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Abstract 

Industrial robots have been traditionally programmed using teaching pendants, whereas offline programming methods 
are getting increasingly popular in recent years. Although the above two methods are widely-used in the industry, they 
both have certain disadvantages. For instance, the teaching pendant method requires a shutdown of the production line 
during the programming process, while offline programming method requires 3D CAD models of both the robot and 
the workpiece. In this paper, an augmented reality (AR) application which alleviates the aforementioned problems 
was proposed for robot programming purposes. The application is created using commercially available AR software, 
with the addition of our JavaScript code. The use of commercially available software allows an easier sharing and 
widespread adoption of the application. 
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1. Introduction 

The principle advantage of industrial robots over conventional “hard” automation is the programmability. One 
single industrial robot can be programmed to do different tasks, such as pick-and-place, painting, assembly, machining 
and welding. Unfortunately, programming of robots is not a straightforward task and can take hours or days, 
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particularly when the geometries of the workpiece are complicated, e.g., robotic machining of turbine blades [1-2], 
cutting tools and blade disks [3-5]. The recent development of socially assistive robots to help manage chronic health 
conditions such as chronic obstructive pulmonary disease [6-7] makes the issue of robot programming more important. 
Conventionally, robots have been programmed using teaching pendants [8], and at the present moment, over 90% of 
robots are still programmed this way. This method however has the drawback that the production line has to be shut 
down to facilitate the programming process, resulting in a loss of valuable production time. 

Recognising this problem, offline programming methods have been developed to avoid stopping the production 
line [9]. This approach means programming robots outside of the robot’s working environment using specialized 
software. However, offline programming requires 3D CAD models of both the robot and the workpiece. If the robot 
is used for maintenance, repair and overhaul (MRO), each part would have suffered different damages. It is therefore 
challenging to obtain a correct CAD model of the workpiece. While this can be solved by performing a 3D scan of 
the object, it is very time-consuming to join the point cloud data into surfaces for the purpose of offline programming.  

Augmented reality (AR) offers a great opportunity to alleviate the issue in requiring CAD models of the workpiece. 
The actual object and the virtual robot model can both co-exist in the AR environment, and the workers can now jog 
the virtual robot to reach target points on the actual workpiece, while making sure that there is no collision or robot 
singularities. After teaching of the robot in AR software, an executable robot code can then be generated and uploaded 
to the real robot. The human-computer interaction of AR technology can help inexperienced users to deal with 
complex robot operations and programming tasks [10]. Moreover, programming using AR also means that the shop 
floor is not affected during the programming process. 

At present, AR is not widely-used in robot programming, despite it offering many advantages as mentioned above. 
Some of the limited examples are as follows: In [8], a teaching pendant has been created on smart phone, through 
which users can see the virtual robot movement. A green box or a red box will appear on the virtual robot, depending 
on whether the robot movement will be safe or unsafe. If the move is safe, users then send a command for the actual 
robot to follow the same motion as the virtual robot. It is however unclear from the paper whether a full robot code is 
generated or only a single movement. In the work reported by Rastogi and Milgram [11], AR technology allows the 
operator to preview the robot’s intended motion, and the task is transferred to the real robot if the operation is the 
same as expected. An example of a pick-and-place task has been demonstrated.  

The authors in [12] proposed using AR to train students to operate industrial robots, as well as for sales, for planning 
the installation, and for servicing and maintaining the robot. In [13], AR is used to program robot and plan trajectory, 
while taking dynamic constraints of the robot including overshoot into account. In [14], the researchers presented an 
AR robotic system for trajectory interaction, and compared the programming method with kinesthetic teaching. It was 
found that it takes less teaching time using the proposed AR robotic interface than performing kinesthetic teaching. 
Specifying more complex paths e.g. sine curves is much easier using the AR interface. 

AR technology observes virtual models in the real world through optical devices. However, because there are still 
unresolved problems in measuring distance, it is difficult for AR technology to project paths on complex surfaces. 
Therefore, a new approach is to use interactive laser projection to achieve precise spatial interaction between the 
programmer and the robot [15]. This method allows the programmer to edit the target coordinates of the robot directly 
on the surface of the workpiece. By combining optical equipment, handheld devices and AR display technology, the 
user can draw the target coordinates onto the surface of the work piece just like using a real pen. At the same time, 
the user can also use buttons on the handheld device to provide additional commands, such as selection or confirmation. 
This method greatly reduces the difficulty of use. In one experiment, nine engineers with the same experience used a 
traditional way to complete the path of 12 target points before using a new way of combining with AR. The average 
time required for the traditional method is 480 seconds, while the AR interface only takes 90 seconds. 

Most of the methods described in the above literature require additional equipment, such as tracking equipment 
and projection equipment, which greatly increases the cost of implementation. Also, most researchers developed their 
own special software to create the AR environment, and thus are usually not as robust (bug-free) and easily-distributed 
as commercial software. The aim of our project presented here therefore is to use state-of-the-art commercial CAD 
software (CREO), AR development software (Vuforia Studio), AR experience software (Vuforia View) and 
programming software (e.g. Matlab, Python) to create a robot programming app, which can then be run on 
smartphones or Microsoft Hololens. With a strong user base of these software and hardware, the sharing of the apps 
will be much easier.   

The paper is organized as follows. In Sections 2 and 3, the development of the AR robot programming application 
will be described. The postprocessing of the target points into robot code will then be detailed in Section 4. The paper 
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ends with conclusions in Section 5. 

2. Creating the Virtual Environment 

The first step in creating a robot in the AR environment is to prepare 1:1 CAD models of each individual robot 
links using the CREO software. These links should not be assembled prior to being imported into Vuforia Studio, as 
each link needs to be able to move independently. Some robot CAD models can also be downloaded from the internet, 
but the robot still needs to be “dismantled” to obtain the individual links. 

In the next step, CAD models of the links are imported into Vuforia Studio, as shown in Fig. 1(a). Initial positions 
and orientations of the links are then given so that the robot “looks” complete, as shown in Fig. 1(b). However, there 
is no constrained kinematic relationship between the links, i.e. no joints are defined. Each link is merely given a 
position and orientation to look as if it forms the complete robot.  

A virtual identification pattern called “ThingMark” is attached to or placed next to the virtual robot, see Fig. 1. 
Later (after programming is completed so as not to disturb the production line), a physical printout of the ThingMark 
will also be attached to or placed next to the real robot at exactly the same position as that on the virtual robot. The 
ThingMarks serve as references for the position of objects and the robot in AR and physical environment.  

 
(a) 

 

(b) 

 

Fig. 1: (a) CAD of robot links imported into Vuforia Studio, (b) Links “assembled” into a complete robot;  
Virtual ThingMark attached to the robot. 

3. Manipulating the Virtual Robot in Vuforia Studio using Javascripts 

After the virtual robot is imported into Vuforia Studio, Javascripts will need to be written within Vuforia Studio to 
manipulate the robot and visualize its movement. To clarify what tasks the Javascripts are required to perform, it 
would be useful to first understand the process flow of the AR robot programming application, as shown in Fig. 2.  

Firstly, the user opens the “Vuforia View” app on smartphones or Microsoft Hololens. By directing the camera 
view towards the physical printout of the ThingMark, the user will see the virtual robot in its initial configuration as 
shown in Fig. 1(b) and Fig. 3(a). At this initial configuration, the joint angles are known since these are the default 
values set by the user. The values of the joint angles (T1 to T6, where “T” stands for Theta) are also shown on the AR 
app. 

User then places a real object beside the virtual robot, as shown in Fig. 3(a). By using arrow buttons on the AR 
robot programming application, the user can either directly command the change of joint angles, or command the 
virtual end-effector to move in the x, y, z direction and rotate about the x, y or z axis. For the latter, an inverse 
kinematics will be invoked to calculate the joint angle needed to move the end-effector as required by the user. 

Using the commanded or calculated joint angles, the position and orientation of each link and end-effector will be 
updated based on forward kinematics and reflected visually as a movement of the virtual robot. The user continues 
pressing the buttons until the end-effector reaches the target position, see Fig. 3(b), at which point the user will record 
the Cartesian position and orientation of the end-effector, along with the robot joint angles. The process is repeated 
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until all the target points are taught. At the time of writing, the recording of the end-effector positions and joint angles 
is done manually, i.e. reading the values on the AR screen and typing into a .txt or .csv file. Automating this will be 
focus of our future work.  

  
Fig. 2: AR Programming Flowchart  
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(a) 

 

(b) 

 
Fig. 3: (a) Virtual robot with real object; (b) Robot pointing to one corner of object  

As can be seen, Javascripts will be required for computation of inverse kinematics and forward kinematics. As an 
example, the forward kinematics for an ABB IRB120 robot, as shown in Fig. 4, is derived here to show how the 
Javascripts are coded.  

 
Fig. 4: Dimensions of an ABB IRB120 robot [16]. 

While the kinematic models of robots are generally well-understood and can be derived using the well-known DH 
parameters, unfortunately the axis definition in Vuforia Studio is not exactly the same as in robotics textbooks / 
literature. For instance, rotation axes are always defined as z-axis in robotics texts, but this is not necessarily the case 
in Vuforia Studio – It depends on how the CAD models were drawn in the first place. Therefore, it is necessary to re-
derive the kinematic model from scratch.   
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To obtain the kinematic model, the relationship between frame i-1 and frame i need to be calculated, and it is done 
as follows: 

From frame 0 to 1: It was observed that the joint 1 rotates by −𝜃𝜃1(variable) about the y-axis in Vuforia studio. The 
transformation matrix from frame {0} to {1} is therefore: 

 

𝑇𝑇10 = [
𝐶𝐶1 0 𝑆𝑆1 0
0 1 0 0

−𝑆𝑆1 0 𝐶𝐶1 0
0 0 0 1

] (1) 

 
where 𝑐𝑐𝑖𝑖 and 𝑠𝑠𝑖𝑖 are abbreviations for cos𝜃𝜃𝑖𝑖 and sin 𝜃𝜃𝑖𝑖 respectively, 𝜃𝜃𝑖𝑖 being the angle of joint 𝑖𝑖.  

From frame 1 to 2: Rotation by 90o about the x-axis, followed by a rotation by 𝜃𝜃2(variable) about the y-axis and a 
translation by the link lengths of 𝐿𝐿1 in the y-direction: 

 

𝑇𝑇21 = [
𝐶𝐶2 0 𝑆𝑆2 0
−𝑆𝑆2 0 𝐶𝐶2 𝐿𝐿1
0 −1 0 0
0 0 0 1

] (2) 

 
Combining the above, we have the compound transformation from frame 0 to frame 2 as: 
 

𝑇𝑇20 = 𝑇𝑇10 ∙ 𝑇𝑇21 = [
𝐶𝐶1 0 𝑆𝑆1 0
0 1 0 0

−𝑆𝑆1 0 𝐶𝐶1 0
0 0 0 1

] [
𝐶𝐶2 0 𝑆𝑆2 0
−𝑆𝑆2 0 𝐶𝐶2 𝐿𝐿1
0 −1 0 0
0 0 0 1

] = [
𝐶𝐶1𝐶𝐶2 −𝑆𝑆1 𝐶𝐶1𝑆𝑆2 0
−𝑆𝑆2 0 𝐶𝐶2 𝐿𝐿1
−𝑆𝑆1𝐶𝐶2 −𝐶𝐶1 −𝑆𝑆1𝑆𝑆2 0

0 0 0 1
]  (3) 

 
An excerpt of the Javascript showing transformation matrices 𝑇𝑇10  and 𝑇𝑇20  is shown in Fig. 5. 

 
$scope.app.params.R0111 = Math.cos($scope.app.params.jointAngle1); 
$scope.app.params.R0112 = 0; 
$scope.app.params.R0113 = Math.sin($scope.app.params.jointAngle1); 
$scope.app.params.R0121 = 0; 
$scope.app.params.R0122 = 1; 
$scope.app.params.R0123 = 0; 
$scope.app.params.R0131 = -Math.sin($scope.app.params.jointAngle1); 
$scope.app.params.R0132 = 0; 
$scope.app.params.R0133 = Math.cos($scope.app.params.jointAngle1); 
 
$scope.app.params.R0211 = Math.cos($scope.app.params.jointAngle1) 

*Math.cos($scope.app.params.jointAngle2); 
$scope.app.params.R0212 = -Math.sin($scope.app.params.jointAngle1); 
$scope.app.params.R0213 = Math.cos($scope.app.params.jointAngle1) 

*Math.sin($scope.app.params.jointAngle2); 
$scope.app.params.R0221 = -Math.sin($scope.app.params.jointAngle2); 
$scope.app.params.R0222 = 0; 
$scope.app.params.R0223 = Math.cos($scope.app.params.jointAngle2); 
$scope.app.params.R0231 = -Math.sin($scope.app.params.jointAngle1) 

*Math.cos($scope.app.params.jointAngle2); 
$scope.app.params.R0232 = -Math.cos($scope.app.params.jointAngle1); 
$scope.app.params.R0233 = -Math.sin($scope.app.params.jointAngle1) 

*Math.sin($scope.app.params.jointAngle2); 
 

Fig. 5: Excerpt of Javascript for forward kinematics. 
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The rest of the transformations is as follows: 
 

𝑇𝑇3
0 = [

𝐶𝐶1𝐶𝐶23 −𝑆𝑆1 𝐶𝐶1𝑆𝑆23 𝐶𝐶1𝑆𝑆2𝐿𝐿2
−𝑆𝑆23 0 𝐶𝐶23 𝐶𝐶2𝐿𝐿2 + 𝐿𝐿1

−𝑆𝑆1𝐶𝐶23 −𝐶𝐶1 −𝑆𝑆1𝑆𝑆23 −𝑆𝑆1𝑆𝑆2𝐿𝐿2
0 0 0 1

] (4) 

 

𝑇𝑇4
0 = [

𝐶𝐶1𝐶𝐶23 −𝑆𝑆1𝐶𝐶4 + 𝐶𝐶1𝑆𝑆4𝑆𝑆23 𝑆𝑆1𝑆𝑆4 + 𝐶𝐶1𝑆𝑆4𝑆𝑆23 𝐶𝐶1𝐶𝐶23𝐿𝐿3 + 𝐶𝐶1𝑆𝑆23𝐿𝐿4 + 𝐶𝐶1𝑆𝑆2𝐿𝐿2
−𝑆𝑆23 𝐶𝐶23𝑆𝑆4 𝐶𝐶23𝐶𝐶4 −𝑆𝑆23𝐿𝐿3 + 𝐶𝐶23𝐿𝐿4 + 𝐶𝐶2𝐿𝐿2 + 𝐿𝐿1

−𝑆𝑆1𝐶𝐶23 −𝐶𝐶1𝐶𝐶4 − 𝑆𝑆1𝑆𝑆4𝑆𝑆23 𝐶𝐶1𝑆𝑆4 − 𝑆𝑆1𝐶𝐶4𝑆𝑆23 −𝑆𝑆1𝐶𝐶23𝐿𝐿3 − 𝑆𝑆1𝑆𝑆23𝐿𝐿4 − 𝑆𝑆1𝑆𝑆2𝐿𝐿2
0 0 0 1

] (5) 

 

𝑇𝑇5
0 =

[
 
 
 
 
 
 [𝐶𝐶1𝐶𝐶23𝐶𝐶5 − 𝑆𝑆1𝑆𝑆4𝑆𝑆5

−𝐶𝐶1𝐶𝐶4𝑆𝑆5𝑆𝑆23
] [−𝑆𝑆1𝐶𝐶4 + 𝐶𝐶1𝑆𝑆4𝑆𝑆23] [𝐶𝐶1𝐶𝐶23𝑆𝑆5 + 𝑆𝑆1𝑆𝑆4𝐶𝐶5

+𝐶𝐶1𝐶𝐶4𝐶𝐶5𝑆𝑆23
] [𝐶𝐶1𝐶𝐶23𝐿𝐿5 + 𝐶𝐶1𝐶𝐶23𝐿𝐿3

+𝐶𝐶1𝑆𝑆23𝐿𝐿4 + 𝐶𝐶1𝑆𝑆2𝐿𝐿2
]

[−𝑆𝑆23𝐶𝐶5 − 𝐶𝐶4𝑆𝑆5𝐶𝐶23] [𝐶𝐶23𝑆𝑆4] [−𝑆𝑆23𝑆𝑆5 + 𝐶𝐶23𝐶𝐶4𝐶𝐶5] [ −𝑆𝑆23𝐿𝐿5 − 𝑆𝑆23𝐿𝐿3
+𝐶𝐶23𝐿𝐿4 + 𝐶𝐶2𝐿𝐿2 + 𝐿𝐿1

]

[−𝑆𝑆1𝐶𝐶23𝐶𝐶5 − 𝐶𝐶1𝑆𝑆4𝑆𝑆5
+𝑆𝑆1𝐶𝐶4𝑆𝑆5𝑆𝑆23

] [−𝐶𝐶1𝐶𝐶4 − 𝑆𝑆1𝑆𝑆4𝑆𝑆23] [−𝑆𝑆1𝑆𝑆5𝐶𝐶23 + 𝐶𝐶1𝑆𝑆4𝐶𝐶5
−𝑆𝑆1𝐶𝐶4𝐶𝐶5𝑆𝑆23

] [−𝑆𝑆1𝐶𝐶23𝐿𝐿5 − 𝑆𝑆1𝐶𝐶23𝐿𝐿3
−𝑆𝑆1𝑆𝑆23𝐿𝐿4 − 𝑆𝑆1𝑆𝑆2𝐿𝐿2

]
0 0 0 1 ]

 
 
 
 
 
 

 (6) 

 

𝑇𝑇6
0 =

[
 
 
 
 
 
 
 
 
 
 
 
[𝐶𝐶1𝐶𝐶23𝐶𝐶5 − 𝑆𝑆1𝑆𝑆4𝑆𝑆5

−𝐶𝐶1𝐶𝐶4𝑆𝑆5𝑆𝑆23
] [

−𝑆𝑆1𝐶𝐶4𝐶𝐶6 + 𝐶𝐶1𝑆𝑆4𝐶𝐶6𝑆𝑆23
+𝐶𝐶1𝑆𝑆5𝑆𝑆6𝐶𝐶23 + 𝑆𝑆1𝑆𝑆4𝐶𝐶5𝑆𝑆6

+𝐶𝐶1𝐶𝐶4𝐶𝐶5𝑆𝑆6𝑆𝑆23

] [
𝑆𝑆1𝐶𝐶4𝑆𝑆6 − 𝐶𝐶1𝑆𝑆4𝑆𝑆6𝑆𝑆23

+𝐶𝐶1𝐶𝐶6𝐶𝐶23𝑆𝑆5 + 𝑆𝑆1𝑆𝑆4𝐶𝐶5𝐶𝐶6
+𝐶𝐶1𝐶𝐶4𝐶𝐶5𝐶𝐶6𝑆𝑆23

] [
𝐶𝐶1𝐶𝐶23𝐶𝐶5𝐿𝐿6 − 𝑆𝑆1𝑆𝑆4𝑆𝑆5𝐿𝐿6

−𝐶𝐶1𝐶𝐶4𝑆𝑆5𝑆𝑆23𝐿𝐿6 + 𝐶𝐶1𝐶𝐶23𝐿𝐿5
+𝐶𝐶1𝐶𝐶23𝐿𝐿3 + 𝐶𝐶1𝑆𝑆23𝐿𝐿4

+𝐶𝐶1𝑆𝑆2𝐿𝐿2

]

[−𝑆𝑆23𝐶𝐶5 − 𝐶𝐶4𝑆𝑆5𝐶𝐶23] [𝐶𝐶23𝑆𝑆4𝐶𝐶6 − 𝑆𝑆5𝑆𝑆6𝑆𝑆23
+𝐶𝐶4𝐶𝐶5𝑆𝑆6𝐶𝐶23

] [−𝐶𝐶23𝑆𝑆6𝑆𝑆4 − 𝑆𝑆5𝐶𝐶6𝑆𝑆23
+𝐶𝐶23𝐶𝐶4𝐶𝐶5𝐶𝐶6

] [
−𝑆𝑆23𝐶𝐶5𝐿𝐿6 − 𝐶𝐶4𝑆𝑆5𝐶𝐶23𝐿𝐿6

−𝑆𝑆23𝐿𝐿5 − 𝑆𝑆23𝐿𝐿3
+𝐶𝐶23𝐿𝐿4 + 𝐶𝐶2𝐿𝐿2 + 𝐿𝐿1

]

[−𝑆𝑆1𝐶𝐶23𝐶𝐶5 − 𝐶𝐶1𝑆𝑆4𝑆𝑆5
+𝑆𝑆1𝐶𝐶4𝑆𝑆5𝑆𝑆23

] [
−𝐶𝐶1𝐶𝐶4𝐶𝐶6 − 𝑆𝑆1𝑆𝑆4𝐶𝐶6𝑆𝑆23

−𝑆𝑆1𝑆𝑆5𝑆𝑆6𝐶𝐶23 + 𝐶𝐶1𝑆𝑆4𝐶𝐶5𝑆𝑆6
−𝑆𝑆1𝐶𝐶4𝐶𝐶5𝑆𝑆6𝑆𝑆23

] [
𝐶𝐶1𝐶𝐶4𝑆𝑆6 + 𝑆𝑆1𝑆𝑆4𝑆𝑆6𝑆𝑆23

−𝑆𝑆1𝐶𝐶6𝐶𝐶23𝑆𝑆5 + 𝐶𝐶1𝑆𝑆4𝐶𝐶5𝐶𝐶6
−𝑆𝑆1𝐶𝐶4𝐶𝐶5𝐶𝐶6𝑆𝑆23

] [
−𝑆𝑆1𝐶𝐶23𝐶𝐶5𝐿𝐿6 − 𝐶𝐶1𝑆𝑆4𝑆𝑆5𝐿𝐿6
+𝑆𝑆1𝐶𝐶4𝑆𝑆5𝑆𝑆23𝐿𝐿6−𝑆𝑆1𝐶𝐶23𝐿𝐿5
−𝑆𝑆1𝐶𝐶23𝐿𝐿3 − 𝑆𝑆1𝑆𝑆23𝐿𝐿4

−𝑆𝑆1𝑆𝑆2𝐿𝐿2

]

0 0 0 1 ]
 
 
 
 
 
 
 
 
 
 
 

 (7) 

 
where 𝑐𝑐𝑖𝑖𝑖𝑖  and 𝑠𝑠𝑖𝑖𝑖𝑖  mean cos(𝜃𝜃𝑖𝑖 + 𝜃𝜃𝑗𝑗)  and sin(𝜃𝜃𝑖𝑖 + 𝜃𝜃𝑗𝑗)  respectively, and 𝐿𝐿𝑘𝑘  is the length of link 𝑘𝑘 . The inverse 
kinematics of the robot can then be calculated using the method shown in [17], and is also coded in Javascript, though 
it is not shown here due to page limitations. 

4. Postprocessing of Target Points into Robot Code 

In Section 3, it was mentioned that the end-effector’s position and orientation as well as the robot joint angles were 
recorded. These can be provided in any standard format such as .txt or .csv, an example of which is shown in Fig. 6. 
A postprocessor code, written in standard software such as Matlab or Python, will then transform the data points into 
actual robot code. An example of the Matlab code is given in Fig. 7 and Fig. 8, whereas the output file is shown in 
Fig. 9. This output file can eventually be uploaded to the actual robot. 

 

 
Fig. 6: An example list of joint angles (T1 to T6, where T stands for Theta), target positions (x, y, z) and orientation (rx, ry, rz) in a .txt file. 
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Fig. 7: Matlab code to read in data from .txt file 

 

 

    

 
 

Fig. 8: Matlab code to write ABB code from .txt file (calculation conf3 and conf4 not shown due to page limitation). 
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Fig. 9: Robot code generated by postprocessor. 

5. Conclusion 

In this paper, we have reported our research activities on the development of the robot programming applications 
using augmented reality (AR). This approach enables robot programming without stopping the production line, as well 
as without the need for 3D CAD model design of the workpiece. This is extremely important when using robots for 
maintenance, repair and overhaul (MRO) in industry environment where it is not easy to obtain the CAD model of 
damaged workpiece. The use of commercial AR software, combined with our JavaScript addition, has the advantage 
that it is more robust than creating special software from scratch, and it would also have more widespread use by users 
around the world because of a larger user base. Our new AR application does not require additional tracking and 
projection equipment and can therefore improve efficiency and reduce manufacturing costs.  
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