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Abstract—We present a new solution to egocentric 3D body pose estimation from monocular images captured from a downward

looking fish-eye camera installed on the rim of a head mounted virtual reality device. This unusual viewpoint leads to images with

unique visual appearance, characterized by severe self-occlusions and strong perspective distortions that result in a drastic difference

in resolution between lower and upper body. We propose a new encoder-decoder architecture with a novel multi-branch decoder

designed specifically to account for the varying uncertainty in 2D joint locations. Our quantitative evaluation, both on synthetic and

real-world datasets, shows that our strategy leads to substantial improvements in accuracy over state of the art egocentric pose

estimation approaches. To tackle the severe lack of labelled training data for egocentric 3D pose estimation we also introduced a

large-scale photo-realistic synthetic dataset. xxR-EgoPose offers 383K frames of high quality renderings of people with diverse skin

tones, body shapes and clothing, in a variety of backgrounds and lighting conditions, performing a range of actions. Our experiments

show that the high variability in our new synthetic training corpus leads to good generalization to real world footage and to state of

the art results on real world datasets with ground truth. Moreover, an evaluation on the Human3.6M benchmark shows that the

performance of our method is on par with top performing approaches on the more classic problem of 3D human pose from a third

person viewpoint.

Index Terms—3D human pose estimation, egocentric, VR/AR, character animation

Ç

1 INTRODUCTION

THE advent of xxR technologies (such as AR, VR, and MR)
has led to a wide variety of applications in areas such as

entertainment, communication, medicine, CAD design, art,
and workspace productivity. These technologies mainly
focus on immersing the user in a virtual space using a head
mounted display (HMD) which renders the environment
from the specific viewpoint of the user. However, current
solutions have so far focused on the video and audio aspects
of the user’s perceptual system, leaving a gap in the touch
and proprioception senses. Partial solutions to propriocep-
tion have been limited to the use of controller devices to
track and render hand positions in real time. The 3D pose of
the rest of the body is then inferred from inverse kinematics
of the head and hand poses [1], but this often results in inac-
curate estimates of the body configuration with a large loss

of signal that impedes compelling social interaction [2] and
even leads to motion sickness [3].

Fig. 1 illustrates the problem that this paper addresses:
the goal is to infer 2D and 3D pose information, such as joint
positions and rotations, from an egocentric camera perspec-
tive, necessary to transfer the motion from the original user
to a generic avatar or to gather user pose information.

The monocular camera used in our configuration is
mounted on the rim of a HMD (as shown in Fig. 1a),
approximately 2cm away from an average size nose, looking
down. Fig. 2 provides a more clear visualization of the
unique visual appearance of the images that the camera
sees for different body configurations — the top row shows
which body parts would become self-occluded from an ego-
centric viewpoint. The continuous gradation from bright
red to dark green encodes the increasing pixel resolution for
the corresponding colored area.

There are several challenges that contribute to the diffi-
culty of this problem: (1) Strong perspective distortions
occur, due to the fish-eye lenses and the proximity of the
camera to the face. This results in images with strong radial
distortion and drastic difference in image resolution
between the upper and lower body (as visible in Fig. 2 —
bottom row). Due to this, state-of-the-art approaches for 2D
body pose estimation [4] from a frontal or 360 degree yaw
view, fail on this type of images; (2) There are many instan-
ces where body self-occlusion occurs, especially in the
lower-body (see right images of Fig. 3), which demands
strong spatial awareness of joint locations; (3) Egocentric 3D
body pose estimation is a relatively unexplored problem in
computer vision, hence the scarce availability of publicly
accessible labeled datasets; (4) As shared by traditional 3D
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body pose estimation, natural ambiguity is present when
lifting 2D joint positions in 3D.

The unusual visual egocentric appearance calls for a new
approach and a new training corpus. This paper tackles both.

Our novel neural network architecture encodes the difference
in uncertainty between upper and lower body joints caused
by the varying resolution, extreme perspective effects and
self-occlusions.

Fig. 1. Egocentric human pose estimation: driving an avatar from an egocentric camera perspective. b) Egocentric perspective of the pose visualized
in a) from an external point of view; c) 3D joint locations predicted from the input RGB only-information shown in b); d) synthetic character driven
from the local joint rotations estimated alonside the 3D locations.

Fig. 2. Visualization of different poses with the same character. Top: poses rendered from an external camera viewpoint. White represents occlusion,
which is body parts that would not be visible from the egocentric perspective. Bottom: poses rendered from the egocentric camera viewpoint. Color
gradient indicates the density of image pixels for each area of the body: green is higher pixel density, whereas red is lower density. This figure illus-
trates the challenges faced in egocentric human pose estimation: severe self-occlusions, extreme perspective effects and lower pixel density for the
lower body.

Fig. 3. Example images from our xxR-EgoPose Dataset compared with the competitor Mo2Cap2 dataset [5]. The quality of our frames is far superior
than the randomly sampled frames from mo2cap2, where the characters suffer color matching with respect to the background light conditions.
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We conducted quantitative and qualitative evaluations
on both synthetic and real-world benchmarks with ground
truth 3D annotations, showing that our approach outper-
forms previous egocentric state-of-the-art Mo2Cap2 [5] by
more than 25 percent. In addition, we achieve state-of-the-art
performance on the more standard front-facing cameras 3D
human pose reconstruction scenario, without any architec-
ture modifications, performing second best after [6] on the
Human3.6M benchmark [7].

Our ablation studies show that the introduction of our
novel multi-branch decoder to reconstruct the 2D input heat-
maps and rotations, is responsible for the drastic improve-
ments in 3D pose estimation. Furthermore, the contribution
of each of the branches is analyzed, providing tools to con-
trol the level of uncertainty embedded in the latent space.

2 RELATED WORK

We describe related work on monocular (single-camera)
marker-less 3D human pose estimation focusing on two dis-
tinct capture setups: outside-in approaches where an exter-
nal camera viewpoint is used to capture one or more
subjects from a distance – the most commonly used setup;
and first person or egocentric systems where a head-
mounted camera observes the own body of the user. While
our paper focuses on the second scenario, we build on
recent advances in CNN-based methods for human 3D pose
estimation. We also describe approaches that incorporate
wearable sensors for first person human pose estimation.

Monocular 3D Pose Estimation From an External Camera
Viewpoint. The advent of convolutional neural networks and
the availability of large 2D and 3D training datasets [7], [8]
has recently allowed fast progress inmonocular 3D pose esti-
mation from RGB images captured from external cameras.
Two main trends have emerged: (i) fully supervised regres-
sion of 3D joint locations directly from images [9], [10], [11],
[12], [13], [14] and (ii) pipeline approaches that decouple the
problem into the tasks of 2D joint detection followed by 3D
lifting [15], [16], [17], [18], [19], [20], [21], [22], [23], [24]. Prog-
ress in fully supervised approaches and their ability to gener-
alize has been severely affected by the limited availability of
3D pose annotations for in-the-wild images. This has led to
significant efforts in creating photo-realistic synthetic data-
sets [25], [26] aided by the recent availability of parametric
dense 3D models of the human body learned from body
scans [27]. On the other hand, the appeal of two-step
decoupled approaches comes from two main advantages:
the availability of high-quality off-the-shelf 2D joint detec-
tors [28], [29], [30], [31] that only require easy-to-harvest 2D
annotations, and the possibility of training the 3D lifting step
using 3D mocap datasets and their ground truth projections
without the need for 3D annotations for images. Even simple
architectures have been shown to solve this task with a low
error rate [15]. Recent advances are due to combining the 2D
and 3D tasks into a joint estimation [4], [32], [33], [34] and
using weakly [35], [36], [37], [38], [39] or self-supervised
losses [40], [41], [42], [43], [44] or mixing 2D and 3D data for
training [6], [42], [45], [46].

First Person 3D Human Pose Estimation. While capturing
users from an egocentric camera perspective for activity
recognition has received significant attention in recent

years [47], [48], [49],mostmethods detect, atmost, only upper
body motion (hands, arms or torso). Capturing full 3D body
motion from head-mounted cameras is considerably more
challenging. Some head-mounted capture systems are based
on RGB-D input and reconstruct mostly hand, arm and torso
motions [50], [51]. Jiang and Grauman [52] reconstruct full
body pose from footage taken from a camera worn on the
chest by estimating egomotion from the observed scene, but
their estimates lack accuracy and have high uncertainty.
Yuan et al. [53], [54] instead explores a different solution by
moving away from kinematics-based representations and
using a control-based representation of humanoid motion,
commonly used in robotics. A step towards dealing with
large parts of the body not being observable was proposed
in [55] but for external camera viewpoints. Rhodin et al. [56]
pioneered the first approach towards full-body capture from
a helmet-mounted stereo fish-eye camera pair. The cameras
were placed around 25 cm away from the user’s head, using
telescopic sticks, which resulted in a fairly cumbersome setup
for the user but with the benefit of capturing large field of
view imageswheremost of the bodywas in view. Amonocu-
lar head-mounted systems for full-body pose estimation has
more recently been demonstrated by Xu et al. [5], who pro-
pose a real-time compact setup mounted on a baseball cap,
although in this case the egocentric camera is placed a few
centimeters further from the user’s forehead than in our pro-
posed approach. Our approach substantially outperforms
Xu et al’s method [5] by at least 20 percent on both indoor and
outdoor sequences from their real world evaluation dataset.
In this journal paper, we go beyond our previous conference
paper [57]. First, we perform an extensive analysis on deep
architectures for the task of egocentric pose estimation, and
show that UNet architectures significantly outperform the
originally proposed ResNet architecture [57], specifically for
transfer learning from synthetic to real data. Second, we pro-
pose a new model which additionally predicts per part rota-
tions. In contrast to [57], this allows us to animate virtual
characters, which is necessary formany applications.

3D Pose Estimation From Wearable Devices. Inertial Mea-
surement Units (IMUs) worn by the subject provide a cam-
era-free alternative solution to first person human pose
estimation. However, such systems are intrusive and com-
plex to calibrate. While reducing the number of sensors
leads to a less invasive configuration [58], [59] recovering
accurate human pose from sparse sensor readings becomes
a more challenging task. Video data can be fused with
IMU [60], [61], [62], [63] to improve accuracy, but these
approaches require line of sight with an external camera.
An alternative approach, introduced by Shiratori et al. [64]
consists of a multi-camera structure-from-motion (SFM)
approach using 16 limb-mounted cameras. Still very intru-
sive, this approach suffers from motion blur, automatic
white balancing, rolling shutter effects and motion in the
scene, making it impractical in realistic scenarios.

3 xxR-EGOPOSE SYNTHETIC DATASET

Ego-3D posed estimation from HMC is a relatively new
research problem in computer vision, and to the best of our
knowledge there is only one dataset available to analyze the
algorithms, see Fig. 3. Existing databases are not rich enough
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to provide statistical significant analysis due to the scarcity of
data. This section describes a photo-realistic synthetic ego-
centric dataset with ground-truth data, that overcomes some
of the limitations of existing approaches.

The design of this dataset focuses on scalability, with
augmentation of characters, environments, and lighting
conditions. A rendered scene is generated from a random
selection of characters, environments, lighting rigs, and ani-
mation actions. The animations are obtained from mocap
data. A small random displacement is added to the posi-
tioning of the camera on the headset to simulate the typical
variation of the pose of the headset with respect to the head
when worn by the user.

Characters. To improve the diversity of body types, from
a single character, we generate additional skinny short,
skinny tall, full short, and full tallversions. The height distri-
bution of ranges from 155 cm to 189 cm.

Skin. Color tones include white (Caucasian, freckles or
Albino), light-skinned European, dark-skinned European (darker
Caucasian, European mix),Mediterranean or olive (Mediterra-
nean, Asian, Hispanic, Native American), dark brown (Afro-
American, Middle Eastern), and black (Afro-American, Afri-
can, Middle Eastern). Additionally, we built random skin
tone parameters into the shaders of each character used with
the scene generator.

Clothing. Clothing types include athletic pants, jeans,
shorts, dress pants, skirts, jackets, T-Shirts, long sleeves, and
tank tops. Shoes include sandals, boots, dress shoes, athletic
shoes, crocs. Each type is rendered with different texture and
colors.

Actions. The type of actions are listed in Table 1.
Images. The images have a resolution of 1024� 1024 pix-

els and 16-bit color depth. For training and testing, we
downsample the color depth to 8 bit. The frame rate is 30
fps. RGB, depth, normals, body segmentation, and pixel world
position images are generated for each frame, with the
option for exposure control for augmentation of lighting.
Metadata is provided for each frame including 3D joint
positions, height of the character, environment, camera
pose, body segmentation, and animation rig.

Render Quality. Maximizing the photo-realism of the syn-
thetic dataset was our top priority. Therefore, we animated
the characters in Maya using actual mocap data [65], and
used a standardized physically based rendering setup with
V-Ray. The characters were created with global custom
shader settings applied across clothing, skin, and lighting of
environments for all rendered scenes.

3.1 Training, Test, and Validation Sets

The dataset has a total size of 383K frames, with 23 male and
23 female characters, divided into three sets: Train-set: 252K
frames; Test-set: 115K frames; and Validation-set: 16K frames.
The gender distribution is: Train-set: 13M/11F, Test-set: 7M/
5F and Validation-set: 3M/3F. Table 1 provides a detailed
description of the partitioning of the dataset according to
the different actions.

4 ARCHITECTURE

This section describes the deep learning architecture for 3D
pose estimation. The proposed architecture (Fig. 4), is a two
step approach consisting of two main modules: i) the first
module detects 2D heatmaps of the locations of the body
joints in image space. We experiment with different stan-
dard architectures, please refer to Section 5 for details;

TABLE 1
Total Number of Frames Per Action and Their
Distribution Between Train and Test Sets

Action N. Frames Size Train Size Test

Gaming 24,019 11,153 4,684
Gesticulating 21,411 9,866 4,206
Greeting 8,966 4,188 1,739
Lower Stretching 82,541 66,165 43,491
Patting 9,615 4,404 1,898
Reacting 26,629 12,599 5,104
Talking 13,685 6,215 2,723
Upper Stretching 162,193 114,446 46,468
Walking 34,989 24,603 9,971

Everything else not mentioned is validation data.

Fig. 4. Proposed architecture for egocentric 3D human pose estimation consisting of two modules: a) interchangeable 2D pose detector that predicts
heatmaps from the input RGB image; b) multi-branch auto-encoder that finds a representation of poses which includes also a level of uncertainty of
predictions per joint. Alongside the main branch, for 3D joint location prediction, two auxiliary branches as used at training-time to improve latent
space distribution. Branch ii) estimates local joint rotations, forcing them to be consistent with those rotations extracted by the predicted pose from i);
branch iii) forces the latent space to include a level of uncertainty of the 2D joint locations by reconstructing the given predicted heatmaps from the
pose embedding. These additional branches have demonstrated considerable improvements with respect to a standard AE architecture, as shown
in Section 5.
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ii) the second one takes as input the 2D heatmap predictions
generated from the preceding module and regresses the 3D
coordinates of the body joints, local joint rotations according
to the skeleton hierarchy and reconstructed heatmap predic-
tions, using a novel multi-branch auto-encoder architecture.

One of the most important advantages of this pipeline
approach is that 2D and 3D modules can be trained inde-
pendently according to the available training data. For
instance, if a sufficiently large corpus of images with 3D
annotations is not available, the 3D lifting module can be
trained independently using 3D mocap data and its pro-
jected heatmaps. Once the two modules are pretrained the
entire architecture can be fine-tuned end-to-end since it is
fully differentiable. The multi-branch auto-encoder module
gives also the ability of having multiple representations of
the pose: e.g., joint positions, local rotations, etc. A further
advantage of this architecture is that the second and third
branches are only needed at training time (see Section 4.2)
and can be removed at test time, guaranteeing the better
performance and a faster execution.

4.1 2D Pose Detection

Given an RGB image I 2 R368�368�3 as input, the 2D pose
detector infers 2D poses, represented as a set of heatmaps
HM 2 R47�47�15, one for each of the body joints. For this
task we have experimented with different standard archi-
tectures including ResNet 50 [66] and U-Net [67]. For a
detailed analysis, please refer to Section 5.

The models were trained using normalized input images,
obtained by subtracting the mean value and dividing by the
standard deviation, and using the mean square error of the
difference between the ground truth heatmaps and the pre-
dicted ones as the loss

L2D ¼ mseðHM; dHMÞ: (1)

4.2 2D-to-3D Mapping

The 3D pose module takes as input the 15 heatmaps com-
puted by the first module and outputs the final 3D pose
P 2 R16�3 as a set of joint locations. Note that the number of
output 3D joints is 16 sincewe include the headwhich despite
being out of the field of view it can be regressed in 3D.

In most pipeline approaches the 3D lifting module usually
is given as input the 2D joint pixel positions in the image of
the detected the 3D position. Instead, similarly to Pavlakos
et al. [39], our approach predicts the 3D pose from input
heatmaps, not just 2D locations. The main advantage is that
these heatmaps carry important information relative to the
uncertainty of the 2D pose estimations. Furthermore, due to
the unique architecture, it is possible to change the different
levels or representation of a pose, afterwards.

The main novelty of the proposed architecture (see
Fig. 4), is that we ensure that the uncertainty information
expressed in the heatmap representations does not get lost
but it is preserved in the pose embedding. While the
encoder takes as input a set of heatmaps and encodes them
into the embedding ẑ, the decoder has multiple branches –
1st regresses the 3D pose from ẑ; 2nd estimates the local joint
rotations (with respect to the parent node); and 3rd recon-
structs the input heatmaps. The purpose of this branch is to

force the latent vector to encode the probability density
function of the estimated 2D heatmaps.

The overall loss function for the auto-encoder is
expressed as

LAE ¼ �pðjjP� P̂jj2 þWðP; P̂ÞÞ
þ �rjjR̂� rðP̂Þjj2

þ �hmjjdHM� gHMjj2;
(2)

with P the ground truth; R̂ the predicted local joint rotations
and rðP̂Þ the function that estimates local joint rotations
from a given pose; gHM is the set of heatmaps regressed by
the decoder from the latent space and dHM are the heatmaps
regressed by 2D pose estimator module (see Section 4.1).
Different local joint rotation representations were tested
and ultimately a Quaternion representation was chosen due
to the stability of the rotations during training, leading to
more robust models. The rotation branch also helps generat-
ing better results as shown in Section 5 with smoother tran-
sitions on consecutive frames on poses estimated frame-by-
frame.

FinallyW is the regularizer over the 3D poses

W ðP; P̂Þ ¼ �uuðP; P̂Þ þ �LLðP; P̂Þ;
with

uðP; P̂Þ ¼
XL
l

Pl � P̂l

jjPjj � jjP̂ljj
LðP; P̂Þ ¼

XL
l

jjPl � P̂ljj;

corresponding to the cosine-similarity error and the limb-
length error, with Pl 2 R3 the lth limb of the pose. An
important advantage of this loss is that the model can be
trained on a mix of 3D and 2D datasets simultaneously: if
an image sample only has 2D annotations then �p ¼ 0 and
�r ¼ 0, such that only the heatmaps are contributing to the
loss. In Section 5.7 we show how having a larger corpus of
2D annotations can be leveraged to improve final 3D body
pose estimates.

4.3 Training Details

The model has been trained on the entire training set for 3
epochs, with a learning rate of 1e� 3 using batch normaliza-
tion on a mini-batch of size 16. The deconvolutional layer
used to identify the heatmaps from the features computed
by ResNet has kernel size ¼ 3 and stride ¼ 2. The convolu-
tional and deconvolutional layers of the encoder have
kernel size ¼ 4 and stride ¼ 2. Finally, all the layers of the
encoder use leakly ReLU as activation function with 0.2
leakiness. The � weights used in the loss function were
identified through grid search and set to �hm ¼ 10�3, �p ¼
10�1, �r ¼ 10�1 �u ¼ �10�2 and �L ¼ 0:5 . The model has
been trained from scratch with Xavier weight initializer.

5 EXPERIMENTAL EVALUATION

In the following, we thoroughly evaluate our proposed
approach on our novel xxR-EgoPose dataset, we perform
parameter and architecture ablations, and we evaluate on
the real-world Mo2Cap2 test-set [5] which includes 2.7K
frames of real images with ground truth 3D poses of two
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people captured in indoor and outdoor scenes. In addition,
we show qualitative results on our controlled small-scale real-
world dataset and demonstrate how our approach can be
used to animate virtual characters for xxR telepresence.
Finally, we evaluate quantitatively on the Human3.6M data-
set to show that our architecture generalizes well without any
modifications to the case of an external camera viewpoint.

Evaluation Protocol. Unless otherwise mentioned, we
report the Mean Per Joint Position Error - MPJPE

EðP; P̂Þ ¼ 1

Nf

1

Nj

XNf

f¼1

XNj

j¼1

jjPðfÞ
j � P̂

ðfÞ
j jj2; (3)

where P
ðfÞ
j and P̂

ðfÞ
j are the 3D points of the ground truth

and predicted pose at frame f for joint j, out of Nf number
of frames andNj number of joints.

To ensure high reproducibility of our results on our
novel synthetic xxR-EgoPose dataset, we first evaluate our
method on a randomly initialized ResNet 50. We inten-
tionally do not perform any pre-training strategies given
that, as we show in Section 5.3, this affects the final results.
Our goal is to establish our xxR-EgoPose dataset as a bench-
mark and therefore report reproducible numbers that have
been computed using a standard network architecture,
trained with a simple protocol, cf. Section 4.3.

5.1 Evaluation on Our Egocentric Synthetic
Dataseta

Evaluation on xxR-EgoPose Test-Set. First, we evaluate our
approach on the test-set of our synthetic xxR-EgoPose dataset.
We show qualitative results in Fig. 9. Unfortunately, it was
not possible to establish a comparison on our dataset with
state of the art monocular egocentric human pose estimation
methods such as Mo2Cap2 [5] given that their code has not
beenmade publicly available. Insteadwe comparewithMar-
tinez et al. [15], a recent state of the art method for a tradi-
tional external camera viewpoint. For a fair comparison, the
training-set of our xxR-EgoPose dataset has been used to re-
train the model of Martinez et al. This way we can directly
compare the performance of the 2D to 3Dmodules.

Table 2 reports the MPJPE (Eq. (3)) for both methods
showing that our approach (Ours-dual-branch) outperforms
Martinez et al.’s by 36.4 percent in the upper body recon-
struction, 60 percent in the lower body reconstruction, and
52.3 percent overall, showing a considerable improvement.

Reconstruction Errors Per Joint Type. Table 3 reports a
decomposition of the reconstruction error into different

individual joint types. The highest errors are in the hands
and feet. This observation is in accordance with the fact that
hands and feet are often not or only barely visible. Hands
can go out of the camera field of view e.g., by lifting or
stretching the arms or may be occluded by the body. Feet
are only visible when the subject looks slightly down and
always cover only a very small portion of the image, due to
the strong distortion. Nevertheless, our method always pre-
dicts plausible poses, even for high occlusions as displayed
in Figs. 6, 9 and 10.

Effect of the Decoder Branches. Table 2 reports an ablation
study to compare the performance of three versions of our
approach. We report results using: i) only 3D pose supervi-
sion only (Ours — p3d); ii) additional supervision on
regressed rotations (Ours — p3d+rot); iii) and on regressed
heatmaps (Ours — p3d+hm); finally for our novel multi-
branch auto-encoder supervised on all three signals (Ours —
p3d+hm+rot).

The overall average error of the single branch encoder
is 130.4 mm, far from the 54.7 mm error achieved by our
novel multi-branch architecture. The dual branch encoders
produce an error of 91.2 mm and 58.2 mm, respectively.
Ours results clearly demonstrate that all branches contrib-
ute to our final result. Both, forcing the network to encode
uncertainty of the 2D joint estimates by regressing heat-
maps, as well as preserving the limb orientation informa-
tion by regressing rotations, helps to estimate better 3D
poses.

Encoding Uncertainty in the Latent Space. Fig. 5 demon-
strates the ability of our approach to encode the uncertainty
of the input 2D heatmaps in the latent vector. Examples of
input 2D heatmaps and those reconstructed by the second
branch of the decoder are shown for comparison.

TABLE 2
Quantitative Evaluation With Martinez et al. [15], a State-of-the-Art Approach Developed for Front-Facing Cameras

Approach Gaming Gesticulating Greeting Lower Stretching Patting Reacting Talking Upper Stretching Walking All (mm)

Martinez [15] 109.6 105.4 119.3 125.8 93.0 119.7 111.1 124.5 130.5 122.1

Ours — p3d 138.3 108.5 100.3 133.3 117.8 175.6 93.5 129.0 131.9 130.4
Ours — p3d+rot 110.7 90.9 91.9 119.1 98.6 106.8 86.9 88.0 88.2 91.2
Ours — p3d+hm 56.0 50.2 44.6 51.1 59.4 60.8 43.9 53.9 57.7 58.2
Ours — p3d+hm+rot 60.4 54.6 44.7 56.5 57.7 52.7 56.4 53.6 55.4 54.7

Both upper and lower body reconstructions are shown as well. A comparison with our own architecture where different configurations are analyzed. Specifically,
the impact of the additional branches is evaluated. Note how the competing approach fails consistently across different actions in lower body reconstructions. This
experiment emphasizes how, even a state-of-the-art 3D lifting method developed for external cameras fails on this challenging task. It also emphasizes the contri-
bution of encoding uncertainty for achieving low-reconstruction errors.

TABLE 3
Average Reconstruction Error Per Joint Using Eq. (3), Evaluated

on the Entire Test-Set (see Section 3) With Model
Trained Using Only Synthetic Data

Joint Error (mm) Joint Error (mm)

Left Leg 34.33 Right Leg 33.85
Left Knee 62.57 Right Knee 61.36
Left Foot 70.08 Right Foot 68.17
Left Toe 76.43 Right Toe 71.94
Neck 6.57 Head 23.20
Left Arm 31.36 Right Arm 31.45
Left Elbow 60.89 Right Elbow 50.13
Left Hand 90.43 Right Hand 78.28
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5.2 Character Animation Using Estimated Rotations

The pose embedding estimation generated by the multi-
branch auto-encoder architecture contains the relevant
essential information of a pose, which grants us the ability
to change / add a representation based the a specific appli-
cation. Specifically, the introduction of the rotation branch
improves the overall reconstruction error, as demonstrated
in Table 2, and it is a pose definition usable for character
animation.

The joint rotations estimated by the rotation-branch are
expressed as local-rotations of each joint with respect to the
parent node according to the skeleton hierarcy. Several rota-
tion representations have been tested, including Euler
angles, Rotation Matrices, Quaternions and the approach
proposed by Zhou et al. [68]. We have not noticed any rele-
vant improvements between Quaternions and [68], however
the latter demands a larger number of components per joint
to express rotations.

Example frames showing the driven character compared
against the original animation are sown in Fig. 6. Notice

how the model is able to reliably estimate the correct rota-
tions even for poses where the avatar’s limbs fall outside of
the camera’s field-of-view. Furthermore, there is temporal
consistency between poses in consecutive frames despite
estimations being computed frame-by-frame.

Fig. 7 shows joint angle predictions, estimated from input
images, through time. Specifically, joint angles are consis-
tent with the ground truth. The rotations are smooth and
limited “jittering” artefacts are introduced by the network
in the predictions.

5.3 Heatmap Estimation: Architecture Ablation

So far, we have used the established ResNet 50 [66] architec-
ture in all our experiments. In order to study the effect of
the heatmap estimation network, we experiment with dif-
ferent architectures and initialization strategies. Specifically,
we experiment with ResNet 50 [66] and U-Net [67]. We use
ResNet 50 in two variants: randomly initialized using Xavier

Fig. 5. Reconstructed heatmaps generated by the decoder branch which
can reproduce the correct uncertainty of the 2D input predictions from
the pose embedding.

Fig. 6. Character animation from the joint local rotation predictions computed from the input image. Notice how the model is able to retrieve most of
the desired information even when limbs fall outside the camera field of view.

Fig. 7. Analysis of the angle predictions through time for the Righ Foot in
sequence of the test-set.

TABLE 4
Performance Analysis: Different Combinations of 2D Pose Detectors Combined With theMulti-Branch Lifting Network

Configuration Gaming Gesticulating Greeting Lower Stretching Patting Reacting Talking Upper Stretching Walking All (mm)

ResNet 50 60.4 54.6 44.7 56.5 57.7 52.7 56.4 53.6 55.4 54.7
ResNet 50 (p) 51.6 44.6 64.6 52.4 50.8 44.0 46.5 51.4 52.8 51.1
U-Net (p) 52.5 49.2 72.0 37.3 53.0 44.4 46.1 39.3 37.2 41.0

All variants have been trained and tested on the synthetic dataset. Variants with (p) have been pre-trained on ImageNet.
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initialization [69] and pre-trained on ImageNet [70]. The U-
Net is composed from a ResNet 18 backbone encoder, pre-
trained on ImageNet, and a randomly initialized decoder.
The ResNet 50 consists of 24.2 million trainable parameters.
TheU-Net contains 18.3million parameters. All variants pro-
duce the same heatmap resolution for better comparison.
The lifting networks share the same architecture and number
of parameters, but have been trained specifically for each 2D
pose estimation network, to accommodate its unique heat-
map properties. We additionally experimented with ResNet
101 [66], Convolutional Pose Machines [28], and Stacked Hour-
glass Network [29]. These experiments resulted in comparable
performance at a higher computational cost compared to
ResNet 50, and are therefore not further discussed.

Our experiments suggest that pre-training helps. The full
pipeline using a pre-trained ResNet 50 improves the MPJPE
error to 51.1 mm, compared to 54.7 for random initializa-
tion, see Table 4. While a recent work [71] suggests that pre-
training usually is not necessary, the authors describe two
aspects where pre-training does help. First, pre-training
helps faster convergence. Second, for small datasets, pre-
training helps to improve accuracy. While our synthetic data-
set is large, it features less variability in scenes and subjects,
compared to large real-world datasets like e.g., MPII [8].

In a next step, we experiment using a U-Net for 2D pose
estimation. Using a U-Net architecture boosts the perfor-
mance of our pipeline and significantly improves the MPJPE
error to 41.0 mm. Empirically, we found that theU-Net-based
2D pose estimator also generalizes, to a certain extent, to real
data, predicting plausible heatmaps for unseen data, while
only having been trained on our synthetic dataset. The Resnet
50-based estimator failswithout prior refinement.Wehypoth-
esize, that the improved performance, and the observed
behavior on real images, demonstrate better generalization
properties of the U-Net. To support our hypothesis, we

perform an additional experiment. We add white Gaussian
noise to the test images of our synthetic dataset and measure
the performance of our pipeline using the different 2D pose
estimation networks. In Fig. 8 we plot the MPJPE error under
various levels of noise. Notably, the error of the U-Net-based
pipeline increases slowly, while Resnet 50-based pipelines
produce large errors already under small noise levels. This
behavior supports our hypothesis that the U-Net architecture
features better generalization properties.

5.4 Lifting Network: Parameter Ablation

In order to validate the architecture design choices of our
multi-branch 3D pose lifting network, we perform an abla-
tion study of two main parameters.

First, we find the optimal size of the embedding ẑ, that
encodes the 3D pose, the joint rotations, and the 2D pose
uncertainty. Table 6 lists the MPJPE error using different
sizes for ẑ for all three different heatmap estimation net-
works. Regardless of the choice of the heatmap estimation
network, we find that ẑ 2 R50 produces the best results.
Smaller embeddings produce significantly higher errors,
while larger embeddings only slightly impair the results.

Further, we study how the dimensions of the regressed
heatmaps gHM influence the results, see Table 5. Unsurpris-
ingly, we find that regressing the full heatmap produces the
best results. This is in accordance with the experiments in
Section 5.5, where we show that encoding uncertainty via
regressing heatmaps helps over using them only as input.

To contribute towards fostering fairness in Computer
Vision and Machine Learning we analyze the performance
of the proposed models on our diverse dataset based on dif-
ferent skin tones. A comparison is shown in Table 7.

Fig. 8. Performance of our proposed pipeline using different 2D pose
estimation networks under the influence of white Gaussian noise in the
image domain. Networks with (p) have been pretrained on ImageNet.

Fig. 9. Qualitative results on synthetic images from our synthetic test-set. Notice that the poses are expressed with respect to the camera reference
system. Blue poses represent ground truth, whereas poses in red correspond to predictions.

TABLE 5
Average Reconstruction Error Per Joint Using Eq. (3), Evaluated

on the Entire Test-Set When the Model Architecture Differs
Based on the Size of the Embedding ẑ

ẑ size Error (mm)

ResNet50 ResNet50 (p) UNet (p)

10 70.6 61.0 45.8
20 67.3 52.5 45.3
50 54.7 51.1 41.0
70 55.7 54.5 41.6
100 58.9 54.2 41.3
500 61.0 56.0 41.2
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5.5 Evaluation on Egocentric Real Datasets

Comparison WithMo2Cap2 [5]. We compare the results of our
approach with those given by our direct competitor,
Mo2Cap2, on their real world test set including both indoor
and outdoor sequences. For a fair comparison, we train
our model solely on their provided synthetic training data
(cf. Fig. 3). Table 8 reports the MPJPE errors for both meth-
ods. Our dual-branch approach substantially outperforms
Mo2Cap2 [5] in both indoor and outdoor scenarios. Here
again, our approach using the U-Net model pre-trained on
ImageNet produces the best results. However, indoors in a
more controlled setting, both our architecture variants are
almost on par. Note that comparison with the stereo egocen-
tric system EgoCap [56] on their dataset is not meaningful,
due to the hugely different camera position relative to the
head (their stereo cameras are 25 cm from the head).

Evaluation on xxR-EgoPoseR. The � 10K frames of our
small scale real-world data set were captured from a fish-
eye camera mounted on a VR HMD worn by three differ-
ent actors wearing different clothes, and performing 6 dif-
ferent actions. The ground truth 3D poses were acquired
using a custom mocap system. The network was trained
on our synthetic corpus (xxR-EgoPose) and fine-tuned
using the data from two of the actors. The test set con-
tained data from the unseen third actor. xxR-EgoPoseR is
too small for meaningful numerical evaluation. However,
we show qualitative examples of the input views and the
reconstructed poses in Fig. 10. These results show good

generalization of the model (trained mostly on synthetic
data) to real images.

5.6 Evaluation on Front-Facing Cameras

Comparison on Human3.6M Dataset. We show that our pro-
posed approach is not specific for the egocentric case, but
also provides excellent results in the more standard case of
front-facing cameras. For this evaluation, we chose the
Human3.6M dataset [7], [73]. We used two evaluation pro-
tocols. Protocol 1 has five subjects (S1, S5, S6, S7, S8) used in
training, with subjects (S9, S11) used for evaluation. The
MPJPE error is computed on every 64th frame. Protocol 2
contains six subjects (S1, S5, S6, S7, S8, S9) used for training,
and the evaluation is performed on every 64th frame of Sub-
ject 11 (Procrustes aligned MPJPE is used for evaluation).
The results are shown in Table 9 from where it can be
seen that our approach is on par with state-of-the-art
methods, scoring second overall within the non-temporal
methods.

5.7 Mixing 2D and 3D Ground Truth Datasets

An important advantage of our architecture is that the
model can be trained on a mix of 3D and 2D datasets simul-
taneously: if an image sample only has 2D annotations but
no 3D ground truth labels, the sample can still be used, only
the heatmaps will contribute to the loss. We evaluated the
effect of adding additional images with 2D but no 3D labels
on both scenarios: egocentric and front-facing cameras. In
the egocentric case we created two subsets of the xxR-Ego-
Pose test-set. The first subset contained 50 percent of all the
available image samples with both 3D and 2D labels. The

TABLE 6
Average Reconstruction Error Per Joint Using Eq. (3), Evaluated

on the Entire Test-Set for Different Heatmap (HM)
Reconstruction Sizes

HM size Error (mm)

ResNet50 ResNet50 (p) UNet (p)

48 54.7 51.1 41.0
36 57.8 59.6 44.2
24 59.9 57.7 43.8
16 61.2 56.8 41.4
8 61.4 56.7 41.7

Notice how little uncertainty information still has dramatic impact on the
reconstruction accuracy.

TABLE 7
Model Evaluation Based on Skin Tones

Skin tone Error (mm)

ResNet50 ResNet50 (p) UNet (p)

White 42.7 46.5 46.3
Light European 61.9 58.2 43.5
Dark European 63.6 52.0 35.6
Dark brown 22.5 28.7 27.5
Black 89.0 68.8 42.7

TABLE 8
Quantitative Evaluation onMo2Cap2 Dataset [5], Both Indoor and Outdoor Test-Sets

INDOOR walking sitting crawling crouching boxing dancing stretching waving total (mm)

3DV’17 [14] 48.76 101.22 118.96 94.93 57.34 60.96 111.36 64.50 76.28
VCNet [72] 65.28 129.59 133.08 120.39 78.43 82.46 153.17 83.91 97. 85
Xu [5] 38.41 70.94 94.31 81.90 48.55 55.19 99.34 60.92 61.40
Ours - ResNet 50 38.39 61.59 69.53 51.14 37.67 42.10 58.32 44.77 48.16
Ours - U-Net (p) 45.83 47.24 47.35 45.15 48.72 47.00 46.15 46.45 46.61

OUTDOOR walking sitting crawling crouching boxing dancing stretching waving total (mm)

3DV’17 [14] 68.67 114.87 113.23 118.55 95.29 72.99 114.48 72.41 94.46
VCNet [72] 84.43 167.87 138.39 154.54 108.36 85.01 160.57 96.22 113.75
Xu [5] 63.10 85.48 96.63 92.88 96.01 68.35 123.56 61.42 80.64
Ours - ResNet 50 43.60 85.91 83.06 69.23 69.32 45.40 76.68 51.38 60.19
Ours - U-Net (p) 53.96 52.24 55.50 55.65 54.38 54.48 54.46 56.12 54.61

Our approach outperforms all competitors by more than 21.6 percent (13.24 mm) on indoor data and more than 25.4 percent (20.45 mm) on outdoor data when
using only the provided synthetic data for training the model. Similarly to other experiments we provide in Section 5, when using a pre-trained U-Net model
with the configuration defined as in Section 5.3, results improve even further: 24.9 percent (14.79 mm) and 32.28 percent (26.03 mm) respectively.
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second contained 100 percent of the image samples with 2D
labels, but only 50 percent of the 3D labels. Effectively the
second subset contained twice the number of images with
2D annotations only. Table 10 a compares the results
between the subsets, where it can be seen that the final 3D
pose estimate benefits from additional 2D annotations.
Equivalent behavior is seen on the Human3.6M dataset.
Table 10 b shows the improvements in reconstruction error
when additional 2D annotations from COCO [83] and MPII
[8] are used.

6 CONCLUSION

We have presented a solution to the problem of 3D body
pose estimation from a monocular camera installed on a
HMD. Given a single image, our fully differentiable net-
work estimates heatmaps and uses them as an intermediate
representation to regress 3D poses using a novel multi-

branch auto-encoder. This new architecture design was fun-
damental for accurate reconstructions in our challenging
dataset, with over 24 percent accuracy improvement on
competitor datasets and that proves to generalize to the
more generic 3D human pose estimation from front-facing
cameras task with state-of-the-art performance. We have
shown how the proposed architecture can be used to drive
a virtual avatar directly from the estimations of the network,
a fundamental step towards telepresence in virtual or aug-
mented reality.

Finally, we have also introduced the xxR-EgoPose dataset,
a new large scale photo-realistic synthetic dataset that was
essential for training and will be made publicly available to
promote research in this exciting area. While our results are
state-of-the-art, there are a few failures cases due to extreme
occlusion and the inability of the system to measure hands
when they are out of the field of view. Adding additional
cameras to cover more field of view and enable multi-view
sensing is the focus of our future work.
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