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Abstract 

We review the current techniques used in the prediction of crystal structures and their 

surfaces and of the structures of nano-particles. The main classes of search algorithm 

and energy function are summarised, and we discuss the growing role of methods 

based on machine learning. We illustrate the current status of the field with examples 

taken from metallic, inorganic and organic systems. 

 

Introduction 

Structure modelling and prediction is one of the perennial challenges in solid state, surface 

and nano-science. The field is advancing rapidly with the development of new and improved 

search algorithms, more accurate energetic models and with the growth in the use of tools 

and techniques from machine learning; and as the predictive capability advances, it is 

increasingly integrated with experiment. In this article we chart the development of the field 

giving emphasis to the rapid recent progress. We survey first the methodological approaches, 

then the achievements and challenges, giving examples and case studies; and we conclude 

by discussing the likely future developments. The illustrations we provide include functional 

oxides, microporous inorganic crystals, pharmaceutical polymorphism, functional organic 

crystals and metal and oxide nano-particles – systems with wide ranging applications, 

including energy materials, in catalysis, in pharmaceutical science and in gas sorption and 

separation. 

Structure prediction is, of course, a major challenge in other areas of contemporary science, 

such as molecular biology and many of the methodological challenges are shared across 

different fields. For recent developments in the field in bio-sciences, we refer to the review of 

Kuhlman and Bradley.1 We also note that our account does not attempt to be comprehensive 

and for other recent discussions of the field we refer to the proceedings of the recent Faraday 

Discussion on the topic, especially the papers of Price,2 Oganov3 and the discussions.4-7 

Searching the Energy Landscape 

The fundamental challenge in structure prediction is the complexity of the configurational 

space, with both the coordinates of each particle and in the case of crystals, the unit cell 

parameters, representing, in principle, independent variables. As discussed by Woodley and 

Catlow,8 the general approach to this problem has been first to define some “cost function” 

which provides a rapidly computable and simple figure of merit of the structure; and then to 

navigate, using a variety of approaches, the parameter landscape searching for regions of low 

 
1 This paper is dedicated to the memory of Professor Roy Johnston – a pioneer in structure 
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cost function which are expected to provide plausible possible structures. Having identified 

one or more such regions, standard minimisation procedures are applied to generate the  

 

structure of minimum energy (or possibly free energy), with energies calculated using an 

interatomic potential model or a quantum mechanical technique, which for the latter case in 

recent work is generally based on Density Functional Theory (DFT). In a system of any 

complexity, there will be several distinct, local energy minima and it is hoped that the search 

is sufficiently comprehensive to identify the lowest, i.e. global energy minimum. The global 

minimum in energy is assumed to be the most likely observable structure, although kinetics of 

nucleation and growth can lead to crystallisation of higher energy, metastable structures; the 

range of experimentally observed metastability has been surveyed in both organic9-10 and 

inorganic11-12 crystals through large-scale computational studies of known polymorphs. 

With increases in available computer resources, structures with a larger number of degrees of 

freedom (number of atoms in a cluster or unit cell) can be targeted and/or more expensive 

cost functions employed. There is, of course, a trade-off between the chosen quality of the 

cost function, E(ri), and the number of configurations that can be evaluated. Commonly, ri are 

the atomic coordinates. Ideally, the cost function has basins that correspond to regions of 

interest and their depths match the order of the relative stabilities of the configurations 

associated with each basin; it may also be beneficial that the basins of interest have a larger 

width, making them easier to locate in the search. Typically, E(ri) is an energy function and 

only approximate solutions on this landscape are initially required as these can be readily 

refined on a more accurate energy landscape, Eacc(ri), at a later stage of calculations. For the 

same computer resource, employing a Born model and interatomic potentials13 as opposed to 

an electronic structure approach14 would correspond to being able to evaluate several orders 

of magnitude more configurations, providing more confidence of identifying all important 

structures. As with all models, the terms in the Hamiltonian for E(ri) should include only what 

is necessary to capture the important physics such that, in this case, for each targeted energy 

minimum of Eacc(ri) there needs to be one energy minimum configuration of E(ri) that is within 

the corresponding basin of Eacc(ri) and that there is a good match between the minima 

rankings. As reported below, some approaches apply brute force and search directly on 

Eacc(ri), whereas others try to first develop a suitable Hamiltonian for the system of interest.15-

23  

The main conceptual and algorithmic approaches for navigating the energy landscape have 

been discussed in earlier reviews and book chapters,8, 13, 24-26 and are as follows: 

Simulated Annealing, the conceptual basis of which is simple: a Monte Carlo (MC) 

algorithm coupled with the Metropolis criterion or molecular dynamics (MD) is used to generate 

a sequence of configurations that map out a path of a so-called walker across the energy 

landscape. A temperature schedule is followed to simulate the process of annealing; initially 

starting at a sufficiently high temperature that the energy barriers between different regions of 

phase space may be overcome and upon reducing the temperature low energy regions 

identified. There are critical temperatures when the walker may become trapped in a high 

energy basin. Sufficient sampling of the accessible landscape just before such temperatures 

is required if lower energy basins are targeted. Increasing the step size between consequent 

points on the landscape may reduce the number of required steps but is itself constrained as 

an MC step must not straddle barriers and an MD step requires the local landscape to be 

sufficiently approximated by a few terms of its Taylor expansion. Each approach is 

straightforward and robust, with MC sampling many more configurations due to the application 

of the Metropolis criterion and MD requiring the tracking of momentum for each atom within 
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the simulation box. However, the search inevitably has some bias from the choice of the initial 

configuration. Thus, simulations are run several times using different starting configurations. 

With the current availability of computer resources, the global minimum is no longer the sole 

final target, but instead the relative stabilities of phases (locally ergodic regions) based on free 

energies are sought as a function of temperature and pressure, as well as the prediction of 

their lifetimes.12 MC and MD can also be employed to gain an insight into the size (number of 

configurations) of an energy basin, the height of the energy barrier to escape and help 

determine the likelihood, or probability of finding this route of escape; see, for example, the 

Threshold27-28 and Energy Lid algorithms.28-29 

Basin Hopping is another branch of global optimisers that effectively maps out a path 

of a walker across the energy landscape, but with the acceptance/rejection decisions based 

upon comparing energy minima.30-34 Each attempted step on the landscape is either a mini 

MD run or a standard MC step, followed by a full structural relaxation using a local optimisation 

routine. Monte Carlo Basin Hopping (MCBH) has proved extremely popular for predicting the 

atomic structures of clusters. The, energy of local minima (or possibly other stationary points 

unless the chosen local optimiser ensures only local minima are found) are typically compared 

within the Metropolis criterion. If the chosen method generates new trial configurations based 

only on perturbing optimised configurations, then then MCBH step size will need to be much 

larger than a typical MC step and is adjusted on-the-fly to ensure a required average success 

rate of escape from the current basin. Alternatively, a standard MC step size is employed with 

acquired values of local energy minima fed into the Metropolis criterion: if a new configuration 

is accepted then the current configuration is replaced by the new non-relaxed configuration 

and the current value of energy replaced by the energy minimum found from relaxing the newly 

accepted configuration. In the latter, the walker explores a landscape of plateaux with many 

fewer energy barriers than the original continuous energy landscape. It is easy to see why 

MCBH readily finds the bottom of a superbasin on the energy landscape as it is a simple basin 

on the landscape of plateaux. If the landscape of plateaux also contains many basins, then 

this approach will also inevitably have some bias from the choice of the initial configuration. 

Finally, in the case of Minima Hopping that employs MD, the kinetic energy and run time for 

each mini MD run can be dynamically adjusted to achieve a desired average success rate of 

escaping the current basin and finding a new local minimum structure. 

Genetic Algorithm Techniques22, 24, 35 are perhaps the best known of the methods that 

employ interacting walkers,36 or simultaneously consider more than one point on the energy 

landscape to find the global minimum, followed by the methods of Particle Swarm37-38 and 

Taboo39 algorithms. Genetic algorithms or, more generally, evolutionary algorithms start with 

the creation of a population; typically, a set of random points (e.g. randomly chosen atomic 

coordinates for each configuration) on the energy landscape. Then, competition is simulated 

between current members of the population for survival and the chance to procreate. The 

probability of success in a competition is biased towards selecting lower energy configurations. 

Procreation, i.e. the creation of new configurations, or children, is simulated by the combining 

of information (e.g. structural fragments) taken from two or more of the configurations that won 

in a competition to become a parent. New configurations composed of better/worse features 

of their parents will typically go on to survive/die, respectively. As with other global optimisation 

schemes, there are many variants, and this is particularly true for evolutionary algorithms. 

Geometric constraints are often applied during the creation of new configurations, e.g. 

unphysically short interatomic distances are prevented. The benefits seen for MC techniques 

of basin hopping are also sought after in the design of evolutionary algorithms, with 

populations being composed of fully relaxed configurations (energy minima). The success of 

an evolutionary algorithm in locating the global minimum is dependent upon the diversity of 

the population (having configurations within different basins, or super-basins as opposed to 
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all within the same basin). Hence, the process of mutation (typically a small MC step) is also 

applied to new configurations, as well as other strategies like the removal of duplicates and 

niching40-43 when determining the survival of configurations in the current population. 

 Topological Procedures, which have a long history in crystallography, going back to 

the early work of Wells44-45 who developed topological approaches in exploring networks, can 

be used to rationalise and predict crystal structures. Such methods are most naturally applied 

to framework structures and have been used to considerable effect in the structural science 

of zeolites – framework structured microporous alumino-silicates and silicas – where a 

powerful topological approach – tiling theory – was employed by Bell and co-workers46 to 

enumerate possible network structures from which structures can then be generated by 

replacing nodes by linking tetrahedra. Lattice energy minimisation using Born model 

interatomic potentials then allows low energy structures to be identified. Other topological 

approaches in zeolite science are discussed by for example Treacy and co-workers;47-48 and 

as discussed by Arhangelskis et al.49 , the approach has also been extended to the intensively 

studied family of metal organic framework (MOF) structures in which a framework structures 

are generated by linking inorganic structural motifs for example MO6 octahedra with organic 

linkers. 

Generation of random configurations, in which the global optimisation, algorithmic 

approach to explore the energy landscape is replaced by the generation of large numbers of 

random initial configurations which are then subject to screening of unphysical structures, 

followed by energy minimisation. This approach might initially seem to rely on ‘brute force’ 

computational power, as the trial structures are not explicitly directed towards low energy 

regions of the energy landscape. However, potential energy surfaces tend to have features 

that mean that even randomly generated structures find low energy structures preferentially 

over high energy structures.50 Of particular relevance is the observation that low energy local 

minima often have larger basins of attraction – the region of configurational space from which 

local energy minimisation leads to a particular minimum – than high energy local minima.51 

More recent implementations51-52 of such an approach have preferred the use of quasi-

random, low-discrepancy sequences in place of random numbers; these are deterministic 

sequences that maintain some of the qualities of random sampling, while ensuring a more 

uniform sampling of configuration space. The method has enjoyed success in several cases53-

57 and for small, less complex structures a random approach may provide a sufficient sampling 

of configurational space. It also has the advantage that there is no in-built bias, which can be 

beneficial in identifying metastable structures, where the application of structure prediction is 

not only interested in the lowest energy structures, and is perfectly parallelisable because all 

structures are generated independently. But, as discussed by Woodley at al.58 for larger more 

complex structures, the approach can become problematic as even with large numbers of 

randomly generated configurations, significant regions of configurational space may remain 

unexplored. 

 Molecular Packing prediction, which has mainly been applied to organic molecular 

crystals, has employed many of the same methods as inorganic structure prediction, including 

systematic and random methods,59 genetic algorithms,60-62 simulated annealing63 and other 

Monte Carlo methods.64 The exception is that topological approaches are less useful for 

molecular crystals, because their packing is rarely dominated by a particular intermolecular 

interaction. Instead, the packing of organic molecules is usually determined by a balance of 

many weak, often competing interactions. The nearest to a topological approach is that 

proposed be Gavezzotti,65 in which crystals were built in stages, starting from searching for 

stable clusters, which were extended into translationally periodic structures through 

successive application of space group symmetry operations. 
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A key difference for molecular packing prediction is that the basic building blocks of generated 

structures are the constituent molecules, which carry more degrees of freedom than the atoms 

that are treated in non-molecular systems. Therefore, in addition to the position within the unit 

cell, the orientation of each molecule must be sampled. Molecular geometries can also be 

influenced by their environment in a crystal; in particular, exocyclic single bonds can usually 

rotate with little energetic cost, so that intermolecular interactions in each predicted crystal 

structure can alter the molecular geometry. This flexibility can be accounted for in several 

ways. The simplest approach is to generate crystal structures using rigid molecules, 

constrained to their isolated molecule, “gas phase” geometry, only introducing molecular 

flexibility by allowing the molecular geometry to relax at the local energy minimisation stage of 

the procedure. This approach can miss structures where molecular deformation is required for 

a certain packing, so can be augmented by searches starting from higher energy, saddle 

points on the isolated molecule energy surface.66 A more comprehensive approach requires 

sampling of selected intramolecular degrees of freedom during structure generation, alongside 

the crystal packing variables – the unit cell dimensions, molecular positions and orientations.67 

The most widely applied energy models for molecular crystals are based on accurate 

interatomic potentials for intermolecular interactions, in which accurate models of 

electrostatics have been proven to be crucial,68-69 and dispersion-corrected solid-state density 

functional theory. The accuracies of these methods have been benchmarked against a reliable 

set of measured sublimation enthalpies of molecular crystals.70-72 Although the differences in 

accuracy between the best methods are small, these must be interpreted in the context of the 

very small energy differences between structures of molecular organic crystals, which are 

usually less than 2 kJ/mol.9 There has been considerable interest in recent years in including 

the contributions of lattice vibrations to the free energies of molecular crystal structures,9, 72-74 

so that relative stabilities can be predicted as a function of temperature.10, 75 Both lattice 

dynamics and molecular dynamics methods have been applied to free energy prediction, with 

the latter also providing information about which structures are likely to interconvert at a given 

temperature.74, 76 

The Role of Machine Learning 

Machine learning methods have started to find applications across many areas of 

computational chemistry, which is also true in the area of structure prediction, where machine 

learning methods have been applied in attempts to improve accuracy and speed of 

calculations, as well as adding insight into analysis of structure prediction results.  

The clearest area where machine learning methods have promise in structure prediction is to 

learn the relationship between structure and energy. As discussed earlier, a computationally 

efficient cost function is required in the early stages of searching an energy landscape, 

because of the large number of cost function evaluations or structural optimisations that are 

required. Thus, interatomic potentials are commonly applied during structure searches. 

However, the final evaluation of structures usually requires an accurate energy model, which 

sometimes means that quantum mechanics (QM)-based energy evaluations (such as using 

DFT) are necessary on large numbers of candidate structures. The computational expense of 

such calculations can limit applications to simple systems or restrict the methods to 

researchers with access to very large computing resources. Machine learning has been shown 

to be able to predict high level QM energies, either directly from descriptors of atomic 

structure77-78 or as a correction to lower-level energy calculations.79 

This approach has been applied in crystal structure prediction studies of molecular crystals. 

As an example, starting from the structures of several pentacene derivatives predicted by 

interatomic potentials, Gaussian Process Regression (GPR) was used to learn the energies 
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of these predicted structures at a more accurate and expensive level of theory – in this case, 

solid state DFT.80 DFT calculations were performed on a training subset of the predicted 

crystal structures. Using the smooth overlap of atomic positions81-82 method to quantify the 

similarities of atomic environments, GPR was then trained to learn the relationship between 

structure and the DFT energies, providing a model that can be quickly applied to predict the 

energies of the remaining structures. The results showed that DFT relative energies could be 

predicted to an accuracy of 1-2 kJ mol-1 using training set sizes of only 10%, although errors 

increased as the complexity of the molecule was increased.80 The approach has also been 

applied in a multi-level machine learning model to predict expensive high-level energies of 

predicted crystal structures using an intermediate, lower cost method to reduce the number of 

expensive calculations required for training the model.83 A similar method has been 

demonstrated using GPR to learn QM energies of fragments of predicted crystal structures, 

which are summed to give the total lattice energies.84 The fragment-based method has the 

advantages of providing more data to the machine learning model, because each crystal 

structure provides multiple fragments, as well as allowing a wider range of QM methods, which 

are affordable on fragments, but not entire crystal structures. With the small errors achieved 

with these approaches, the ranking of predicted structures using the machine-learned 

energies was shown to reproduce the true QM-based ranking of predicted structures very well. 

Deringer and co-workers85-86 have demonstrated the potential of machine learning in inorganic 

crystal structure prediction, using GPR to learn interatomic potentials from DFT energies 

during the structure search. By learning the energies at the same time as searching the energy 

landscape, the machine-learned energy model can be continually updated and used to drive 

the exploration for new structures.  

The successful application of machine learning models for modelling energies in structure 

prediction applications demonstrates that the structural descriptors used in these studies 

capture the features that are correlated with structural stability. This suggests that these 

descriptors could also form the basis of unsupervised learning approaches to investigate the 

structural diversity amongst structures. To investigate this, Musil and coworkers80 applied 

dimensional reduction methods to project the predicted structures from their inherently high-

dimensional space to a low-dimensional representation that can be visualised. The aim of 

these methods is to maintain as much information on structural similarity in the low-

dimensional representation. The results for the landscape of predicted crystal structures of 

pentacene are shown in Figure 1a. The projection shows groupings of similar crystal 

structures, which correspond to different packing motifs. These were confirmed by applying 

clustering methods to the similarity matrix of structures, which identified 7 clusters on the 

pentacene landscape (coloured in Figure 1a). Identification of these families of structures 

would otherwise have required painstaking manual inspection or the development of case-

specific heuristic rules, showing that unsupervised learning could be powerful in gaining insight 

into recurring structural features on a structural landscape. The approach was extended in 

work by Yang et al87 to the analysis of 28 isomers of a promising organic semiconductor, 

showing that the method could identify structural families across the crystal structure 

landscapes of a series of related molecules (Figure 1b), and aiding in identifying structure-

property relationships within these sets of predicted materials. 
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Figure 1 a) Two-dimensional projection, using the sketch-map method,88 of the pentacene crystal 
structure landscape's similarity matrix,80 showing groupings of predicted crystal packings with similar 
structures. Each point corresponds to a distinct, low-energy crystal structure, coloured according to 
cluster analysis using the HDBSCAN* method89 (grey points are not part of any cluster). Representative 
crystal packings are shown for each identified cluster. b) Sketch-map representation of the low-energy 
crystal structure landscapes for 28 isomers of a planar pyrrole-based azaphenacene from screening for 
potential organic semiconductors.87 Each point corresponds to a distinct, low-energy crystal structure, 
coloured according the molecular isomer. Adapted from Chemical Science, 2018, 9, 1289 – published 
by the Royal Society of Chemistry., and reprinted with permission from Chemistry of Materials 2018, 
30, 13, 4361–4371. Copyright 2018 American Chemical Society..  

Another exciting area of interest for machine learning in structure prediction is the generation 
of structures themselves, using data-driven approaches in place of simulation-based 
exploration of the energy landscape. With many developments in generative models for 
molecules,90-91 this area is likely to move forward for crystals. A simple example is the 
prediction of possible new inorganic structures based on templates from known structures; 
Ryan et al92 trained a neural network model on a database of inorganic crystal structures to 
predict, based on atomic environment, which chemical compositions are likely to form certain, 
known structure types. Another recent example in this area was the development of a 
generative adversarial network (GAN) trained on a large database of known zeolites that could 
generate new zeolite structures.93 An attractive aspect of this work is that the generative model 
can be trained to produce new structures with targeted properties (e.g. methane heat of 
adsorption). This type of work could potentially be developed for more complex materials as 
an alternative to the simulation-based methods discussed above. 
 

Successes and Challenges 

We now illustrate the current state-of-the art in the field by several case studies taking first, 

two examples from inorganic structural science, which we follow with an account of the 

challenges posed by defective oxide surfaces. Oxide and metal nano-particle structures 

illustrate the successes and problems of structure prediction in nano-science, including recent 

work on nano-structures on oxide surfaces; while in the final section, the focus shifts to 

molecular systems, in particular, crystals of pharmaceutical molecules and organic, porous 

solids. 

Structure prediction in inorganic crystallography 
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Functional materials chemistry increasingly explores systems of high complexity either in their 

composition or crystal architecture. Here we highlight two studies where structure prediction 

methods have proved of considerable value in exploring novel functional materials. 

 Our first example is taken from the work of Collins, Rosseinsky and co-workers94 

concerning the accelerated discovery of a new multicomponent oxide in a highly complex 

inorganic phase field. The approach is based on the intriguing use of structural motifs (e.g. 

MO6 octahedra) rather than individual atoms as the fundamental building blocks of crystal 

architectures, thereby allowing chemical knowledge and intuition to be integrated into the 

process. An MC based simulated annealing algorithm (employing the EMMA software)  

explores different arrangements of the motifs and the “best” structure is identified. DFT based 

energy minimisation is then used to generate the predicted structure. A new, interesting and 

highly complex structure illustrated in Figure 2 is generated in the Y-Sr-Ca-Ga-O phase field 

and the predicted structure was successfully synthesised, with the experimentally structure 

(determined using powder XRD) being close to that predicted, clearly demonstrating the 

predictive power of current methodologies for this class of material. 

 

Figure 2 Predicted structure for novel oxide in Y-Sr-Ca-Ga-O phase field.94 (Atoms coloured as 
follows: Ga (brown), Sr (green), Ca (light blue) and O (red).) Reprinted by permission from Springer 

Nature (https://www.nature.com/): Nature 546, pages 280–284 (2017) (Accelerated discovery of two 
crystal structure types in a complex inorganic phase field, C. Collins, M. S. Dyer, M. J. Pitcher, G. F. 

S. Whitehead, M. Zanella, P. Mandal, J. B. Claridge, G. R. Darling & M. J. Rosseinsky), COPYRIGHT 
2017. 

              

Our second case study is from the field of microporous materials, where, as discussed above, 

topological approaches have proved powerful. As noted, the work of Bell et al.46, 95-96 has 

combined an approach based on combinatorial tiling theory with lattice energy minimisation to 

predict novel microporous structures. Figure 3 illustrates new structures which are found to 

have low energies as “silicas” (i.e. structures of composition SiO2) and which now present a 

challenge to synthesis. The locations of silicon atoms are typically referred to as T-sites, which 

are connected via bridging oxygens to form a network of corner sharing SiO4 tetrahedra. 

Interestingly, other structures, illustrated in 4, which are also predicted to be stable as silicas, 

although not yet synthesised in that composition, are known in other quite different 

compositions, suggesting that the framework topology has intrinsic stability.  

The third example shown in Figure 4(c) illustrates a different mode of structure generation, in 

this case of a small pore nano porous structure, where direct bonding between T-sites greatly 

reduces the size of the cavities, to create the metastable “BCT” structure of ZnS. There are, 

however, also examples of crystal structure prediction of nano-porous ZnO97 and SiC98 that 
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have larger cavities – see Figure 5 – which are constructed from secondary building units.99 

The framework topology of silicas, or more generally Zeolites, have also been exploited in the 

prediction of metal-organic frameworks (MOFs) where organic molecules form the bridging 

units and thus much larger cavities; see, for example, the work on Zeolitic imidazolate 

frameworks (ZIFs) where the T-sites contain Zn.100 

 

Figure 3 Some microporous structures predicted to be stable as “silicas”.46, 95-96 

 

Figure 4 Predicted microporous structures stable in non-silica composition. Left after Zheng et al.101; 
Centre after Correll et al.102; Right: after Hamad et al.103, two views of ZnS BCT phase. 

 
Figure 5 left: Cubic unit cell of the silica sodalite framework represented as a nano-porous network of 
zinc oxide97 or silicon carbide;98 centre left: structural unit composed of 24 atoms taken from (a); centre 
right: larger structural unit composed of 96 atoms with the same symmetry, Th, as that in (b); right: 
predicted nano-porous framework (cubic unit cell) constructed from units shown in (b) and (c) and 
replacing T-sites with SiO4 tetrahedra possibly a new microporous framework. Reproduced from Ref. 
98 with permission from the PCCP Owner Societies. 

 
Oxide Surface Structures 

 
The surfaces of oxides, even those such as MgO and ZnO which have the simplest of ionic 

crystal structures, can show remarkable complexity. Surface rumpling, i.e. differential 

perpendicular displacements of surface ions, occurs even on perfect terraces, due to 

differences in the polarisabilities of cations and anions. Moreover, in addition to the well-known 

surface features, such as steps and corners, surface point defects are commonly present in 
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appreciable concentrations, in some cases due to low formation energies; but a special case 

is provided by “polar” surfaces, i.e. those which in the surface repeat unit have a dipole 

moment perpendicular to the surface. Tasker104 first showed that such surfaces are intrinsically 

unstable in ionic materials, owing to a divergence in the electrostatic energy. For stability, the 

surface dipole must be quenched, which may be achieved possibly by electron transfer 

between bulk and surface regions or by adsorption of polar species but is most commonly 

effected by the creation of charged surface defects in sufficiently high concentrations to cancel 

the surface dipole. 

The reconstruction of polar oxide surfaces has been widely studied and a particularly intriguing 

example is provided by ZnO. This wurtzite structured solid has four principal surfaces: two 

non-polar, i.e. the (1010) and (1120) and two polar, i.e. the zinc terminated (0001) and the 

oxygen terminated (0001). The non-polar surfaces have an interesting structure, as discussed 

by Whitmore et al.105 and more recently by Mora Fonz et al.106 Zinc-oxygen vacancy pairs were 

shown in these computational studies to have low formation energies leading to extensive 

surface grooving as observed experimentally. The polar surfaces, however, show remarkable 

reconstructions, as illustrated in Figure 6a, for the case of the Zn terminated structure, where 

vacancies cluster to form triangular features. 

 

Figure 6 Left: SEM Image of the (0001) Zn terminated surface of ZnO after Parker et al.107 (Reprinted 
from Surface Science, Vol 415, T.M.Parker, N.G.Condon, R.Lindsay, F.M.Leibsle, G.Thornton, Imaging 

the polar (0001̅) and non-polar (1010̅̅̅̅ ) surfaces of ZnO with STM, p L1046-L1050, Copyright (1998), 
with permission from Elsevier); Right: Two predicted low energy configurations of the reconstructed Zn 
terminated polar surface of ZnO, after Mora Fonz et al.108 The white and yellow lines indicate the unit 
cell and observed triangular patterns, respectively.  

DFT Calculations of Kresse et al.109 demonstrated the stability of such structures and the 
problem was re-examined in a comprehensive survey of Mora Fonz et al.108 Their procedure 
combined a generalised Monte-Carlo approach using the Knowledge Led Master Code 
(KLMC), developed by Woodley et al.41, 57 to explore the large number of vacancy 
configurations on the surface, with energy evaluations using the generalised lattice energy 
code, GULP.110 Interestingly, the triangular features observed experimentally fell out from the 
simulations as the low energy configurations, as illustrated in Figure 6b. The calculations were 
also able to rationalise complex structures on the oxygen terminated surface and changes of 
the surface structure with composition. KLMC has also been employed to predict the structure 
of the surface sublayer of KTaO3.111 This ternary oxide adopts the perovskite structure and 
given the higher charge of the tantalum cation it was previously suggested that the 001 surface 
should terminate with a potassium oxide layer together with vacancies to remove the surface 
dipole. Using the composition of a partially filled tantalum oxide terminated 001 surface, KLMC 
found the same partially filled potassium layer could be formed, supported by a mixed 
potassium and talinum oxide layer that had a more stable surface energy (0.2eV lower). 
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Overall, computational and experimental studies have revealed the fascinating variety and 
complexity of the surface structure of apparently simple oxides and the ability of modelling 
techniques to rationalise the experimentally observed structures. 
 
Nano- Structure Prediction 
 
Given reactions occur on surfaces, it is not surprising to see research specifically based on 
nanoparticles as the external surface to volume ratio is maximised. Moreover, many properties 
scale with the size of the nanoparticle so that there is an additional tuning parameter112 that 
can be used when seeking a material with a target value of a desired property that improves 
the performance of an application. For example, to harvest efficiently solar power on the 
surface of the Earth, it is desirable to have a material with a band gap that suitable for capturing 
the most abundant source of photons, i.e. visible light. The atomic structure of a nano-particle 
may resemble a cut taken from the bulk phase; typically for crystalline materials, the 
equilibrium morphology is determined by the Wulff construction, where the distance from the 
centre of each facetted surface to the centre of the crystalline particle is proportional to its 
surface energy. Ignoring the complications of the effects the surrounding environment might 
have on the structure of the nano-particle (nano-particles may be capped with ligands to 
control their size and to add or enhance a desired property, or they may be supported as 
discussed below), the particle may contain grain boundaries and, as a function of particle size, 
may also undergo a structural phase change. Using molecular dynamics Sayle et al.113-114 
have simulated the melting of a particle cut of its bulk phase and then the recrystallisation of 
a low energy configuration which nicely demonstrated the formation of grain boundaries and, 
for example, micro-twinning within a particle of MnO2. Bulk zinc sulphide can readily adopt the 
sphalerite or Wurtzite phase. The former is more stable under ambient conditions; however, 
the latter becomes more thermodynamically stable for smaller sized nano-particles. Moreover, 
as mentioned earlier, simulations have predicted cuts of other phases to become 
competitive115 (see Figure 4c) and for the smallest sized clusters, so called nano-clusters, the 
low energy structures form bubbles116 and, therefore, no longer resemble a bulk from any 
known bulk phase. By exploitation of energies of both bulk and non-bulk clusters as a function 
of size, the critical sizes for “structural transitions” are predicted; see, for example, a 
perspective on modelling nano-cluster and nucleation117 or the more recent paper by Bromley 
et al.118, which both consider particles of zinc oxide. The former also highlights such studies 
can help us understand and gain insight into the atomic mechanisms of nucleation and the 
early stages of crystal growth. 
Nano-particles, by definition, have a diameter of anything between 1 to 100 nano-metres (10-

9 metres). To calculate the energy based on classical atomistic methods for the larger particles 
would currently require modern high-performance computer facilities. For particles of 
approximately 10nm, more accurate electronic structure methods can be employed. Only for 
the smaller sizes and below, i.e. for nano-clusters, can current computer resources be used 
to sample many configurations on the energy landscape. The global optimisation methods 
described above have had enormous success in predicting the tentative low energy structures 
of nanoclusters as a function of size, where size relates to the number of atoms or formula 
units. Here we restrict ourselves to providing one recent example for a metallic, a covalent, 
and an ionic system. 
Strictly speaking all small nano-clusters cannot be metallic as there are not enough electronic 
states to form bands. In Figure 7 the tentative lowest energy configurations for titanium 
clusters of sizes 1 to 32 are shown.119 Their energies and relaxed configurations were obtained 
using a DFT approach implemented within the all-electron, full potential electronic structure 
code FHI-aims120 with the appropriate spin, the PBEsol exchange–correlation functional, and 
a tight basis set equivalent to triple zeta plus polarisation. To dramatically reduce the 
computational cost of finding the configurations shown in Figure 7, they first employed a 
genetic algorithm, as implemented within KLMC,41 to search for the lowest energy minima on 
the energy landscape that is defined using a many-body embedded atom method as 
implemented with GULP,110 which included a combination of a many-body attractive term and 
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a repulsive two-body Born–Mayer interatomic potential. For each size, the best, as determined 
by GULP, 250 local minimum configurations generated by KLMC were further refined and 
reranked using FHI-aims. The final configurations suggest a growth mechanism that is based 
on forming coordination centres by interpenetrating icosahedra, icositetrahedra and Frank–
Kasper polyhedra. A better view of these configurations, as well as those shown in Figure 8, 
can be gained by using the website graphical interface of the WASP@N database,121 which 
contains data of published nanocluster structures. Change the element and a different set of 
global minima configurations are obtained; see, for example, the review of Baletto and 
Ferrando122 who pay special attention to the interplay of energetic, thermodynamic, and kinetic 
factors in the explanation of cluster structures that are observed in experiments. For bimetallic 
and more generally alloys see references 123 and 124. 
 

 
Figure 7 Tentative global minimum atomic structures for clusters of titanium as measured using DFT 
with the PBEsol functional, as found by Lazauskas et al.119 Reproduced from Ref. 119 with permission from 

the PCCP Owner Societies. 

Octahedral bubble-like nanoclusters, with Th, Td or T symmetry, have been predicted for a 
range of compounds, including zinc sulphide,125 zinc oxide,126 gallium nitride,127 and silicon 
carbide,98 have recently been reported128 as a new class of carbon nanostructures which, for 
the smallest sizes, have a similar stability compared to the well-known carbon fullerenes. The 
octahedral carbon clusters contain tetragonal rings, which, despite a common belief, prove to 
be an energy efficient means of bending graphene sheets to make three-dimensional spheroid 
shapes. 
Magnesium-rich silicates are likely to be particularly important for understanding the formation, 
processing, and properties of cosmic dust grains. Although astronomical observations, e.g. 
from infrared spectra, and laboratory studies have revealed much about such silicate dust, 
many studies rely on comparisons with the properties of bulk silicates. Assuming a continuous 
change of a property with respect to the nanoparticle size provides a route for estimating the 
size and, via a match between simulated and observed data, the composition of a particle. 
Extrapolating from bulk, under the assumption that the atomic structure of the particles 
remains bulk-like, right down into the smallest size regime, that of nanoclusters, would, 
however, be a mistake as adding one or two atoms to a nanocluster will change the lowest 
energy atomic configuration, as already shown in Figure 7. This was one of the motivations 
for predicting the tentative global minima for nano-clusters of magnesium silicates, as shown 
in Figure 8, along with reporting of their infrared vibrational spectra.16 
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Figure 8 Tentative global minimum atomic structures for clusters of magnesium silicates as measured 
using DFT with the PBE0 hybrid functional, as found by Escatllar et al.16 Blue, yellow, and red spheres 

represent magnesium, silicon and oxygen atoms, respectively. Reproduced with permission from ACS 
Earth and Space Chemistry 2019, 3 (11), 2390-2403 
(https://pubs.acs.org/doi/10.1021/acsearthspacechem.9b00139). Further permissions related to the material 
excerpted should be directed to the ACS 

Given clusters of compounds with the same stoichiometry can adopt similar atomic structures 
it may be more efficient to data-mine published atomic configurations as opposed to 
performing a search on the energy landscape.129-130 Reference 13 provides a more complete 
description of computational modelling of nanoparticles. 
 
Supported Nano-Clusters 
 
Many applications of nano systems involve nano-structures supported on oxides, which are 
especially common in catalytic applications. An important example is provided by copper 
supported on zinc oxide, which has been very widely studied owing to its use as an industrial 
catalyst for the conversion of syngas (Co/H2) to methanol. Fundamental problems remain, 
however, regarding both the atomic level structure of the catalyst and the mechanism of the 
catalytic reaction. 
Recent work of Mora Fonz et al.18 has addressed the problem of the structure of nano Cu 
clusters initially on the polar surfaces of ZnO. The first step was to develop an effective 
interatomic potential for Cu – ZnO interactions, which was achieved by performing a series of 
DFT calculations on the interaction of Cu atoms and small clusters with the surface; the 
resulting energy surface was then fitted to a potential model. Using the potential model 
derived, Cu clusters were ‘’grown’’ on the non-polar (11-20) surface by successive additions 
of single atoms, after which an optimisation was performed using the KLMC software. Figure 
9 illustrates the resulting structure for a supported Cu8 nano-cluster. Interestingly, the lowest 
energy configuration is a planar cluster in which the Cu ‘’wets’ the surface of the ZnO. 
Moreover, these configurations are not generated by a procedure in which the cluster is first 
optimised in isolation and then deposited on the surface and reoptimised. The lowest energy 
structure is only attained when the atom by atom method is used to grow the cluster on the 
surface. Further work is now in progress on larger clusters and on clusters on the polar 
surfaces. Once developed, these models will provide a basis for subsequent exploration of 
the catalytic mechanism. 

https://pubs.acs.org/doi/10.1021/acsearthspacechem.9b00139
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Figure 9 Predicted structure, as viewed from above, of the Cu8 nanocluster on the (11-20) surface of 
ZnO (Black rectangle indicates the unit cell employed in the simulation).18 Reproduced with permission 
from The Journal of Physical Chemistry C 2017, 121 (31), 16831-16844 
(https://pubs.acs.org/doi/full/10.1021/acs.jpcc.7b04502). Further permissions related to the material excerpted 
should be directed to the ACS 

 
Organic Solids – Pharmaceutical solid form screening 
 
The application of crystal structure prediction methods to organic molecular crystals has, until 
recently, been dominated by pharmaceutical materials applications. The solid form of active 
pharmaceutical ingredients (APIs) is important in determining many properties, such as 
solubility rate, stability, hygroscopicity and compressibility. Therefore, polymorphism – where 
a molecule adopts multiple crystal structures, either concomitantly or under different 
crystallisation conditions – is important when formulating an API. While polymorphism can be 
an opportunity for tuning materials properties, the appearance of an unanticipated polymorph 
of an API represents a significant risk for control of properties.131-132 The application to 
polymorph risk assessment for pharmaceuticals133 has motivated much of the development of 
structure prediction methods for organic molecular crystals.  
 
A particular challenge of completely sampling the energy landscape of possible crystal 
structures is the molecular flexibility of typical APIs. Conformational polymorphism, where 
different molecular conformers are adopted in different crystal structures of a molecule, is not 
uncommon. More than one in three known polymorphic molecules exhibit conformational 
polymorphism.134 Furthermore, highly flexible molecules often do not adopt the lowest energy 
conformer of the isolated molecule in their crystal structures, and intermolecular forces can 
distort molecules significantly from their gas phase geometries.135 Therefore, flexible degrees 
of freedom within a molecule (eg. rotation about single bonds) must often by considered along 
with packing variables, such as the unit cell, molecular positions and orientations. This results 
in a high dimensionality search space and predicted crystal structures whose relative stabilities 
are defined by a balance between many weak intermolecular interactions, relative 
conformational energies and intramolecular strain. The pharmaceutical application has, 
therefore, been an excellent application to drive forward structure searching methods and 
accurate models for ranking structures. 
 
Neumann et al’s study of Dalcetrapib,136 a molecule with 10 rotatable bonds (Figure 10), 
illustrates the value of crystal structure prediction in the pharmaceutical context. Two 
polymorphs, related by a temperature-induced phase transition, were known after extensive 
crystallisation screening. Structure prediction using solid state DFT for energy ranking 
produced structures corresponding to these known polymorphs, with the global energy 
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minimum corresponding to the low-temperature polymorph B. The predictions also produced 
slightly higher energy, higher density putative structures, which become lower in energy than 
the known polymorph if pressures above ca. 0.2 GPa are applied in the energy calculations. 
This suggested an experimental route to this predicted polymorph, which was confirmed by in 
situ high-pressure crystallisation from solution, leading to a new crystal corresponding to one 
of these predicted polymorphs. 

 

Figure 10 Chemical diagram of Dalcetrapib, with arrows highlighting the 10 torsional degrees of 
freedom. Reproduced from Nature Communications 2015, 6 (1), 7793, published by Nature 
Research.136 

Reported successful applications of polymorph prediction applications such as this are 
becoming more and more frequent, often with the results of structure prediction providing the 
impetus for further experimental screening. As another example, computational structure 
prediction was used as part of polymorph screening of the drug molecule galunisertib,137 which 
revealed an astonishing 10 polymorphs, as well as solvate crystal structures (where solvent 
molecules crystallise with the organic molecule, forming a two-component crystal). However, 
despite exploring a wide range of solvent-based crystallisations and more unusual 
crystallisation conditions, the crystal structure corresponding to the global energy minimum 
has not been realised experimentally. In a final example, structure prediction identified138 a 
likely new polymorph of the simple molecule, trimesic acid, despite being subjected to 
considerable attention from the chemical crystallography community for 50 years.139 The 
results prompted a high-throughput robotic crystallisation screen of 280 solvent combinations, 
which led to experimental realisation of the new predicted polymorph (Figure 11). 
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Figure 11; a) Comparison between predicted and experimental powder X-ray diffraction patterns of the 
computationally predicted new polymorph of trimesic acid; (b) structural overlay of the predicted (blue) 
and the experimental (red) crystal structures. 138 Reproduced from Chemical Science 2019, 10 (43), 
9988-9997- published by The Royal Society of Chemistry.  

 
Organic Solids – Functional materials discovery 
 
Molecular organic crystal structure prediction has more recently started to see broader 
applications in materials discovery. The discovery of materials with targeted properties 
switches the focus from gaining a detailed picture of the solid form landscape of a single 
molecule to an evaluation of the likely crystal structures of larger sets of molecules. As long 
as the property of interest is readily calculable from the crystal structure, reliable structure 
prediction can help screen candidate molecules and prioritise synthetic efforts towards the 
most promising of these. In this area, Pulido et al introduced the concept of an energy-
structure-function map,140-141 where the simulated properties of interest are projected onto the 
energy landscape of predicted crystal structures of a molecule. When such a map is presented 
visually (see Figure 12), it can offer a useful visual assessment of which candidate is most 
likely to lead to the best materials properties for a given application. 
 
An example is Pulido et al.’s computationally-guided discovery of microporous molecular 
crystals.140 Crystal structure prediction was performed on a set of 8 molecules chosen as 
candidates to form porous molecular crystals, with the aim of finding materials with high 
methane deliverable capacities (e.g. for use in natural gas-powered vehicles). A porous solid 
must deliver at least 150 v STP/v of methane over a storage and release cycle to be of practical 
interest for methane storage. Porosity is rare in organic molecular crystals because of the 
energetic driving force for molecular close packing, so candidate molecules were designed 
with characteristics that would oppose close packing – awkward, rigid shapes with strong, 
directional hydrogen bonding interaction sites. The energy-structure-function maps calculated 
for all 8 molecules suggested the triptycene benzimidazolone molecule, T2, as the molecule 
with the most promising crystal structures (dark red points, Figure 12). Three new polymorphs 

of T2 were subsequently realised (T2-, T2-, T2-), all corresponding to predicted structures. 

These include T2-, which is the lowest density molecular crystal reported in the Cambridge 
Structural Database142 of known organic crystal structures and whose measured surface area 
and CH4 capacity match those from the predictions.  
 

 

Figure 12 Chemical diagram of benzimidazolone T2 and its energy-structure-function map, showing 
simulated CH4 deliverable capacities for all predicted crystal structures.140 Experimentally observed 

crystal structures are circled and labelled T2- to T2-. The data point for each predicted crystal 
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structure is colour coded by its CH4 deliverable capacity (in units of v STP/v; 65–5.8 bar, 298 K). 
Reproduced from Pulido et al, Nature 2017, 543, 657–664.   

The experimentally observed crystal structures in this example are energetically far above the 
global lattice energy minimum, but occupy so-called ‘spikes’ on the energy landscape: low 
density structures that are much lower in energy than the general energy-density trend on the 
landscape. These spikes are interpreted as corresponding to isolated, deep regions of the 
lattice energy surface, so that they can be kinetically trapped under the right crystallisation 
conditions. Here, this corresponds to crystallisation from solvent which fills the pores in the 
structure, but which can be removed from the crystal structure, yielding the activated porous 
structure. The importance of solvent stabilisation in directing crystallisation, shown in this 
example and also known in pharmaceutical crystallisation,143 has led to further method 
development to understand the role of solvent in determining the final structure in microporous 
molecular crystals.144 
 
Apart from the area of microporous solids, energy-structure-function maps have also been 
used in screening for organic molecular semiconductors with high charge carrier mobilities87, 

145-147 and studies of molecular organic photocatalysts.148 These are other application areas 
where the property of interest depends strongly on crystal packing, so that crystal structure 
prediction is becoming an enabling technology for computationally-led materials discovery. 
 

Perspective and Future Prospects 
 
This review has, we hope, showed the accelerating progress in this already fast-moving field. 
Structure prediction is now a reality for an increasingly diverse and complex range of 
compounds and materials. Future developments in the field will include first an increasingly 
close integration with experiment, with structure prediction techniques being used routinely to 
guide materials design; secondly, alongside continuing algorithmic developments, as in, for 
example, references 149-151 there will be a rapid growth in the use of machine learning and 
other approaches from computer science. Thirdly, as we enter the era of exa-scale computing, 
the horizons and ambitions of the field will expand. Structure prediction will continue to provide 
challenges for experimentalists, theoreticians and computational scientists.  
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