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ABSTRACT
Here we present a modification of the widely used pET29 expression vector for use in rapid and straightforward parallel cloning via a gene
replacement and Golden Gate strategy. The modification can be applied to other expression vectors for Gram-negative bacteria. We have used
the modified vectors to clone large numbers of bacterial natural enzyme variants from genomic and metagenomic sources for applications in
biocatalysis.

METHOD SUMMARY
The pET29 vector was modified to contain, instead of the multiple cloning site, a negative selection marker (sacB) flanked by Type IIs restriction
sites. One-pot restriction-ligation reaction, transformation into Escherichia coli and plating on selective media yields >98% recombinant plasmids
containing the gene of interest fused to the His6-tag at the C-terminus or, if required, genes that do not contain any vector-encoded sequences.
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Rapid advances in next-generation sequencing technologies have generated vast amounts of genomic sequence data that represent
a rich source for bioprospecting for enzymes for industrial biotechnology applications. In order to speed up enzyme discovery and
functional analysis, tools and protocols for high-throughput cloning are necessary. A variety of cloning strategies have been developed
for creating protein expression constructs for structural and functional studies [1]. The Golden Gate cloning strategy has been shown
to be incredibly powerful in cloning DNA fragments with high efficiency [2–5]. It relies on the use of Type IIs restriction enzymes that
cleave DNA outside of their recognition site, providing unique cohesive ends that enable directional and seamless cloning of the gene of
interest. The Golden Gate protocol allows for convenient and rapid cloning in a single-tube, one-step coupling restriction digestion and
ligation [2].

Vectors from the pET System (Novagen) are a popular choice for the heterologous expression of genes in Escherichia coli under
control of the T7lac promoter for applications that require high protein yields. Here we present the modification of one of these vec-
tors, pET29a(+), for use with the Golden Gate cloning strategy. Two vectors were generated and designated pET29:SacB-BsaI and
pET29:SacB-SapI. Both contain a negative selection marker in place of the multiple cloning site of pET29: the Bacillus subtilis sacB
gene, expressed from its native promoter and flanked by BsaI or SapI restriction sites (Figure 1A).

The sacB gene from B. subtilis encodes levansucrase, an enzyme secreted in the culture medium after induction by sucrose. Levansu-
crase catalyzes the hydrolysis of sucrose and synthesis of the branched fructose polymer known as levan. Expression of sacB in E. coli
and other Gram-negative bacteria is lethal in the presence of sucrose, probably due to the accumulation of levans in the periplasm [6–8].
In B. subtilis, the upstream region of the sacB gene contains the promoter and the regulatory sequence sacR which, when cloned to-
gether with sacB, promote its efficient expression in E. coli [9]. We thus amplified the 1903-bp region from B. subtilis containing 445 bp of
upstream regulatory sequences, the sacB gene and the terminator sequence, and inserted it in the pET29, where it replaced the multiple
cloning site in the opposite orientation to the T7lac promoter [10]. We found that this orientation resulted in efficient sacB expression
and counterselection.

All molecular biology reagents were obtained from New England Biolabs and used following the manufacturer’s protocols, unless
stated otherwise. All PCR reactions were performed with the Phusion R© High-Fidelity PCR Master Mix with HF Buffer. PCR products were
gel-purified or PCR-purified with Monarch R© PCR & DNA Cleanup Kit. All ligation reactions were performed with the high-concentration
T4 DNA ligase. Restriction digestion protocols were performed with restriction enzymes: NdeI, XhoI, DpnI, SapI and BsaI-HFv2. QiaQuick
Plasmid Kit (Qiagen) was used for plasmid DNA preparation. All primers were synthesized by Eurofins Genomics and are listed in Table 1.
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Figure 1. One-pot cloning reaction with modified pET vector and a single insert. (A) BsaI and SapI restriction sites allow excision of sacB and result in
4-base and 3-base overhangs, respectively, that direct the assembly. (B) Recognition sequences for SapI and BsaI are added via the PCR to the gene of
interest. Complementary overhangs in the insert that direct the assembly are in bold, green and blue. (C) In the single-tube reaction, the sacB in the
destination vector is replaced with the gene of interest so that the ATG within the NdeI site (CATATG) is used as a start codon, putting the gene of
interest in-frame with vector-encoded C-terminal His6-tag. In the final construct no amino acids are present between the protein of interest and the
His6-tag.

Table 1. Primers used for vector modification.
Primer Sequence (5′–3′)

pET29-BsaI-F AAACATATGTATATCTCCTTCTTAAAGTTAAACAAAATTATTTCTAG

pET29-BsaI-R AAAACTCGAGGGTCTCGCACCACCACCACCACCACTGAG

sacB-BsaI-F AAACATATGTGAGACCGTCAATGCCAATAGGATATCGGCATTTTC

sacB-BsaI-R AAAACTCGAGACATATACCTGCCGTTCACTATTATTTAGTG

P3-F P-GCTTCCTCGCTCACTGACTCGCTG

P3-R P-GGAAGTGCGCCTGATGCGGTATTTTCTCCTTACG

pET29-SapI-F AAACATATGTATATCTCCTTCTTAAAGTTAAACAAAATTATTTCTAG

pET29-SapI-R AAAACTCGAGGCTCTTCGCACCACCACCACCACCACTGAG

sacB-SapI-F AAACATATGGGAAGAGCGTCAATGCCAATAGGATATCGGCATTTTC

sacB-SapI-R AAAACTCGAGACATATACCTGCCGTTCACTATTATTTAGTG

NdeI and XhoI restriction sites are in bold; BsaI and SapI restriction sites are underlined. Additional nucleotides introduced during the cloning proce-
dure are in gray.

E. coli Nova Blue cells from Novagen were made chemically competent using the standard calcium chloride protocol. The working
concentration for kanamycin was 50 μg/ml.

The B. subtilis sacB coding sequence, complete with its signal peptide and regulatory sequences (GenBank CP051860.1: 1746670–
1748572, 1903 bp), was previously amplified from strain 168 genomic DNA and cloned into a customized vector. To construct pET29:SacB-
BsaI, sacB and pET29a(+) were first PCR amplified using the primers sacB-BsaI-F/sacB-BsaI-R and pET29-BsaI-F/pET29-BsaI-R, re-
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spectively. PCR fragments were then digested with NdeI and XhoI restriction enzymes and ligated to form the final vector. To construct
pET29:SacB-BsaI, the SapI restriction site was deleted in the pET29a(+) by changing the sequence from GCTCTTC to GCACTTC. 5′

phosphorylated primers P3-F and P3-R were used to do this in a routine PCR reaction with 20 cycles. The PCR reaction product was
digested with DpnI to remove the methylated template vector and thus reduce the background. PCR products were gel-purified, ligated
to form circular vectors and transformed into chemically competent E. coli Nova Blue cells. The vector with deleted SapI restriction site
was PCR amplified using the primers pET29-SapI-F and pET29-SapI-R. The PCR product was digested with NdeI and XhoI and ligated to
sacB that was amplified with sacB-SapI-F and sacB-SapI-R and digested with the same restriction enzymes.

A functional sacB gene is a prerequisite for efficient counter selection; therefore after ligation and transformation, individual colonies
were tested for their growth on Luria–Bertani medium supplemented with kanamycin, in the presence or the absence of 10% sucrose. Vec-
tors were isolated from transformants that were resistant to kanamycin and sensitive to sucrose. Both constructed vectors, pET29:SacB-
BsaI and pET29:SacB-SapI, were further verified by DNA sequencing and their functionality was initially tested by cloning and expression
of eGFP in E.coli BL21 (DE3) (data not shown).

To clone the genes of interest in the modified vectors, primers generally contained a minimum of 15 (preferably 18–21) nucleotides
complementary to the sequence of interest with, when possible, a GC content of about 50%. The following overhangs were added to
the primers: Forward 5′-AAAGGTCTCTTATG-3′ and Reverse 5′-AAAGGTCTCGGGTG-3′ for cloning in pET29:SacB-BsaI; and Forward 5′-
AAAGCTCTTCGATG-3′ and Reverse 5′- AAAGCTCTTCGGTG-3′ for cloning with pET29:SacB-SapI. Overhangs contained restriction sites
and were flanked by three ‘spacer’ nucleotides at the 5′ end to allow for efficient digestion (Figure 1B). In our case, the choice of the
three- and four-base overhangs was restricted by the vector sequence, whereas in multipart assemblies junctions can often be arbitrarily
chosen [11,12]. To avoid the vector-encoded C-terminal Hisx6 fusion, a translation stop codon could be included in the insert via the primer.
Genes were amplified using the standard PCR procedure and gel-purified before being used in the one-pot cloning reaction.

The one-pot cloning reaction mixture consisted of 100 ng vector, 100 ng amplified DNA fragments, 1 μl restriction enzyme, 1 μl T4
DNA ligase and 1 μl 10× T4 DNA ligase buffer in a total reaction volume of 10 μl (Figure 1C). The mixture was incubated at 37◦C for
30 min. 2 μl of each reaction was added to 20 μl of Nova Blue E. coli chemically competent cells and incubated on ice for 30 min. The
cells were heat shocked at 42◦C for 60 s, chilled on ice for 5 min, then recovered in 200 μl of SOC for 1 h at 37◦C. Cells were plated on
Luria–Bertani agar supplemented with kanamycin and 10% v/v sucrose (sterile sucrose solution was prepared by filtering and added to
warm Luria–Bertani agar before pouring into plates). Typically >98% of clones positive for the desired recombinant vector were obtained
after transformation. This high efficiency eliminated the need for colony screening and allowed for a single colony per construct to be
picked and verified by DNA sequencing.

The method described has been extensively used in our laboratory to construct and expand our biocatalysis enzyme toolbox with a
wide range of enzymes. It does not require very long primers or commercial kits. Cloning is directional and the protocol has proved to be
fast, reliable and efficient; in a great majority of the clones, only the desired product is present. One-pot restriction digestion/ligation is
carried out in a short time (30 mins) and the ligated DNA is immediately transformed. Expression-ready clones are available the next day
after growth of the transformed cells. To date, using the adapted vectors, we have effectively cloned and expressed in E. coli hundreds
of genes with diverse origins (from metagenomic DNA and individual genomes) and complexity, with GC content ranging from 35 to 73%
and gene lengths between 0.3 and 2.5 kb. Examples of panels of recombinant enzymes constructed in this way include enzyme classes
such as transaminases from a drain metagenome [13], ene-reductases also from a drain metagenome [14] and epoxide hydrolases mined
from sequenced bacterial genomes [15], demonstrating the versatility of the protocol.
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