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Abstract 

Epileptic spikes are complementary sources of information in EEG to diagnose and localize the origin of 

epilepsy. However, not only is visual inspection of EEG labor intensive, time consuming and prone to 

human error, but it also needs long-term training to acquire the level of skill required for identifying 

epileptic discharges. Therefore, computer-aided approaches were employed for the purpose of saving time 

and increasing the detection and source localization accuracy. One of the most important artifacts that may 

be confused as an epileptic spike, due to morphological resemblance, is eye blink. Only a few studies 

consider removal of this artifact prior to detection, and most of them used either visual inspection or 

computer-aided approaches, which need expert supervision. Consequently, in this paper, an unsupervised 

and EEG-based system with embedded eye blink artifact remover is developed to detect epileptic spikes. 

The proposed system includes three stages: eye blink artifact removal, feature extraction, and 

classification. Wavelet Transform was employed for both artifact removal and feature extraction steps, 

and Adaptive Neuro Fuzzy Inference System for classification purpose. The proposed method is verified 

using a publicly available EEG dataset. The results show the efficiency of this algorithm in detecting 

epileptic spikes using low-resolution EEG with least computational complexity, highest sensitivity and 

lesser human interaction compared to similar studies. Moreover, since epileptic spike detection is a vital 

component of epilepsy source localization, therefore this algorithm can be utilized for EEG-based pre-

surgical evaluation of epilepsy. 
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1 Introduction 
 

Epilepsy is identified by unexpected, temporary and extreme discharge of a group of neurons in 

the brain. Approximately one percent of the world’s population suffers from epilepsy [1, 2].  

Unfortunately, predicting the time of epileptic seizure is tough, and its process is a long way 

off from being fully understood [3]. Normally, epilepsy is controlled, but cannot be treated 

with medications. There are different modalities that are used for epilepsy diagnosis, but the most 

common tool in clinics to evaluate the brain activities is Electroencephalograph (EEG), due to its 

cost-effective, direct measurement and high temporal resolution characteristics. 

EEG records brain electrical activity generated by cortex neurons from the scalp [3]. There are 

various morphologies of epileptic waves in EEG, including main ingredients such as: slow 

waves, spikes and sharp waves. Usually, sharp-and-slow waves (SWW) or spike-and-sharp 

waves (SSW) emerge at the same time. Although spikes are the most important epileptic waves 

for diagnosis and epilepsy source localization [4],  they are also the morphology most difficult 

of  identification. Moreover, spikes can be confused with eye blink artifacts due to their 

morphological resemblance, which makes the visual assessment more challenging. Another 

hurdle to epileptic spike recognition is their transient and subtle nature, which makes them hard 

to distinguish in the time domain. Consequently, visual inspection of EEGs is labor intensive, 

time consuming and prone to human error. Moreover, long-term training is necessary to obtain 

the required level of EEG recognition skill. Therefore, recent studies tend to employ computer-

based methods for EEG analysis to reduce the assessment period, increase precision in analysis 

and minimize human error. Diagnosis of changes in EEG using automated systems has been 

under scrutiny over the past several decades [5–9].  
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Detection of abnormal activities in EEG is difficult using conventional methods, due to their 

slight amplitude in the time domain. Moreover, using mimic-based methods to convert the 

qualitative diagnosis features into more quantitative signals creates problems in classification, 

besides requiring a neurological background. Although time-domain analyses such as time-

averaging method are widely used in signal processing to detect epileptic spikes with similar 

morphology to averaged template, they struggle to figure out which frequencies are involved in 

those events. On the other hand, although frequency-domain analyses such as Fourier transform 

separate the frequencies that exist in a signal, they cannot find the time of their manifestation. 

Time-Frequency (T-F) analysis techniques have, therefore, been developed to overcome these 

limitations [10]. T-F methods can be categorized into two main types: fixed-basis and data-driven 

methods. Even though Empirical Mode Decomposition (EMD) and its multivariate extension are 

data-driven and do not have the limitations of fixed-basis methods such as wavelet and Machine 

Matching Pursuit (MMP), the results have demonstrated that wavelet-based algorithms show 

better performance in the context of epilepsy detection [11, 12]. Many researchers implemented 

Singular Value Decomposition (SVD) to feature epileptic discharges [13–15]. However, since 

the final results are evaluated visually, the efficiency of this method is still unclear. Guarnizo and 

Delgado [16] used the EMD method as a feature extractor, and the extracted features were 

instantaneous frequency (IF), amplitude, skewness, kurtosis, and Shannon's entropy. They 

implemented Linear Bayes classifier and the reported accuracy was 98%. Later, Bajaj and Pachori 

[17] also used EMD method with Intrinsic Mode Function (IMF) to classify epileptic and non-

epileptic EEG. Classification accuracy of 90% was obtained, in the latter study. Tafreshi et al. 

[18] examined the efficiency of EMD method using Multilayer Perceptron Neural Network 

(MPNN) and Self-Organizing Map (SOM). They reported that a combination of IMF features 

and mean feature of wavelet coefficients resulted in classification accuracy of 95.42% and 

92.14% for MPNN and SOM, respectively. Although using EMD to feature epileptic spikes may 
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result in high classification accuracy, not only does the EMD method suffer from the mode 

mixing issue, but also it can only analyze one channel at a time. Zahra et al. [19] reported 87.2% 

of total classification accuracy using Multivariate Empirical Mode Decomposition (MEMD) 

feature extraction method and Artificial Neural Network (ANN), which shows the relative 

inefficiency of MEMD in detecting epileptic spikes as compared to other methods. Moreover, 

according to the results from literature, WT method has proved to have the highest capability to 

retrieve important hidden information in the time-domain of non-stationary signals such as EEG, 

with less computational complexity [3, 6, 20–29]. Therefore, in the current study WT was 

employed to remove eye blink artifact and extract epileptic spike feature from noise-free EEG. 

However, choosing the proper mother wavelet which features the signal of interest plays a critical 

role. For instance, a mother wavelet which can differentiate eye blink artifact from epileptic spike 

with less distortion is desirable. 

Furthermore, since artificial neural networks (ANNs) have superior predictive powers  

compared to signal processing methods, they have been used as computational applications to 

recognize and classify disease patterns [30–35]. In addition, while dealing with uncertainty in 

making decisions, fuzzy systems play a key role in medical applications. As a result, fuzzy 

systems have received ongoing attention from researchers in production techniques, modern 

information technology, decision making, diagnostics, pattern recognition, data analysis and 

other related fields [36–40].   

To utilize the capabilities of ANN and fuzzy systems, the adaptive neuro-fuzzy inference 

system (ANFIS) was developed and has demonstrated remarkable success in modeling 

nonlinear functions in its applications. In ANFIS, the membership function factors are taken out 

from a data set that defines the system performance. The ANFIS acquires specifications in the 

dataset and fine-tunes the system factors based on the known error criterion [41, 42]. ANFIS 
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has been effectively employed in biomedical engineering for classification and data analysis 

[26, 43–45]. Thus, ANFIS was utilized in this study for classification purpose. 

Since EEG has small amplitude, different internal and external artifacts may affect its analysis 

and need to be removed. Some of these artifacts like cardiac or muscular activities or main 

power frequency are easily differentiable from epileptic spikes, whereas eye blink artifacts can 

easily be confused with epileptic spikes due to their morphological resemblance. Although 

many studies have been conducted to remove eye blink artifact from normal EEG,  eye blink 

artifact removal from epileptic EEG is more complex due to the morphological resemblance of 

epileptic spikes and eye blink artifacts [46]. In most of the previous studies, this artifact was 

visually detected from epileptic EEG by experts. This approach is time consuming and needs 

professionally trained specialists to recognize this artifact. Due to inevitable human error, even 

the most expert and experienced specialists may confuse these artifacts as epileptic spikes, 

rendering their results and diagnosis less accurate [10]. Although there are some studies that 

utilized computer-aided methods such as wavelet Transform (WT), Independent component 

analysis (ICA), Principal Component Analysis (PCA) and regression methods to remove eye 

blink artifact,  these methods have their own limitations. To utilize regression method for the 

purpose of eye blink removal, a neat record of Electrooculogram (EOG) reference is required. 

However, since EOG electrodes are placed near the eyes, EOG recordings comprise EEG signal 

as well. Therefore, regression methods suffer from a lack of EOG and EEG independency [47]. 

Since PCA method extracts spatially orthogonal components, it is not an appropriate method to 

remove eye blink artifacts, due to the fact that EEG and eye blink artifacts sources are not 

necessarily spatially orthogonal to each other. Moreover, using ICA method to remove eye 

blink artifact also needs expertise to identify the artifact components to be excluded from the 

signal. Nevertheless, all the above-mentioned methods were reported as successful in removing 
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eye blink artifact without investigating distortion of the signal.  Wavelet method, on the other 

hand, shows that if a proper mother wavelet is chosen, higher signal to noise ratio with less 

distortion would be achieved to remove artifacts. 

To overcome these problems, in the present study a fully automated, hybrid Artificial 

Intelligence (AI) based system with embedded eye blink artifact remover is developed. Bior 3.3 

mother wavelet is used to remove eye blink artifact effectively with less distortion and expert 

supervision. Since epileptic spikes lie in the delta frequency band [48], in this methodology 

Duabechies 4 mother wavelet is used for 3 levels of decomposition to extract the signal of 

interest’s features. Since the quantum of change in frequency distribution in delta frequency 

band is much higher in epileptic segments than normal, only standard deviation of delta band 

WT coefficients (two features) were fed to the classifier. The first order Sugeno type ANFIS, 

trained by the combination of gradient descent and least square error is applied to classify the 

feature vectors of the training dataset. The proposed system achieved the highest possible 

classification accuracy with less computational effort (features dimension) and supervision. 

Moreover, it has the potential to be used for unsupervised epileptic seizure detection in clinics 

in order to save time and cost, and to enhance accuracy of the epileptic spike detection process. 

2 Datasets and methods 
 

In the current study, the datasets were taken from an Epilepsy center in Bonn, Germany by 

Ralph Andrzejak [49]. Wavelet method was used for both eye blink removal and epileptic spike 

feature extraction. Moreover, first order Sugeno type ANFIS trained by hybrid method was 

applied to classify epileptic and normal EEG segments. The following sections describe the 

methods employed and datasets used in this study. 
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2.1 Datasets 
 

Two out of the five freely accessible EEG datasets (B and E) [49] were used in this study. 

Different percentages of each dataset were devoted to training the ANFIS, and the remaining 

data were used to evaluate the ANFIS. Each set includes 100 single-channel EEG data with a 

duration of 23.6 seconds (4097 sample). Set B holds scalp EEG recordings of five healthy 

subjects with closed eyes. Set E consists of seizure activity, which was selected from all 

recording spots presenting ictal activity. Set E was recorded intra-cranially. 

The frequency range for all EEGs was 0 − 85 𝐻𝑧, so that band-pass filter to select the desired 

frequency band may be applied. Set B was chosen because alpha rhythm (8 − 13 𝐻𝑧 

frequency range), which is the predominant physiological rhythm, could be identified during 

the relaxed situation of healthy subjects with eyes closed [49]. Useful information of EEG lies 

below 30 𝐻𝑧 frequency. Since Butterworth is a maximally flat magnitude filter wherein the roll 

offs are sharper by increasing its order, therefore, in this study Butterworth filter has been 

applied. To cut out desired frequency range, a Butterworth band-pass order 8 filter was applied. 

Moreover, to remove electrical interface of 50 𝐻𝑧 frequency, a Butterworth band-stop filter 

order 8 was used. Each signal was broken down into 16 segments by a rectangular window, and 

each segment contained 256 samples. No segment has overlapping slides with the next segment. 

All the segments were scored by a specialist to 0 and 1 for healthy and epileptic subjects 

respectively, to have a gold standard (target) both for training and testing the ANFIS.  To 

remove the segments which contain irrelevant information, the standardized normal Probability 

Density Function (PDF) of wavelet coefficients’ statistical features was computed for each 

group. For each dataset (normal and epileptic), the statistical features with P − value < 0.005 

have been discarded. 
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2.2 Methods 
 

The following subsections explain the method applied in the current study. Moreover, the 

quantitative evaluation of eye blink artifact removal is included.  

2.2.1 Wavelet theory, denoising and feature extraction 
 

Wavelet transform (WT) is a developed version of Fourier transform (FT), which allows 

analyzing the signal in time-frequency domain with the advantage of providing multi-resolution 

signal schemes. Wavelets are like high-pass and low-pass filters which break down signal into 

distinct frequency details. Then each detail with resolution related to its scale is investigated. 

Each scale represents a certain coarseness of the signal under study. In Fig.1, wavelet 

decomposition is illustrated schematically. 

 

Fig.1 Schematic of Wavelet decomposition to 3rd level [50] 

A wavelet low-pass filter h needs to satisfy the standard quadrature mirror filter term: 

        1 1 1H z H z H z H z     , 

where H(z) specifies the z-transform of the filter h. Its equivalent high-pass filter is determined 

as: 
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    1G z z H z  . 

Since Continuous Wavelet Transform (CWT) produces many coefficients, Discrete Wavelet 

Transform (DWT) can be employed in order to reduce unnecessary information.  

A sequence of filters with growing size (indexed by i) can be reached by: 

      2

1

i

i iH z H z H z  , 

      2

1  ,     0, , 1
i

i iG z G z H z i I    , 

with the initial condition  0 1H z  . Relation of two sequence scales in time is determined as: 

      1 2ii ih k h h k 
 , 

      1 2ii ig k g h k 
 , 

where the subscript  
m

 writes down the up-sampling by a factor of m and k is the equally 

sampled discrete time. 

The standardized wavelet and scale base functions of  ,i l k ,  ,i l k  can be defined as: 

    2
, 2 2

i

i

i l ik h k l   , 

    2
, 2 2

i

i

i l ik g k l   , 

where the factor 22
i

 is an inner product standardization, i and l are the scale and the translation 

factor, respectively. 
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The DWT can be determined as: 

 
       ,i li

a l x k k


 , 

 
       ,i li

d l x k k


 , 

where 
   i

a l  and 
   i

d l  are respectively the approximation coefficients and the detail 

coefficients at resolution i [44].  

Signal break down process can be continued till those parts of the signal that correlate well with 

the frequencies required for classification of the signal are retained in the wavelet coefficients. 

When analyzing a signal, normally a proper number of level for decomposition is considered 

based on the dominant frequency of the signal under study. 

Signal breakdown process can be continued till those parts of the signal that correlate well with 

the frequencies required for classification of the signal are retained in the wavelet coefficients. 

When analyzing a signal, normally a suitable number of levels for decomposition are 

considered based on the dominant frequency of the signal under study. 

EEG signal can be contaminated by different artifacts that mask our signal of interest. The 

most important internal artifact in the process of epileptic spike detection and epilepsy source 

localization is the eye blink artifact, due to the morphological resemblance between the two. 

Most of the artifacts due to eye blinking, head and eyeball moving usually lie at low frequencies 

[51]. Since the aim of this study is to develop a fully automated algorithm with less human 

interaction, therefore in the present work Bior 3.3 is applied as the mother wavelet due to its 

morphological resemblance to the eye blink artifact and yet differentiable characteristics from 

epileptic spikes [52]. The signal decomposition by DWT was carried out at 6 levels. Then, the 
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sixth approximation signal which included the lowest frequency band and did not have the 

epileptic spike information was removed, and EEG signal was finally reconstructed without 

this approximation.  

2.2.2 Performance measurement for eye blink artifact removal method 

 

The common approach to evaluating the performance of the eye blink removal method is using 

simulated data. In this process, artifact-free EEG is artificially combined with an artifact, then the 

mixed signal is processed using the eye blink removal method. To evaluate the method, some 

feature of the processed signal (e.g. signal-to-noise ratio (SNR)) is computed and compared to 

the artifact-free EEG. However, since the artifact-free (“true”) EEG is unknown while using real 

EEG, the performance of the algorithm is subject to visual inspection of the resulting signals. 

Puthusserypady and Ratnarajah [53] evaluated the eye blink removal method’s performance as 

the ratio of the power of the removed artifact to the remaining EEG: 

 

 
2

1 1

2

1 1

C N

e

C N

E Y

R

Y







, 

where N  is the number of samples and C  the number of channels recorded. 
eE  is the signal 

measured at EEG electrode sites, and Y  is processed EEG after eye blink removal. 

This metric proposed that the higher the ratio is, the better the performance of the algorithm. They 

simply considered that the algorithm is only being applied to data with significant eye blink. 

However, for data without eye blink artifact, a higher ratio does not necessarily indicate better 

performance. Therefore, an evaluation metric which calculates the performance of an eye blink 

removal algorithm constantly on EEG that has periods both with and without eye blink is desired.  
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Borna Nuredine et al. [54] proposed a new metric that shows how much an eye blink removal 

algorithm may distort the underlying EEG. This metric is as follow: 

 

 
2

1

2

1

C

e

C

e

E Y

R

E



 



. 

Whenever 1R  , the power of the processed signal is higher than the original EEG, representing 

that the algorithm has distorted signal or introduced new artifacts. Therefore, the higher the 

percentage of samples ε in which 1R   (how often it removes too much signal), the worse is the 

performance of the eye blink removal method. 

When combined with the power ratio of Puthusserypady and Ratnarajah [53], these metrics can 

be used to effectively evaluate eye blink removal algorithms on real EEG data [54]. Therefore, in 

the current study removal of eye blink artifact has been evaluated both visually by a specialist 

and quantitatively. Visual assessment of EEG segments by a specialist confirms the efficiency of 

this method for eye blink removal. Average values for R and ε over all segments were 17% and 

15%, respectively. These metrics demonstrate that the proposed eye blink removal method 

effectively removed eye blink artifact from healthy and epileptic segments with minimum 

distortion. 

After removing the eye blink artifact, EEG signal can be prepared for the classification step. Since 

preprocessed EEG signals contain 0.5 − 30 𝐻𝑧  frequency component, and epileptic spike 

information exists in the delta frequency band (1 − 4 𝐻𝑧), in this study 3 levels of decomposition 

were chosen for the epileptic feature extraction step using different mother wavelets (Coif4, 

Sym10, Db1, Db4 and Db2). 

A large number of features were obtained through wavelet decomposition for each segment, 

which reduced the classification speed. To reduce the dimension of features’ vector, some 
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statistical features were employed to characterize time-frequency distribution of EEG segments, 

which are as follows: 

1. Maximum (Max) of wavelet coefficients in each sub-band frequency for each segment. 

2. Mean of wavelet coefficients in each sub-band frequency for each segment. 

3. Standard deviation (STD) of wavelet coefficients in each sub-band frequency for each 

segment.  

These features were calculated over Coefficient Detail 1 (CD1), Coefficient Detail 2 (CD2), 

Coefficient Detail 3 (CD3) and Coefficient Approximation 3 (CA3) wavelet coefficients. 

2.2.3 Adaptive Neuro-Fuzzy Inference System (ANFIS) 
 

ANFIS is a combination of artificial neural network and Fuzzy Sugeno inference system, first 

proposed by Jang [42].  In this system, if-then rules and membership functions are built up in 

accordance with the input data and exploit the adaptive basis to fine-tune the system parameters 

automatically. Fig.2 shows the simple structural design of ANFIS with two inputs (x and y) and 

one output (f). ANFIS contains many non-recursive layers, where each node performs a 

certain role on the obtained inputs . Then, by altering node parameters, each node is adjusted 

and trained. 
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Fig.2 ANFIS architecture [44] 

Here, two fuzzy if-then rules, based on a first order Sugeno model are considered: 

Rule 1: If x  is 
1A  and 𝑦 is 

1B then z  is  1 1 1 1 1 1 1,   ;   ,   ,  f x y p q r xp yq r   , 

Rule 2: If x  is 
2A  and y  is 

2B  then z  is  2 2 2 2 2 2 2,   ;   ,   ,f x y p q r xp yq r   , 

where x and y stand for the inputs, 
iA  and 𝐵𝑖 stand for the fuzzy sets, 

if  is the outcome in the 

fuzzy domain imposed via the fuzzy rule, 
ip , 

iq  and 
ir  are the intended parameters obtained 

within the training process. A circle illustrates a fixed node, while a square point toward an 

adaptive node.  

Jang [42] proposed 5 different layers to explain the performance of the nodes:  

Layer 1:  An initial assumption for membership functions is considered. For instance, 

generalized bell: 
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. 

 In the current study, the fuzzy rule architecture of the ANFIS classifier was designed by using a 

generalized bell-shaped membership function. For medical applications including the current 

study, generalized bell membership function has better performance of classification in 

comparison with others due to the fact that it deals with imprecision, and provides smoothness 

and concise notation, along with the freedom to adjust steepness. By changing the values, the 

membership function profile also alters accordingly. The parameters involved in this layer are 

called the premise factors. The outputs of layer 1 are the fuzzy membership grade of the inputs, 

which are given by: 

1, ( ), 1,2
ii AQ x i  , 

1, ( ), 3,4
ii BQ y i  , 

where, any membership function can be accepted by  iA x , and  2iB x  . 

Layer 2: The so-called firing strength of the rules are obtained from output of this layer in the 

fuzzy inference system. The output of this layer can be denoted as: 

   2, , 1,2
i ii i A BQ w x y i    . 

Layer 3: In this layer, the fraction of the ith rule’s firing strength is computed. Normalized firing 

strengths (output of this layer), can be computed as: 

3,

1 2

, 1, 2i
i i

w
Q w i

w w
  


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Layer 4: The so-called consequent parameters are involved parameters in this layer. The 

outputs of this step are calculated by: 

4, ( ) 1, , 2i ii i i i iQ w f w xp yq r i     . 

Layer 5: Here, all the nodes are fixed, and all received signals from previous steps are added up. 

The ultimate output can be calculated by: 

2

2
1

5, 2
1

1

i i

i
i out i i

i
i

i

w f

Q f w f overal output

w







   





. 

Two approaches are used to update the ANFIS factors. Gradient descent method can be used in 

the backward pass to adjust premise parameters which describe membership functions. Least 

squares approach also can be employed in the forward pass to find consequent parameters. 

Consequent parameters figure out the coefficients of each equation. Using a combination of 

gradient descent in backward pass and least squares method in forward pass while the other 

pass is fixed is called the hybrid learning method. In the current work, a hybrid learning 

approach is the chosen  method, since this approach converges faster [26]. 

3 Results and discussions 
 

The results obtained using the proposed hybrid method with embedded unsupervised eye blink 

artifact removal and the related discussions are given in the following subsections.  

3.1 Results 
 

In the proposed approach, firstly eye blink artifacts are removed using DWT as explained in 

section 2.1 and validated using visual assessment by a specialist and quantitative metrics. Then, 
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to find the most suitable mother wavelet that best features epileptic spikes, different types of 

mother wavelets (Coif4, Sym10, Db1, Db4 and Db2) are applied. Results show the superiority of 

the Duabechies family in extracting the epileptic spike features. Fig.3 shows the classification 

accuracy using ANFIS for these wavelets. As can be seen, the highest possible classification 

accuracy is obtained by using Duabechies 4 mother wavelet as feature extractor. 

 

Fig.3 Total classification accuracy of different mother wavelets 

The dataset is divided into two groups; training and testing. The ultimate membership function 

deviations (after training) in comparison to the input parameters’ original membership functions 

(before training) were studied. Five regions described as: very small (VS), small (S), medium 

(M), large (L) and very large (VL), were considered for each input parameter’s membership 

function. 3 and 4 input parameter membership functions resulted in lesser classification 

accuracy, as compared to 5 membership functions, based on their confusion matrix and least 

square error. The result of analysis of original and ultimate membership functions shows 

significant variations in the final membership function. These significant changes display the 

saliency of the selected features for the classification stage. 
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Fig.4 a) Initial membership function and final membership function for STD feature CA3, b) 

Initial membership function and final membership function for STD feature CD3 

Fig.4 illustrates the original membership functions and ultimate membership functions of 

ANFIS. This figure shows that ANFIS fed by STD extracted from CA3 (input 1) and CD3 

(input 2) using Db4 results in a considerable change in the final membership function of the 
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wavelet coefficients. Moreover, network error convergence which shows the difference between 

estimated values by ANFIS in comparison with actual value (target) is derived to evaluate 

network performance. Fig.5 displays network error convergence. To choose the number of 

epochs, a few points were considered. The linguistic meaning of final membership function 

was maintained while minimizing training errors and avoiding data overfitting. Final error 

convergence of trained ANFIS is about 0.005 for 800 epochs. Although zero error is desirable 

for a network, but it is also important to avoid overfitting. Therefore, training of the ANFIS 

network was stopped at 800 epochs with network error convergence of 0.005 after examining 

500, 700 and 1000 epochs.  

 

 

Fig.5 Network error convergence of ANFIS for STD feature CA3 and CD3 

To verify the accuracy of the proposed algorithm and to classify epileptic spikes after training, 

the remaining data were used for testing. The intention of classification is to label input 

forms to one of the classes (healthy or epileptic), displayed with outputs limited in the 
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range of 0 to 1 which show the probability of class membership. Generally, a form is labeled 

as a class based on its selection criteria to classify data.  

There are some definitions before reporting the results: 

True Positive (TP): The number of epileptic segments that are correctly classified as epileptic. 

False Positive (FP): The number of normal segments that are incorrectly classified as epileptic. 

True Negative (TN): The number of normal segments that are correctly classified as normal. 

False Negative (FN): The number of epileptic segments that are incorrectly classified as normal. 

The outcome of classification using the ANFIS model is usually represented by a confusion 

matrix defined by labelling the desired classification on the columns and the actual network 

outputs on the rows. This matrix is used to evaluate the robustness and accuracy of the classifier. 

The comparisons were based on two scalar performance measures derived from the confusion 

matrices; namely specificity and sensitivity. 

Specificity: number of normal subjects identified correctly/number of normal subjects in total. It 

can be calculated as follows:  

 
TN

Specificity
TN FP




. 

Sensitivity: number of classified epileptic patients recognized correctly/number of epileptic 

patients in total. It can be calculated as follows:  

 
TP

Sesitivity
TP FN



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Total classification accuracy: number of classified subjects classified correctly/number of total 

subjects. 

    
TP TN

Total classification accuracy
TP FN FP TN




  
. 

There are two classes in the current study: epileptic and normal. As mentioned before, epileptic 

spike information consists of delta range (less than 4 𝐻𝑧). Thus, the sub-bands that contain 

epileptic information are CA3 and CD3. To start the classification, ANFIS was fed with statistical 

features which were extracted from CA3 using Db4. Then, the combination of statistical features 

was examined to train ANFIS. Table 1 shows the results of ANFIS fed with each statistical feature 

extracted from CA3. As can be seen in this table, the highest sensitivity with fair specificity 

belongs to the ANFIS fed with STD extracted from CA3. 

Table 1 Result comparison for one-dimension ANFIS (Db4) 

 Maximum Mean STD 

Sensitivity (%) 97 67.625 98.5 

Specificity (%) 92.25 94.5 94.875 

 

Since CD3 also contains epileptic spike information (delta range), it can be used to further 

improve the results. In this study, this was achieved by combining the statistical features 

extracted from CA3 and CD3. ANFIS fed with this combination demonstrates a significant 

improvement in its results. The confusion matrix of the ANFIS fed by STD of CA3 and CD3 is 

represented in Table 2. The desired result for a classifier is to have the least rate of 

misclassification for the classes being analyzed. As is evident from this table, from 638 

epileptic features fed to the ANFIS, all have been correctly identified as epileptic class, which 

represents 100% sensitivity for the ANFIS classifier and 0% misclassification rate. Moreover, 

of 380 healthy features fed to the ANFIS, all have been correctly classified as normal class, 
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which indicates 100% specificity of the ANFIS classifier. Since the total accuracy is the 

average of sensitivity and specificity, therefore, the accuracy of the ANFIS which is fed with 

the STD features of CA3 and CD3 is 100%.  

Table 2 Confusion matrix STD feature CA3 and CD3 

A
ct

u
al

 o
u
tp

u
t 

 Desired 

 Epileptic Normal 

Epileptic 638 0 

Normal 0 380 

3.2 Discussions 
 

Table 3 shows the total accuracy, sensitivity and specificity for different classifiers used in 

earlier studies, including the current algorithm’s results. As  can be seen, apart from the current 

study, only two more studies achieved 100% accuracy: Subasi and Gursoy [28] and Polat & 

Güneş [55].  Polat & Güneş [55] applied Fast Fourier Transform (FFT) method for feature 

extraction, PCA for dimension reduction and AIRS with fuzzy resource allocation classifier. 

Although they achieved 100% accuracy, since EEG is a non-stationary signal, using FFT which 

treats a signal as a stationary one is not suitable to extract epileptic EEG features. Subasi & 

Gursoy [28] computed linear discriminant analysis (LDA) weight for features extracted from 

wavelet coefficients  of each sub-band. They employed Support Vector Machine (SVM) as 

classifier. Although Subasi & Gursoy [28] also obtained 100% accuracy,  applying LDA  to 

reduce the classifier’s input dimensions is not necessary, when the same accuracy 

can be obtained without this computation effort. As is evident, normal subjects and 

epileptic patients were classified with 100% accuracy via the proposed algorithm by only 

using the quantum of changes in frequency distribution in delta frequency band (two 

features). Not only has the current study achieved the highest accuracy using two 

features of delta frequency band (less computation efforts) , it also has an unsupervised 
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embedded eye blink remover. Eye blink artifact removal is an important part of epilepsy 

diagnosis and source localization because such artifacts can easily be confused with epileptic 

spikes (the signal of interest). Usually, this artifact is discarded either by visual inspection or by 

computer-aided method, which needs supervision and expertise. However, the current study 

proposes an epileptic classification algorithm using WT features and ANFIS classifier with 

embedded unsupervised eye blink removal. Based on these results, the proposed ANFIS model 

shows high potential for use in unsupervised epileptic seizure detection from long-term EEG in 

clinics. Moreover, since epileptic spike detection is a pre-stage toward epilepsy source 

localization, the proposed method can be used to design an integrated algorithm of pre-surgical 

evaluation toward epilepsy source localization. High accuracy, time saving, precision 

improvement and less computational effort with reduced expert supervision are among the 

advantages of the current work.  

Table 3 Comparison of different methods for EEG classification 

Method Reference 
Total accuracy 

(%) 

Specificity 

(%) 

Sensitivity 

(%) 

MLPNN- LBDWT- LR [56] 92.5 92.3 92.8 

RNN-Lyapunov exponents [57] 96.79 97.38 96.13 

ANFIS-WT [44] 98.68 99.67 98.678 

ME-WT [58] 94.5 94 95 

ANFIS-WT [59] 94 93.7 94.3 

FFT-Decision tree classifier [60] 98.72 99.31 99.40 

AIRS(Fuzzy)-FFT-PCA [55] 100 100 100 

SVM-WT-LDA [28] 100 100 100 

k.NN-WT [22] 99.5 - - 

WT-ANFIS with embedded eye 

blink remover 

Current study 100 100 100 

4 Conclusions 
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Visual inspection of EEG signals toward epileptic spike recognition is labor intensive, time 

consuming and prone to human error. Moreover, due to morphological similarity of epileptic 

spikes and eye blink artifacts, they may be confused in the process of epileptic spike detection, 

and hence the need for an automated approach. Unfortunately, few studies considered removing 

eye blink artifact prior to epileptic spike detection, which may lead to faulty classification and 

wrong source localization. Therefore, in the current study a fully automated algorithm with less 

human interaction was developed. This approach comprises an unsupervised algorithm to 

remove eye blink artifacts via DWT by using Bior 3.3. Two hundred EEG signals, each with a 

duration of 23.6 seconds and 4097 sample points, were used (100 signals from healthy subjects 

and 100 from epileptic subjects). Each signal was windowed into 16 segments and the noisy 

ones were discarded. DWT coefficients via Db4 mother wavelet were extracted for 3 levels, and 

statistical features of all 4 sub-bands were calculated. The statistical features that present the 

changes in frequency distribution of delta frequency band improved the ANFIS classifier 

performance. This approach showed significant improvements, both in total accuracy and 

sensitivity, compared to other similar works from the literature. The proposed system has the 

potential to be used in diagnosis and warning systems in clinics to save time and increase the 

accuracy of epilepsy diagnosis. Additionally, this system can be employed to detect epileptic 

spikes as an early stage of pre-surgical evaluation toward epilepsy source localization.  
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Table 1 Result comparison for one dimension ANFIS (Db4) 

 Maximum Mean STD 

Sensitivity (%) 97 67.625 98.5 
Specificity (%) 92.25 94.5 94.875 
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Table 2 Confusion matrix STD feature CA3 and CD3 

  Desired 

  Epileptic Normal 

O
u

tp
u

t Epileptic 638 0 

Normal 0 380 
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Table 3 Comparison of different methods for EEG classification 

Method 
Reference Total accuracy 

(%) 

Specificity 

(%) 

Sensitivity 

(%) 

MLPNN- LBDWT- 

LR 

[38] 92.5 92.3 92.8 

RNN-Lyapunov 

exponents 

[39] 96.79 97.38 96.13 

ANFIS-WT [29] 98.68 99.67 98.678 

ME-WT [40] 94.5 94 95 

ANFIS-WT [41] 94 93.7 94.3 

FFT-Decision tree 

classifier 

[42] 98.72 99.31 99.40 

AIRS(Fuzzy)-FFT-

PCA 

[37] 100 100 100 

SVM-WT-LDA [17] 100 100 100 

k.NN-WT [11] 99.5 - - 

WT-ANFIS with 

embedded eye blink 

remover 

Current study 100 100 100 
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