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Vison-generated photon mass in quantum spin ice: A theoretical framework
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Describing the experimental signatures of quantum spin ice has been the focus of many theoretical efforts,
as definitive experimental verification of this candidate quantum spin liquid is yet to be achieved. Gapped
excitations known as visons have largely eluded those efforts. We provide a theoretical framework, which
captures their dynamics and predicts new signatures in the magnetic response. We achieve this by studying the
ring-exchange Hamiltonian of quantum spin ice in the large-s approximation, taking into account the compact
nature of the emergent U(1) gauge theory. We find the stationary solutions of the action—the instantons—which
correspond to visons tunneling between lattice sites. By integrating out the instantons, we calculate the effective
vison Hamiltonian, including their mass. We show that in the ground state virtual vison pairs simply renormalize
the speed of light and give rise to an inelastic continuum of excitations. At low temperatures, however, thermally
activated visons form a Debye plasma and introduce a mass gap in the photon spectrum, equal to the plasma
frequency, which we calculate as a function of temperature. We demonstrate that this dynamical mass gap should
be visible in energy-resolved neutron scattering spectra but not in the energy-integrated ones. We also show that it
leads to the vanishing of the susceptibility of an isolated system, through a mechanism analogous to the Meissner
effect, but that it does not lead to confinement of static spinons.
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I. INTRODUCTION

Quantum spin ice (QSI) is a candidate quantum spin liquid
[1], where an emergent U(1) gauge symmetry prevents mag-
netic order down to zero temperature and gives rise to gauge
and fractionalized excitations: a gapless photon, magnetic
monopoles (spinons) and emergent electric charges (visons).
In spite of this long list of predicted exotic excitations, defini-
tive experimental verification is still missing, and this situation
is shared by QSI with many other proposed spin liquids [2].
Hence, it is important for theoretical efforts to characterize as
many signatures of these excitations as possible. In particular,
the theoretical description of the inelastic response, through
the dynamical structure factor, has recently been successful in
providing evidence of a potential spin liquid in α-RuCl3 [3–8].

In our previous work [9], we analytically characterized the
photon excitation of QSI by including quantum fluctuations
around the classical limit via a large-s expansion. We were
also able to calculate the energy of the gapped vison excita-
tion, but were not able to study its dynamics. In this paper, we
extend the semiclassical description of our previous work to
capture the vison dynamics and its contribution to the inelastic
magnetic response of QSI.

The vison is an emergent excitation of QSI, a consequence
of the compact U(1) gauge symmetry [10]. (The gauge group
is compact because of the quantization of the spins.) Visons
are sources of flux of the emergent electric field. Even though
the field is divergenceless, a Dirac string carrying flux that is a
multiple of 2π has zero energy in a compact theory, allowing
the charges at its ends to behave as free excitations. The state
of these electric charges has profound consequences on the
force between the magnetic charges (spinons). In particular,

potential condensation of electric charges can lead to the
confinement of magnetic charges.

It is believed that at zero temperatures visons simply lead
to the renormalization of the speed of light, but at nonzero
temperatures, it is anticipated that their effects are less be-
nign. Reference [1] already drew comparisons with (2 + 1)-
dimensional compact lattice gauge theory, which is always in
the confined phase and has a gapped photon spectrum [11].
At increasing temperatures, the (3 + 1)-dimensional QSI be-
comes more like a (2 + 1)-dimensional compact lattice gauge
theory and perhaps a condensation of visons leads to a photon
mass gap and confinement of magnetic monopoles.

Despite their importance, so far, few experimental sig-
natures of visons have been predicted [12,13]. They are
sources of a fictitious electric field and hence cannot easily be
probed directly in experiments. They have also largely eluded
theoretical efforts of quantum Monte Carlo [14,16–20], due
to the limited resolution of obtained excitation spectra, as
well as mean-field treatments [21–25]. In this context, the
work of Ref. [26], made recent progress by looking at visons
through classical Monte Carlo, characterising their effect on
emergent field correlators and the heat capacity. This work
analysed vison signatures in the classical s = ∞ limit. Here,
we will show that including nonperturbative corrections in
s, makes the vison inertia finite and allows us to study their
quantum dynamics at low temperatures. We demonstrate that
these dynamics couple to the magnetic response of QSI via
electromagnetic induction, which can be probed in neutron
scattering experiments.

In our theoretical analysis, we are motivated by the suc-
cess of our previous work [9], where we used a large-s
semiclassical description to successfully capture the emergent
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electrodynamics of the ring-exchange Hamiltonian [10] and
obtained a photon spectrum that was in good quantitative
agreement with quantum Monte Carlo calculations for s =
1/2 [14]. As in our previous work, we map the ring-exchange
Hamiltonian in the large-s limit onto compact U(1) lattice
gauge theory using the Villain spin representation. However,
this time we do not neglect spin quantization, or equivalently,
the periodic nature of the emergent dual field, which allows us
to include the dynamics of visons in the theoretical descrip-
tion. We show that, in the ground state the effects of these
charges are rather innocuous; they exist as virtual, tightly
bound pairs and simply renormalize the speed of light. At
nonzero temperatures, however, they enter into existence as
physical, thermally activated excitations, that form a plasma.
We show that propagation of the photon through the vison
plasma will appear gapped, which can be probed in neutron
scattering experiments. We calculate typical scattering inten-
sities that might be observed. We note that a similar effect had
been anticipated in the context of hot QED by Ref. [27].

The paper is structured as follows. In Sec. II, we present the
ring-exchange Hamiltonian in the Villain spin representation,
which was introduced in our previous work. We then move
to the dual electric charge representation, where the visons
are made more manifest. We conclude the section by writing
down the imaginary-time action of our model and finding its
normal modes. In Sec. III, we analyze the stationary solutions
of the action—the instantons—which correspond to the quan-
tum tunneling of visons between neighboring lattice sites. In
Sec. IV, we look at the ground state properties of our model.
Sec. V studies the effects of visons at nonzero temperatures
and presents the main results of this paper. Finally, in Sec. VI,
we summarize all our main findings.

II. THE MODEL

Following on from our previous work [9], we study the
ring-exchange Hamiltonian of QSI [10] in the Villain spin
representation [28]

Ĥ = g
∑
αβ

[
eicurlαβ φ̂/2

∏
i j∈αβ

(
s̃2 − Ŝz

i j
2
) 1

2 eicurlαβ φ̂/2 + H.c.

]
,

(1)

where the spin azimuthal angle φ ∈ (−π, π ], its projection
on the z-axis Sz is an integer or half-integer with |Sz| � s,
[φ̂, Ŝz] = i, s̃ = s + 1

2 , and the product is over all six py-
rochlore lattice sites i j belonging to the plaquette centered on
site αβ of the dual pyrochlore lattice. The curl is taken around
this plaquette. Just in like our previous work, Latin letters {i}
index the sites of the diamond lattice (bond midpoints {i j}
correspond to pyrochlore lattice sites on which the spins live)
and the Greek letters index the sites of the dual diamond lattice
(bond midpoints {αβ} correspond to the dual pyrochlore
lattice sites on which the plaquettes are centered). The spins
satisfy the constraint

diviS
z ≡

(i)∑
i j

Sz
i j = Qi, (2)

where the sum is taken over the four pyrochlore lattice sites
i j that belong to the diamond lattice site i, i.e., over the four
corners of the tetrahedron centered on i (note that a positive
sign is taken for “up” tetrahedra and negative for “down”
tetrahedra). Qi ∈ Z are static magnetic charges (magnetic
monopoles) introduced into the system. The charges are static
because the constraint commutes with the Hamiltonian and Qi

are therefore constants of motion.

A. Electric charge representation

The visons are made more manifest in the dual, electric
charge representation of the Hamiltonian. Rather than work-
ing with the conjugate magnetic field Ŝz

i j and the electric

vector potential φ̂i j , we shall be working with the conjugate
electric field Eαβ and the magnetic vector potential Aαβ . We
introduce the new conjugate operators via

Êαβ = curlαβφ̂, (3)

Ŝz
i j = curli j Â + �i jψ, (4)

where ψi is a scalar field (not an operator) defined on diamond
lattice sites with �i jψ ≡ ψ j − ψi. Note that, because the
electric field Eαβ is defined as the lattice curl it necessarily
has zero divergence. Equation (4) is just the lattice Helmholtz
decomposition for the magnetic field and because its diver-
genceful part is a constant of motion, it can be expressed as
�i jψ with ψi a scalar field. The commutation relations for the
magnetic Ŝz

i j and electric field Êαβ operators (which follow

from [φ̂i j, Sz
i j] = i) imply that the new conjugate operators

have the canonical commutator [Êαβ, Âαβ ] = −i.
Because the Hamiltonian is periodic in Êαβ , the noninteger

part of Âαβ , A0
αβ is a constant of motion and is analogous to

crystal momentum. It is therefore useful to make the following
replacement:

Âαβ → Âαβ + A0
αβ, (5)

where the new operators Âαβ have strictly integer eigenvalues.
The energy eigenstates, which are analogous to Bloch states,
are now given by

|�〉 =
∑
Aαβ

cAαβ
|Aαβ〉 ⊗ ∣∣A0

αβ

〉

=
∫

dEαβ �(Eαβ )|Eαβ〉 ⊗ ∣∣A0
αβ

〉
, (6)

where �(Eαβ ) is a periodic function of Eαβ and the kets
are eigenstates of the respective operators. After the above
replacement, the magnetic field becomes

Ŝz
i j = curli j Âαβ + B0

i j, (7)

where B0
i j is a static background field

B0
i j = curli jA

0
αβ + �i jψ. (8)

Different constraints on the allowed values of the magnetic
field Ŝz

i j can be implemented as constraints on the allowed

eigenstates of Âαβ and values of the static background field
B0

i j . For instance, to realize the constraint that the magnetic
field is half-integer valued we simply choose any background
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field A0
αβ that is half-integer valued. The field Âαβ then be-

comes unconstrained. The kinematic constraint |Sz
i j | � s is

the hardest to implement, since for any background field A0
αβ ,

there are forbidden eigenstates of Âαβ . As discussed in our
previous work [9], in the large-s limit, the typical fluctuations
Sz

i j ∼ √
s and hence this constraint is largely irrelevant.

Any magnetic charges Qi introduced into the system [see
Eq. (2)] uniquely determine ψi via the lattice Laplace equation

diviB
0 ≡ ∇2

i ψ = Qi, (9)

where ∇2
i is the lattice Laplacian. To realize the constraint that

the magnetic field is integer (half-integer) valued, we must
also choose a configuration A0

αβ that makes B0
i j integer (half-

integer)—this is important for confinement and is analysed in
detail in Appendix F.

Because energy eigenstates are periodic in Eαβ , without
loss of generality, we will restrict Eαβ ∈ (−π, π ], i.e., mea-
sure the field modulo 2π . The electric field now acquires a
nonzero divergence quantized in units of 2π

divαÊ ≡
(α)∑
αβ

Êαβ = 2πqα, (10)

where qα ∈ Z are the emergent electric charges ((α) identifies
that the sum is taken over the four corners of the tetrahedron α

of the dual diamond lattice and again positive sign is taken for
“up” tetrahedra and negative for “down” tetrahedra). A single
electric charge at the tetrahedron α (qα = ±1) gives rise to
a smooth, long-wavelength modulation of the electric field
Eαβ ∝ 1

R2 , where R is the distance from the electric charge.
This long-wavelength modulation is a gapped topological
excitation known as the vison.

To summarize this subsection, we write down the ring-
exchange Hamiltonian in the electric charge representation

Ĥ = −g
∑
αβ

{
eiÊαβ/2

∏
i j∈αβ

[
s̃2 − (curli j Â + B0

i j

)2] 1
2

× eiEαβ/2 + H.c.

}
. (11)

We will be working in the s � 1 limit and expand the Hamil-
tonian accordingly

Ĥ = g̃
∑
αβ

Ê2
αβ +

∑
i j

g̃z

s2

(
curli j Â + B0

i j

)2 + O(s−2), (12)

where g̃ = gs6 and z = 6. We have also replaced s̃ with s, as
we will be working to the first nonvanishing order in s for all
physical quantities that we calculate.

B. Partition function

To study the nonperturbative effects of dynamical electric
charges, we begin with the partition function for the above
Hamiltonian, obtained in the usual way by inserting two
resolutions of the identity in the Êαβ and Âαβ bases into each
of the Nτ Suzuki-Trotter time slices (the time slice width is

given by ε = β

Nτ
).

Z =
∏

τ,αβ,γ

∫ π

−π

dEαβ (τ )
∫ +∞

−∞
dAαβ (τ )

∫ +∞

−∞
dϕγ (τ )

×
∑
jαβ (τ )

e−S ,

S =
∑

τ

{
i
∑
αβ

Aαβ (τ )�τ Eαβ (τ ) + εg̃
∑
αβ

E2
αβ (τ )

+ ε
g̃z

s2

∑
i j

[
curli jA(τ ) + B0

i j

]2

+ ε
∑

γ

iϕγ (τ )[divγ E (τ ) − 2πqγ (τ )]

}

+
∑
τ,αβ

2π i jαβ (τ )Aαβ (τ ), (13)

where �τ Eαβ ≡ Eαβ (τ + ε) − Eαβ (τ ), the sum over integers
jαβ (τ ) ensures that Aαβ (τ ) are integer-valued, and ϕγ (τ ) are
Lagrange multipliers that ensure the divergence of the electric
field at each dual diamond lattice site γ is an integer multiple
qγ of 2π for all τ . The Lagrange multipliers can be interpreted
as the scalar electric potential.

Note that the zero modes, arising from the U(1) gauge
symmetry of the action, Aαβ (τ ) → Aαβ (τ ) + χβ (τ ) − χα (τ ),
ϕγ (τ ) → ϕγ (τ ) + χγ (τ + ε) − χγ (τ ) enforce vison charge
conservation

�τ qγ + divγ j = 0, (14)

for all tetrahedra γ . We can see that jαβ (τ ) can be interpreted
as the vison current between the tetrahedra touching at αβ.

C. Normal modes of the action

We first conveniently parametrize the sites of the dual py-
rochlore lattice. The dual pyrochlore lattice is a superposition
of four fcc lattices indexed by μ = 1, 2, 3, and 4. Taking a
single up tetrahedron from the dual diamond lattice, with its
center located at the position vector r, the position vectors of
its four corners (μ = 1, 2, 3, 4) are (r + eμ/2), where the four
basis vectors eμ are given by

e1 = a0

4
(1, 1, 1), e2 = a0

4
(1,−1,−1),

e3 = a0

4
(−1, 1,−1), e4 = a0

4
(−1,−1, 1). (15)

The centres of all up tetrahedra map out an fcc lattice. Each μ

fcc lattice is then a translation of this lattice by eμ/2 and cor-
responds to the set of all those up tetrahedra corners that are
displaced by eμ/2 from their centres. We thus identify each
dual pyrochlore lattice site αβ by an index μ, corresponding
to the fcc lattice to which this site belongs, and its position
vector on that fcc lattice. This is reflected in the following
change of notation for the variables

Eαβ (τ ) → Eμ(rα + eμ/2, τ ),

Aαβ (τ ) → Aμ(rα + eμ/2, τ ),

jαβ (τ ) → jμ(rα + eμ/2, τ ),

(16)
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where rα + eμ/2 is the position vector of the site αβ and μ

identifies the fcc lattice to which it belongs. rα and rβ are the
position vectors of the up and down tetrahedra, respectively,
which touch at the site αβ, and eμ = rβ − rα .

We also take the continuum limit ε → 0 of S , where

∑
τ

ε →
∫ β/2

−β/2
dτ,

�τ Eαβ

ε
→ Ėαβ,∑

τ

jαβ (τ )Aαβ (τ )

→
∫ β/2

−β/2
dτAαβ (τ )

[∑
τ0

jαβ (τ0)δ(τ − τ0)

]
, (17)

and we will set the background field B0
i j to zero for now and

return to analyzing its effects later.
Because Aαβ (τ ) is a continuous variable, provided we

enforce charge conservation in Eq. (14), we can fix its gauge
via the usual Faddeev-Popov procedure [29]. We choose to
work in the Coulomb gauge

divαA ≡
(α)∑
αβ

Aαβ = 0, (18)

where the longitudinal and transverse parts of the electric
field Eαβ (τ ) decouple. (The longitudinal part of Eαβ satisfies
curli jE (τ ) = 0 everywhere, whereas the transverse part sat-
isfies divαE (τ ) = 0 everywhere.) In the Coulomb gauge, the
action can be decomposed as follows:

S = Slong. + Stran., (19)

where Slong. is a functional of the longitudinal part of Eαβ (τ )
only and Stran. of the transverse part only.

1. Transverse modes

The transverse part of the action Stran. is diagonal in the
eigenbasis of the curl operator, which is defined as

curli jA ≡
∑

ν =μ,±
±Aν (ri + eμ/2 ± �μν, τ ), (20)

where

�μν ≡ a0√
8

eμ × eν

|eμ × eν | , (21)

and ri + eμ/2 is the position vector of the plaquette center
i j on the original pyrochlore lattice. The decomposition for
the original pyrochlore lattice works in the same way as that
for the dual pyrochlore lattice: ri gives the position vector of
the center of the i up tetrahedron, of the original diamond
lattice, and centres of all up tetrahedra map out an fcc lattice,
which can be translated by eμ/2 to give one of the four
μ = 1, 2, 3, and 4 fcc lattices the plaquette center i j belongs
to. We transform to the eigenbasis of the curl operator in the
same way that we have done in our previous work [9] for the

original pyrochlore lattice

Aμ(r + eμ/2, τ )

= 1√
Nsβ

∑
k∈BZ,ω,λ

U †
μλ(k)Aλ(k, ω)eik·(r+eμ/2)−iωτ ,

Eμ(r + eμ/2, τ )

= 1√
Nsβ

∑
k∈BZ,ω,λ

U †
μλ(k)Eλ(k, ω)eik·(r+eμ/2)−iωτ , (22)

where λ = 1, 2, 3, and 4 index the normal modes of the
action, the wave vectors k are summed over the first Brillouin
zone of the fcc lattice, ω are Matsubara frequencies, Ns is the
number of sites of the fcc lattice, and U †

μλ(k) are 4 × 4 unitary
matrices. In this basis, the curl operator can be written as

curli j (A) = 1√
Nsβ

∑
k∈BZ,ω

∑
ν,λ

Zμν (k)U †
νλ(k)

× eik·(rα+eμ/2)−iωτ Aλ(k, ω)

= 1√
Nsβ

∑
λ,k∈BZ,ω

ξλ(k)U †
μλ(k)

× eik·(ri+eμ/2)−iωτ Aλ(k, ω), (23)

where the columns of the matrix U †
νλ(k) are eigenvectors of

the matrix Zμν (k) = 2i sin (k · �μν ) with eigenvalues

ξλ=1,2(k) = ±
√

2
√∑

μν

sin2(k · �μν ),

ξλ=3,4(k) = 0. (24)

This identifies λ = 3 and 4 as the longitudinal modes since
they vanish under the action of the curl operator. It follows
that the transverse part of the action becomes diagonal in the
new basis

Stran. =
∑

ω

∑
k∈BZ,λ=1,2

[
ωAλ(−k,−ω)Eλ(k, ω)

+ g̃Eλ(−k,−ω)Eλ(k, ω) + zg̃

s2
ξ 2
λ (k)Aλ(−k,−ω)

× Aλ(k, ω) + 2π i jλ(k, ω)Aλ(−k,−ω)

]
, (25)

where in the Coulomb gauge Aλ=3,4(k, ω) = 0 and

jλ(k, ω) = 1√
Nsβ

∑
μ,τ,r∈fcc

Uλμ(k) jμ(r + eμ/2, τ )

× eiωτ−ik·(r+eμ/2). (26)

2. Longitudinal modes

We proceed to finding the normal modes of the longitu-
dinal part of the action. The constraint in Eq. (10) uniquely
determines the longitudinal (λ = 3 and 4) modes of the elec-
tric field Eαβ (τ ) via the lattice Laplace equation. To form
the equation, we write the longitudinal field as the lattice
derivative

E (r + eμ/2, τ ) = �d(r + eμ, τ ) − �u(r, τ ), (27)
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where the variables �u/d(r) are defined on the centres of
up/down tetrahedra that make up two fcc lattices. Making
the above substitution, the constraint in Eq. (10), for the up
tetrahedra, can be written as

2πqu(r, τ ) =
∑

μ

[�d(r + eμ, τ ) − �u(r, τ )] (28)

and for the down tetrahedra as

2πqd(r, τ ) = −
∑

μ

[�d(r, τ ) − �u(r − eμ, τ )], (29)

where qu(r, τ ) and qd(r, τ ) are the vison occupation numbers
at position r of an up or down tetrahedron respectively. Fourier
transforming the two equations we obtain a unique solution
(up to a constant) for �u/d(r, τ )(

�u(k, τ )
�d(k, τ )

)
= π

2(|γ (k)|2 − 1)

(
1 γ (k)

γ ∗(k) 1

)(
qu(k, τ )
qd(k, τ )

)
,

(30)

where γ (k)= 1
4

∑
μ eik·eμ , �u/d(k)= 1√

Ns

∑
r∈u/d e−ik·r�u/d(r)

and qu/d(k) = 1√
Ns

∑
r∈u/d e−ik·rqu/d(r) (r is summed over the

positions of up/down tetrahedra, respectively). Substituting
this back into S in Eq. (13), we obtain the unique longitudinal
part of the action

Slong. =
∫ β/2

−β/2
dτ

[∑
rr′∈u

V (r − r′)qu(r, τ )qu(r′, τ )

+
∑
rr′∈d

V (r − r′)qd(r, τ )qd(r′, τ )

+
∑
r∈u

∑
r′∈d

Vud(r − r′)qu(r, τ )qd(r′, τ )

]
, (31)

where

V (r − r′) = g̃

Ns

∑
k∈BZ

π2

1 − |γ (k)|2 eik·(r−r′),

Vud(r − r′) = g̃

Ns

∑
k∈BZ

2π2γ (k)

1 − |γ (k)|2 eik·(r−r′). (32)

Assuming the visons are far apart, it is useful to decompose
the sum into its diagonal and off-diagonal parts

Slong. =
∫ β/2

−β/2
dτ μV

∑
σ=u/d,r∈fcc

q2
σ (r, τ ) +

∫ β/2

−β/2
dτ

×
∑

σ,σ ′,r,r′∈fcc

Ṽ (r − r′)qσ (r, τ )qσ ′ (r′, τ ), (33)

where Ṽ (r) is the asymptotic Coulomb part of the vison
interaction energy with the additional constraint that Ṽ (0) = 0
and the vison chemical potential (self-energy) is given by

μV = g̃

Ns

∑
k∈BZ

π2

1 − |γ (k)|2 = C1g̃, (34)

where C1 = 17.7. For r = 0,

Ṽ (r) =
∫

d3k
(2π )3

8g̃a0π
2

|k|2 eik·r. (35)

The above vison self-energy and Coulomb interaction agree
with the results of Ref. [26] in the quadratic approximation.
(Note that our definition of g and the definition given in
Ref. [26] differ by a factor of 2.)

III. INSTANTONS

A. Stationary solutions of the action

Stationary solutions of the Euclidean action make an im-
portant nonperturbative (∝ e−s) contribution to the partition
function, that restores the periodic symmetry with respect to
the electric field Eαβ (τ ). The instanton is precisely such a sta-
tionary solution. For illustration, let us first consider a single
instanton at r = 0 and imaginary time τ = 0 in the direction
eσ , i.e., jμ=σ (0, 0) = 1 with all other jαβ vanishing. To satisfy
the continuity equation in Eq. (14), we will consider a vison
of charge 2π tunneling from the up tetrahedron at r = −eσ /2
to the down tetrahedron at r = eσ /2. Correspondingly, the vi-
son occupation number qu(−eσ /2, τ ) [qd(eσ /2, τ )] decreases
(increases) at τ = 0 by one. (Alternatively, we could have
considered a vison of charge −2π tunneling in the opposite
direction or a creation of a vison-antivison pair.)

When deriving the stationary solution of the action, it
proves convenient to briefly reinstate the longitudinal part of
Aαβ (τ ) [A(k, ω)λ=3,4 normal modes] in the action so that the
continuity expressed in Eq. (14) is automatically taken care of.
(This, of course, has no effect on the physical, gauge-invariant
observables and is the only place where we are not working in
the Coulomb gauge.) We can see how continuity is enforced
as follows. Substituting the longitudinal part of Aαβ (τ ), which
can be written as Aαβ (τ ) = χβ (τ ) − χα (τ ), into the action S ,
and collecting all terms where it enters, we obtain

−i
∑
α,τ

χα (τ )[divα�τ E (τ ) + 2πdivα j(τ )]. (36)

The longitudinal part χα (τ ) can thus be interpreted as a
Lagrange multiplier that enforces the continuity expressed in
Eq. (14). The instanton solution can now be derived from the
transverse part of the action in Eq. (25) by extending the sum
to include the longitudinal modes λ = 3, 4. Minimising S in
Eq. (25) with respect to variations in the variables Eλ(k, ω)
and Aλ(k, ω), we obtain the following equations of motion

ωAλ(k, ω) = 2g̃Eλ(k, ω),

ωEλ(k, ω) + 2zg̃

s2
ξ 2
λ (k)Aλ(k, ω) + 2π i√

Nsβ
Uλσ (k) = 0.

(37)

Solving for the electric field, we obtain the instanton solution

E inst.
λ (k, ω) = E const.

λ (k)δω,0 − 1√
Nsβ

π iωUλσ (k)
2zg̃2

s2 ξ 2
λ (k) + ω2

2

, (38)

where E const.
λ (k) is constant in time and is a purely divergence-

ful field [i.e., E const.
λ=1,2(k) = 0] due to a pair of visons of charge

π at positions ±eμ/2. This is to ensure that the longitudinal
part of E inst.

μ (r, τ ) is the electric field due to a vison of charge
2π , at r = −eσ /2 for τ < 0, and at r = eσ /2 for τ > 0. (See
Appendix A for further details.)

125113-5



M. P. KWASIGROCH PHYSICAL REVIEW B 102, 125113 (2020)

It is important to check that our solution lies within the
domain |Eαβ (τ )| � π . By symmetry, the solution will reach
its maximum at τ = 0, r = 0

E inst.
σ (0, 0) =

∫ ∞

−∞

dω

2πNs

∑
λ,k∈BZ

−π iωU †
σλ(k)Uλσ (k)

2zg̃2

s2 ξ 2
λ (k) + ω2

2

= ±π, (39)

where the field jumps from −π to π at τ = 0 and we have
used the fact that E const.

μ (r = 0) = 0. We have thus verified
that |Eαβ (τ )| � π everywhere. Note that we are working
in the low-temperature limit β/τQF � 1, where finite-size
effects in imaginary time can be neglected and

∑
ω∈2πn/β ≈∫∞

−∞ β dω
2π

. τQF = s
g̃
√

z is the characteristic timescale of quan-
tum fluctuations. Notice that β/τQF � 1 implies that the
temperatures are low by comparison with the photon
bandwidth [9].

B. The instanton measure

To compute the measure associated with a single instanton,
we first remove the discontinuity in the instanton solution
E inst.

μ (r, τ ) at τ = 0 [see Eq. (38)] and let Eσ (0, τ ) wind by
2π instead

Eμ(r, τ ) → Eμ(r, τ ) − δr,0δμσ [πsgn(τ ) + π ]. (40)

Note that this transformation removes the jump in the
longitudinal part of E inst.

μ (r, τ ) that occurs at τ = 0 (see
Appendix B). The longitudinal part is now the electric field
due to a vison of charge 2π at r = −eσ /2 for τ > 0 as
well as τ < 0. The longitudinal part is thus a constant and
the dynamical part is purely transverse: (λ = 1, 2) are the
only components we need to consider, when calculating the
instanton measure. Considering the action S in Eq. (13),
the above transformation removes the 2π i jσ (0, 0)Aσ (0, 0)
term, translates the quadratic term E2

σ (0, τ > 0) by 2π , al-
ters the constraint enforced by ϕα (τ ) so that divE = 2π at
r = eμ/2 for all τ , and changes the range of integration
over Eσ (0, τ ) from |Eσ (0, τ )| � π to πsgn(τ ) < Eσ (0, τ ) �
2π + πsgn(τ ) (the range of integration over the other Eαβ (τ )
variables remains unaltered). Integrating out the variables
Aλ=1,2(k, ω) in the transverse part of the action Stran., we are
left with the following action for the variables Eλ=1,2(k, ω)
together with a smooth instanton solution E sm.

μ (r, τ )

Stran[Eλ(k, τ )] =
∫ β/2

−β/2
dτ

[ ∑
k∈BZ,λ=1,2

s2|Ėλ(k, τ )|2
4zg̃ξ 2

λ (k)

+ g̃
∑
αβ

V (Eαβ (τ ))

]
, (41)

E sm.
μ (r, τ ) = E inst.

μ (r, τ ) + δr,0δμσ [πsgn(τ ) + π ], (42)

where V (Eαβ (τ )) = minn(Eαβ (τ ) − 2πn)2 is a continued
parabolic potential and the minimum is taken with respect to
integer n. See Appendix B for verification that E sm.

μ (r, τ ) is
indeed a stationary solution of the above action.

Fluctuations around the smooth instanton solution
δEμ(r, τ ) = Eμ(r, τ ) − E sm.

μ (r, τ ) are also smooth and

are governed by the following action:

δStran[δEλ(k, τ )] =
∫ β

2

− β

2

dτ
∑

k∈BZ,λ=1,2

s2|δĖλ(k, τ )|2
4zg̃ξ 2

λ (k)

+ g̃
∫ β

2

− β

2

dτ
∑
αβ

1

2
V ′′(E sm.

αβ (τ )
)
δE2

αβ (τ ),

(43)

where V ′′(E sm.
μ (r, τ )) = −4πδ(E sm.

μ (r, τ ) − π ) + 2 = −4πδ

(τ )δr,0δμσ /Ė sm.
σ (0, 0) + 2. The normal modes of this action,

which include the zero translational mode Ė sm.(r, τ ) (see
Appendix B for an explicit proof) determine the instanton
measure

d ξ̃0

√
〈Ė sm.|Ė sm.〉√

2π

(
det′K̃
det K

)− 1
2

= g̃C3d ξ̃0√
s

, (44)

where C3 = 5.13, ξ̃0 specifies the position of the instanton
core, det′K̃ is the determinant of the kernel of the fluctuation
action in Eq. (43), excluding the zero eigenvalue, and det K is
the determinant of the kernel of the original action in Eq. (41).
See Appendix C for a detailed derivation of the measure.

C. Instanton interactions

The power-law decay (see Appendix A) of the single in-
stanton solution gives rise to long-range interactions between
instantons. This infrared effect has consequences for the low-
energy properties of the system. Just like the visons interact
via the Coulomb potential, the instantons, which correspond
to vison currents, interact in Euclidean space-time via forces
that obey the inverse square law.

If the instantons are far apart the interactions will be taking
place in a region of space with small electric field. To derive
the long-range part of instanton interactions, we can therefore
relax the constraint on the electric field Eαβ ∈ (−π, π ] and
integrate it out to obtain an effective action Sinst. that describes
instanton-instanton interactions, i.e., interactions between vi-
son currents,

Sinst. =
∑
τ,τ ′

∑
r,r′∈fcc

Vμν (r − r′, τ − τ ′) jμ(r, τ ) jν (r′, τ ′), (45)

where

Vμν (r − r′, τ − τ ′)

= π2

Ns

∑
λ=1,2,k∈BZ

∫ ∞

−∞

dω

2π

eiω(τ ′−τ )+ik·(r−r′)

ω2

4g̃ + zg̃
s2 ξ

2
λ (k)

×U †
μλ(k)Uλν (k). (46)

In the limit where instantons are far apart, it is useful to
decompose the sum into its diagonal and off-diagonal parts

Sinst. =
∑
τ,τ ′

∑
r,r′∈fcc

Ṽμν (r − r′, τ − τ ′) jμ(r, τ ) jν (r′, τ ′)

+μI

∑
τ,r∈fcc

j2
μ(r, τ ), (47)

where Ṽμν (r − r′, τ − τ ′) is given by the asymptotic in-
verse square law of Vμν (r − r′, τ − τ ′) with the additional

125113-6



VISON-GENERATED PHOTON MASS IN QUANTUM SPIN … PHYSICAL REVIEW B 102, 125113 (2020)

constraint that Ṽμμ(0, 0) = 0, and the instanton chemical po-
tential (its self-energy) is given by

μI = V11(0, 0) = π2

Ns

∑
λ=1,2,k∈BZ

∫ ∞

−∞

dω

2π

U †
1λ(k)Uλ1(k)

ω2

4g̃ + zg̃
s2 ξ

2
λ (k)

= π2s√
zNs

∑
k∈BZ

Z2
11(k)

|ξ1(k)|3 = C2s, (48)

where Z2
11(k) is given by the matrix product

∑
μ Z1μ(k)Zμ1(k)

and C2 = 0.624. (Note that the self-energy is exact, i.e.,
unaffected by the above relaxation of the constraint on the
size of the electric field and can be obtained by substituting
the single instanton solution in Eq. (38) into the action.) The
above decomposition separates the UV (self-energy) and IR
(long-range interaction) contributions to the instanton action
and can equivalently be obtained by modifying the original
action in Eq. (13) as follows. One imposes a small cutoff
� << a0 on the action, i.e., any fluctuations of the gauge
fields whose wavelength is not much greater than the lattice
spacing are quenched. This has no effect on long-range pho-
ton correlations or interactions between instantons or visons
that are far apart. It does however give a vanishingly small
instanton and vison self-energies, i.e., μI ∼ (�/a0)2 � 1 and
μV ∼ (�/a0) � 1, and so the instanton and vison chemical
potential terms need to be added to the action in Eq. (13) to
compensate for this. We thus obtain an effective model with a
reduced cutoff described by the following action:

S = S0 +
∫ β/2

−β/2
dτ
∑

γ

[μV qγ (τ )2 + 2π iqγ (τ )ϕγ (τ )]

+
∑
τ,αβ

(μI jαβ (τ )2 + 2π i jαβ (τ )Aαβ (τ ))

+
∑
τ,γ

iθγ (τ )(�τ qγ (τ ) + divγ j(τ )), (49)

where

S0 =
∑

ω,|k|<�,λ=1,2

(
g̃z|k|2a2

0

s2
+ ω2

4g̃

)
|Aλ(k, ω)|2

+ 1

4g̃a0

∑
ω

∫
|k|<�

d3k
(2π )3

|k|2|ϕ(k, ω)|2, (50)

and the compact Higgs field θγ (τ ) ∈ (−π, π ] was introduced
to enforce continuity at each tetrahedron site. ϕ(k, τ ) is the
Fourier transform of the coarse-grained scalar potential ϕγ (τ ).
The above action is one of the central results of this paper and
an effective model for the original action in Eq. (13), valid in
the large-s and low-temperature (βg̃

√
z/s � 1) limits.

In the s � 1 limit, the jαβ (τ ) = ±1 instanton configura-
tions dominate in the action in Eq. (49). We can obtain an O(2)
rotor description of visons coupled to the electromagnetic
field by summing over these configurations.

Z =
∑
qγ (τ )

∫
dθγ (τ ) dϕγ (τ ) dAαβ (τ ) e−S0

∑
n

e−nμI

n!

× e
∑

γ

∫ β/2
−β/2 dτ (μV qγ (τ )2+2π iqγ (τ )ϕγ (τ )−iqγ (τ )θ̇γ (τ ))

×
⎛
⎝∑

αβ

∫ β

2

− β

2

C3g̃ dτ√
s

(
e2π iAαβ+i�αβθ + e−2π iAαβ−i�αβθ

)⎞⎠
n

≡
∑
qγ (τ )

∫
dθγ (τ ) dϕγ (τ ) dAαβ (τ ) e−SO(2) ,

where the O(2) vison action is given by

SO(2) = S0 +
∑

γ

∫ β

2

− β

2

dτ (μV qγ (τ )2 + 2π iqγ (τ )ϕγ (τ )

− iqγ (τ )θ̇γ (τ )) −
∫ β

2

− β

2

C3g̃e−μI dτ√
s

×
∑
αβ

cos(�αβθ (τ ) + 2πAαβ (τ )). (51)

Motivated by the success of our previous work [9], where a
large-s expansion was used to obtain the low-energy spectrum
for s = 1/2, we believe that s → ∞ under RG and should be
treated as a large parameter. Hence, the last term in the above
action should always be thought of as a small perturbation
(g̃e−μI /

√
s � μV ) and does not drive a condensation of visons

(definite phase θγ (τ )) even down to s = 1/2, i.e., QSI is in the
deconfined phase for all s values.

IV. GROUND STATE

At zero temperature vison-antivison pairs will be short-
lived virtual excitations. Because of the vison continuity
conditions in Eq. (14), they will necessarily be accompanied
by instantons forming a loop in Euclidean space-time. The
Boltzmann weight of the shortest loop will scale as e−2μI =
e−2C2s, and so, in the large s limit, the loops will give a small
nonperturbative renormalization of the speed of light and vi-
son Coulomb interaction. There is an energy cost (μV per unit
time) associated with stretching the loop in imaginary time.
Loops, where the instantons are close together will therefore
dominate. Hence, our calculation of the renormalization of the
speed of light presented in Appendix D is not numerically
accurate, because the decomposition into UV and IR parts,
described in the previous section, only works if the instantons
and visons are far apart in Euclidean space-time. At nonzero
temperatures, however, we will be considering free visons
(rather than vison-antivison pairs), whose instantons will be
far apart in the large-s limit and so the UV/IR decomposition
will be numerically accurate. (Physical vison excitations live
for all imaginary time at nonzero temperature and their instan-
tons can therefore be moved apart in imaginary time with no
energy cost.)

Apart from the renormalization of the speed of light,
vison-antivison pairs, will also make another contribution
to the Sz correlation (which is proportional to the neutron
scattering intensity) that scales as e−2μI = e−2C2s. Generation
of vison-antivison pairs by passing neutrons will give rise
to a continuum of excitations above an energy equal to
2μV . Figure 1 shows this vison continuum above the linearly
dispersing photon excitation, as would be seen in a typical
neutron scattering experiment. See Appendix D for a detailed
calculation of the continuum. Note that the presence of the
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FIG. 1. The unpolarized scattering intensity at T = 0 for s = 1
2 ,

as might be seen in a typical neutron diffraction experiment along
the direction k = 2π

a0
(h, h, h). Generation of vison-antivison pairs

gives rise to a continuum of excitations above 2μV . Below, we
can see the linearly dispersing photon excitation. To simulate the
finite resolution of the measuring apparatus, we have convoluted
the photon intensity with a Gaussian of width 0.02g. (Note that
the photon and vison spectra have separate intensity scales and
the relative intensity will be very sensitive to the resolution of the
measuring apparatus.)

vison continuum had been expected in previous works, e.g.,
Ref. [13]. In this work, our focus will instead be on the effect
of thermally excited visons on the photon part of the scattering
spectrum.

V. NONZERO TEMPERATURES

A. 3D plasma of visons

At nonzero temperatures the visons are not so innocuous.
They become real thermal excitations and form a 3D Coulomb
gas. The gas is always in the plasma phase [30], however large
the vison self-energy μV . To see this, we consider the RG flow
equations of the gas parameters. In the s → ∞ limit, where
the visons are static, and at low temperatures, where βμV � 1,
the RG equations are given by [30]

dK−1

dl
= K−1 + y2,

dy

dl
= 3y − Ky, (52)

where the fugacity y ≡ e−βμV and K is the coefficient of the
vison Coulomb interaction energy Ṽ (r) in Eq. (35) multiplied

by β. Under RG, βμV grows linearly from its initial bare value
of ∼βg̃, whereas K decays exponentially from its initial bare
value of ∼βg̃. Eventually, once K has decayed sufficiently,
βμV begins to fall linearly. Hence, the visons dissociate be-
fore they begin to proliferate. Even though initially the vison
self-energy and interaction energy are comparable, at long
length scales, the interaction can be neglected by comparison
with the self-energy and the visons can be treated as free
particles. Classical Monte Carlo calculations of Ref. [26]
found that the energy of a nearest-neighbor vison pair is
actually lower than that of a single vison, so that at low
temperatures, vison pairs are the dominant species and the
visons form a weak electrolyte. Here, we argue that the model
can be mapped, by integrating out tightly bound vison pairs,
to a coarse-grained 3D Coulomb gas where free visons are
the dominant species. Note that a finite vison inertia (finite
s) should only increase their ability to screen each other,
reducing interactions even further. Therefore, if the visons are
in the plasma phase for infinite s, we expect them to also be in
the plasma phase for finite s.

B. Semiclassical limit at low temperatures

We now consider the dynamics of the vison plasma at
small nonzero temperatures. At low temperatures the typical
vison spacing will be large and their hardcore interactions
negligible. We can therefore treat visons as free bosons of
two flavors coupled to the electromagnetic field. Introducing
two complex bosonic fields �+

γ (τ ) and �−
γ (τ ) corresponding

to visons and antivisons respectively, the vison plasma action
can be written as follows:

SVP
[
�σ

γ (τ )
]

= S0 +
∑
σ=±

∫ β

2

− β

2

dτ

[∑
γ

�̄σ
γ (∂τ + 2π iσϕγ + μV )�σ

γ

− C3g̃e−μI

√
s

∑
αβ

(
�̄σ

α �σ
β e−2π iσAαβ + H.c

)]
, (53)

which is the action of lattice bosons coupled to a gauge field.
Notice that the above action is particle conserving, i.e., vison-
antivison pair creation and annihilation has been neglected. As
demonstrated in Appendix D, these can be treated perturba-
tively in the large-s limit and give rise to a continuum of exci-
tations above 2μV and a small renormalization of the speed of
light. Our focus here will be on a more dramatic reshaping of
the photon spectrum. At sufficiently low temperatures, where
βg̃e−μI/

√
s � 1, [31] the visons move at the bottom of the

band and a continuum (low k) approximation for the bosonic
fields can be made

SVP[�σ (r, τ )] = S0 +
∑
σ=±

∫ β

2

− β

2

dτ

∫
d3r(
a3

0/8
)[μV |�σ |2

+ 8g̃C3a2
0e−μI

√
s

|∇�σ − 2π iσA�σ |2

+ �̄σ (∂τ + 2π iσϕ)�σ

]
, (54)
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where A(r, τ ) [defined by Aμ(r, τ ) = A(r, τ ) · eμ] and
ϕ(r, τ ) are coarse-grained vector and scalar potentials. Note
that we have neglected nonperturbative corrections to the
vison energy μV of order e−C2s. This is for self-consistency
as we have already neglected perturbative corrections which
come from higher order terms in the expansion of the Hamil-
tonian in Eq. (12). The vison plasma action describes bosons
with a thermal activation energy of μV , effective mass of

m∗ = h̄2√seμI

16C3a2
0 g̃

and an effective charge of 2π h̄.
The bosonic excitations can be treated semiclassically at

low temperatures because their typical separation ∼a0eβμV �
λB, where λB =

√
2π h̄2

kT m∗ is the thermal de Broglie wavelength
of the bosons. The vison excitations are thus not quantum
degenerate and can be treated through a single-particle for-
malism. Considering the Feynman path integral of a single
vison excitation, we obtain

Ssingle =
∫ β

2

− β

2

dτ

(
m∗

2h̄2 (∂τ x)2 ± 2π iA(x, τ ) · ∂τ x

± 2π iϕ(x, τ )

)
, (55)

where x(τ ) is the vison’s position vector and ± depends on
whether the vison is positively or negatively charged. The
typical quantum fluctuations in the position of the particle
will be

〈|�x|〉 ∼
√

2πβ〈|∂τ x|〉 =
√

2π h̄2β

m∗ ≡ λB. (56)

At low temperatures, fractional variations in A(x, τ ), or
ϕ(x, τ ), due to the fluctuating position of the particle x will
be negligible

|∇A|
|A| λB ∼ λB

λA
∼
√

1

2πβm∗c2
� 1, (57)

where λA = 2π h̄cβ is the typical wavelength of the gauge
field and c = 2g̃

√
za0

sh̄ is the speed of the photon excitation. The
temperatures here are small relative to the vison rest energy
m∗c2 ∼ g̃eμI . At these temperatures, the visons are moving
nonrelativistically with a typical speed v = (βm∗)−

1
2 � c. We

can therefore approximate

A(x, τ ) ≈ A(〈x〉, τ ),

ϕ(x, τ ) ≈ ϕ(〈x〉, τ ), (58)

where 〈x〉 is the average position of the vison. With regards
to vison dynamics, we have neglected the Lorentz force
experienced by visons by making the above approximation,
only leaving the electric field force. This is of course a
good approximation at nonrelativistic speeds. The particle’s
position can be decomposed as

x(τ ) = 〈x〉 + 1√
β

∑
ω =0

x(ω)eiωτ , (59)

where the Matsubara frequency ω = 2πn
β

and n is an integer.
Using the above approximation for the vector and scalar

potentials, the single-particle vison action becomes

Ssingle =
∑
ω =0

(
m∗ω2

2h̄2 |x(ω)|2 ± 2πωA(〈x〉,−ω) · x(ω)

)

± 2π i
√

βϕ(〈x〉, ω = 0). (60)

We note here that visons do not couple to the static component
of the gauge field A(x, ω = 0), and hence also the static
background field A0

αβ , be it from the half-integer constraint
on the magnetic field or from magnetic monopoles introduced
into the system. This is because we have neglected the Lorentz
force experienced by visons. The visons are only coupled
to the electric field in our description which can only be
induced by a time-varying magnetic field. Of course, visons
also respond to static magnetic fields. Loops of vison currents
will align in the direction of an applied static magnetic field
through the action of the Lorentz force. This effect will
generate a (∇ × A)2 term in the action and only renormalize
the speed of light slightly. The effect we are describing here is
far more dramatic. The response of visons to the electromotive
force induced by a time varying magnetic field, as we shall see
shortly, generates a mass gap in the photon spectrum.

Integrating over the fluctuations in the particle’s position
x(ω) with ω = 0, we obtain

Ssingle = 2π2h̄2

m∗
∑
ω =0

|A(〈x〉, ω)|2 ± 2π i
√

βϕ(〈x〉, ω = 0).

(61)

Summing over many-particle configurations, we obtain the
partition function of the system

Z =
∏
γ ,αβ

∫
dϕγ (τ ) dAαβ (τ ) e−S0

∑
n

e−nβμV

n!

×
n∏

i=1

∫
d3xi

λ3
B

e− 2π2 h̄2

m∗
∑

ω =0 |A(xi,ω)|2

× (e2π i
√

βϕ(xi,0) + e−2π i
√

βϕ(xi,0)
)

=
∏
γ ,αβ

∫
dϕγ (τ ) dAαβ (τ ) exp

[
− S0 +

∫
d3x
λ3

B

e−βμV

× e− 2π2 h̄2

m∗
∑

ω =0 |A(x,ω)|2 2 cos(2π
√

βϕ(x, 0))

]
. (62)

At low temperatures, we are in the Debye limit e−βμV � 1,
where the action can be expanded to quadratic order. One can
see that the gauge fields are effectively small in this limit by
performing the following rescaling:

x → eβμV /3x,

ω → e−βμV /3ω,

A(x, ω) → e−βμV /6A(x, ω),

ϕ(x, ω) → e−βμV /6ϕ(x, ω). (63)
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FIG. 2. Plasma frequency as a function of temperature. At higher
temperatures the plasma frequency will level off as the vison density
saturates.

To quadratic order, the gauge part of the action is given by

Sgauge =
∑

ω,|k|<�,λ=1,2

(
g̃za2

0|k|2
s2

+ ω2

4g̃
+ (1 − δω,0)

ω2
p

4g̃

)

× |Aλ(k, ω)|2 +
∑

ω

∫
|k|<�

d3k
(2π )3

1

4g̃a0

× (|k|2 + λ−2
D δω,0

)|ϕ(k, ω)|2, (64)

where the Debye length is given by

λD = (16π2a0λ
−3
B βg̃e−βμV

)− 1
2 , (65)

and in the Debye limit eβμV � 1, there are many visons
e−βμV (λD/λB)3 ∼ eβμV /2 � 1 in the Debye volume. The
plasma frequency (multiplied by h̄) is given by

ωp =
√

16g̃π2h̄2a0e−βμV

λ3
Bm∗ , (66)

and agrees with the continuum derivation presented in
Appendix G. The vison dynamics has generated a dynamical
mass gap for the gauge field, equal to the plasma frequency.
Figure 2 shows the behavior of the plasma frequency with
temperature. The mass gap is dynamical because it does not
couple to the static ω = 0 component of the gauge field. We
have derived the mass gap in the large-s and low-temperature
limits, where s � 1, βg̃

√
z/s � 1 (which implies βμV � 1),

and βg̃e−μI /
√

s � 1, i.e., the temperature is small by com-
parison with the photon and vison bandwidths respectively.
However, we expect the above picture to extend to mod-
erate temperatures too, although the instanton energy, and
hence the mass gap, would acquire significant renormalization
due to finite-size effects along imaginary time. Note that we
have also not included tightly bound vison pairs in our semi-
classical analysis of vison dynamics since their oscillations do
not contribute to the generation of the mass gap [32] but only
serve to renormalize the speed of light (see Appendix D for a
detailed calculation of this effect).

C. Inelastic magnetic response

We can now extract several correlators from the above
quadratic gauge action. In particular, relevant for neutron
scattering experiments are magnetic field correlators:

χλ(k, iω) ≡ 〈∣∣Sz
λ(k, ω)

∣∣2〉
= 2g̃ξ 2

λ (k)

−(iω)2 + E2
k

+ δω,0Cλ(k), (67)

where Ek =
√

4g̃2zξ 2
1 (k)/s2 + ω2

p and Cλ(k) = 2g̃ξ 2
λ (k)

E2
k −ω2

p
−

2g̃ξ 2
λ (k)

E2
k

. (Notice that we have replaced the low-k expansion

with ξλ(k) to restore periodicity across the Brillouin zone.)

1. Equal-time structure factor

A particularly useful quantity to measure in neutron
diffraction experiments is the equal-time (energy integrated)
structure factor. We calculate the structure factor in the spin-
flip channel for a polarized neutron-scattering experiment
considered by Ref. [33],

Syy(k) ≡
∑
μ,ν

〈
Sz

μ(k, τ = 0)Sz
ν (−k, τ = 0)

〉
(êμ · êy)(êν · êy)

= 1

β

∑
μ,ν

∑
ω,λ=1,2

χλ(k, iω)(êμ · êy)(êν · êy)U †
μλ(k)

×U †
νλ(−k)

= g̃
∑
μν

Z2
μν (k)(êμ · êy)(êν · êy)

×
(

1 + 2nB(Ek )

Ek
+ TC1(k)

g̃ξ 2
1 (k)

)
, (68)

where êy = k×(1,−1,0)
|k×(1,−1,0)| , nB(Ek ) = 1

eβEk −1
, and Z2

μν (k) is given
by the matrix product

∑
σ Zμσ (k)Zσν (k).

Because the mass gap ωp does not couple to the zero
Matsubara frequency component, it can only have an effect
on the equal-time structure factor at low temperatures, but this
is precisely where it is exponentially damped. The effects of
the mass gap on the equal-time structure factor are therefore
small across the temperature range and cannot be easily seen
as shown by Figs. 3 and 4. Motivated by the success of our
previous work [9], we extrapolated the large-s results to s = 1

2 .
Both figures are in good agreement with the results of Monte
Carlo simulations of Ref. [14].

2. The dynamical structure factor

We should instead look for experimental signatures of the
mass gap in the unintegrated neutron scattering spectra. We
do this by calculating the dynamical structure factor

Sλ(k, ω) =
∫

dt
〈
Ŝz

λ(k, t )Ŝz
λ(−k, 0)

〉
eiωt . (69)
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FIG. 3. Equal-time structure factor in the spin-flip channel
along k = 2π

a0
(h, h, l ) at T = 0.15g, for s = 1

2 and with the vison
contribution.

We can analytically continue the analytic part of χ (k, iω) to
obtain the spectral density

ρλ(k, ω) = Im lim
ε→0

χλ(k, ω + iε)

= g̃πξ 2
λ (k)

Ek
(δ(ω − Ek ) − δ(ω + Ek )). (70)

The structure factor is then given by

Sλ(k, ω) = 2πTCλ(k)δ(ω) + 2ρλ(k, ω)

1 − e−βω

= 2g̃πξ 2
λ (k)

Ek
(nB(Ek )δ(ω + Ek ) + (1 + nB(Ek ))

× δ(ω − Ek )). + 2πTCλ(k)δ(ω). (71)

See Ref. [15] for further details of the relations between
χλ(k, ω), Sλ(k, ω), and ρλ(k, ω). The presence of the delta
function in the dynamical structure factor signals that corre-
lations of the magnetic field are infinitely long-lived in time.
This is because of persistent vison currents that are excited
(through electromagnetic induction) with any fluctuation of
the magnetic field. These currents and the magnetic field they
give rise to do not decay with time.

The total unpolarized scattering intensity is proportional
to [14]

I (k, ω) =
∑
μν

(
êμ · êν − (k · êμ)(k · êν )

k2

)
Sμν (k, ω), (72)

FIG. 4. Equal-time structure factor in the spin-flip channel along
k = 2π

a0
(h, h, l ) at T = 0.15g, for s = 1

2 and without the vison con-
tribution (i.e., with ωp set to zero). Figures 3 and 4 look identical to
the eye and there are no clear signatures of visons.

where Sμν (k, ω) =∑λ=1,2 Sλ(k, ω)U †
μλ(k)U †

νλ(−k). The re-
sults are plotted in Figs. 5 and 6 and show a clear development
of a mass gap at nonzero temperatures, that are relatively small
with respect to the photon bandwidth for s = 1

2 .
We compare our dynamical structure factor plots with the

quantum Monte Carlo calculations of Ref. [20]. The reported
bandwidth (4.28g) is significantly higher than the one we
calculate (0.6g). However, we believe this discrepancy is
mostly due to higher order corrections in the 1/s expansion.
In fact, our previous work [9] shows that the next order
already renormalizes the bandwidth from 0.6g to 1.6g. Fur-
ther, the plasma frequency and the speed of light should not
be compared numerically in our calculation. This is because
the calculation of the former is nonperturbative and includes
all orders in 1/s, whereas the speed of light has only been
calculated to finite order in 1/s. This does not impact the main
observation though, which is that the photon acquires a mass
gap equal to the plasma frequency. Our dynamical structure
plots are in rough qualitative agreement with the work of
Ref. [20]. However, the quantum Monte Carlo calculations
do not have the required resolution to ascertain whether the
photon dispersion is linear, let alone whether there is a small
energy gap.

D. Susceptibility

As discussed previously in this section, the mass gap is
a consequence of the induced electric field coupling to the
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FIG. 5. The unpolarized scattering intensity at T = 0 for s = 1
2

with the vison contribution, as might be seen in a typical neu-
tron diffraction experiment along the direction k = 2π

a0
(h, h, h). To

simulate the finite resolution of the measuring apparatus, we have
convoluted the intensity with a Gaussian of width 0.01g.

visons. Hence, it only shows up in the presence of time-
varying magnetic fields. To demonstrate this, we calculate
here the static isothermal and isolated susceptibilities using
the formulas derived in Ref. [15]. For the isothermal sus-
ceptibility, we assume the system to be in thermal equilib-
rium at temperature T and in the presence of the follow-
ing time-independent perturbation in the Hamiltonian δĤ =
− h

2 (Ŝz
λ(k) + Ŝz

λ(−k)). The isothermal susceptibility is then
defined as

χT
λ (k) ≡ 1

2

δ
〈
Ŝz

λ(k) + Ŝz
λ(−k)

〉
T

δh

=
∫

dω

2π

ρλ(k, ω)

ω
+ βCλ(k)

2

= g̃ξ 2
λ (k)

E2
k − ω2

p

= 1

4gs4z
for λ = 1 and 2, (73)

where the expectation value is taken with respect to the
thermal ensemble. We can see that the isothermal transverse
(λ = 1 and 2) susceptibility is a constant, and as expected, is
unaffected by visons because the applied magnetic field is
time-independent. We would obtain the same expression for
a massless photon. (Note that including in our description
the effects of the Lorentz force on visons, from the time-
independent magnetic field, would simply lead to a renormal-

FIG. 6. The unpolarized scattering intensity at T = 0.15g for
s = 1

2 with the vison contribution, as might be seen in a typical
neutron diffraction experiment along the direction k = 2π

a0
(h, h, h).

Notice the development of a sizable gap equal to ωp at temperatures
that are relatively small by comparison with the photon bandwidth.
To simulate the finite resolution of the measuring apparatus, we have
convoluted the intensity with a Gaussian of width 0.01g.

ization of the speed of the photon excitation and only change
the value of the above constant.)

For the isolated susceptibility, we assume the sys-
tem to be isolated at all times and in thermal equilib-
rium to begin with i.e., at t → −∞. A time-dependent
perturbation is then slowly turned on δĤ (t ) = − h

2 (1 −
�(t ))eεt (Ŝz

λ(k) + Ŝz
λ(−k)), where �(t ) is the Heaviside step

function and ε → 0+. The isolated susceptibility is then de-
fined as

χ I
λ(k) ≡ 1

2

δ
〈
Ŝz

λ(k) + Ŝz
λ(−k)

〉
I

δh
=
∫

dω

2π

ρλ(k, ω)

ω

= g̃ξ 2
λ (k)

E2
k

= 1

4gs4

1

1 + ( ωpa0

h̄cξ1(k)

)2 for λ = 1 and 2,

(74)

where the expectation value is evaluated at t = 0 for the
isolated system. We can see that the isolated transverse (λ =
1 and 2) susceptibility is no longer a constant but begins to
fall to zero at small |k| ∼ ωp/(h̄c) (see Fig. 7). This is due to
the screening contribution of persistent vison currents that are
set up as the external field is switched on, and is analogous
to the Meissner effect in superconductors. Following on from
Eq. (G3), where E = 0 once equilibrium is reached, we have
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FIG. 7. The transverse isothermal (χT ) and isolated (χI ) suscep-
tibilities along k = 2π

a0
(h, h, h) at T = 0.15g. The isolated suscepti-

bility deviates from the isothermal one and decays to zero on length
scales ∼ωp/(h̄c). This is because of persistent vison currents that are
set up as the external magnetic field is switched on, whose magnetic
fields oppose the applied field.

the following screening equation

∇2A = ω2
p

c2h̄2 A, (75)

where ch̄/ωp is the characteristic screening length. Note
that, in contrast to superconductors, this corresponds to the
screening of the ’magnetic field’ defined as Bi j ≡ Sz

i j , not the
physical applied field, which is not eliminated.

Measuring the isolated susceptibility thus provides a pos-
sible experimental verification of the presence of dynamical
visons in the system. In particular, if a uniform field h along
the global x direction is applied, the perturbation takes the
form

δĤ = −hη
∑
r,μ

Ŝz
μ(r + eμ/2)(êμ · êx )

= 2hη
√

Ns

3

(
Sz

λ=1(k = 0) − Sz
λ=2(k = 0)

)
, (76)

where η is the individual spin’s magnetic moment. The result-
ing magnetization per lattice site, along the global x direction,
is given by

Mx ≡ η

4Ns

∑
r,μ

〈
Ŝz

μ(r + eμ/2)
〉
(êμ · êx )

=
⎧⎨
⎩

2η2hχ I
1 (0)

9 = 0 isolated,

2η2hχT
1 (0)

9 = η2h
18gs4z isothermal.

Thus visons lead to the vanishing of the uniform isolated sus-
ceptibility. In fact, it is a straightforward generalization of the
above to show that visons cause the uniform ac susceptibility
of an isolated system to vanish as long as the frequency of the
applied field is different from the plasma frequency.

E. Heat capacity

We have also investigated the effect of the mass gap on
the photon contribution to the heat capacity. As in the case

0 0.1 0.2
T/g

0

0.5

1

1.5

2

C
/(

γΤ
3 )

photon heat capacity with visons
photon heat capacity without visons
vison heat capacity

FIG. 8. The photonic contribution to the heat capacity per unit
volume with and without visons. Note that because the vison-
generated photon mass is suppressed exponentially at low temper-
atures, it has no effect on the γ T 3 behavior of the heat capacity
in this region [γ = 4π2

15(ch̄)3 ]. By equipartition theorem, the photon

heat capacity tends to 8a−3
0 at high temperatures regardless of the

presence of the mass gap. Hence, the effects of the mass gap are
most pronounced at intermediate temperatures.

of the equal-time structure factor, the dynamical mass gap
has a small effect on the heat capacity. Because the visons
are thermally activated, they are exponentially suppressed at
small temperatures and do not affect the low-temperature T 3

behavior of the photonic heat capacity. At high temperatures,
the mass gap does not affect the equipartition limit of the
photon heat capacity, i.e., kB per mode. There is only a
small difference between the photonic heat capacity with
and without visons at intermediate temperatures. Figure 8
demonstrates this (see Appendix E for the derivation of the
heat capacity). The contribution of the vison gas to the heat
capacity is also included for comparison.

F. Confinement of spinons

We note that the dynamical mass gap generated by
the vison plasma does not cause confinement of mag-
netic monopoles (spinons). Introducing a pair of magnetic
monopoles into the system corresponds to choosing an appro-
priate static background field A0

λ(k), which only couples to the
zero Matsubara frequency component of the dynamical gauge
field Aλ(k, ω = 0), which is not gapped. Hence, the vison
plasma does not alter the Coulomb interaction between static
magnetic monopoles introduced into the system. We refer the
reader to Appendix F for a detailed mechanism of how a static
mass gap, e.g., one generated by the condensation of visons in
the ground state, causes confinement of magnetic monopoles.

VI. CONCLUSION

We have described some of the possible experimental
signatures of gapped excitations of QSI, known as visons.
Because visons are sources of emergent electric field, they
are not easily accessible to experimental probes. Perhaps,
magnetostriction or Dzyaloshinskii-Moriya effects can couple
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real electric fields to the emergent electric field of the visons
[26,34–36], in which case visons can leave a signature in
electric response measurements. In this paper, we have instead
focused on how the dynamics of the vison’s emergent electric
field couple to the dynamics of the physical magnetic field,
via electromagnetic induction. This coupling leaves signatures
in neutron scattering experiments, which probe the magnetic
field dynamics.

We have been able to capture the dynamics of the visons
analytically and quantitatively for the first time by study-
ing the ring-exchange Hamiltonian in the large-s limit. We
extended the perturbative analysis of our previous work [9]
by including nonperturbative corrections that correspond to
the tunneling of visons between lattice sites. These quantum
corrections also go beyond the recent classical description
of visons in Ref. [26] and endow them with a finite mass
(exponentially small in s), which we have calculated.

In agreement with previous works, we have shown that
visons give rise to a continuum of excitations above the
ground state and renormalize the speed of light. Both were
calculated in the large-s limit. What is perhaps more novel,
is that in the large-s description, as soon as the temperature
becomes nonzero, the visons have a dramatic effect on the
photon spectrum. The visons form a dilute 3D Coulomb gas,
which, as is well known, is always in the plasma phase, i.e.,
the visons are deconfined. We have investigated how this
plasma interacts with the long-wavelength degrees of freedom
of the gauge field. We have found that in the Debye limit,
where a quadratic description is viable, plasma oscillations
introduce a dynamical mass gap in the photon spectrum,
which follows an Arrhenius law at low temperatures. This
mass gap should be observable in inelastic magnetic response
measurements. In particular, it should show up in energy-
resolved neutron-scattering experiments and we have calcu-
lated the scattering intensity as would be seen in a typical
experiment. We have compared our scattering intensity results
with the recent quantum Monte Carlo (QMC) simulations of
Ref. [20]. These are in rough agreement, although, because of
the limited resolution of QMC, the linear photon dispersion
cannot be resolved, let alone a potential small gap in the
spectrum.

We also show that the photon mass gap generated by visons
does not couple to the zero Matsubara frequency component
of the gauge field, and hence does not result in confinement
of static magnetic monopoles (spinons) introduced into the
system. However, it leads to the vanishing of the uniform
susceptibility of an isolated system through a mechanism
analogous to the Meissner effect. In fact, visons will lead to
the vanishing of the uniform ac susceptibility as the long as
the system is isolated and the frequency of the applied field is
different from the plasma frequency.

An interesting question to consider is the effect of the
photon mass gap on dynamical spinons. We leave this to be
fully addressed by future works, but note here that induced
vison currents are expected to lead to the decay of coherent
spinon excitations by Lenz’s law. The induced currents will
also cause the Coulombic magnetic field of a spinon, which
is propagating nonrelativistically and at constant speed, to
form a flux tube of radius (ch̄)/ωp on a timescale of h̄/ωp.
Visons will thus lead to confinement of propagating spinons

and the destruction of the Coulombic quantum spin liquid.
Our large-s description predicts this to happen as soon as the
temperature becomes nonzero due to the development of a
finite, albeit exponentially small, density of visons. There is
thus a smooth cross-over between the Coulombic quantum
spin liquid at zero temperature and the paramagnetic phase at
higher temperatures, i.e., the above spinon confinement length
scale and timescale diverge exponentially as we approach zero
temperature. This is in contrast to the gauge mean-field theory
analysis of Ref. [23], which predicts a first order transition
between these two phases, even in the perturbative Jz � J±
limit that we have considered in this work.
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APPENDIX A: THE LONGITUDINAL AND TRANSVERSE
PARTS OF THE INSTANTON SOLUTION IN THE

CONTINUUM LIMIT

It is very insightful to consider the continuum limit of
the instanton solution in Eq. (38). We first write down the
time-dependent part of the instanton solution as a sum of
longitudinal and transverse parts

E inst.
μ (r, τ ) − E const.

μ (r) = E tran.
μ (r, τ ) + E long.

μ (r, τ ), (A1)

where by definition divαE tran.(τ ) = 0 and curli jE long.(τ ) = 0
everywhere. From the solution in Eq. (38), it follows that

E tran.
μ (r, τ ) = 1

Ns

∑
λ=1,2,k∈BZ

∫ ∞

−∞
dω

−iωe−iωτ+ik·r
2zg̃2

s2 ξ 2
λ (k) + ω2

2

×U †
μλ(k)Uλσ (k)

|k|a0�1≈
∫

a3
0d3k

4(2π )3

∫ ∞

0
dω

−iωe−iωτ+ik·r(
2zg̃2a2

0
s2 |k|2 + ω2

2

)
× 3

4
[êσ · êμ − (k̂ · êσ )(k̂ · êμ)], (A2)

where we have used the identity∑
λ=1,2

U †
μλ(k)Uλσ (k) = 1

ξ 2
1 (k)

∑
λ

U †
μλ(k)ξ 2

λ (k)Uλσ (k)

= 1

ξ 2
1 (k)

∑
ν

Zμν (k)Zνσ (k)

ka0�1≈ −4

|k|2a2
0

∑
ν

(k · �μν )(k · �νσ )

= 3

4
((êμ · êσ ) − (k̂ · êμ)(k̂ · êσ )).

(A3)

The transverse part of the instanton solution is transient in
time with a power-law tail ∝ 1/|τ |3 at long times.
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The longitudinal part of the electric field can also be
extracted from the solution in Eq. (38)

E long.
μ (r, τ ) = − π

Ns
sgn(τ )

∑
λ=3,4,k∈BZ

eik·rU †
μλ(k)Uλσ (k)

|k|a0�1≈ 3π

4
sgn(τ )

∫
a3

0d3k

4(2π )3 eik·r

×
(

1

3
+ (k̂ · êσ )(k̂ · êμ)

)

= 3πa3
0

16
sgn(τ )δ(r) + AE(r, τ ) · êμ, (A4)

where the factor of A =
√

3
4 a2

0 links the lattice electric flux
Eμ(r, τ ) with the continuum flux density E(r, τ ) and follows
from approximating a sum over a large closed surface S by a
surface integral

∑
(r,μ)∈S → ∮

S
dS
A . E(r, τ ) is the continuum

electric field due to a dipole at r = 0 with a dipole moment of
πsgn(τ )eσ

E(r, τ ) = −π isgn(τ )∇
[∫

d3k

(2π )3

k · eσ

|k|2 eik·r
]

= πsgn(τ )∇
[

eσ · ∇
(

1

|r|
)]

. (A5)

We have also used the identity

∑
λ=3,4

U †
μλ(k)Uλσ (k) = δμσ −

∑
λ=1,2

U †
μλ(k)Uλσ (k)

|k|a0�1≈ 3

4

(
1

3
+ (k̂ · êσ )(k̂ · êμ)

)
. (A6)

The longitudinal part of the electric field is uniquely de-
termined by the charge distribution via Laplace’s equation
in Eq. (30). Because E long.

μ (r, τ ) has a lattice divergence
of −πsgn(τ ) at −eμ/2 and πsgn(τ ) at eμ/2, it necessarily
corresponds to the electric field due to a pair of charges π

and −π at positions −eμ/2 and eμ/2 respectively for τ < 0
that switch positions for τ > 0. We therefore obtain a dipole
field as above in the continuum limit. It also follows that,
to describe the hopping of a vison of charge 2π at τ = 0,
the constant background electric field E const.

μ (r, τ ) has to be
the longitudinal field due to a pair of charges π at positions
±eμ/2.

APPENDIX B: THE SMOOTH INSTANTON SOLUTION

We begin with the instanton solution in Eq. (38) [in the fol-
lowing, the instanton solution is given relative to the constant
and divergenceful background field E const.

λ (k)]

E inst.
λ (k, τ ) = d

dτ

[
1√
Nsβ

∑
ω

πUλσ (k)
2zg̃2

s2 ξ 2
λ (k) + ω2

2

e−iωτ

]
. (B1)

Taking the low temperature limit βg̃
√

z/s → ∞, we obtain

E inst.
λ (k, τ ) = d

dτ

∫ ∞

−∞

dω

2π
√

Ns

πUλσ (k)
2zg̃2

s2 ξ 2
λ (k) + ω2

2

e−iωτ

= sπUλσ (k)

2g̃
√

Nszξλ(k)

d

dτ

[
e−|τ | 2g̃

√
z|ξλ (k)|

s
]

= −πsgn(τ )Uλσ (k)√
Ns

e−|τ | 2g̃
√

z|ξλ (k)|
s . (B2)

The smooth instanton solution in Eq. (42) is given by

E sm.
λ (k, τ ) = πUλσ (k)√

Ns
[−sgn(τ )e−|τ | 2g̃

√
z|ξλ (k)|

s + sgn(τ ) + 1],

(B3)

and we can see that the jump in the field has been removed.
Straightforward differentiation gives

Ë sm.
λ (k, τ ) = −πsgn(τ )Uλσ (k)√

Ns

4zg̃2ξ 2
λ (k)

s2
e−|τ | 2g̃

√
z|ξλ (k)|

s . (B4)

The smooth instanton solution is the stationary solution of
the action in Eq. (41). Minimising that action with respect
to variations in the dynamical, transverse part of the field
Eλ=1,2(−k, τ ) we obtain the following saddle point equations

−2s2

4zg̃ξ 2
λ (k)

Ëλ(k, τ ) + g̃
∑
r,μ

V ′[Eμ(r, τ )]
δEμ(r, τ )

δEλ(−k, τ )
= 0,

(B5)

for all k and λ = 1 and 2, where

δEμ(r, τ )

δEλ(−k, τ )
= 1√

Ns
U †

μλ(−k)e−ik·r (B6)

and

V ′[Eμ(r, τ )] = 2Eμ(r, τ ) − 2πδμσ δr,0[sgn(τ ) + 1]. (B7)

The first derivative of the continued parabolic potential
V ′[Eμ(r, τ )] is given by 2Eμ(r, τ ), when |Eμ(r, τ )| � π . This
is true in the case of the above smooth instanton solution
E sm.

μ (r, τ ), everywhere except for the single electric field
Eμ=σ (r = 0, τ ), which lies between π and 3π for positive
imaginary times. In this case V ′[Eμ(r, τ )] = 2Eμ(r, τ ) − 4π ,
thus justifying the above expression. It follows that the smooth
instanton solution E sm.

μ (r, τ ) satisfies the saddle point equa-
tion in Eq. (B5)

0 = −2Ë sm.
λ (k, τ )

s2

4zg̃ξ 2
λ (k)

+ 2g̃E sm.
λ (k, τ )

− 2π g̃√
Ns

Uλσ (k)[sgn(τ ) + 1]. (B8)

We now turn to proving that Ė sm.
λ (k, τ ) is the zero-energy

mode of the action in Eq. (43) describing fluctuations around
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the stationary smooth instanton solution

δStran[δEλ(k, τ )] =
∫ β/2

−β/2
dτ

∑
k∈BZ,λ=1,2

s2|δĖλ(k, τ )|2
4zg̃ξ 2

λ (k)

+
∫ β/2

−β/2
dτ

g̃

2

∑
αβ

V ′′(E sm.
αβ (τ )

)
δE2

αβ (τ ).

(B9)

The zero-mode of the above action satisfies the following
differential equation for λ = 1 and 2:

0 = − s2

4zg̃ξ 2
λ (k)

δËλ(k, τ )

+ δEμ(r, τ )

δEλ(−k, τ )

g̃

2

∑
αβ

V ′′[E sm.
αβ (τ )

]
δEαβ (τ ). (B10)

We see that δEαβ (τ ) = Ė sm.
αβ (τ ) is a solution of the equation,

because

− s2

4zg̃ξ 2
λ (k)

...
E

sm.
λ (k) + δEμ(r, τ )

δEλ(−k, τ )

g̃

2

∑
αβ

V ′′[E sm.
αβ (τ )

]
Ė sm.

αβ (τ )

(B11)

is proportional to the time derivative of the left-hand side of
Eq. (B5).

APPENDIX C: INSTANTON MEASURE

The fluctuation action in Eq. (43) can be written as follows:

δS =
∑

ω

∑
k,λ=1,2

(
g̃ + s2ω2

4zg̃ξ 2
λ (k)

)
|δEλ(k, ω)|2

− 2π g̃

Ė sm.
σ (0, 0)

δE2
σ (0, 0), (C1)

where

Ė sm.
σ (0, 0) = 2

√
zπ g̃

sNs

∑
k,λ

U †
σλ(k)|ξλ(k)|Uλσ (k)

= 2
√

zπ g̃

sNs

∑
k∈B.Z.,μ

Zσμ(k)Zμσ (k)

|ξ1(k)|

≡ C2
3 g̃

s
, (C2)

and C3 = 5.13. It is convenient to express the fluctuation
action in matrix form

δS = E†K̃E = E†(K − λvv†)E, (C3)

where

[E]λωk = δEλ(ω, k),

[v]λωk = 1√
Nsβ

Uλσ (k),

[K]λωk,λ′ω′k′ = δλωk,λ′ω′k′

(
g̃ + s2ω2

4zg̃ξ 2
λ (k)

)
,

λ = 2πs

C2
3

= 1

v†K−1v
, (C4)

where the final identity follows from Eq. (C2).

The instanton measure can be obtained by working out
the contribution of the one-instanton sector to the partition
function relative to the zero-instanton sector∫ ∏

i d ξ̃i

√
〈�̃i|�̃i〉e− 1

2

∑
i =0 λ̃i ξ̃

2
i 〈�̃i|�̃i〉∫ ∏

i dξi
√〈�i|�i〉e− 1

2

∑
i λiξ

2
i 〈�i|�i〉

=
∫

d ξ̃0

√
〈�̃0|�̃0〉

2π

√
det K

det′K̃
, (C5)

where we have written down δE (r, τ ) =∑i ξi�i(r, τ ) =∑
i ξ̃i�̃i(r, τ ) in terms of the real eigenvectors of K and K̃

respectively in the (r, τ ) basis and the zero eigenvalue is
excluded from the determinant of K̃. From

K̃ = K(1 − λK−1vv†), (C6)

it follows that
det
(
K̃
)

det(K)
= det(1 − λK−1vv†). (C7)

The matrix (1 + λK−1vv†) has N − 1 eigenvectors perpen-
dicular to v with eigenvalue 1 and an eigenvector K−1v with
eigenvalue equal to (1 − λv†K−1v). Therefore

det
(
K̃
)

det(K)
= (1 − λv†K−1v). (C8)

When λ takes on its physical value given by Eq. (C4) and
equal to (v†K−1v)−1, det K̃ and the above ratio vanish. To
avoid this, we will perturb λ from its physical value as follows

λ = 1

v†K−1v
− δλ. (C9)

The matrix K̃ changes as a result by δK̃ = δλvv†, and stan-
dard perturbation theory gives the shift of the zero eigenvalue
of K̃

δλ̃0 = 〈K−1v|δK̃|K−1v〉
〈K−1v|K−1v〉 = (v†K−1v)2δλ

v†K−2v
. (C10)

With the perturbed λ, we can now evaluate

det′
(
K̃
)

det(K)
= det

(
K̃
)

δλ̃0det(K)
= v†K−1vδλ

δλ̃0
= v†K−2v

v†K−1v
, (C11)

and then take the limit δλ → 0, where

v†K−2v = 1

Nsβ

∑
ω

∑
k,λ

U †
σλ(k)

⎛
⎝ 1

g̃ + ω2s2

4zg̃ξ 2
λ (k)

⎞
⎠

2

Uλσ (k)

= C2
3

4π g̃s
, (C12)

and we have summed over ω in the βg̃
√

z/s → ∞ limit and
used the identity quoted in Eq. (C2).

We also calculate the norm of the zero mode

〈�̃0|�̃0〉 =
∑
k,λ

∫ ∞

−∞
|Ė sm.

λ (τ, k)|2dτ

= 2
√

zg̃π2

Nss

∑
k,λ

U †
σλξ

2
λ (k)Uλσ (k)

|ξ1(k)|

= C2
3 π g̃

s
, (C13)
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where we have again used the identity quoted in Eq. (C2).
Inserting everything into Eq. (C5), the instanton measure
becomes

∫
C3g̃ d ξ̃0√

s
, (C14)

where ξ0 specifies the position of the instanton in imaginary
time.

APPENDIX D: CONTRIBUTION OF VISON PAIRS

We will look at the contribution of vison pairs to the Sz

correlator in the ground state.

1. Renormalization of the speed of light

In the large-s limit, virtual vison pairs will be far away
from each other because each vison pair loop is accompanied
by at least two instantons and will enter the partition function
with a weight at least as small as ∼e−2μI = e−2C2s. We can
therefore neglect the hardcore interactions between virtual
vison pairs. Following the action in Eq. (49), the partition
function of a dilute gas of such loops can be written as

Z =
∫

dAαβ (τ ) e−S0
∑

n

1

n!

×
⎛
⎝∑

αβ

∫∫
w2dT dτ

eμV T e2μI
e2π iAαβ (τ− T

2 )−2π iAαβ (τ+ T
2 ) + c.c.

⎞
⎠

n

,

(D1)

where n is the number of loops considered, T is the length
of the loop in imaginary time, τ the position of its center and
w = C3g̃√

s
the instanton measure. As we are focusing on the ef-

fect on the Aαβ (τ ) gauge field only, we have omitted the scalar
field ϕγ (τ ) from the above partition function. The contribution
of vison pairs to the gauge field action, at quadratic order, can
thus be written as

δSpairs = 4π2w2

e2μI

∑
αβ

∫∫
dT dτe−μV T

×
(

Aαβ

(
τ + T

2

)
− Aαβ

(
τ − T

2

))2

= 16π2w2

e2μI

∑
ω,k,λ=1,2

ω2|Aλ(k, ω)|2
4μ2

V + ω2

= 4π2w2

μ3
V e2μI

∑
ω,k,λ=1,2

ω2|Aλ(k, ω)|2 for ωg̃ � 1.

(D2)

We can see that virtual vison pairs lead to a small renormal-
ization of the ω2 coefficient in the gauge field action S0, and
hence a small renormalization of the speed of light. We can
also see that vison pair loops introduce a pole in χλ(k, ω)
at ω = 2μV corresponding to the energy of creation of a
single static vison-antivison pair. To obtain a continuum of
excitations above this threshold, we need to consider vison
pair loops accompanied by more than two instantons, i.e.,
the visons execute hops before annihilating. It will be more
convenient to do this using the O(2) rotor description of visons
given in Eq. (51).

2. Continuum of excitations above the ground state

There will be a continuum of excitations at energies above
twice the vison energy 2μV . In the large-s limit, the ground
state of the O(2) action in Eq. (51) is characterized by
qγ (τ ) = 0 everywhere with small virtual vison fluctuations as
a perturbation. In the same limit, the multi-particle excited
states are described by the action in Eq. (53), as long as the ex-
citations are dilute. The excited states consist of bosons of two
flavors (corresponding to visons and antivisons). For small
momenta and gauge fields, these excitations are described by
the action in Eq. (54). The two-particle excited states are then
connected to the ground state via the following perturbation,
which creates or annihilates vison pairs

δS± = 2πv

∫
d3r
∫

dτ (i�−A · ∇�++ i�̄+A · ∇�̄−+ H.c.),

= −2πv√
β

∑
ω1,ω2

∫
d3k1d3k2

(2π )6
(�+(k1, ω1)�−(k2, ω2)

× (k1 − k2) · A(−k1 − k2,−ω1 − ω2) + c.c.) (D3)

where v = 4h̄2

m∗a3
0
. The above perturbation gives a correction

to the gauge field correlator 〈Aλ(k, ω)Aλ′ (k′, ω′)〉. The zeroth
order correlator can be found using the continuum limit of the
action S0 given in Appendix G

〈Aλ(k, ω)Aλ′ (k′, ω′)〉0 = 2g̃(2π )3δ3(k + k′)δω,−ω′δλλ′

ω2 + c2h̄2k2
.

(D4)

Standard perturbation theory then gives the following lowest
order correction to the gauge field correlator

δ〈Aλ(k, ω)Aλ′ (k′, ω′)〉 =
〈
(δS±)2Aλ(k, ω)Aλ′ (k′, ω′)

〉c
0

2

= 4πv2

β

∑
ω1,ω2,�1,�2

∫
d3k1d3k2d3q1d3q2

(2π )12
〈�̄+(q1,�1)�+(k1, ω1)〉0 〈�̄−(q2,�2)�−(k2, ω2)〉0

×〈Aλ(k, ω)Aλ′ (k′, ω′)(k1 − k2) · A(−k1 − k2,−ω1 − ω2)(q1 − q2) · A(q1 + q2,�1 + �2)〉c
0

125113-17



M. P. KWASIGROCH PHYSICAL REVIEW B 102, 125113 (2020)

= 4πv2

β

∑
ω1,ω2

∫
d3k1d3k2

(2π )6

a3
0/8

−iω1 + ε(k1)

a3
0/8

−iω2 + ε(k2)
〈Aλ(k, ω)Aλ′ (k′, ω′)(k1 − k2)

· A(−k1 − k2,−ω1 − ω2)(k1 − k2) · A(k1 + k2, ω1 + ω2)〉c
0

= 4πv2

β

∑
ω1,ω2

∫
d3k1d3k2

(2π )6

a3
0/8

−iω1 + ε(k1)

a3
0/8

iω1 − iω2 + ε(k2 − k1)

×〈Aλ(k, ω)Aλ′ (k′, ω′)(2k1 − k2) · A(−k2,−ω2)(2k1 − k2) · A(k2, ω2)〉c
0, (D5)

where as usual only connected diagrams are included, the
transformation k2 → k2 − k1, ω2 → ω2 − ω1 was performed
in the final step and ε(k) = μV + h̄2k2

2m∗ is the vison en-
ergy. In the Coulomb gauge k2 · A(k2, ω2) = 0, and we
can write A(k2, ω2) = √

a0
∑

λ=1,2 Aλ(k2, ω2)n̂λ(k2), where
n̂λ(k) · n̂λ′ (k) = δλλ′ and n̂λ(k) · k = 0. This allows us to
rewrite the correction to the gauge field correlator as

δ〈Aλ(k, ω)Aλ′ (k′, ω′)〉

= 16πv2

β

∑
ω1,ω2

∑
λ1,λ2

∫
d3k1d3k2

(2π )6

×
(
a3

0

/
8
)
(k1 · n̂λ1 (k2))

−iω1 + ε(k1)

(a3
0/8)(k1 · n̂λ2 (k2))

iω1 − iω2 + ε(k2 − k1)

×a0〈Aλ(k, ω)Aλ′ (k′, ω′)Aλ1 (k2, ω2)Aλ2 (−k2,−ω2)〉c
0

= (2π )3δ3(k + k′)δω,−ω′δλλ′

× πv2a7
0g̃2

(ω2 + c2h̄2k2)2

∫
d3k1

(2π )3

k2
1 − (k1 · k̂)2

ε(k1) + ε(k − k1) − iω
,

(D6)

where by symmetry the integral over k1 vanishes when λ1 =
λ2. The correction to the imaginary-time magnetic field corre-
lator, defined in Eq. (67), is given by

δχλ(k, iω) =
∫

d3k1

(2π )3

k2
1 − (k1 · k̂)2

ε(k1) + ε(k − k1) − iω

× πv2a7
0g̃2ξ 2

λ (k)

(ω2 + c2h̄2k2)2
(D7)

and the spectral density by

δρλ(k, ω) = Im lim
ε→0

δχλ(k, ω + iε)

=
∫

d3k1

(2π )3

(
k2

1 − (k1 · k̂)2)

× δ(ε(k1) + ε(k − k1) − ω)
πv2a7

0g̃2ξ 2
λ (k)

(ω2 + c2h̄2k2)2

= (m∗)
5
2 v2a7

0g̃2ξ 2
λ (k)�(W )W

3
2

6π h̄5(ω2 + c2h̄2k2)2
, (D8)

where W = ω − 2μV − h̄2k2

4m∗ and �(W ) is the Heaviside step
function. The contribution to the total unpolarized scattering
intensity I (k, ω) from the generation of vison pairs can now
be found using Eq. (72) and the fact that at zero temperature
the dynamical structure factor Sλ(k, ω) = 2ρλ(k, ω).

APPENDIX E: HEAT CAPACITY

Integrating out gauge fields Aλ=1,2(k, ω) from the action
in Eq. (64) gives us the photon contribution to the partition
function

ZP =
∏

ω,k,λ=1,2

√
π

g̃β

√
π/β√

g̃z
s2 |ξλ(k)|2 + ω2

p

4g̃ (1 − δω,0) + ω2

4g̃

(E1)

where the factor of
√

π
g̃β is a result of previously integrat-

ing out the Eλ=1,2(k, ω) fields from the action in Eq. (13).
Ignoring temperature-independent prefactors in the partition
function and performing the sum over Matsubara frequencies
we obtain the photon contribution to the free energy

FP = kB

∑
k,λ=1,2

(
Ek

2
+ T ln(1 − e−Ek/T ) − T ln Ek

)
. (E2)

The photon contribution to the heat capacity per unit volume
is then given by

CP = −T

V

∂2FP

∂T 2

= kB

V

∑
k,λ=1,2

[
(T E ′

k − Ek )2eEk/T

T 2(eEk/T − 1)2
− T E ′′

k

2

− T E ′′
k

eEk/T − 1
+ 2T E ′

k

Ek
+ T 2E ′′

k

Ek
− T 2(E ′

k )2

E2
k

]
, (E3)

where the primes indicate temperature derivatives and the

volume V = Nsa3
0

4 .
At low temperatures the vison contribution to the partition

function is given by

ZV =
∑

n

e−nβμV

n!

(
V

λ3
B

)n

. (E4)

The contribution to the heat capacity per unit volume is given
by

CV = T 2

V

∂2 ln ZV

∂T 2

= 1

4
λ2

B

√
T e−βμV (4μ2 + 12μT + 15T 2). (E5)

APPENDIX F: CONFINEMENT OF SPINONS

In this section, we demonstrate how a nondynamical mass
gap, i.e., one that couples to the zero Matsubara frequency
component, would generate confinement.
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We introduce two oppositely charged monopoles situated
on up tetrahedra with centres r ± N (e1 − e2). This results in
a line of background flux linking them

√
NsB

0
λ(k) =

∑
r,μ

e−ik·(r+eμ/2)Uλμ(k)Bμ(r + eμ/2)

=
N∑

n=−N

(Uλ1(k)e−ik·(na+e1/2) − Uλ2(k)

× e−ik·(na+e2/2))

= (Uλ1(k)e−ik·e1/2 − Uλ2(k)e−ik·e2/2)

× sin k · a(N + 1
2 )

sin k · a
, (F1)

where a = e1 − e2. By Eq. (8), the noninteger background
vector potential is then given by A0

λ(k) = B0
λ(k)/ξλ(k) for

λ = 1 and 2. In its presence, the static part of the action in
Eq. (64) becomes

S/β =
∑

k,λ=1,2

g̃za2
0

s2

(
k2|Aλ(k) + A0

λ(k)|2 + ξ−2|Aλ(k)|2),
(F2)

where ξ−2 is a static mass gap that could be generated by
vison condensation in the ground state. Integrating out the
field Aλ(k), we obtain

S/β = g̃za2
0

s2

∑
k,λ

k2ξ−2

k2 + ξ−2

∣∣A0
λ(k)

∣∣2. (F3)

We can see that in the absence of a static mass gap, i.e., in
the limit ξ → ∞, there is no energy cost arising from the
transverse part of the background field B0

λ(k). There is only
a Coulombic energy cost arising from its longitudinal part,
i.e., �i jψ in Eq. (8). Substituting in for A0

λ(k) and integrating
along k · â first, we obtain

S/β = g̃za3
0πn

|a|
∫

|k|<�

d3k
(2π )3

ξ−2

k2 + ξ−2

|a| sin2 nk · a
πn(k · a)2

×|Uλ1(k)e−ik·e1/2 − Uλ2(k)e−ik·e2/2|2

= 2π g̃za3
0n

|a|
∫

|k|<�

d2k
(2π )3

ξ−2

k2 + ξ−2

≈ n
g̃z(a0/ξ )2 ln �ξ√

2π
, (F4)

where we have worked in the limit �a0 � 1 and used the fact
that limn→∞ ( |a|

πn
sin2 nk·a

(k·a)2 ) = δ(k · â) and |Uλ1(k)e−ik·e1/2 −

Uλ2(k)e−ik·e2/2|2 = 2 at k · â = 0. The above result shows that
a static mass gap generates a constant confining force equal to

F = g̃z(a0/ξ )2 ln �ξ√
2πa0

. (F5)

APPENDIX G: PLASMA OSCILLATIONS
IN THE CONTINUUM LIMIT

We begin with the action in Eq. (13) and take the contin-
uum limit as follows:

Aαβ (τ ) → A(r, τ ) · (rβ − rα ),

Eαβ (τ ) → E(r, τ ) · (rβ − rα ),

S =
∫ β

0
dτ

∫
d3r
a0

(
iE · Ȧ + g̃E2 + g̃za2

0

s2
(∇ × A)2

)
.

(G1)

We can also consider adding a vison current term to the action
which couples to the magnetic vector potential

δS = −
∫

d3r J · A. (G2)

Moving from imaginary to real time (which we measure in
units of h̄), we obtain the saddle point equations of the action,
i.e., Maxwell’s equations

Ȧ = −2g̃E,

Ė = 2g̃a2
0z

s2
∇ × (∇ × A) − Ja0. (G3)

In the Debye limit eβμV � 1, when there are many visons
inside the Debye volume, the visons will respond to the gauge
field coherently and we can use a hydrodynamic description.
The charges accelerate in the presence of the electric field
according to

J̇ = −2(2π h̄)2nȦ/m∗, (G4)

where n = e−βμV λ−3
B is the vison number density and (2π h̄)

is the vison charge. Differentiating the second equation in
Eq. (G3) with respect to time, substituting in for Ȧ with the
help of the first equation and using J̇ = −2(2π h̄)2nȦ/m∗, we
obtain the plasma equation

h̄2c2∇2E = Ë + ω2
pE, (G5)

where c2 = 4g̃2a2
0z

h̄2s2 , ω2
p = 16π2 h̄2a0e−βμV g̃

m∗λ3
B

, and we have assumed

plasma neutrality so that ∇ · E = −∇2ϕ = 0 everywhere.
This result agrees with the derivation presented in the main
body of this paper.
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