data: The human annotated relevance labels without
any bias are used as data for training the ranker and we consider
its performance as an upper bound.
There are several learning-to-rank algorithms cooperated with

debiasing methods.
• DRSR: Our model.
• DNN: A deep neural network as described in [2] is implemented
as a ranker.

• LambdaMART: We implement Unbiased LambdaMART by mod-
ifying the LambdaMART tool in LightGBM [24].
In summary, there are 11 baselines to compare with our model.

Note that Dual Learning and DNN are tightly coupled. Also, the
same situation happens in Ratio Debiasing and LambdaMART. We
don’t combine Ratio Debiasing with DNN and Dual Learning with
LambdaMART, as it’s beyond the scope of this paper.

5.3 Result Analysis
Experimental Results and Analysis (RQ1). Table 2 summerizes
the results. We see that our method of Deep Recurrent Survival
Ranking Models (DRSR + Pointwise Debiasing / Pairwise Debias-
ing) significantly outperform all the other baseline methods. The

results of Ratio Debiasing, Regression-EM and Dual Learning Algo-
rithm are compariable with those reported in the original papers.
In particular, we have the following findings:
• Our models based DRSR achieve better performances than all the
state-of-the-art methods in terms of all measures, which indicates
our framework DRSR outperforms other models such as Lamb-
daMART and DNN. The reason seems to be that our framework
enables to find correlation of user various behaviors and mine
hidden observe pattern in non-click queries.

• Pairwise Debiasing works better than the other debiasing methods
when combined with DRSR framework. This implies that consid-
ering relative relations between trusted and untrusted observation
can enhance model performance.

• When conducted in Alibaba Recommender System, the perfor-
mances of all models decrease significantly. This implies that items
in recommendation are in a larger scale and have a more complex
feature space than in search engine.

• The performances of Pairwise Debiasing and Pointwise Debias-
ing get closer in Alibaba Recommender System. This indicates
that it is challenging to define and capture relative relevance in
recommendation, since various items in different categories can
be displayed at the same time. Also, the user preference is more
personalized, dynamic and even noisy.

Ablation Study (RQ2). In order to analyze the importance of
survival model (debiasing method) and recurrent neural network
(ranker), we also conduct experiment of recurrent neural network
without survival model and summarize results as Click Data of
DRSR in Table 2. We can find that sophisticated algorithms like
DRSR and LambdaMART are sensitve to position bias when compar-
ing the performance of Click Data with Debiasing methods, which
indicates the significance for unbiased learning-to-rank. Also, we
can see that when trained with human labeled data, DRSR achieves
the best performance (Labeled Data) which implies that there is
still much room for improvement in unbiased learning-to-rank.

Visualization Analysis (RQ2). We investigated whether the per-
formance improvement by DRSR is indeed from reduction of po-
sition bias through comparing the ranking list given by the initial
ranker with debiased ranker.
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Figure 5: (a) & (b) Performance of DRSR against other debiasing methods with different degrees of position bias. (c) Perfor-
mance of DRSR against other debiasing methods with different sizes of training data.

We first identified the documents at each position given by the
initial ranker. Then, we calculated the average positions of the
documents at each original position after re-ranking by various
debiasing methods, combined with DRSR. We also calculated the
average positions of the documents after re-ranking by their rel-
evance labels, which is regarded as the ground truth. Ideally, the
average positions by the debiasing methods should get close to
the average position by the relevance labels. We summarized the
results and show them in Figure 6.

One can see that the curve of Click Data (in red) is away from
that of Relevance Label (in purple), indicating that directly using
click data without debiasing can be problematic. The curve of Pair-
wise Debiasing (in blue) and Pointwise Debiasing (in orange) are
the closest to the curve of Relevance Label, representing that the
performance enhancement of DRSR is indeed from effective debias-
ing.

Generalizability Analysis (RQ3). The click data utilized in Ta-
ble 2 is generated by Click Chain Model (CCM), a cascade model,
which assumes that the user browses the search results in a sequen-
tial order. One can see that setting of DRSR and CCM match each
other well, which may affect the performance. Hence, we need to
evaluate DRSR in a more general view. The Position Based Model
(PBM) assumes that the bias of a document only depends on its
position, which is a general approximation of user click behavior in
practice. We compared the same baseline methods here. Again, we
found that DRSR significantly outforms the baselines, indicating
that our model is indeed an effective method.

Figure 6: Average positions after re-ranking of documents at
each original position by different debiasing methods com-
bined with DRSR.

Table 3: Comparison with PBM as click generation model.
Notations are same with Table 2.

Yahoo Search Engine (PBM)
Ranker MAP NDCG@1 NDCG@3 NDCG@5

DRSR (Ours)

0.861 0.747 0.759 0.771
0.848∗ 0.726∗ 0.737∗ 0.745∗

0.843∗ 0.723∗ 0.731∗ 0.740∗

0.834 0.698 0.705 0.712
0.825 0.671 0.679 0.693

LambdaMART

0.854 0.745 0.745 0.757
0.836 0.717 0.716 0.728
0.830 0.685 0.684 0.700
0.820 0.658 0.669 0.672

DNN

0.831 0.677 0.685 0.705
0.828 0.674 0.683 0.697
0.829 0.676 0.684 0.699
0.819 0.637 0.651 0.667

Robustness Analysis (RQ3).We further evaluated the robustness
of DRSR under different degrees of position bias and different size of
training data. In the above experiments, we only tested the perfor-
mance of DRSR with click data generated from a single click model,
i.e., γ1 = 0.5 in Click Chain Model and τ = 1 in Position Based
Model. Here, γ1 and τ influence the probability that user exams
the next result. Obviously, the smaller γ1 and larger τ indicate that
the user will have a smaller probability to continue reading, which
means a more severe position bias. Therefore, here we set the two
hyper-parameters to different values and examined whether DRSR
can still work equally well.

Figure 5(a) & (b) show the results in terms of MAP with different
degrees of position bias. The results in terms of other measures
have similar trends. When τ in PBM equals 0, there is no position
bias; while γ1 in CCM equals 1, there still exist position bias brought
from γ2 and γ3. The results of all debiasing methods are similar to
that of using click data only. As we add more position bias, i.e., τ
increases and γ1 decreases, the performances of all the debiasing
methods decrease dramatically. However, under all settings DRSR
can get less affected by position bias and consistently maintain the
best results. This indicates that DRSR is robust to different degrees
of position bias.

Next, we investigated the robustness of DRSR under different
sizes of training data. We first randomly selected a subset of training
data (i.e., 20% - 100%) to generate different sizes of click datasets,
and then used these datasets to evaluate the performances of DRSR



with different debiasing methods. To make fair comparsion, we
utilized the same subsets of training data for Regression-EM.

As shown in Figure 5(c), when the size of training data decreases,
the improvements obtained by the debiasing methods also decrease.
The reason seems to be that the position bias estimated from insuffi-
cient training data is not accurate, which can hurt the performances
of the debiasing methods. DRSR Debiasing which adopts a joint
training mechanism, can still achieve the best performances in such
cases. Also, Pairwise Debiasing enhances its performance via data
augmentation in document permutation model. The experiment
shows that DRSR can still work well even with limited training
data.

6 CONCLUSION AND FUTUREWORK
In this paper, we propose an innovative framework named DRSR
where we adopt survival analysis techniques accompanied with
probability chain rule to derive the joint probability of user various
behaviors. This framework enables unbiased model to leverage the
contextual information in the ranking list to enhance the perfor-
mance. Also, we incorporate with survival analysis, and thus can
model the non-click queries as the censored click logs, where the
censorship occurs in click. We design a novel objective function to
mine the rich observe and click patterns hidden in both click and
non-click queries. Also, we extend pair-wise loss to capture relative
relevance between trusted feedback and untrusted observation via
conditional probability. In the future work, it would be interest-
ing to investigate better solution to model multiple-click session
and consider good and bad in abandoned, i.e., non-click queries,
respectively.
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