
Ultrasonic waves in uniaxially stressed multilayered and one-dimensional phononic
structures: Guided and Floquet wave analysis
Andriejus Demčenko, Rab Wilson, Jonathan M. Cooper, Michael Mazilu, and Arno W. F. Volker

Citation: The Journal of the Acoustical Society of America 144, 81 (2018); doi: 10.1121/1.5044528
View online: https://doi.org/10.1121/1.5044528
View Table of Contents: https://asa.scitation.org/toc/jas/144/1
Published by the Acoustical Society of America

ARTICLES YOU MAY BE INTERESTED IN

Finite-element analysis of non-collinear mixing of two lowest-order antisymmetric Rayleigh–Lamb waves
The Journal of the Acoustical Society of America 144, 53 (2018); https://doi.org/10.1121/1.5044422

On the frequency domain formulation of the generalized sound extrapolation method
The Journal of the Acoustical Society of America 144, 24 (2018); https://doi.org/10.1121/1.5044515

Acoustic properties of porous microlattices from effective medium to scattering dominated regimes
The Journal of the Acoustical Society of America 144, 319 (2018); https://doi.org/10.1121/1.5046068

Ultrasound-based cell sorting with microbubbles: A feasibility study
The Journal of the Acoustical Society of America 144, 41 (2018); https://doi.org/10.1121/1.5044405

Scattering from a pair of closely spaced bubbles
The Journal of the Acoustical Society of America 144, 104 (2018); https://doi.org/10.1121/1.5044754

Modeling sound scattering using a combination of the edge source integral equation and the boundary element
method
The Journal of the Acoustical Society of America 144, 131 (2018); https://doi.org/10.1121/1.5044404

https://images.scitation.org/redirect.spark?MID=176720&plid=1295647&setID=407059&channelID=0&CID=444696&banID=520068921&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=8aa4a3ab478c12dbd8d35691b463eac2583c38b3&location=
https://asa.scitation.org/author/Dem%C4%8Denko%2C+Andriejus
https://asa.scitation.org/author/Wilson%2C+Rab
https://asa.scitation.org/author/Cooper%2C+Jonathan+M
https://asa.scitation.org/author/Mazilu%2C+Michael
https://asa.scitation.org/author/Volker%2C+Arno+W+F
/loi/jas
https://doi.org/10.1121/1.5044528
https://asa.scitation.org/toc/jas/144/1
https://asa.scitation.org/publisher/
https://asa.scitation.org/doi/10.1121/1.5044422
https://doi.org/10.1121/1.5044422
https://asa.scitation.org/doi/10.1121/1.5044515
https://doi.org/10.1121/1.5044515
https://asa.scitation.org/doi/10.1121/1.5046068
https://doi.org/10.1121/1.5046068
https://asa.scitation.org/doi/10.1121/1.5044405
https://doi.org/10.1121/1.5044405
https://asa.scitation.org/doi/10.1121/1.5044754
https://doi.org/10.1121/1.5044754
https://asa.scitation.org/doi/10.1121/1.5044404
https://asa.scitation.org/doi/10.1121/1.5044404
https://doi.org/10.1121/1.5044404


Ultrasonic waves in uniaxially stressed multilayered
and one-dimensional phononic structures: Guided
and Floquet wave analysis
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This paper shows that acoustoelasticity in one-dimensional (1D) multilayered isotropic hyperelastic

materials can be understood through the analysis of elastic wave velocities as a function of applied

stress. This theoretical framework is used for eigenvalue analyses in stressed elastic structures

through a reformulation of the stiffness matrix method, obtaining modal solutions, as well as reflec-

tion and transmission coefficients for different multilayered configurations. Floquet wave analysis

for the stressed 1D structures is supported using numerical results. VC 2018 Author(s). All article
content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY)
license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1121/1.5044528
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I. INTRODUCTION

Multilayered elastic structures are widely investigated

in a broad range of fields including geophysics, bioengineer-

ing, manufacturing and communications. In these studies,

one can readily characterise both naturally layered struc-

tures, such as soil and skin, and artificial structures including

material composites. Despite their apparent differences in

composition, these layered media can, in principle, be ana-

lyzed in terms of their interaction with elastic guided waves,

such as Lamb or surface waves.

In general, the propagation velocity of such acoustic

waves will change in the presence of static or residual

stresses within the layered media (a well understood phenom-

ena known as the acoustoelastic effect) (Hughes and Kelly,

1953; Pao and Gamer, 1985). Such changes in propagation

can be used in a variety of applications including the inver-

sion of media properties (Korneev and Glubokovskikh,

2013), the detection of soft tissue changes (Gennisson et al.,
2007) and the estimation of residual stresses in engineered

structures (Hughes and Kelly, 1953; Kino et al., 1980). This

effect can also be used for the measurement of the third order

elastic constants (Egle and Bray, 1976) and for more accurate

design of communication devices (Zhang et al., 2013) where

any residual stress can affect wave propagation significantly.

Acoustoelasticity, based upon a continuum theory of

small disturbances superimposed on an elastically deformed

body involving third order elastic constants in the constitutive

equations, was initially developed for ultrasonic bulk waves

(Hughes and Kelly, 1953; Pao and Gamer, 1985). Generally,

previously reported work presents the application of the

acoustoelastic theory for the analysis of guided waves (Lamb

wave type) propagating in biaxially stressed plates (Gandhi

et al., 2012), providing a formulation of a transfer matrix

method for a single layer to calculate phase velocity disper-

sion curves of guided waves. Other work (Dubuc et al., 2017;

Gandhi et al., 2012; Kubrusly et al., 2016; Pei and Bond,

2016) also considers Lamb wave propagation in single lay-

ered plates. Recently it has been shown that acoustoelastic

theory can be understood within a framework of non-linear

wave mixing (Demčenko et al., 2018).

Although acoustoelastic theory has been used to under-

stand Lamb wave propagation in single plates, the analytical

methods currently used have constraints; for example, the

transfer matrix methods are numerically unstable (Rokhlin

and Wang, 2002; Tan, 2006). There is also limited reported

work dedicated to the acoustoelastic analysis of the guided

wave in layered or multilayered plate-like structures (Mseddi

et al., 2014; Osetrov et al., 2000; Qu and Liu, 1998). Two

reported approaches using transfer matrix methods and recur-

sive stiffness matrix methods (Mseddi et al., 2014; Osetrov

et al., 2000) considered the acoustoelastic surface wave anal-

ysis and used phase velocity to calculate the surface wave dis-

persion curves although guided waves, such as Lamb waves,

were not analyzed. For example, work by Qu and Liu (1998)

considers acoustoelastic phase velocity Lamb wave analysis

in a tri-layered structure using the transfer matrix method,

although the analysis was limited to the direction of the Lamb

waves propagation with respect to the direction of the applied

stress, and as such, no shear horizontal wave motion coupling

to sagittal wave motion was discussed in the work.

More recent research (Galich et al., 2017) presents an

analysis of elastic wave propagation in finitely deformeda)Electronic mail: andriejus.demcenko@glasgow.ac.uk
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layered materials within long wavelength regimes, with small

amplitude motions, normal to the wave motion. However, the

work did not present an analysis of the ultrasonic wave

response from submersed stressed plates in terms of the

reflection and transmission coefficients of ultrasonic waves.

Given the importance of such submersed and air-coupled

ultrasonic measurements in both engineering research and

industrial applications, including their role as multilayered

composite laminates (Demčenko et al., 2006; Lee and Soutis,

2007; Li et al., 2017), it is useful to analyse such periodic struc-

tures. These composite laminates also respond mechanically to

ultrasound in a manner analogous to a one-dimensional (1D)

phononic structure and can be considered as having band-gaps

(Kushwaha et al., 1993), enabling the use of Floquet wave

theory in their analysis (Braga and Herrmann, 1992; Wang

and Rokhlin, 2002a). Wave propagation analysis in more com-

plex periodic structures has been reported for low frequency

mechanical waves showing the effect of the pre-stress on the

resonant bandgap position and magnitude (Wang et al., 2014).

The main aim of this work is to investigate the application

of the Floquet wave theory on statically stressed multilayered

1D periodic structures to enable the development of an effi-

cient matrix method for analysis of the elastic wave velocities

with associated reflection and transmission coefficients. The

analysis was conducted by means of acoustoelasticity theory

for isotropic hyperelastic structures with application of this

theory to stable formulation of recursive matrix methods used

in the eigenvalue analysis of statically stressed elastic struc-

tures. We show that it is possible to use singular value decom-

position for calculations of Floquet wave polarization vectors.

Our work first shows how the recursive matrix method,

based on the stiffness matrix, can be used for guided waves

analysis in stressed multilayered structures, generating modal

solutions as well as the reflection and transmission coefficients.

Subsequently, statically stressed periodic media were analyzed

in terms of Floquet wave theory—with Floquet wavenumbers

and reflection coefficients from a periodic semi-space being

calculated using the recursive stiffness matrix method when

periodic layered semi-space is an effective homogeneous and

inhomogeneous medium. Finally, we draw general conclusions

from the study in the context of its application in the analysis

of composite laminates in engineering research.

II. STIFFNESS MATRIX METHOD FOR STATICALLY
STRESSED LAYERED MEDIA

Drawing upon the stability and universality of the recur-

sive stiffness methods in elastic wave analysis of multilayered

anisotropic media (Rokhlin and Wang, 2002), we applied this

method for wave propagation analysis. An idealized multilay-

ered structure and coordinate system was used, shown in Fig.

1 where wave propagation is considered in the x–z plane. The

displacement vector uj is represented as a sum of six partial

waves (quasi-longitudinal, fast quasi-shear, and slow quasi-

shear) in the jth anisotropic elastic layer, accordingly

uj ¼
X3

n¼1

ðaþn pþn eikþn
z ðz�zjÞ þ a�n p�n eik�n

z ðz�zj�1ÞÞj

� eiðkxxþkyy�xtÞ; (1)

where uj ¼ ðuj
x; u

j
y; u

j
zÞ

T; T is the transpose. Further, p
6

n

¼ ðp6
x ; p

6
y ; p

6
z Þ

T
are the unit displacement polarization vec-

tors corresponding to waves with k6
z wave vectors, respec-

tively; 6 indicates the wave propagation direction regarding

to z-axis, n(¼ 1, 2, 3) denotes the nth partial wave. The coor-

dinate system is selected so that the x–z plane coincides with

the wave incident plane; hence ky¼ 0 in Eq. (1).

In the presence of static stress, the Christoffel equation

for a single layer is given by (Gandhi et al., 2012)

ðAijklkjkl � qx2dikÞpk ¼ 0: (2)

Ignoring rotation terms, the nonsymmetric tensor Aijkl then

becomes

Aijkl ¼ cijkl þ cjlmnei
mndik þ cijmle

i
km

þ cmjkle
i
im þ cijklmnei

mn; (3)

where kj,l is the wave vector, q is the volumetric mass den-

sity of the predeformed state and q ¼ q0ð1� ei
nnÞ, and q0 is

the volumetric mass density of the un-deformed state (we

neglect density variations). x¼ 2pf, f is the frequency, dik

is the Kronecker delta, pk is the unit displacement polariza-

tion. Here and below, free indexes mean summation, cijkl

and cijklmn are the second and third order elastic constants,

respectively, and ei
mn is the incremental strain which can be

calculated from the incremental stress equation (Gandhi

et al., 2012)

Ti
ij ¼ cijkle

i
kl: (4)

Considering elastic wave propagation in the x–z plane,

Eq. (2) can be rewritten and solved for the eigenvectors k6n
z ,

FIG. 1. (Color online) Multilayered structure and coordinate system for

waves propagating in the x–z plane. k0 is the incident plane wave, h is the

incidence angle of the incident wave, dj is the thickness of the jth layer.

Arrows indicate three partial waves going down and up in the jth layer,

respectively.
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det

K11 K12 K13

K12 K22 K23

K13 K23 K33

2
64

3
75 ¼ 0; (5)

where the elements Kik in the x–z plane are

Kik ¼ Ai1k1k2
x þ ðAi1k3 þ Ai3k1Þkxkz þ Ai3k3k2

z � qx2dik;

(6)

where kx is the horizontal component of the incident wave k0.

Equation (5) can be solved using Cardano’s method for

solving cubic equations (Mignogna, 1989). When the verti-

cal wavenumbers kz are known, the unit displacement polari-

zation vectors p6
n are calculated as eigenvectors of Eq. (5).

A displacement polarization calculation procedure based

upon the adjugate tensor for Cristoffel’s tensor is given in

Rokhlin et al. (1986), and Rokhlin and Wang (2002) and it is

different from the procedure used in Gandhi et al. (2012).

Normal power flux was used to sort the wavenumbers

due to its applicability to Floquet wavenumbers (Potel et al.,
2001) with kz arranged according to propagation directions

(up zþ and down z–).

In the presence of the static stress, the stress vector of

the partial waves is given as

rj ¼
X3

n¼1

ðaþn dþn eikþn
z ðz�zjÞ þ a�n d�n eik�n

z ðz�zj�1ÞÞj

� eiðkxx�xtÞ; (7)

where ðd6
i Þj ¼ ðBi3lnknp6

l Þj and (Gandhi et al., 2012)

Bijkl ¼ cijkl þ cijmle
i
km þ cijklmnei

mn: (8)

Single layer stiffness matrix is (Rokhlin and Wang, 2002)

rj�1

rj

" #
¼

D� DþEþ

D�E� Dþ

" #

�
P� PþEþ

P�E� Pþ

" #�1

j

uj�1

uj

" #
; (9)

or in a compact form

rj�1

rj

" #
¼ Kj

uj�1

uj

" #
¼

K
j
11 K

j
12

K
j
21 K

j
22

" #
uj�1

uj

" #
; (10)

where P6¼½p6
1 ;p

6
2 ;p

6
2 �;D6¼½d6

1 ;d
6
2 ;d

6
2 �;E6¼Diag½eik61

z dj;

eik62
z dj;eik63

z dj �.
The terms P6; D6; E6 can however be re-arranged,

formulating a hybrid matrix for a layer (Tan, 2006)

uj

rj�1

" #
¼

Pþ P�E�

DþEþ D�

" #

�
Dþ D�E�

PþEþ P�

" #�1

j

rj

uj�1

" #
; (11)

or in a compact form

uj

rj�1

" #
¼ Hj

rj

uj�1

" #
¼

H
j
11 H

j
12

H
j
21 H

j
22

" #
rj

uj�1

" #
: (12)

Accordingly, the following relationships can be written for

the stiffness and hybrid matrices, demonstrating how it is easy

to move from one matrix system to another (Tan, 2006),

Kj ¼
ðHj

11Þ
�1 ðHj

11Þ
�1

H
j
12

H
j
21ðH

j
11Þ
�1

H
j
22 �H

j
21ðH

j
11Þ
�1

H
j
12

" #
; (13)

Hj ¼
ðKj

11Þ
�1 �ðKj

11Þ
�1

K
j
12

K
j
21ðK

j
11Þ
�1

K
j
22 �K

j
21ðK

j
11Þ
�1

K
j
12

" #
: (14)

For simplicity, further analysis is conducted using the

stiffness matrix formulation, although it is useful to note that

the hybrid matrix formulation can be attractive for an analysis

of the Floquet waves in periodic media due to the reported QZ

eigenproblem factorization of the hybrid matrix (Tan, 2010).

The whole layered or multilayered structure recursive stiffness

matrix is (Rokhlin and Wang, 2002)

KJ ¼
KJ�1

11 þKJ�1
12 ðK

j
11 �KJ�1

22 Þ
�1

KJ�1
21 �KJ�1

12 ðK
j
11 �KJ�1

22 Þ
�1

K
j
12

K
j
21ðK

j
11 �KJ�1

22 Þ
�1

KJ�1
21 K

j
22 �K

j
21ðK

j
11 �KJ�1

22 Þ
�1

K
j
12

" #
; (15)

where KJ is the whole stiffness matrix for the top J layers, KJ�1 is the total stiffness matrix for the j � 1 layers. Using the

whole stiffness matrix, the Lamb wave dispersion equation is given by

detðKJÞ ¼ 0: (16)

Amplitude reflection and transmission coefficients for submersed or embedded elastic structures are given by (Rokhlin and

Wang, 2002)

Ra

Ta

" #
¼ K11P�0 � D�0

K21P�0

" #
�K11Pþ0 þ Dþ0 �K12P�Nþ1

�K21Pþ0 �K22P�Nþ1 þ D�Nþ1

" #�1

; (17)
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where P6
0;Nþ1; D6

0;Nþ1 are the top and bottom semi-space terms.

Explicit terms P6
0;Nþ1; D6

0;Nþ1 for fluid semi-spaces are given

in Rokhlin and Wang (2002). For a structure submersed in a

fluid, the explicit amplitude reflection and transmission coeffi-

cients are given by

Ra ¼
S33

11 � K
� �

S33
22 � K

� �
� S33

21S33
12

S33
11 þ K

� �
S33

22 � K
� �

� S33
21S33

12

; (18)

Ta ¼
2KS33

21

S33
11 þ K

� �
S33

22 � K
� �

� S33
21S33

12

; (19)

where S33
ij are the (3,3) elements in the matrix Sij; S ¼ K�1 is

the compliance matrix (Rokhlin and Wang, 2002), K ¼ cos h=
ðixqf cf Þ, where qf is the mass density of the fluid and cf is the

ultrasonic wave speed in the fluid. Energy reflection and trans-

mission coefficients are calculated from Eqs. (18) and (19)

taking square of the expressions.

III. GUIDED WAVES IN A STRESSED TRI-LAYER

A stressed layered structure, with a co-ordinate system

for waves propagating in the x–z plane is depicted in Fig. 2,

comprising a polyvinylchloride (PVC) layer in between alu-

minum layers. Each layer is 0.1 mm thick. Material proper-

ties are listed in Table I (Gandhi et al., 2012; Korneev and

Demčenko, 2014).

In our analysis, a static stress r22 was assumed to be con-

stant and equal to 200 MPa (tensile case), but varied in direc-

tion. In addition to showing the co-ordinate system for waves

propagating in the x–z plane, Fig. 2 also shows coordinate

system for the stress using an unprimed coordinate system (x,

y, z), where the static stress is rotated through the angle / via

a rotational transformation (Gandhi et al., 2012).

Lamb wave phase velocity dispersion curves including

shear horizontal modes in the stressed tri-layer are shown

in Fig. 3. It is useful to note that the shear horizontal wave

modes decouple from the sagittal wave motion when /¼ 0�

or /¼ 90� or r22¼ 0 MPa. The solid dispersion curves are

calculated when the static stress r22¼ 200 MPa and the angle

/ is 0�, 45�, 90�. The dashed curves show the guided wave

dispersion curves in the unstressed tri-layer. In order to gain a

better representation of the guided wave dispersion behaviour

in the presence of the static stress, the dispersion curves

are shown in separate figures, Figs. 3(b)–3(d), regarding to the

wave mode type (symmetric, antisymmetric, and shear

horizontal).

The results clearly indicate that the fundamental Lamb

wave modes (a0 and s0) show a low sensitivity both to the

static stress and its direction up to 3 MHz. However, when

the coupling occurs between the sagittal wave motion and

shear horizontal modes, a significant change, not seen in the

previously reported work (Gandhi et al., 2012) is observed

in the s0 and sh0 phase velocities [see Figs. 3(b) and 3(d)

when /¼ 45�, 3–6 MHz frequency range].

The fundamental shear horizontal wave mode sh0 shows

a low sensitivity both to the static stress and direction in the

low dispersion zone (below 3 MHz), although it does become

sensitive to these in the higher dispersion zones (above

3 MHz). The results show that the higher order Lamb wave

modes, at the same frequency, are more sensitive to the static

stress and its direction than the fundamental modes. It is also

apparent in Fig. 3(b) that the symmetric s1 mode is sensitive

to both stress and direction, and that it has a higher sensitivity

than the antisymmetric mode a1 [Fig. 3(c)].

The shear horizontal ah1 mode, Fig. 3(d), also shows a

sensitivity to both the static stress and its direction, close to

the antisymmetric Lamb wave mode a1. However, the higher

order modes, which are not included in our analysis, might

also exist with high sensitivities to both static stress and its

direction, although excitation and reception of these modes

can be more complicated. The sensitivity to stress is not only

the issue, as the wave mode should also be insensitive (or

have low sensitivity) to possible variations in the material

properties and the structure thickness. In future studies, we

will present such a parametric study of the material properties.

IV. REFLECTION AND TRANSMISSION COEFFICIENTS
FROM THE SUBMERSED STATICALLY STRESSED
TRI-LAYER

Ultrasonic contactless measurements possess a number

of advantages when compared with contact measurements

and is one reason why immersion and air-coupled ultrasonic

measurements are used widely in scientific and industrial

applications. As such both immersion and air-coupled ultra-

sonic techniques are attractive for evaluation of statically

stressed structures.

Energy reflection R and transmission T coefficients from

the submersed tri-layer structures in a fluid cf¼ 1480 m/s,

qf¼ 1000 kg/m3 are presented in Fig. 4 when the incident

angle h of the wave are 20�, 40� and 50�. The calculations

are performed using a frequency step of 1 kHz, with the

stress direction varying from 0� to 90� with a 5� step.

FIG. 2. (Color online) Stressed layered structure and co-ordinate system for

waves propagating in the x–z plane. k0 is the incident plane wave, h is the

incidence angle of the incident wave.

TABLE I. Material properties of elastic layers. The third order elastic con-

stants are listed in Murnaghan’s notation.

Material k, GPa l, GPa l, GPa m, GPa n, GPa q, kg/m3

Aluminum 54.31 27.17 –281.5 –339 –416 2704

PVC 3.88 1.63 –33.43 –20.88 –15.86 1350

84 J. Acoust. Soc. Am. 144 (1), July 2018 Demčenko et al.



FIG. 3. (Color online) Guided wave dispersion curves in the stressed tri-layer when the static stress r22¼ 200 MPa and the angle between the static stress and

wave propagation direction / is 0�, 45�, 90�: (a) all modes, (b) symmetric modes, (c) antisymmetric modes, and (d) shear horizontal modes where sh and ah
represent the symmetric and antisymmetric shear horizontal wave modes, respectively. The dashed curves indicate the dispersion curves in the unstressed tri-

layer.

FIG. 4. (Color online) Energy reflection R and transmission T coefficients from the stressed tri-layer submersed in the fluid when r22¼ 200 MPa, the stress

direction / varies from 0� to 90� with a 5
�

step and the wave incidence angle: (a) and (b) h¼ 20�, (c) and (d) h¼ 40�, and (e) and (f) h¼ 50�. Black dashed

curves indicate the response from the unstressed tri-layer. Arrows indicate the peak movement direction regarding to the angle /.

J. Acoust. Soc. Am. 144 (1), July 2018 Demčenko et al. 85



Figures 4(a) and 4(b) show significant changes in the

ultrasonic response from this submersed statically stressed tri-

layer: reflection and transmission peaks are observed in the fre-

quency ranges where they are not present in the unstressed lay-

ered structure, e.g., see frequencies 5.5 MHz and 11 MHz in

Figs. 4(a) and 4(b). Moreover, a shift of the peaks is observed

due to the static stress direction change. When the incidence

angle of the incident wave increases, h¼ 40� or h¼ 50�, see

Figs. 4(c)–4(f), the ultrasonic response from the submersed tri-

layer changes significantly from the case shown in Figs. 4(a)

and 4(b). The results in Figs. 4(c) and 4(d) show that the reflec-

tion and transmission coefficient peaks lose their regularity.

They are not concentrated around a certain frequency at higher

frequencies (h¼ 40�; above 10 MHz) which is observed in

Figs. 4(a) and 4(b), hence an interpretation of data becomes

more complicated. Significant and regular changes of the

reflection and transmission coefficients are presented across a

relatively wide frequency range (5–10 MHz), as is attractive

for practical measurements.

Further increase of the incident angle h (from 40� to

50�) makes the reflection and transmission coefficients more

scattered [Figs. 4(e) and 4(f)]. These results in Fig. 4 clearly

also show that there is an optimal wave incident angle for

evaluation of the static or residual stresses in submersed lay-

ered structures.

Subsequently, we show a case study when the wave

incidence angle is h¼ 20�, Fig. 5. Using Snell’s law, one can

see that ultrasonic wave velocity is 4327 m/s in the alumi-

num layer of the tri¼ layer [see Fig. 3(a), horizontal dashed

line and intersections with ah1 and s1 modes when /¼ 45�].
This velocity matches the velocities of the ah1 and s1 modes

at f¼ 2.213 MHz and f¼ 5.614 MHz, respectively.

As a consequence of the critical angle of incidence for

these two modes, the corresponding peaks are observed in the

reflection and transmission coefficients. Figure 5 shows peaks

of both modes. It is seen that the peak corresponding to the

ah1 is low due to the weak coupling of the shear horizontal

wave motion to the sagittal wave motion. Figure 4(b) shows

that at certain stress directions the coupling between the shear

horizontal and sagittal wave motions increases—higher peaks

are present in the ultrasonic response. The results, as seen in

Fig. 5(a), also show a high efficiency transmission of the

ultrasonic wave (reflection coefficient is almost 0) when the

incident angle h matches the critical angle of the s1 mode.

V. FLOQUET WAVES IN A PERIODIC STRESSED
MEDIA

When a multilayered medium contains a periodicity (var-

ious composite and 1D phononic structures, Fig. 6), Floquet

wave theory can be used for elastic wave analysis.

This theory is useful for homogenization of multilayered

media, and for the analysis of 1D phononic structures in

terms of their band-gaps (Demčenko et al., 2018). When a

FIG. 5. (Color online) Energy reflection coefficient R when the wave incidence angle h¼ 20�; r22¼ 200 MPa, when the stress direction / varies from 0� to

90� with a 5� step. Blue curves indicate the response from the submersed tri-layer when /¼ 45�. Two typical points at frequencies 2.213 MHz (ah1 mode) and

5.614 MHz (s1 mode) are shown in (a). Arrow indicates the peak movement direction regarding to the angle /. Illustration of coupling of the shear horizontal

wave mode to sagittal wave motion (b).

FIG. 6. (Color online) Periodic structure and co-ordinate system for waves

propagating in the x–z plane. k0 is the incident plane wave, h is the inci-

dence angle of the incident wave, h is the thickness of the periodic unit cell.
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periodic structure is statically stressed, effective second and

third order elastic constants can be estimated by applying the

Floquet wave theory. For infinite periodic medium the peri-

odicity requires (Wang and Rokhlin, 2002a)

uþ

rþ

" #
¼ eikzFh u�

r�

" #
; (20)

where kzF is the vertical Floquet wavenumber, h is the thick-

ness of the periodic unit cell, u6; r6 are the displacements

and stresses at cell top (þ) and bottom (�) surfaces, respec-

tively. Using the recursive stiffness matrix approach, the

Floquet wave equation for the infinite periodic medium is

written in this form (Wang and Rokhlin, 2002a)

ðeikzFhK21
c � e�ikzFhK12

c þK22
c �K11

c Þu� ¼ 0; (21)

where Kc is the whole stiffness matrix of the unit periodic

cell. u� is the Floquet wave unit displacement vector and is

equivalent to the displacement polarization p, see Eq. (1).

Equation (21) is equivalent to the Christoffel equation, see

Eq. (2), and it is solved for the Floquet wavenumbers (eigen-

values), setting the determinant to 0,

A3 cosð3kzFhÞ þ A2 cosð2kzFhÞ þ A1 cosðkzFhÞ þ A0 ¼ 0;

(22)

where Ai are the coefficients formed by the Kc elements. We

confirm that some of the reported coefficients (Wang and

Rokhlin, 2002a) are incorrect (Ishii and Biwa, 2015). The

updated coefficients are given by

A3 ¼ detðK21
c Þ; (23)

A2 ¼ 1=2ðdetðMþK21
c Þ þ detðM�K21

c ÞÞ � detðMÞ;
(24)

A1 ¼ 1=2ðdetðMþK21
c Þ � detðMþK12

c Þ
þ detðK21

c �K12
c ÞÞ � 2detðK21

c Þ; (25)

A0 ¼ 1=4ðdetðMþK12
c �K21

c Þ
þ detðM�K12

c þK21
c ÞÞ � A2; (26)

FIG. 7. (Color online) Effective homogeneous periodic semi-space response when r22¼ 200 MPa and f¼ 0.5 MHz. Real part of the Floquet wavenumber and

unit cell thickness product kzF � h: (a) all wavenumbers, (b) wavenumbers when /¼ 0�, (c) wavenumbers when /¼ 45�, and (d) wavenumbers when /¼ 90�.
Black curves indicate response from the unstressed semi-space. Dotted vertical lines show position of critical angles. Positions of critical angles for uncoupled

modes are not highlighted.
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where M ¼ K22
c �K11

c . It is important to note that the updated

coefficients are different by one sign from the reported in Ishii

and Biwa (2015). Using these coefficients, reported results

were repeated (Demčenko et al., 2018).

When the Floquet wavenumbers are known, the corre-

sponding unit polarization vectors pF6
j (eigenvectors) are

found from Eq. (21). The multi-mode region of the Floquet

waves require a correct sorting of the eigenvalues and eigen-

vectors (Marini et al., 2010). Also, we found that a singular

value decomposition is preferable for finding the non-trivial

solutions of the homogeneous equation, see Eq. (21).

Finally, the stress vector of the unit cell is found from the

following expression (Wang and Rokhlin, 2002b):

dF6
j ¼ ðK11

c þ e6ikzFhK12
c ÞpF6

j : (27)

The amplitude reflection coefficient from a submersed semi-

space in terms of the Floquet wave equation parameters is

written in the following form (Wang and Rokhlin, 2002b)

Ras ¼
S33

F � K

S33
F þ K

; (28)

where S33
F is the (3, 3) element in the 3� 3 surface compliance

matrix for a homogeneous or layered anisotropic semi-space.

The compliance matrix can be calculated from the Floquet

wave displacement and stress vectors and it is given by

SF ¼ P�F ðD�F Þ
�1

.

VI. ULTRASONIC WAVE RESPONSE FROM A
SUBMERSED PERIODIC SEMI-SPACE IN A PRESENCE
OF THE STATIC STRESS

Our Floquet wave analysis is performed for a unit peri-

odic cell shown in Fig. 6 which considers three layers. The

incidence wave angle h varies from 0� to 90� with a step of

0.001�. The static stress is r22¼ 200 MPa, the angle / is 0�,
45�, and 90�. Two cases are presented: ultrasonic response

from effective homogeneous (Figs. 7 and 8) and inhomoge-

neous (Figs. 9 and 10) semi-spaces.

Figure 7 shows the real part of the product kzF � h
for the effective homogeneous semi-space response when

the wave incidence frequency is 0.5 MHz. One can see that

the Floquet wavenumbers are equal to the wavenumbers

of plane elastic waves in an effective medium. It can also

be seen that the Floquet vertical wavenumbers and partial

wavenumbers in effective homogeneous media are identical

(Wang and Rokhlin, 2002a). The corresponding ultrasonic

FIG. 8. (Color online) Ultrasonic response from the effective homogeneous periodic semi-space submersed in the fluid when r22¼ 200 MPa and f¼ 0.5 MHz.

Energy reflection coefficients from the periodic semi-space submersed in the fluid: (a) all reflection coefficients, (b) reflection coefficient when /¼ 0�, (c)

reflection coefficient when /¼ 45�, and (d) reflection coefficient when /¼ 90�. Black curves indicate response from the unstressed semi-space.
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wave energy reflection coefficient R from the submersed

periodic semi-space is shown in Fig. 8.

Decomposed results regarding to the angle / are depicted

in Figs. 7(b) and 7(c) and 8(b) and 8(c). When the angle

/¼ 0�, the results show [see Fig. 7(b)] that the Floquet wave-

numbers which are equal to quasi-longitudinal partial waves

(blue colour) have a very low sensitivity to the static stress.

This is readily seen in the energy reflection coefficient, Fig.

8(b), below the first critical angle (h¼ 16.5�). The reflection

coefficient above the first critical angle also shows a low sensi-

tivity to the static stress, although, a response at a second criti-

cal angle occurs (approximately 84�; this angle is not present

in the unstressed structure). This confirms that the Floquet

wavenumbers, which are equal to quasi-shear partial waves

(vertical polarization; red curves), also exhibit a low sensitivity

to the static stress. The Floquet wavenumbers, which are equal

to pure shear horizontal partial waves (green curves), are not

observed in the reflection coefficient due to their decoupling

from the sagittal wave motion.

When the angle /¼ 45� [Figs. 7(c) and 8(c)], the results

are different from the case analysed above in Figs. 7(b)

and 8(b). A coupling of the Floquet wavenumbers, which are

equal to the shear horizontal partial waves (green curves)

to the sagittal wave motion, is observed in the response

[Fig. 7(c)]. The second critical angle of the fast quasi-shear

wave is observed at the angle h¼ 31.2�. A larger value

change in the energy reflection coefficient is observed above

the first critical angle (h¼ 16.7�) than in the case when

/¼ 0�.
Figures 7(d) and 8(d) depicts the case when /¼ 90�. The

Floquet wavenumbers, which are equal to pure shear horizon-

tal partial waves [green curves, Fig. 7(d)], are decoupled from

the sagittal wave motion, hence they do not affect the energy

reflection coefficient [Fig. 8(d)]. In the analysed case, only

the first critical angle is reached at (h¼ 17�), which corre-

sponds to the Floquet wavenumbers (blue curves) equivalent

to quasi-longitudinal partial waves.

The results in Figs. 7(d) and 8(d) show that the most

significant shift of the first critical angle is observed when

/¼ 90�. However, this shift is small and it is 0.5�. The

energy reflection coefficient above the first critical angle,

Fig. 8(d), shows behaviour close to the case when /¼ 45�,
except that the second critical angle is not observed in the

energy reflection curve, see Fig. 8(c).

An increase of the incident wave frequency results in a

loss of homogenisation domain. A procedure for estimation

of the homogenisation domain is reported in Wang and

Rokhlin (2002a). Figures 9 and 10 show these results for the

real part of the product kzF � h and energy reflection coeffi-

cients, respectively, when the incident wave frequency is

FIG. 9. (Color online) Inhomogeneous periodic semi-space response when r22¼ 200 MPa and f¼ 3 MHz. Real part of the Floquet wavenumber and unit cell

thickness product kzF � h: (a) all wavenumbers, (b) wavenumbers when /¼ 0�, (c) wavenumbers when /¼ 45�, and (d) wavenumbers when /¼ 90�. Black

curves indicate response from the unstressed semi-space.
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3 MHz. In this case, ultrasonic response is observed from the

inhomogeneous periodic semi-space. The results show a

complex response and a limited range (approximately up to

47�) of possible wave incidence angles that the incident

wave would penetrate the semi-space. Above this angle, 47�,
all energy is reflected back.

The reflection coefficient shows that there is a band-gap

when the semi-space is unstressed (see the wave incidence

range 18�–30� in Fig. 10). When the angle /¼ 0�, the band-

gap width reduces [Fig. 10(b)], and it disappears when

/¼ 45� and /¼ 90� [Figs. 10(c) and 10(d)]. The results in

Figs. 10(c) and 10(d) show that there is a small difference

between the reflection coefficients, a more significant differ-

ence is observed in the incidence angle range 20�–30�

(approximately band-gap range).

An analysis of short wavelength range is reported in

Demčenko et al. (2018). It is shown that band-gaps are tun-

able by the application of a static stress which is dependent

both on magnitude and direction.

VII. CONCLUSIONS

Reformulation of the stiffness matrix method for analy-

sis of the elastic wave velocities as a function of applied

static stress in multilayered and 1D phononic structures has

been presented in this work. The method was used for the

analysis of guided wave phase velocity dispersion curves in

a statically stressed tri-layered structure. The approach was

also used to address the analysis of energy reflection and

transmission coefficients from a submersed statically

stressed tri-layer. The analysis showed that higher order

guided wave modes at the same frequency are more sensi-

tive to static stress and its direction than the fundamental

modes.

Using Floquet wave theory, a statically stressed semi-

infinite periodic media was also analyzed in terms of the

Floquet wavenumbers and energy reflection coefficients

from the fluid loaded statically stressed semi-space. The

analysis showed that a small shift of the first critical angle

was expected in the energy reflection coefficient from the

statically stressed effective homogeneous periodic semi-

space. The most significant change of the energy reflection

coefficient was observed in the absolute value just above the

first critical angle. When homogenization domain was lost,

the ultrasonic response became complex. Finally, the analy-

sis showed that a band-gap strongly depends on the stress

direction and this band-gap can disappear due to the static

stress.

FIG. 10. (Color online) Ultrasonic response from the inhomogeneous periodic semi-space submersed in the fluid when r22¼ 200 MPa and f¼ 0.5 MHz.

Energy reflection coefficients from the periodic semi-space submersed in the fluid: (a) all reflection coefficients, (b) reflection coefficient when /¼ 0�, (c)

reflection coefficient when /¼ 45�, and (d) reflection coefficient when /¼ 90�. Black curves indicate response from the unstressed semi-space.
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