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Abstract

In our everyday lives, we are often required to follow a conversation when background noise is present (“speech-in-noise”
[SPIN] perception). SPIN perception varies widely—and people who are worse at SPIN perception are also worse at
fundamental auditory grouping, as assessed by figure-ground tasks. Here, we examined the cortical processes that link
difficulties with SPIN perception to difficulties with figure-ground perception using functional magnetic resonance imaging.
We found strong evidence that the earliest stages of the auditory cortical hierarchy (left core and belt areas) are similarly
disinhibited when SPIN and figure-ground tasks are more difficult (i.e., at target-to-masker ratios corresponding to 60%
rather than 90% performance)—consistent with increased cortical gain at lower levels of the auditory hierarchy. Overall, our
results reveal a common neural substrate for these basic (figure-ground) and naturally relevant (SPIN) tasks—which
provides a common computational basis for the link between SPIN perception and fundamental auditory grouping.
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Introduction
One of the greatest challenges of everyday listening is the
requirement to understand speech when background noise is
present (“speech-in-noise” [SPIN] perception). Unlike speech
perception in quiet, listeners must segregate speech from other
sounds. Yet, we do not fully understand the processes involved
in segregating speech from background noise, and how these
relate to grouping processes engaged by more basic auditory
tasks. Here, we used functional magnetic resonance imaging
(fMRI) to examine the common neural correlates for grouping
nonlinguistic auditory stimuli and for grouping speech in
background noise.

Nonlinguistic grouping can be assessed using an auditory
figure-ground paradigm that tests the ability to track pure tones
that retain the same frequency over time (the “figure”) among
a “background” of tones of random frequencies (Teki et al.
2011, 2013). Holmes and Griffiths (2019) found that individual
differences in figure-ground perception covaried with in SPIN

perception, showing that these tasks are inherently linked.
Similar to SPIN perception, the “figure” and “background” tones
used by Holmes and Griffiths (2019) overlap in frequency, so
figures cannot be detected through spectral separation. Instead,
this may be achieved by detecting temporal coherence between
figure elements, as measured by cross correlation (Shamma
et al. 2011; Teki et al. 2013).

The site of grouping processes that permit distinct repre-
sentations of auditory figure and ground is currently unclear.
From first principles, auditory figure-ground analysis requires
a mechanism that can integrate information across different
frequency channels. Although single-frequency tuning is
common in auditory cortex neurons, primate recording studies
have also demonstrated neurons tuned to multiple frequencies,
even in primary auditory cortex (Rauschecker 1998; Elhilali, Ma,
et al. 2009a; Elhilali, Xiang, et al. 2009b; Wang 2013). Nonhuman
primate fMRI has demonstrated ensemble responses to segre-
gated figures in high-level auditory cortex (belt and parabelt)
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(Schneider et al. 2018). Human fMRI (Teki et al. 2011) and MEG
(Teki et al. 2016) studies also implicate high-level auditory
cortex and the intraparietal sulcus (IPS) in figure representation.
However, these studies all used an irrelevant (e.g., visual) task—
whereas the behavioral relationship between figure-ground
and SPIN perception (Holmes and Griffiths 2019) was based
on active task performance. Figure-ground perception that is
active and challenging might engage primary auditory cortex
to a greater extent—as suggested by a MEG study of figure-
ground perception (Molloy et al. 2019), which showed effects of
attentional load on left human primary cortex.

In the present fMRI study, we were specifically interested in
brain regions that are similarly engaged by active figure-ground
analysis and SPIN perception. Previous studies of SPIN percep-
tion have revealed responses in a wide variety of areas, which—
broadly speaking—appear to overlap with parts of auditory cor-
tex that have been associated with figure-ground perception. A
meta-analysis by Adank (2012) shows consistent activation in
bilateral STS slightly anterior to Heschl’s gyrus under difficult
listening conditions, which appears to overlap with STS activ-
ity reported by Teki et al. (2011) in response to figure-ground
salience and also with widespread activity in auditory cortex
reported by Molloy et al. (2019). A separate meta-analysis by
Alain et al. (2018) found that challenging speech perception (e.g.,
speech at a lower target-to-masker ratio [TMR] or spectrally
degraded speech) was associated with consistent activity in
bilateral STG and insula. SPIN perception, specifically, was asso-
ciated with activity in the left inferior parietal lobule. However,
the co-ordinates in left IPS reported for figure-ground perception
(Teki et al. 2011) are either more superior or more posterior and
medial to the peak co-ordinates in the left inferior parietal lobule
reported by Alain et al. (2018); therefore, we predict less over-
lap in parietal areas. Primary (core; Te1.0) auditory cortex has
typically been absent in studies comparing different SPIN condi-
tions, but it shows a relationship with the intelligibility of speech
presented alone: it shows greater activity for clear relative to
degraded (vocoded) speech, greater activity for degraded than
unintelligible speech, and greater activity when the intelligibility
of degraded speech is enhanced by presenting a matching word
prime (Wild et al. 2012). Putative belt areas of auditory cortex
show similar patterns: Anterolateral Heschl’s gyrus (roughly
corresponding to Te1.2) shows a preference for clear compared
with vocoded speech (Nourski et al. 2019), and posterior Heschl’s
gyrus (roughly corresponding to Te1.1) shows a relationship with
speech intelligibility in signal-correlated noise (Davis et al. 2011).
Beyond auditory cortex, SPIN tasks have been shown to engage
fronto-parietal areas (Hill and Miller 2010; Eckert et al. 2016)
that are commonly associated with attention—in particular, the
inferior frontal gyrus (Alain et al. 2018), but also the inferior
frontal sulcus and middle frontal gyrus (Binder et al. 2004; Scott
et al. 2004; Zekveld et al. 2006; Davis et al. 2011). Activity has
also been observed in cingulo-opercular regions, including the
insula, frontal operculum, and cingulate gyrus (Eckert et al. 2016;
Vaden Jr et al. 2013, 2016).

Here, we used a within-subjects design to reveal areas that
were more engaged in figure-ground and SPIN perception when
they were more challenging. Comparing different levels of
acoustic challenge within each task allowed us to focus on
the areas associated with the difficulty involved in perceiving
figures among background tones and speech against noise,
rather than areas associated with similarities or differences
in the acoustic properties of figure-ground and SPIN stimuli. We
compared brain activity (here, estimated using blood-oxygen

level-dependent [BOLD] activity) during active figure-ground
analysis and SPIN perception, at different TMRs, and modeled
responses in the auditory cortical hierarchy to establish the
mechanism by which these effects operate. To ensure that
behavioral performance did not explain differences between the
two tasks, we selected TMRs for which accuracy was matched.
To assess the functional anatomy of the shared behavioral
relationship, we selected two different TMRs—which, here,
correspond to the salience of the figure and speech or, in
other words, the difficulty of the tasks—that led to different
performance levels.

Given we were interested in commonalities between the
two tasks, we adopted a Bayesian analysis—specifically, we
used dynamic causal modeling (DCM), which estimates effective
connectivity (i.e., directed neuronal coupling). An advantage of
using DCM is that it allowed us to compare—using Bayesian
model comparison—models in which task-specific effects of
difficulty are present or absent. This overcomes a common lim-
itation of classical (frequentist) statistics that “failure to reject
the null” is not evidence for no difference. In contrast, using
DCM allows us to explicitly compare models that include only
commonalities (i.e., main effect of difficulty) and models that
also include effects that are specific to SPIN or figure-ground
tasks (i.e., task-difficulty interactions). If models that include
only commonalities have greater evidence than those that also
include effects specific to figure-ground or SPIN tasks, we can
confidently conclude that greater difficulty in both tasks is
mediated by similar changes in directed neuronal coupling.

Based on the aforementioned studies, we anticipated that
the greatest overlap of functional integration between figure-
ground and SPIN perception would occur in auditory cortex.
Regarding standard univariate BOLD analyses, we predicted the
two tasks would activate distinct higher level regions beyond
auditory cortex (e.g., IPS, IFG, and cingulo-opercular regions), but
we predicted overlapping activations in early auditory cortex.
A whole brain analysis confirmed that the greatest area of
overlap was indeed in auditory cortex. Therefore, for the DCM
analysis, we focussed on subregions of auditory cortex—and
assessed effective connectivity within and between these subre-
gions. We might have expected to find common top-down effec-
tive connectivity to primary cortex, perhaps reflecting greater
reliance on prior expectations when grouping is challenging
(e.g., Marslen-Wilson and Tyler 1980; McClelland and Elman
1986; Norris and Mcqueen 2008; Mattys et al. 2012; Norris et al.
2015; Peelle 2018). However, we found evidence for a model in
which common effects occur at the level of primary auditory
cortex, consistent with the active component of these tasks
(Molloy et al. 2019).

Materials and Methods
Subjects

Forty-nine participants completed the experiment. We mea-
sured their pure-tone audiometric thresholds at octave fre-
quencies between 0.25 and 8 kHz in accordance with BS EN
ISO 8253-1 (British Society of Audiology 2004). We excluded
one participant who had a mild sloping hearing loss; all other
participants had 6-frequency average thresholds better than
20 dB HL in either ear. We also excluded 4 participants who were
not native English speakers, leaving 44 participants—which is
the number we aimed to analyse based on an a priori power
analysis. A sample size of 44 was estimated using NeuroPower
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Table 1 Words from the English version of the Oldenburg International Matrix corpus, which was used in the SPIN task

Name Verb Number Adjective Noun

Alan Got Three Large Desks
Doris Sees Nine Small Chairs
Kathy Brought Seven Old Tables
Lucy Gives Eight Dark Toys
Nina Sold Four Heavy Spoons
Peter Prefers Nineteen Green Windows
Rachel Has Two Cheap Sofas
Steven Kept Fifteen Pretty Rings
Thomas Ordered Twelve Red Flowers
William Wants Sixty White Houses

Notes: Sentences were constructed by selecting one word from each of the five columns with equal probability, ensuring that transition probabilities between words
were equated across sentences. Sentences were recorded in their entirety rather than as individual words.

(http://neuropowertools.org) with power = 0.8, and was based
on publicly available fMRI data reported by Hakonen et al.
(2017); https://identifiers.org/neurovault.collection:1626. The
44 participants (23 male) we tested were 19–35 years old
(median = 22.7 years; interquartile range = 6.0) and all reported
that they were right-handed.

The study was approved by the University College London
Research Ethics Committee, and was performed in accordance
with relevant guidelines and regulations. Informed consent was
obtained from all participants.

Stimuli

Stochastic figure-ground (SFG) stimuli were based on Holmes
and Griffiths (2019). They contained 50-ms chords, gated by a
10-ms raised-cosine ramp, with 0 ms interchord interval. Each
chord contained multiple pure tones at frequencies selected
from a logarithmic scale between 179 and 7246 Hz (1/24th octave
separation). The stimuli contained a figure that lasted 2100 ms
(42 chords) and a background that lasted 3100 ms (62 chords).
The background comprised 5–15 pure tones, whose frequencies
were selected randomly at each time window. The figure com-
prised 3 components; the frequencies were selected randomly
on each trial and were the same for the entire figure duration.
The figure began 500 ms (10 chords) after the background. For
half of stimuli, 4 chords (lasting 200 ms) were omitted from
the figure. For the other half, the same number of components
(3) were omitted from the background (4 chords; 200 ms). The
omitted components began 20–42 chords after the onset of the
figure-ground stimulus (10–32 chords after the onset of the
figure); the components were always omitted while the figure
was present, even if they were omitted from the background.

Sentences for the SPIN task were from the English version of
the Oldenburg matrix set and were recorded by a male native-
English speaker with a British accent. The sentences are of the
form “<Name> <verb> <number> <adjective> <noun>” and
contain 10 options for each word (see Table 1). An example is
“Rachel brought four large chairs”. Recorded sentences were
normalized to the same root-mean-square amplitude and
lasted on average 2.2 s (standard deviation = 0.1). The sentences
were presented simultaneously with 16-talker babble (all male
talkers), which began 500 ms before the sentence began, ended
500 ms after the sentence ended, and was gated by a 10-ms
raised-cosine ramp. The babble was taken from a continuous
track lasting 20 s; a different segment of the babble was selected
on each trial.

Stimuli were presented using MATLAB (R2015a) and Psych-
toolbox (version 3.0.14). Sounds were presented at 75 dB A, which
was measured using a Brüel and Kjær (Nærum, Denmark) Type
2636 sound level meter. The levels were calibrated separately
with the equipment that was used for the behavioral and MRI
sessions.

Experimental Procedures

Prescan Behavioral
At the beginning of the experiment, participants completed a
behavioral session, to determine their thresholds for 60% and
90% performance on the SFG and SPIN tasks.

The prescan behavioral was conducted in a sound-
attenuating booth. Participants sat in a comfortable chair facing
an LCD visual display unit (Dell Inc.). Acoustic stimuli were
presented through a Roland Edirol UA-4FX (Roland Corpora-
tion) USB soundcard connected to circumaural headphones
(Sennheiser HD 380 Pro; Sennheiser electronic GmbH & Co. KG).

Participants first performed a short (<5 min) block to famil-
iarize them with the figure-ground stimuli. During the familiar-
ization block, they heard the figure and ground parts individu-
ally and together, with and without a gap in the figure.

After familiarization, we determined thresholds for the 2
tasks. We varied the TMR between the target (figure or speech)
and masker (background tones or babble noise, respectively) in a
weighted adaptive procedure (Kaernbach 1991). We used a step
size ratio of 6:1 to estimate 60% thresholds and a step size ratio
of 9:1 to estimate 90% thresholds. We used 4 separate blocks to
estimate the TMRs corresponding to 60% and 90% thresholds for
the two tasks. Each block included 2 separate but interleaved
runs, which were identical except that different stimuli were
presented. Each run started at a TMR of 0 dB and terminated
after 10 reversals. The step size began at 1 dB and decreased to
0.5 dB after 3 reversals. Identical stimuli were used in the 60%
and 90% blocks, but they were presented in different orders.

To estimate figure-ground thresholds, participants com-
pleted a yes-no task. On each trial, participants heard a figure-
ground stimulus and had to decide whether or not there was a
gap in the figure. The figure contained a gap on 50% of trials.
On trials in which there was no gap in the figure, there was
a gap in the background of the same magnitude (for details,
see “Stimuli” section above). Participants responded by clicking
buttons on the screen corresponding to yes and no responses.

During the SPIN blocks, participants also completed a yes-
no task. They had to decide whether a sentence written on the
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screen was the same as the target sentence they heard spoken.
The written sentence was presented on the screen after the spo-
ken sentence had ended, and was identical to the spoken sen-
tence on 50% of trials. It was different on 50% of trials: On these
trials, one word in the written sentence differed from the word
in the spoken sentence; this word occurred at each position in
the sentence with equal probability, and was selected randomly
from the other words in the corpus. Participants responded
by clicking buttons on the screen corresponding to yes (same
sentence) and no (different sentence) responses.

The order of the figure-ground and SPIN blocks were coun-
terbalanced across participants. Before the first block of each
task, participants performed a 6-trial practice at 3 dB TMR, with
feedback.

Magnetic Resonance Imaging
The MRI session was completed on the same day, immediately
after the prescan behavioral. The same figure-ground and SPIN
tasks were presented, but at fixed TMRs—corresponding to the
adapted TMRs from the prescan behavioral. Each task was pre-
sented at two different TMRs: One corresponding to the 90%
threshold (SPIN-90 and SFG-90) and another corresponding to
the 60% threshold (SPIN-60 and SFG-60).

Participants laid on a bed in the MRI scanner. Visual stimuli
were presented through an Epson EB-L1100U projector, which
participants viewed through a mirror attached to the head coil.
Auditory stimuli were presented through a Roland Edirol UA-
4FX (Roland Corporation, Shizuoka) USB soundcard connected
to Ear-Tone Etymotic earphones (Etymotic Research, Inc.) with
disposable foam ear tips.

We presented 8 functional runs, each containing 24 trials.
Each run contained 6 trials from each condition, which were
pseudorandomly interleaved. Figure 1 shows a schematic of the
trial structure. Each trial lasted 8 s and contained 3 major com-
ponents: a visual cue, which indicated the task for the upcoming
trial; the acoustic stimuli; and a probe sentence, which cued
participants to make a response. We used a sparse sampling
method with one functional MRI volume acquisition at the end
of each trial. The acoustic stimuli were presented in the silent
gap between scans. They began, on average, 1.4 s after the start
of the trial and were jittered within an interval of 2 s (i.e., 0.4–
2.4 s after the end of the previous scan). The visual cue was
the word “figure” or “speech”; it was presented for 0.4 s (0.35 s
during the previous scan, and 0.05 s after the previous scan had
ended). A fixation cross then appeared on the screen until the
probe sentence was presented 5.6 s after the trial began. The
probe sentence remained on the screen until the visual cue for
the next trial began. On figure-ground trials, the probe sentence
was “Gap in figure?”. On SPIN trials, the probe was a written
sentence followed by a question mark. Participants responded
using a button box in their right hand; they pressed one button to
respond “yes”—if the there was a gap in the figure (figure-ground
task) or if the written sentence matched the spoken sentence
(SPIN task)—and a different button to respond “no.”

Before participants began the MRI session, they first com-
pleted a practice of 24 trials outside the scanner using the same
equipment that was used for the prescan behavioral. The trial
structure of the practice was identical to the MRI session, and
participants received no feedback about their responses.

MRI Data Acquisition

MRI was conducted on a 3.0 Tesla Siemens MAGNETOM TIM Trio
MR scanner (Siemens Healthcare) at the Wellcome Centre for

Human Neuroimaging (London, UK) with a 64-channel receive
coil.

T2∗-weighted functional images were acquired using echo-
planar imaging (EPI) with field of view of 192 × 192 × 144 mm;
voxel size = 3.0 × 3.0 × 2.5 mm; echo spacing of 30 ms; time-
to-repeat (TR) of 3.36 s; 48 slices; anterior-to-posterior phase
encoding; bandwidth of 2298 Hz/Px. Acquisition was whole-
brain transverse oblique, angled away from the eyes. We used
sparse temporal sampling (Hall et al. 1999): A delay of 4.64 s was
imposed between successive volumes, such that each volume
acquisition began 8 s after the previous volume acquisition
began. We collected 24 volumes from each participant in each
of the 8 runs, plus an additional “dummy” scan, which was
presented immediately prior to the first trial of each run and
was excluded from the analyses. We collected field maps imme-
diately after the functional runs (short TE = 10.00 ms and long
TE = 12.46 ms).

At the end of the session, we acquired a whole-brain
T1-weighted anatomical image (MPRAGE, 176 slices; voxel
size = 1 mm isotropic; field of view 256 × 256 × 176 mm; PAT
GRAPPA of factor 2; anterior-to-posterior phase encoding;
TR = 2530 ms, TE = 3.34 ms).

Analyses

Prescan Behavioral
We calculated thresholds as the median of the last 6 reversals in
each run. We averaged the thresholds from the two interleaved
runs within each block.

Behavior During Scan
To determine behavior during the MRI session, we calculated d′
(Green and Swets 1966) with loglinear correction (Hautus 1995).
Trials with no response were included in the analysis as misses
and false alarms (i.e., as incorrect responses).

MRI Preprocessing
MRI data were processed using SPM12 (Wellcome Centre for
Human Neuroimaging). Each participant’s functional images
(EPIs) were unwarped using their field maps and were realigned
to the first image of the run. We then applied slice time correc-
tion. The functional and anatomical images were coregistered to
the mean EPI, then normalized to the standard SPM12 template
(avg305T1). We spatially smoothed the images using a Gaussian
kernel with 4 mm full-width at half-maximum.

Statistical Parametric Mapping
Using SPM12, we modelled the fMRI timeseries for each par-
ticipant with a General Linear (convolution) Model, with the
motion realignment parameters as covariates of no interest.
Each stimulus was modelled as a delta function, convolved with
the canonical hemodynamic response function. We ran con-
trasts to test the main effect of Task (figure-ground and SPIN),
the main effect of Difficulty (TMRs for 90% or 60% performance),
and the interactions between Task and Difficulty. We entered
the contrasts into a second level analysis, which applied one-
sample t-tests at the group level. We examined these contrasts at
the whole brain level, and applied appropriate family-wise error
(FWE) correction to the results.

As a post-hoc (exploratory) analysis, we also applied small
volume corrections over anatomical regions of interest: in
bilateral auditory cortices, IFG, and IPS. We used standardized
anatomical maps of auditory cortex (Morosan et al. 2001,
2005), which allowed us to locate activity across 4 subregions
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Figure 1. Schematic of the trial structure during the MRI session. The upper row displays the onset of visual stimulus presentation. The lower row displays the
positioning of acoustic stimuli, and the approximate timing of button press responses. Gray bars represent functional volume acquisitions, which each lasted 3.36 s.
Two exemplar trials are shown: a speech-in-noise trial followed by a figure-ground trial.

of auditory cortex: Te1.0, Te1.1, Te1.2, and Te3. Roughly
speaking, activity in Te1.0 corresponds to core auditory cortex
in medial Heschl’s gyrus, regions Te1.1 and Te1.2 to surrounding
posteromedial and anterolateral belt areas, and Te3 to higher
auditory cortex. We defined a bilateral auditory cortex ROI that
included these subregions. For IFG, we defined a bilateral ROI
encompassing BA 44 and BA 45 (Amunts et al. 1999), which
cover the opercular and triangular parts of the IFG, respectively.
For IPS, we defined a bilateral ROI containing hIP1, hIP2, and
hIP3 (Choi et al. 2006; Scheperjans et al. 2008).

We also ran a contrast of all trials over the (implicit) baseline,
which we used to define regions of interest (ROIs) for the DCM
analysis.

Canonical Variate Analysis
We investigated multivariate activity within anatomical regions
of interest using canonical variate analysis (CVA; Friston et al.
1996). This allowed us to test for effects that were distributed
over voxels, with a greater sensitivity than equivalent mass uni-
variate approaches. This was a post-hoc (exploratory) analysis
designed to test whether the main effects of task, difficulty, or
the interaction were evident in distributed responses over bilat-
eral auditory cortex, IFG, or IPS. We used SPM12 to analyse each
participant’s data, then we used Fisher’s method (Fisher 1925) to
test for the significance of the ensuing canonical correlations at
the group level.

Dynamic Causal Modeling
DCM is used to infer effective connectivity—and how directed
causal influences among neural populations are affected
by experimental manipulations. This distinguishes it from
other methods for estimating functional connectivity that are
based on correlations. In brief, neural dynamics are modelled
by a bilinear differential equation. This equation includes
the strength of connections between the modelled regions
(the A matrix), the modulation of these connections as a
function of experimental manipulations (e.g., changes due
to task; the B matrix), and the strengths of direct inputs to
the modelled system (e.g., sensory stimuli; the C matrix).
The parameters correspond to rate constants. The model of
neural population dynamics is combined with a hemodynamic
model, which creates a joint forward model of the data. The
joint model is inverted to give the posterior densities of the
parameters. The technical details of DCM are explained in
other papers (see Friston et al. 2003, 2017; Zeidman, Jafarian,
Seghier, Litvak, Cagnan, Cathy, et al. 2019a; Zeidman, Jafarian,

Seghier, Litvak, Cagnan, Price, et al. 2019b). We conducted the
DCM analyses using SPM12. We first inferred the effective
connectivity parameters that best fit each participant’s fMRI
data, then estimated the parameters and their uncertainty at
the group level using parametric empirical Bayes. Finally, we
used a particular form of Bayesian model comparison—namely,
Bayesian model reduction (BMR)—to establish which model of
effective connectivity best explained the group data.

Regarding our sparse sampling design, DCM analyses have
been successfully applied to sparse (auditory) fMRI data in pre-
vious work (Kumar, Stephan, et al. 2007b). From a modeling
perspective, sparse acquisition is counterintuitively more effi-
cient than conventional protocols because they preclude serial
correlations in the data. In brief, the DCM predicts BOLD data
at all time points, including those when no measurements were
collected. Sparse acquisition ensures that data are conditionally
independent of each other; thereby informing parameter esti-
mates. Note that if the timeseries are not sampled efficiently
then this would be apparent in the results of model comparison
(e.g., with little difference in the evidence for two models).

Here, we were interested in making group-level inferences
about how greater difficulty in figure-ground and SPIN tasks
modulates intrinsic (i.e., within-region) and extrinsic (i.e.,
between-region) connectivity (i.e., a main effect of difficulty)
and whether there are modulations specific to greater difficulty
in one task over the other (i.e., an interaction between task and
difficulty). To this aim, we used BMR to compare models that
did and models that did not include modulations (of intrinsic
and extrinsic connectivity) by the task–difficulty interaction.
Greater evidence for models without modulations of intrinsic
connectivity by the task–difficulty interaction provides evidence
for shared processes between tasks.

Selection of Timeseries. We extracted timeseries for each subject
in 8 ROIs (left and right Te1.0, Te1.1, Te1.2, and Te3). To ensure
the timeseries showed reliable task-related activity—and did not
include voxels with random signal fluctuations—we selected
voxels for each subject that were significant at prespecified
thresholds at both the group and individual-subject levels. In
detail, we masked the group-level contrast (All trials > baseline)
with anatomical masks extracted from the SPM Anatomy Tool-
box (version 2.2c) (Eickhoff et al. 2005), corresponding to the 8
ROIs. We used the voxels that were below the P = 0.05 threshold
(after FWE correction) to generate a functional mask for each
ROI. We applied these functional masks to the individual-subject
results, and retained voxels at the individual-subject level that
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were below a threshold of P = 0.05 uncorrected. Where no vox-
els within an ROI survived the P < 0.05 threshold (right Te1.0:
2/44 participants; right Te1.1: 11/44 participants; right Te1.2:
1/44 participants; left Te1.1: 2/44 participants; left TE1.2: 1/44
participants), we increased the individual-subject threshold in
increments of 0.05 until one or more voxels survived. (Note that
the thresholds applied in the selection of timeseries only specify
the voxels that are included in the analysis and do not determine
the probabilities identified by the DCM analysis.) Finally, we
created a summary timeseries for each ROI in each participant
by extracting the principal eigenvariate.

DCM Estimation. The DCM for each participant included 8 nodes
corresponding to the extracted timeseries for the 8 ROIs. We
specified the input timing for the DCM analysis as vectors
specifying all trials of interest, the main effects of task and
difficulty, the interaction between task and difficulty, and the
motion and run covariates. We estimated (using Bayesian model
inversion with variational Laplace) a fully connected DCM for
each participant, which included all possible combinations of
intrinsic and extrinsic fixed connections. We allowed all trials
and the main effect of task to serve as external (i.e., direct
or driving) inputs to each node. We allowed the main effect
of difficulty and the interaction between task and difficulty
to serve as external inputs to each node, and to modulate all
intrinsic and extrinsic connections.

Group Level Inference. To estimate parameters at the group level
(i.e., across participants), we took the parameters of interest for
each participant to a second-level parametric empirical bayes
(PEB; Friston et al. 2016) analysis. This is a hierarchical model
of connectivity parameters, with connectivity parameters from
all subjects at the first-level and a GLM at the second-level,
estimated using a variational scheme. Our first-level parameters
of interest were the modulations of intrinsic (within-region)
and extrinsic (bottom-up and top-down) connectivity by the
main effect of difficulty and by the task–difficulty interaction
(i.e., the B matrix from each subject’s DCM). We entered the
absolute TMRs in each of the 4 conditions for each participant
(which differed according to their thresholds measured in the
prescan behavioral session) as regressors in the second level
of the PEB model. Having estimated parameters of the full PEB
model, we then pruned away parameters using BMR—which
performs an automatic (“greedy”) search over the model space,
essentially comparing the evidence for reduced models that
have particular parameters “switched off.” The model evidence
considers both accuracy (how well the model fits the data)
and complexity (the difference between model parameters and
their prior values). Given we were interested in modulations of
connectivity (i.e., the B matrix from each subject’s DCM), prior
values for all parameters were set to zero. Parameters in DCM
are rate constants and zero means that there was no effect of
the experimental manipulation on the rate of change. In other
words, the prior was that the modulations were “switched off,”
and the model had to more accurately fit the data to justify the
increase in complexity associated with switching the parame-
ters “on.” The algorithm is given a model for which all param-
eters are “switched on,” and iteratively discards parameters if
the reduced model has greater evidence. Thus, simpler models
(i.e., those with more parameters “switched off”) that fit the data
sufficiently accurately are preferred, because greater complexity
reduces the model evidence. The final 256 models from the
BMR were entered into a Bayesian model average (Hoeting et al.
1999; Penny et al. 2006), which performs a weighted average of

parameters across models, according to the posterior probabil-
ities (Pp) of the models. This leads to a “winning model” that
incorporates the uncertainty of parameter estimates. In practice,
many of the 256 models entered into the analysis have low
posterior probabilities, but this number ensures that all probable
models will be captured in the Bayesian model average, and
the uncertainty of the parameters estimated accordingly. We
discounted parameters whose posterior probabilities were less
than 0.95, to focus our conclusions on high-probability param-
eters; although, for completeness, we report the probabilities of
all parameters in Table 4.

Results
Behavior (d′) in the scanner followed the expected patterns
(see Fig. 2). A two-way within-subjects ANOVA showed a signifi-
cant main effect of difficulty [F(1,43) = 19.40, P < 0.001, ωp

2 = 0.29]
and no significant main effect of task [F(1,43) = 0.56, P = 0.46,
ωp

2 = −0.01]. The interaction between task and difficulty was not
significant either [F(1,43) = 0.95, P = 0.34, ωp

2 < 0.01]. These results
confirm that the TMR (difficulty) manipulation was successful,
and show that performance did not differ significantly between
the 2 tasks.

Figure 2 illustrates the corresponding results for decision
bias: The bias was similar across conditions, but was lower in
the SFG-60 condition. There was no significant main effect of
task on decision bias [F(1,43) = 2.84, P = 0.10, ωp

2 = 0.04]. However,
due to lower bias in the SFG-60 condition, there was a main effect
of threshold [F(1,43) = 8.57, P = 0.005, ωp

2 = 0.14] and a significant
interaction [F(1,43) = 10.16, P = 0.003, ωp

2 = 0.17].
We also calculated Spearman’s rank correlation coefficients

to investigate the relationship between thresholds, across
subjects. Within each task, the 60% and 90% thresholds were
significantly correlated (SPIN: rs = 0.51, P < 0.001, 95% confidence
interval [CI] = 0.21–0.82; SFG: rs = 0.61, P < 0.001, 95% CI = 0.30–
0.91). Thresholds were also significantly correlated between
tasks (60% thresholds: rs = 0.36, P = 0.018, 95% CI = 0.05–0.66; 90%
thresholds: rs = 0.31, P = 0.038, 95% CI = 0.01–0.62). This result
confirms the behavioral relationship between figure-ground
and SPIN performance, across subjects.

Differences in Activity Between Figure-Ground and
Speech-in-Noise Perception

The univariate BOLD analyses showed significant differences in
activity between the two tasks. Table 2 lists the statistics and
Figure 3A,B displays the thresholded SPMs. The SPIN task was
associated with greater activity in bilateral STG, the left pre-
central gyrus, and the right cerebellum than the figure-ground
task; these results all survived a threshold of P < 0.001 after
FWE correction. At a threshold of PFWE < 0.05, the SPIN task was
associated with greater activity in the left middle frontal gyrus,
left inferior temporal gyrus, and left putamen. Whereas, the
opposite contrast—greater activity for the figure-ground than
SPIN task—yielded only two significant voxels, which survived
a threshold of PFWE < 0.05 but not PFWE < 0.001. The finding that
greater activity was revealed by the SPIN > SFG contrast than the
SFG > SPIN contrast implies that the SPIN task activates more
areas to a greater extent than the figure-ground task.

However, the univariate BOLD analysis did not show any
effects of Difficulty. Neither the main effect of difficulty nor
the task–difficulty interactions revealed activity below the
PFWE = 0.05 threshold.
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Speech-in-Noise and Fundamental Grouping Processes Holmes et al. 7

Table 2 Contrasts between the SPIN and SFG tasks

Contrast Peak location X (mm) Y (mm) Z (mm) t PFWE

SPIN > SFG Left STG −63 −36 6 8.56 <0.001
−60 −3 −3 8.00 <0.001
−57 −12 0 7.97 <0.001

Left precentral gyrus −51 −12 42 7.95 <0.001
Right STG 60 −21 0 7.48 <0.001

66 −15 0 7.13 <0.001
63 −6 −6 6.97 <0.001

Right cerebellum 24 −60 −21 6.99 <0.001
Right cerebellum 15 −66 −12 5.91 0.011
Left inferior temporal gyrus −45 −57 −9 5.82 0.014
Left putamen −30 −15 −3 5.61 0.029
Left middle frontal gyrus −39 6 36 5.55 0.036
Cerebellar vermal lobules I–V 6 −57 −3 5.53 0.038
Left STG −51 −9 −12 5.52 0.040
White matter 9 −75 24 5.47 0.047

SFG > SPIN White matter −21 −6 51 5.72 0.020
Left superior parietal lobule −36 −39 42 5.46 0.048

Notes: Statistical analyses were conducted at the group level using one-sample t-tests, and were thresholded at P = 0.05 after correcting for FWE. Peak locations were
determined using Neuromophometrics (Neuromorphometrics, Inc.; http://neuromorphometrics.com/).

Figure 2. Behavior in the scanner in the SFG and SPIN tasks, at the two TMRs corresponding to 60% and 90% thresholds. Error bars display ±1 standard error of the

mean. (a) Sensitivity. (b) Decision bias.

In addition to the whole brain analysis, we searched within
predefined anatomical ROIs in auditory cortex, IFG, and IPS. The
results of the ROI analyses were entirely consistent with the
results at the whole brain level. For each ROI analysis, we applied
a threshold of 0.05, corrected for FWE. We found significant
activity in the auditory cortex ROI that was greater for SPIN
than figure-ground trials. However, we found no significant
voxels showing greater activity for figure-ground than SPIN
trials. Within the same ROI, we found no significant voxels for
the main effect of Difficulty or the Task–Difficulty interactions.
We found no significant voxels in the IFG ROI for any of the
contrasts. The only contrast that showed a significant effect in
the IPS ROI was the contrast between figure-ground and SPIN
trials, which identified greater activity in the figure-ground task
in the same voxel as the whole brain analysis.

Multivariate Activity is Sensitive to Differences between
Figure-Ground and Speech-in-Noise Perception

The CVA analysis within the same anatomical ROIs showed that
multivariate responses in all three regions (bilateral auditory
cortex, bilateral IFG, and bilateral IPS) were sensitive to the
contrast between the figure-ground and SPIN tasks (X2 ≥ 640.43,
P < 0.001). However, none of the regions’ multivariate responses
were sensitive to the main effect of Difficulty (AC: X2 = 77.91,

P = 0.77; IFG: X2 = 87.42, P = 0.50; IPS: X2 = 97.32, P = 0.23) or the
interaction between task and difficulty (AC: X2 = 88.15, P = 0.48;
IFG: X2 = 80.12, P = 0.71; IPS: X2 = 75.58, P = 0.82).

Difficulty with Speech-in-Noise and Figure-Ground
Perception Lead to Similar Disinhibition in Auditory
Cortex

We used DCM to assess similarities and differences in effective
connectivity. To inform the nodes for the DCM analysis, we
contrasted all trials against baseline, which was orthogonal to
our questions of interest, but identified regions activated by
the four conditions. Table 3 lists the locations of voxels that
survived the PFWE < 0.05 threshold, and Figure 3C shows the
locations on four coronal slices. The voxels that were most
reliably activated by the tasks (which survived a correction of
PFWE < 0.001) were located on the superior temporal lobe—with
peaks in the left transverse temporal gyrus (Heschl’s gyrus), left
planum temporale, and bilateral planum polare.

Given DCM works best with ≤8 nodes and for areas that are
reliably activated by a task, we focussed broadly on these parts
of auditory cortex as areas of interest for the DCM analyses.
Although some regions outside of auditory cortex survived the
PFWE < 0.05 threshold (see Table 3), these were not as strongly
activated at the group level, and were not reliably identifiable
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8 Cerebral Cortex, 2020, Vol. 00, No. 00

Table 3 Contrast of all tasks > baseline

Peak location X (mm) Y (mm) Z (mm) t PFWE

Left planum temporale −60 −18 9 9.55 <0.001
Left transverse temporal gyrus −51 −15 6 9.45 <0.001
Left planum polare −45 −12 0 8.75 <0.001
Right planum polare 57 3 0 9.01 <0.001
Right cerebral white matter 63 −12 3 8.89 <0.001
Right planum polare 51 −3 −3 7.91 <0.001
Right anterior insula 30 24 0 6.74 0.001
Right frontal operculum 33 18 9 5.60 0.030
Left supplementary motor cortex −6 18 45 6.31 0.003
Left opercular inferior frontal gyrus −48 21 24 5.86 0.013
Left superior parietal lobule −27 −54 48 5.60 0.031
Left anterior insula −39 18 −3 5.58 0.032
Left anterior insula −33 21 0 5.58 0.032
Right planum polare 42 −15 −6 5.55 0.036
Left cerebral white matter −39 −30 0 5.55 0.036
Right cerebellum 21 −66 −51 5.52 0.040
Right opercular inferior frontal gyrus 48 9 21 5.48 0.045
Right opercular inferior frontal gyrus 57 21 15 5.48 0.045

Notes: Statistical analyses were conducted at the group level using one-sample t-tests, and were thresholded at P = 0.05 after correcting for FWE. Peak locations were
determined using Neuromophometrics (Neuromorphometrics, Inc.; http://neuromorphometrics.com/).

Figure 3. Group-level contrasts, thresholded at P < 0.05 (FWE corrected) and superimposed on coronal sections of the average (N = 44) T1-weighted structural image. (a)

Voxels showing greater activity for the SPIN than SFG task. (b) Voxels showing greater activity for the SFG than SPIN task. (c) Voxels for the All Trials > baseline contrast.
MNI co-ordinates (in mm) are displayed below each coronal section. White lines show the outlines of anatomical maps corresponding to areas Te1.0, Te1.1, Te1.2, and
Te3.

in individual subjects. Notably, the IPS was not present at the
group level, even with the PFWE < 0.05 threshold—therefore, we
did not include this region in the DCM analysis. The choice

to focus on areas of auditory cortex allowed us to address
hypotheses about intrinsic (within-region) and extrinsic (top-
down and bottom-up) connectivity within a set of nodes (i.e., a
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Speech-in-Noise and Fundamental Grouping Processes Holmes et al. 9

Table 4 Parameters in the DCM after BMR and averaging

Parameter Connection strength Posterior probability

Commonalities
Difficulty modulation: Left Te1.0 (intrinsic) −0.47 >0.99
Difficulty modulation: Left Te1.1 (intrinsic) −0.51 >0.99
Difficulty modulation: Left Te1.3 (intrinsic) −0.26 0.94
Difficulty modulation: Right Te1.1 (intrinsic) −0.18 0.71

SFG-60 TMR
Interaction modulation: Left Te1.1-Left Te1.2 −0.02 0.78

SPIN-60 TMR
Difficulty modulation: Left Te1.2 (intrinsic) −0.05 0.76
Difficulty modulation: Right Te1.0 (intrinsic) −0.05 0.73
Difficulty modulation: Right Te1.2 (intrinsic) −0.06 0.81

Notes: TMR in each of the four conditions (SPIN-90, SPIN-60, SFG-90, SFG-60) were included as regressors. The connection strengths and posterior probabilities
associated with the parameters (based on the free energy with and without the parameter) are displayed in the final columns. Parameters with probabilities <0.95 are
listed in italics.

subgraph) where we observed reliable activity. It is worth noting
that external (i.e., direct) connections were allowed to influence
all nodes, meaning that the model accommodates activity that is
better explained by direct inputs (e.g., including regions outside
those that we explicitly modelled) than connectivity between
the modelled nodes.

To parcellate the functional activity into separate subre-
gions of auditory cortex, we used standardized anatomical maps
(Morosan et al. 2001, 2005), which allowed us to separate activity
in 8 subregions, corresponding to bilateral Te1.0, Te1.1, Te1.2, and
Te3. Functional activity in these 8 subregions was used for the
DCM analysis.

We used BMR and averaging to identify the winning DCM
model, which is defined as the model with the greatest evidence
among models with all possible combinations of parameters.
These parameters quantified the modulatory effects of difficulty
and the interaction between task and difficulty on each connec-
tion. The model included both intrinsic (i.e., self) connections
and extrinsic (bottom-up and top-down between nodes) connec-
tions. In DCM, the parameters are rate constants, which control
the rate of exponential decay of neuronal activity during and
after stimulation. At the group level, we included the absolute
TMR values for each participant as between-subject regressors.

Table 4 displays the parameters in the winning group-level
DCM. Essentially, this means that other models—that contain
either more or fewer parameters—are less likely (given the fMRI
data) than the winning model. Only two of the parameters in
the winning DCM had high probabilities (Pp > 0.95). These two
parameters correspond to the modulation of intrinsic (i.e., self)
connections for left Te1.0 and left Te1.1 by the main effect of
difficulty (Fig. 4). The values of these parameters were −0.31
and −0.30 Hz, respectively, which indicate a decrease in self-
inhibition associated with the experimental effects.

Interestingly, all of the parameters corresponding to modu-
lations of connectivity by the task–difficulty interaction were
pruned away, as were as all of the modulations of extrinsic
(bottom-up and top-down) connectivity—and therefore, these
parameters are not present in the final model. In other words,
the evidence was greater for models that had these connec-
tions “switched off” than models that had them “switched on.”
Thus, this model comparison provides very strong evidence that,
in auditory cortex, effects of difficulty on effective connectiv-
ity are shared between the SPIN and figure-ground tasks. The
model comparison does not support partially shared effects of

Figure 4. Group-level DCM, after BMR and averaging. Parameters that survive
a threshold of posterior probability (Pp) > 0.95 are displayed: These correspond

to modulations of intrinsic connectivity by the main effect of difficulty in left
Te1.0 and 1.1. Their connection strengths (in Hz) are displayed in the figure.
Results are displayed on a 3D reconstructed surface of the anatomical regions
of interest in the left hemisphere, which was generated using ITK-SNAP (www.i

tksnap.org; Yushkevich et al. 2016) and ParaView (www.paraview.org; Ahrens
et al. 2005). Note that right-hemisphere homologs were included in the DCM, but
none of the parameters had posterior probabilities greater than 0.95. Extrinsic

(top-down and bottom-up) connections were also included, but modulations of
these connections were absent in the winning model.

difficulty (which would be indicated by modulations of effective
connectivity by both difficulty and the task–difficulty interac-
tion in the winning DCM) or separate effects (which would
be indicated by modulations of effective connectivity by the
task–difficulty interaction only in the winning DCM).

Some of the model parameters covaried with the TMR in one
of the four conditions, although it is worth noting that their
probabilities were low (≤0.81; Table 4).

Discussion
Our results demonstrate that SPIN and figure-ground per-
ception rely on similar cortical processes. Using DCM, we
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found that greater difficulty in both tasks leads to similar
disinhibition at lower levels of the auditory cortical hierarchy:
We found strong evidence (>99% probability) that left Te1.0 and
left Te1.1 are disinhibited when the tasks are more difficult—
indicating that these regions likely increase their gain when
speech or figures are difficult to follow. Importantly, we found
the best model of the data had no modulations of auditory
cortex activity by the task–difficulty interaction, showing that
within auditory cortex the evidence was greater for models that
had only common connections between the two tasks than
for models that included task-specific connections. This result
demonstrates that effective connectivity in auditory cortex is
common to the two tasks (and possibly other tasks that engage
similar grouping processes), rather than task-specific. Overall,
these results provide evidence for a common cortical substrate
in early auditory cortex, which informs current models of early
sensory processing and could explain why people who find SPIN
perception difficult also find figure-ground perception difficult
(Holmes and Griffiths 2019).

The results showed that lower level intrinsic connectivity,
rather than top-down connectivity from higher to lower sub-
regions of auditory cortex, was modulated by task difficulty—
consistent with previous reports that activity in early auditory
cortex is modulated by attentional load during figure-ground
analysis (Molloy et al. 2019). Consistent with these results, a
previous MEG study (Giani et al. 2015) found that detecting
pairs of same-frequency tones against a background was asso-
ciated with intrinsic connectivity changes in auditory cortex—
although, subregions of auditory cortex were not examined.
Their paradigm differed from ours in that the tones were longer
(300 ms), the pairs of tones to be detected were separated in time
(by 750 ms), and the target tones were in a different frequency
region to background tones and could therefore be detected by
frequency alone. Previous studies of visual scene analysis that
used DCM similarly found that lower level intrinsic connections,
rather than top-down connections, offered the best explanation
for modulations of BOLD activity by the “noisiness” of a ran-
dom dot motion stimulus (Adams et al. 2015, 2016). Intrinsic
connections in DCM are rate constants, which control the rate
of decay in a region, and disinhibitory modulations indicate
slower decay. In other words, disinhibition indicates that an
area becomes more excitable. In predictive coding formulations
of perceptual synthesis, this is usually interpreted in terms
of assigning more precision to prediction errors, so that they
have greater influence on evidence accumulation or Bayesian
belief updating. From a psychological perspective, this is usually
thought of in terms of attentional selection (Brown et al. 2013;
Bauer et al. 2014; Vossel et al. 2014, 2015; Auksztulewicz and
Friston 2015; Kanai et al. 2015).

A likely mechanism for the apparent disinhibition of intrinsic
connections in the DCM is increased neuronal gain or excitabil-
ity (Reynolds and Heeger 2009), which is well-established in
auditory cortex (Rabinowitz et al. 2011). This could be realized by
communication through coherence, by spiking interinhibitory
neurons equipped with N-methyl-d-aspartate (NMDA) recep-
tors, or by modulations through acetylcholine (ACh). Broadly
speaking, these mechanisms are unlikely to be synapse-specific
and would therefore more likely manifest in changes in intrinsic
than extrinsic connectivity. Modulations of particular extrinsic
(e.g., top-down) connections would be more consistent with
synapse-specific effects.

Modulations of lower level intrinsic connectivity are also
consistent with the results of some previous studies examining

speech perception. For example, Mattys et al. (2005) found that
when speech is accompanied by white noise, lexical decisions
are based on lower level (word stress) cues rather than higher
level (e.g., context) cues. In addition, several studies have
proposed that listening challenges during speech perception
are realized by feedforward rather than feedback processes. For
example, Davis et al. (2011) used fMRI to measure responses
to spoken sentences. They found that listening challenges
introduced by presenting speech at a low TMR or by presenting
semantically ambiguous sentences were associated with early
responses in anterior STG, which preceded later changes in
higher areas. They interpret their results as reflecting a greater
demand on internal representations of unanalysed speech when
speech perception is challenging. Using DCM, Leff et al. (2008)
found that feedforward, rather than feedback, connections were
associated with the difference between intelligible speech in
quiet and unintelligible (time-reversed) speech. In addition,
these lower level regions have previously been associated
with speech intelligibility in some studies: Binder et al. (2004)
found that an anteriolateral temporal region—corresponding
to Te1.1—correlated with accuracy on a phoneme-in-noise
discrimination task, and Wild et al. (2012) found that activity
in Te1.0 covaried with the intelligibility of degraded speech. The
current results support the idea that lower level processes (in
Te1.0 and Te1.1) are associated with the perceptual challenge
of a less favorable TMR during SPIN perception. In addition,
we show that perceptual challenges during figure-ground
perception affect these lower level processes in a similar way
as do challenges during SPIN perception.

A previous fMRI study of figure-ground perception (Teki et al.
2011), which used the same maps of auditory cortex that we
used here, found no evidence for activity associated with figure
salience in primary auditory cortex—although they did not use
a task, whereas we used a relevant, active task. A previous
EEG study (O’Sullivan et al. 2015) found greater activity during
active than passive listening to figure-ground stimuli, and a
MEG study (Molloy et al. 2019) similarly found greater activity
in primary auditory cortex under low than high visual load.
Thus, our results are consistent with the idea that task effects
modulate early auditory cortex during figure-ground perception.
Here, we extend this idea by showing that the earliest stages
of the auditory cortical hierarchy are more engaged (i.e., less
inhibited) when the figure-ground task is more challenging due
to a lower TMR.

Studies using other simultaneous or sequential stream seg-
regation to study perceptual organization have found that activ-
ity in both primary (Fishman et al. 2001; Micheyl et al. 2005;
Bidet-Caulet et al. 2007; Wilson et al. 2007; Deike et al. 2010;
Schadwinkel and Gutschalk 2010) and nonprimary (Wilson et al.
2007; Deike et al. 2010; Schadwinkel and Gutschalk 2010) audi-
tory cortex differs depending on how listeners perceive acous-
tic sources—for example the number of sources they perceive
or which features of the scene they attend to. Also, Overath
et al. (2010) found both primary and nonprimary parts of audi-
tory cortex were active when participants detected changes in
spectrotemporal coherence in dense acoustic “textures,” which
contain multiple components that changed frequency; partici-
pants made decisions about the how coherent the direction of
frequency changes were across components.

We did not find reliable activity affected by difficulty in
higher areas such as IPS: thus, we did not model these high-
level responses using DCM. In earlier work, IPS activity has been
attributed to top-down attention (Cusack 2005) or to perceptual
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“pop-out” (Shamma and Micheyl 2010; Teki et al. 2011) dur-
ing auditory scene analysis. Although inferior parietal activity
has been associated with both figure-ground perception (Teki
et al. 2011, 2016) and SPIN perception (Alain et al. 2018), the
co-ordinates in left IPS reported for figure-ground perception
(Teki et al. 2011) are either more superior or more posterior
and medial to the peak co-ordinates reported by Alain et al.
(2018). This could explain why we found no reliable inferior
parietal activity in the current study, and is consistent with the
differences we found in IPS between the SPIN and figure-ground
tasks. In addition, we were looking for differences between 60%
and 90% performance levels, which are not as distinct as in some
previous studies where, in the easiest conditions, participants
perform comfortably at ceiling level. In the current study, it
was important to equate performance levels between the two
tasks and, therefore, we targeted performance below ceiling
levels. Under these conditions, we found the strongest and most
consistent effects in auditory cortex. We did find two voxels
showing greater activity for figure-ground than SPIN perception
located close to parts of the IPS that have previously been asso-
ciated with figure-ground perception (Teki et al. 2011, 2016)—
but the two voxels were spatially separate and did not survive
a stringent correction for FWE at an alpha of 0.001. It is likely
that effects of difficulty that are specific to figure-ground and
SPIN perception occur at higher levels of the auditory pathway.
Here, our aim was to search for commonalities between these
2 tasks—reflecting common grouping processes—for which we
found strong evidence in early auditory cortex.

The strongest—and highest probability—modulations of
effective connectivity by difficulty were located in the left
hemisphere; although, it is worth bearing in mind that it was
not an aim of this experiment to test for laterality effects. It is
widely accepted that speech is processed bilaterally in auditory
cortex (see Peelle 2012; Scott and McGettigan 2013). However,
the left hemisphere modulations we observed are consistent
with previous studies that have localized SPIN effects to the
left hemisphere. For example, Scott et al. (2004) found an area
within the left anterior STG that showed a positive correlation
with speech intelligibility, and Davis et al. (2011) found that the
left posterior STG correlated positively with TMR. Regarding
more basic stimuli designed to assess auditory scene analysis,
two previous studies of sequential stream segregation found
correlates of different percepts in the left but not right auditory
cortex (Deike et al. 2004, 2010). Flinker et al. (2019) suggest
that perceiving temporal modulations leads to left lateralised
responses, whereas perceiving spectral modulations leads to
right lateralised responses. Unlike other figure-ground tasks
(Kidd 1994; Kidd et al. 1995; Gutschalk et al. 2008; Elhilali, Xiang,
et al. 2009b), the SFG task used here cannot be detected based
on simple spectral separation; instead, it has been associated
with a temporal coherence mechanism (Shamma et al. 2011;
Teki et al. 2013). That we found predominantly left-hemisphere
modulations therefore aligns both with the division proposed
by Flinker et al. (2019), and with the findings from previous SPIN
tasks. However, it is worth noting that one right hemisphere
intrinsic connection (Te1.1) was present in our DCM (Table 4),
albeit with a lower probability (0.71)—suggesting the effects are
not entirely lateralised. One previous EEG study (Bidelman and
Howell 2016) reported greater right-hemisphere lateralisation
when SPIN was presented at a lower TMR, although in that study,
participants were instructed to ignore the speech stimuli—and,
therefore, responses are unlikely to relate to poorer intelligibility
and may instead relate to stimulus acoustics.

In the current study, we manipulated difficulty by manipu-
lating TMR, which is a naturally relevant quantity that varies
greatly among different everyday listening settings. Rather than
specifying a TMR that was fixed across participants, we selected
TMRs for each participant that corresponded to 60% and 90%
behavioral thresholds. This aspect of the design makes it less
likely that the results reflect acoustic properties of different
TMRs, but rather the perceptual challenges imposed by a lower
TMR—which occur at different TMRs for different people. The
selected TMRs and the acoustic noise (babble for SPIN; random
tone chords for figure-ground) also differed between the two
tasks. Furthermore, absolute TMRs in each participant were
regressed out of the model. Therefore, disinhibition of left Te1.0
and Te1.1 likely arose due to the increased difficulty associated
with lower TMRs, rather than acoustic properties of the SPIN and
figure-ground tasks that covary with TMR.

Given we compared only two tasks, one might ask whether
disinhibitory processes in primary auditory cortex are common
to all challenging auditory tasks. Crucially, the behavioral cor-
relation between figure-ground and SPIN thresholds reported
by Holmes and Griffiths (2019)—which we replicated here—was
specific to particular types of figures: It explained a different
portion of the variance in SPIN performance than did a figure
that changed frequency over time, and no relationship was
present for a more complex figure whose components changed
frequency independently. Thus, there is clearly high specificity
in the relationship between figure-ground and SPIN perception.
Second, our results likely reveal something more than basic
acoustic properties: the 2 tasks used different stimuli with dif-
ferent spectrotemporal characteristics and cannot be attributed
to the absolute TMRs we used, which differed across participants
and were regressed out of the model.

Possibly, between-subjects differences in the disinhibition of
left Te1.0 and 1.1 might help to explain the behavioral correla-
tion between figure-ground perception and SPIN perception—
which was reported by Holmes and Griffiths (2019) and repli-
cated here. In other words, some of the individual variability
in SPIN perception may arise from differences in disinhibition
at the early stages of auditory cortical processing related to
the grouping of speech segments in background noise. Given
our figure-ground task taps into similar cortical processes, this
could be a useful nonlinguistic test for assessing changes in
cortical disinhibition that might explain why some patients
report difficulties with SPIN perception, despite no evidence of
impaired peripheral function (Cooper and Gates 1991; Kumar,
Amen, et al. 2007a; Hind et al. 2011). Our univariate analyses
indicate that figure-ground perception predominantly activates
a subset of the regions involved in SPIN perception, consistent
with the idea that our figure-ground task is a basic version of
SPIN perception that relies on similar acoustic analysis (e.g.,
fundamental grouping processes), but does not require linguistic
and articulatory processes involved in SPIN perception. The
current experiment was not designed to pursue this between-
subjects question, given the close matching of behavioral perfor-
mance between the tasks during the fMRI session, but it would
be an interesting direction for future research.

The results of the univariate analysis indicate that figure-
ground perception predominantly activates a subset of the
regions involved in SPIN perception: both tasks reliably activate
the superior temporal lobe (Table 3), but SPIN perception leads
to greater activity in bilateral STG, the left precentral gyrus,
and the right cerebellum (Table 2). This finding is consistent
with the idea that our figure-ground task is a basic version
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of SPIN perception that relies on similar acoustic analysis (e.g.,
fundamental grouping processes), but does not require linguistic
and articulatory processes involved in SPIN perception.

The areas that were more strongly activated by SPIN than
figure-ground—bilateral STG, the left precentral gyrus, and
the right cerebellum—have been associated with SPIN tasks
in previous studies. For example, the STG correlates positively
with speech intelligibility (Scott et al. 2004) and TMR (Davis et al.
2011). Cerebellar activity has also been reported in previous
studies (see Ackermann et al. 2007 for a review), despite the fact
that—traditionally—the cerebellum is not commonly thought to
be part of the speech network. Using PET, Salvi et al. (2002) found
activity in the right cerebellum when speech-in-babble was
compared with speech-in-quiet; perhaps, crucially, they selected
levels for the speech and babble to ensure that performance
was approximately 50% for each participant. Similarly, here, we
ensured that speech intelligibility was below ceiling (60% or 90%)
and equated performance between the SPIN and figure-ground
tasks. The involvement of the motor cortex (precentral gyrus)
in speech perception has been long debated (see Scott et al.
2014), but several studies have found motor cortex responses
during speech perception (e.g., Wilson et al. 2004; Wilson and
Iacoboni 2006). Areas for speech production are thought to be
particularly important for comprehending degraded speech
(e.g., Hervais-Adelman et al. 2012). The current results lend
further support to the claim that, compared with elementary
auditory stimuli, challenging speech perception engages motor
cortex.

Only two voxels showed greater activity for figure-ground
than SPIN perception, and they did not survive a stringent cor-
rection for FWE at an alpha of 0.001. However, it is worth noting
that they are located close to parts of the IPS that have previously
been associated with figure-ground perception (Teki et al. 2011,
2016). Consistent with these results, earlier work has demon-
strated that IPS plays a role in basic auditory streaming (Cusack
2005). Previously, IPS activity has been attributed to top-down
attention (Cusack 2005) or to perceptual “pop-out” (Shamma and
Micheyl 2010; Teki et al. 2011) during auditory scene analysis.
During figure-ground perception, predictions about frequencies
can be very precise after the figure has been detected (because
the frequencies of the figure remain the same for the entire
figure duration), whereas speech changes frequency over time;
thus, greater activity in IPS during figure-ground perception
could reflect greater “pop-out” of figures that remain the same
frequency over time, than of speech, which changes frequency
over time.

We did not find any voxels to be reliably activated by the
main effect of difficulty in our univariate analysis. We also
found no evidence that multivariate activity in bilateral auditory
cortex, IFG, and IPS was sensitive to the main effect of difficulty.
Although we might have found frontal or parietal activity, this
did not emerge strongly in our analyses. Unlike previous studies,
this study examined consistent activity between figure-ground
and SPIN tasks, which might explain why areas beyond auditory
cortex did not appear strongly. In addition, it is worth noting that
the levels of difficulty that we chose (60% and 90% thresholds)
are not as distinct as in some previous studies where, in the
easiest conditions, participants perform comfortably at ceiling
level. It is possible that areas beyond auditory cortex might be
reliably activated under a greater difference in task difficulty.
However, in the current study, it was important to equate perfor-
mance levels between the two tasks and, therefore, we targeted
performance below ceiling levels. Under these conditions, we

found the strongest and most consistent effects in auditory
cortex.

In summary, our results demonstrate common processes for
figure-ground and SPIN perception in early auditory cortex. We
found that figure-ground perception predominantly activates a
subset of regions involved in SPIN perception. Modeling of BOLD
responses showed that greater difficulty in both tasks is associ-
ated with disinhibition in left Te1.0 and left Te1.1—implying that
the early stages of the auditory cortical hierarchy increase their
gain when SPIN and figure-ground perception become more
difficult. Ultimately, these results suggest a common cortical
substrate that links perception of basic and natural sounds—
and might explain why people who are worse at figure-ground
perception are also worse at SPIN perception.
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