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SUMMARY
We meta-analyze amyotrophic lateral sclerosis (ALS) genome-wide association study (GWAS) data of Eu-
ropean and Chinese populations (84,694 individuals). We find an additional significant association be-
tween rs58854276 spanning ACSL5-ZDHHC6 with ALS (p = 8.3 3 10�9), with replication in an indepen-
dent Australian cohort (1,502 individuals; p = 0.037). Moreover, B4GALNT1, G2E3-SCFD1, and TRIP11-
ATXN3 are identified using a gene-based analysis. ACSL5 has been associated with rapid weight loss,
as has another ALS-associated gene, GPX3. Weight loss is frequent in ALS patients and is associated
with shorter survival. We investigate the effect of the ACSL5 and GPX3 single-nucleotide polymorphisms
(SNPs), using longitudinal body composition and weight data of 77 patients and 77 controls. In patients’
fat-free mass, although not significant, we observe an effect in the expected direction (rs58854276: �2.1
± 1.3 kg/A allele, p = 0.053; rs3828599: �1.0 ± 1.3 kg/A allele, p = 0.22). No effect was observed in con-
trols. Our findings support the increasing interest in lipid metabolism in ALS and link the disease genetics
to weight loss in patients.
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Figure 1. Genome-wide Meta-analysis Results

Manhattan plots of the (A) SNP-based results and (B) gene-based results. Loci previously identified are in black. Additional loci identified by ourmeta-analysis are

in red.
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative dis-

ease, primarily affecting upper and lower motor neurons, that re-

sults in progressive weakness and culminates in death from

neuromuscular respiratory failure, typically 2–5 years after diag-

nosis (Brown and Al-Chalabi, 2017). Many genetic factors that

drive and contribute to its development and progression have

been identified (Iacoangeli et al., 2019b). Rare disruptive muta-

tions have been shown to be responsible for approximately

two thirds of the 5%–10% of patients with a family history of

ALS (Renton et al., 2014) and for ~10%–15% of the remaining

cases (Renton et al., 2014; Chia et al., 2018; Al-Chalabi, 2017)

who do not report a family history of ALS. Genome-wide associ-

ation studies (GWASs) have been particularly successful in the

discovery of loci involvedwith the disease; for example, the initial

identification of the C9orf72 locus (Shatunov et al., 2010) nar-

rowed down a much larger locus identified through linkage

(Vance et al., 2006; Morita et al., 2006) and led to the discovery

of a pathogenic hexanucleotide-repeat expansion, the most

common cause of ALS in the European population (Iacoangeli

et al., 2019a). Moreover, GWASs have provided direct evidence

of the major contribution of single-nucleotide polymorphisms

(SNPs) to the heritability of ALS (Fogh et al., 2014; van Rheenen

et al., 2016) and have identified a number of loci associated with

the disease. To gain new insight into the genetics of ALS, we

meta-analyzed the summary statistics from two ALS GWASs:

the largest ALS study to date on >80,000 individuals of European
2 Cell Reports 33, 108323, October 27, 2020
ancestry (Nicolas et al., 2018) and a Chinese ALS study on

>4,000 individuals (Benyamin et al., 2017). This cross-ethnic

approach was previously used with an older European GWAS

(van Rheenen et al., 2016) and led to the discovery of the asso-

ciation between the GPX3-TNIP1 locus and ALS (Benyamin

et al., 2017).

RESULTS

GWAS Meta-analysis
We meta-analyzed the summary statistics of the European and

Chinese GWASs (STAR Methods). The total number of individ-

uals was 84,694 (22,040 cases and 62,654 controls), and the to-

tal number of meta-analyzed SNPs was 5,356,204. No inflation

of test statistics in the quantile-quantile plot (lgc = 1.042 and

l1,000 = 1.001) was observed (Figure S1). SNP-based meta-anal-

ysis (Figure 1A) replicated the previously identified loci C9orf72,

UNC13A, and GPX3-TNIP1. C21orf2, TBK1, and KIF5A SNPs

previously reported to be associated with ALS risk were present

only in the European dataset. We identified an additional associ-

ation in the ACSL5-ZDHHC6 locus (five significant SNPs in link-

age disequilibrium [LD], lead SNP rs58854276 p = 8.3 3 10�9, A

allele frequency 64.9%, odds ratio [OR] = 1.08, 95% confidence

interval [CI] = 1.05–1.11; Table 1; Figure S2A) and two putative

loci, G2E3-SCFD1 (lead SNP rs229247 p = 2.2 3 10�7, T allele

frequency 47.9%, OR = 1.07, 95% CI = 1.04–1.10; Table 1; Fig-

ure S2B) and TRIP11-ATXN3 (lead SNP rs10143310 p = 2.6 3

10�7, C allele frequency 24.5%, OR = 1.08, 95% CI = 1.05–



Table 1. GWAS Results for the Four Identified Loci and Their Lead SNPs in Our SNP Meta-analysis, Gene-Based Analysis, and Project

MinE Gene Burden Analysis of Rare Variants

Lead SNP rs No.

Effect

Allele

Effect Allele

Frequency (%) OR (95% CI)

Lead SNP

p Value

Magma Gene

p Value

Rare Variants

Gene-Burden

OR (CI)

Rare Variants

Gene-

Burden

p Value

ACSL5/ZDHHC6

(Benyamin et al.

[2017] Chinese

cohort)

rs58854276 A 51.1 1.20 (1.08–1.36) 0.00015 3.1 3 10�5/

6.5 3 10�5

– –

ACSL5/ZDHHC6

(Nicolas et al.,

[2018] European cohort)

rs58854276 A 65.6 1.07 (1.04–1.10) 1.1 3 10�6 7.8 3 10�6/

1.5 3 10�4

– –

ACSL5/ZDHHC6

(this study)

rs58854276 A 64.9 1.08 (1.05–1.11) 8.3 3 10�9 8.1 3 10�8/

2.7 3 10�6

1.78 (0.77–4.09)/

0.84 (0.52–1.35)

0.14/0.98

ACSL5 (replication) rs58854276 A 66.1 1.18 (1.01–1.38) 0.037 – – –

ACSL5 (joint) rs58854276 A 64.9 1.09 (1.06–1.11) 1.5 3 10�9 – – –

B4GALNT1 (this

study)

rs12320537 C 20.5 1.07 (1.04–1.11) 6.2 3 10�6 1.8 3 10�6 0.65 (0.40–1.04) 0.07

G2E3/SCFD1

(this study)

rs229247 T 47.9 1.07 (1.04–1.10) 2.2 3 10�7 1.2 3 10�7/

4.2 3 10�6

2.32 (1.27–4.23)/

0.84 (0.52–1.35)

0.0019/0.46

TRIP11/ATXN3

(this study)

rs10143310 C 24.5 1.08 (1.05–1.12) 2.6 3 10�7 7.2 3 10�6/

2.6 3 10�7

1.05 (0.86–1.28)/

NA

0.59/NA

ACSL5 lead SNP results for the replication cohort and the two meta-analyzed GWAS are also reported. NA, not applicable.
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1.12; Table 1; Figure S2C). Using an independent Australian

cohort (837 cases and 665 controls of European ancestry;

STAR Methods; Table S1), we replicated the association be-

tween the ACSL5 lead SNP, rs58854276, and ALS (A allele fre-

quency 66.1%, OR = 1.18, 95% CI = 1.01–1.38, p = 0.037).

rs58854276 was not the lead ACSL5 SNP in either of the meta-

analyzed studies. It was the second most significant ACSL5

SNP in the Chinese study and the fourth most significant

ACSL5 SNP in the European study (p = 0.00015 and p = 1.1 3

10�6 respectively; Tables 1 and S2), highlighting the differences

in terms of LD structure and frequencies in the two populations.

ACSL5 and ZDHHC6 (gene-p = 8.1 3 10�8 and 2.7 3 10�6,

respectively) and one gene in each of the two putative loci,

ATXN3 (gene-p = 2.6 3 10�7) and G2E3 (gene-p = 1.2 3 10�7),

were genome-wide significant in the gene-based analysis (Fig-

ure 1B; STAR Methods), consistent with the information contrib-

uted by the SNP associations, and recognizing that neighboring

genes have overlapping boundaries in the gene-based analyses

so that the same SNPs can contribute to more than one gene

test. Another gene, B4GALNT1, was genome-wide significant

in the gene-based analysis (gene-p = 1.8 3 10�6); however, no

SNPs individually reached the putative threshold (lead SNP

rs12320537, C allele frequency 20.5%, p = 6.2 3 10�6). Finally,

using the summary statistics data of our previously published

gene-burden analysis of disruptive, damaging, and missense

variants on 4,389 ALS patients and 1,846 controls (van der

Spek et al., 2019), for the seven genes in the four identified

loci, i.e., ACSL5, ZDHHC6, B4GALNT1, SCFD1, G2E3,

TRIP11, and ATXN3, we observed an association between rare

variants in G2E3 and ALS (p = 0.0019, OR = 2.32, 95% CI =

1.27–4.23; Table 1).
Fine-Mapping of the Identified Loci
We attempted to fine-map the four identified loci by assessing

whether their independent lead SNPs or LD proxies have cis

expression quantitative trait locus (cis-eQTL) effects observed

in brain and blood tissues in the GTEx data (eGTEx Project,

2017) (Table 2; STAR Methods). Only one lead SNP per locus

was selected as no other significant SNP in the loci met our in-

dependence criterion (r2 < 0.80). All four lead SNPs were in LD

with cis-eQTLs for several brain tissues (Table 2). rs12320537

(B4GALNT1 lead SNP) was in LD with rs2258877 (r2 = 0.88),

a brain cerebellum and cerebellar hemisphere cis-eQTL of

B4GALNT1 (p = 1.8 3 10�5 and 1.7 3 10�7, respectively).

rs58854276 (ACSL5-ZDHHC6 lead SNP) was in LD with

rs2419629 (r2 = 0.90), a brain cerebellum and brain nucleus ac-

cumbens basal ganglia cis-eQTL of ZDHHC6 (p = 2.1 3 10�7

and 1.9 3 10�8, respectively); with rs12414780 (r2 = 0.83), a

brain frontal cortex cis-eQTL of ZDHHC6 (3.2 3 10�7); and

with rs72821869 (r2 = 0.84), a brain cortex cis-eQTL of

ZDHHC6 (7.6 3 10�6). rs229247 (SCFD1-G2E3 lead SNP)

was in LD with cis-eQTLs of SCFD1 in brain cortex

(rs229173, r2 = 0.95, p = 2.1 3 10�7), brain anterior cingulate

cortex (rs7154847, r2 = 0.89, p = 3.3 3 10�7), brain cerebellar

hemisphere (rs229231, r2 = 0.99, p = 3.1 3 10�16), brain cere-

bellum (rs229152, r2 = 0.94, p = 2.2 3 10�24), and brain frontal

cortex (rs10130830, r2 = 0.91, p = 1.4 3 10�8). rs10143310

(TRIPP11-ATXN3 lead SNP) was in LD with rs2896190 (r2 =

1), a cis-eQTL of TRIP11 in brain cerebellum and cerebellar

hemisphere (p = 2.5 3 10�8 and 6.8 3 10�7, respectively).

The four lead SNPs were also in strong LD with blood cis-

eQTLs. The complete results from this analysis are available

in Table 2.
Cell Reports 33, 108323, October 27, 2020 3



Table 2. eQTL Effect of the Lead SNPs in Brain and Whole-Blood Tissues

Lead SNP

Gene Lead SNP eQTL SNP

eQTL SNP

Gene r2 Tissue Ref Alt Ensebl Gene ID

Minor Allele

Samples

Minor

Allele

Count MAF p Value Slope Slope SE

ATXN3 rs10143310 rs2896190 TRIP11 1.00 brain cerebellar

hemisphere

A G ENSG00000100815.12 78 90 0.26 6.8 3 10�7 0.24 0.05

ATXN3 rs10143310 rs2896190 TRIP11 1.00 brain cerebellum A G ENSG00000100815.12 89 104 0.25 2.5 3 10�8 0.29 0.05

ATXN3 rs10143310 rs7142326 ATNX3 0.56 whole blood T C ENSG00000066427.21 433 557 0.42 3.2 3 10�7 0.13 0.02

ATXN3 rs10143310 rs76497846 TRIP11 0.62 whole blood G A ENSG00000100815.12 407 516 0.39 3.0 3 10�5 0.09 0.02

ATXN3 rs10143310 rs12587248 NDUFB1 0.62 whole blood T C ENSG00000183648.9 356 423 0.32 2.5 3 10�8 0.10 0.02

B4GALNT1 rs12320537 rs2258877 B4GALNT1 0.88 brain cerebellar

hemisphere

A G ENSG00000135454.13 79 92 0.26 1.7 3 10�7 0.24 0.04

B4GALNT1 rs12320537 rs2258877 B4GALNT1 0.88 brain cerebellum A G ENSG00000135454.13 95 106 0.25 1.8 3 10�5 0.18 0.04

B4GALNT1 rs12320537 rs12322482 ATP23 0.99 whole blood G A ENSG00000166896.7 245 272 0.20 1.4 3 10�10 �0.29 0.04

SCFD1 rs229247 rs7154847 SCFD1 0.89 Brain anterior cingulate

cortex BA24

G A ENSG00000092108.20 82 101 0.34 3.3 3 10�7 0.33 0.06

SCFD1 rs229247 rs229231 SCFD1 0.99 brain cerebellar

hemisphere

G A ENSG00000092108.20 107 143 0.41 3.1 3 10�16 0.33 0.03

SCFD1 rs229247 rs229152 SCFD1 0.94 brain cerebellum T C ENSG00000092108.20 126 164 0.39 2.2 3 10�24 0.37 0.03

SCFD1 rs229247 rs229173 SCFD1 0.95 brain cortex T C ENSG00000092108.20 123 159 0.39 2.1 3 10�7 0.23 0.04

SCFD1 rs229247 rs10130830 SCFD1 0.91 brain frontal cortex BA9 A G ENSG00000092108.20 113 146 0.42 1.4 3 10�8 0.27 0.05

SCFD1 rs229247 rs448175 SCFD1 1.00 whole blood G T ENSG00000092108.20 415 536 0.40 1.9 3 10�56 �0.28 0.02

ACSL5 rs58854276 rs2419629 ZDHHC6 0.90 brain cerebellum A G ENSG00000023041.11 113 144 0.34 2.1 3 10�7 0.28 0.05

ACSL5 rs58854276 rs72821869 ZDHHC6 0.84 brain cortex C T ENSG00000023041.11 121 152 0.37 7.6 3 10�6 0.29 0.06

ACSL5 rs58854276 rs12414780 ZDHHC6 0.83 brain frontal cortex BA9 C G ENSG00000023041.11 100 123 0.36 3.2 3 10�7 0.41 0.08

ACSL5 rs58854276 rs2419629 ZDHHC6 0.90 brain nucleus

accumbens basal

ganglia

A G ENSG00000023041.11 120 151 0.37 1.9 3 10�8 0.40 0.07

ACSL5 rs58854276 rs12414780 ZDHHC6 0.83 brain putamen basal

ganglia

C G ENSG00000023041.11 101 129 0.38 1.3 3 10�5 0.34 0.08

ACSL5 rs58854276 rs72821869 ACSL5 0.84 whole blood C T ENSG00000197142.10 356 446 0.33 3.2 3 10�48 �0.38 0.02

For each lead SNP, we reported the most significant eQTLs from GTEx in LD (r2 > 0.5) with the lead SNP. For each eQTL, we reported the the r2 with the corresponding lead SNP, the tissue in

which the effect was observed, the corresponding regulated gene, the number of samples carrying the minor allele, the total number of minor alleles, the minor allele frequency, the p value, and

regression slope and its standard error. The data are from GTEx version 8.
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Table 3. Investigation of the Effect of the ACSL5 and GPX3 SNPs on Fat-Free Mass in the MEND-MND Cohorts

Model Sample Group SNP/Allele Effect (kg) SE (kg) p Value

Linear regression analysis at first visit cases rs58854276/A �2.0 1.3 0.14

Linear regression analysis at first visit cases rs3828599/A �1.0 1.3 0.47

Linear regression analysis at first visit controls rs58854276/A �0.1 1.0 0.89

Linear regression analysis at first visit controls rs3828599/A 0.2 1.2 0.89

Repeated-measures linear mixed model cases rs58854276/A �2.1 1.3 0.053

Repeated-measures linear mixed model cases rs3828599/A �1.0 1.3 0.22

First visit refers to the time of blood sampling for controls. In all analyses, sex was used as a covariate.
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Investigation of the Effect of ACSL5 and GPX3 SNPs on
Patients’ Body Weight and Composition
ACSL5 SNPs and their overexpression have been associated

with rapid weight loss in humans (Adamo et al., 2007; Teng

et al., 2009). Interestingly, another ALS gene,GPX3, was recently

found to be associated with weight loss (Langhardt et al., 2018).

To investigate the effect of the ALS-associated SNPs in ACSL5

and GPX3 on patients’ weight measures, we set out to test

whether the SNPs (ACSL5 lead SNP rs58854276 and GPX3

lead SNP rs3828599) were associated with decline and differ-

ence in weight traits within the context of ALS (Table 3). We

used a dataset from the metabolic exploration in neurodegener-

ative disease-motor neuron disease (MEND-MND) initiative that

included 77 cases and 77 controls (STARMethods; Table S4) for

whom fat mass, fat-free mass, body weight, and body mass in-

dex (BMI) were available (complete results in Table S3). This da-

taset included longitudinal records for 67 of the 77 cases. In a

linear regression analysis fitting sex as a covariate and using

baseline measures, cases had significantly lower fat-free mass

than controls (�4.2 ± 1.2 kg, p = 1.9 3 10�4); although cases

had lower values for the other traits, they were not significantly

different (pBMI = 0.58, pweight = 0.32, and pfat-mass = 0.22). For

cases, using a repeated-measures linear mixed model, fat-free

mass had the greatest decline over time (�2.2 kg/year, p =

2.6 3 10�18). Decline in weight (�2.2 kg/year, p = 1.2 3 10�9)

and BMI (�0.73 ðkg =m2Þ=year, p = 1.8 3 10�9) were also signif-

icant, but change in fat mass was not (0.091/year, p = 0.37).

Therefore, we focused on fat-free mass for the genetic analyses.

Using a linear regression model, for ACSL5 the A allele of

rs58854276 was suggestively associated with lower fat-free

mass at first visit in cases (�2.0 ± 1.3 kg/A allele, p = 0.14), but

not in controls (�0.1 ± 1.0 kg/A allele, p = 0.89). For GPX3, the

A allele of rs3828599 was not associated with lower fat-free

mass at baseline visit in either cases (�1.0 ± 1.3 kg/A allele,

p = 0.47) or controls (0.2 ± 1.2 kg/A allele, p = 0.89), although

its effect was in the expected direction in cases. In the cases

for whom longitudinal data were available, with a linear mixed

model using the repeated-measures across individuals and

fitting individuals as a random effect and time since first visit

as a covariate, the association trend between the rs58854276

A allele and a lower fat-free mass showed a trend toward signif-

icance (�2.1 ± 1.3 kg/A allele, p = 0.053). A similar trend was

observed for the rs3828599 A allele (�1.0 ± 1.3 kg/A allele, p =

0.22). Using a linear regression model, the mean change of fat-

free mass between first and last visit was not associated with

either rs58854276 or rs3828599 (p = 0.74 and 0.49, respectively).
Recognizing that the MEND-MND sample lacks power (STAR

Methods), we used the Sporadic ALS Australia (SALSA) cohort

(217 cases; STAR Methods, related to the Experimental Model

and Subject Details), which provided a larger sample size for

BMI and weight at first visit, but not fat-free mass measure-

ments. In this case cohort, we observed no association between

the SNPs and weight (rs58854276 p = 0.97 and rs3828599 p =

0.50) or BMI (rs58854276 p = 0.47 and rs3828599 p = 0.33) at first

visit. It is important to recognize that BMI and weight do not al-

ways accurately reflect changes in fat-free mass in ALS (Ioan-

nides et al., 2017b; Kirk et al., 2019) and that in the case cohorts,

individuals have weight measurements taken at cross-sectional

times relative to their personal disease trajectory. Here, including

time since diagnosis in the analysis did not offer further clarity.

DISCUSSION

We have identified one additional ALS locus, ACSL5-ZDHHC6,

and three additional putative loci, B4GALNT1, G2E3-SCFD1,

and TRIP11-ATXN3, with potential functional relevance for

ALS. We achieved this by exploiting the GWAS summary statis-

tics available from previously published studies. We meta-

analyzed the largest ALS study to date on >80,000 individuals

of European ancestry (Nicolas et al., 2018), and a Chinese ALS

study on >4,000 individuals (Benyamin et al., 2017), under the

hypothesis that common causal variants are ancient and will

be shared across ethnicities. The signal in ACSL5-ZDHHC6

was genome-wide significant, and the association between the

lead SNP and ALS was replicated in an independent Australian

cohort. B4GALNT1, G2E3-SCFD1, and TRIP11-ATXN3 SNPs

did not reach genome-wide significance, but the genes achieved

significance in a gene-based analysis that combines all SNP as-

sociation signals within a gene. Genes associated with disease

may have different architectures with respect to the number

and frequencies of causal variants and therefore gene-based

tests can identify disease-associated genes that have multiple

causal variants of small effect that individually are not genome-

wide significant (Hägg et al., 2015). Such an approach was suc-

cessfully used for other complex diseases including frontotem-

poral dementia (Mishra et al., 2017).

ACSL5 encodes an isozyme of the long-chain fatty-acid-coen-

zyme A (CoA) ligase family. All isozymes of this family convert

free long-chain fatty acids into fatty acyl-CoA esters and thereby

play a key role in lipid biosynthesis and fatty acid degradation.

This gene functions in mediating fatty-acid-induced glioma cell

growth. Weight loss is frequent in ALS patients and is a strong
Cell Reports 33, 108323, October 27, 2020 5
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prognostic factor associated with shorter survival (Körner et al.,

2013; Desport et al., 1999). Its causes cannot be entirely ex-

plained by the ALS phenotype (Körner et al., 2013); however,

loss of appetite and hypermetabolism are thought to contribute

(Ngo et al., 2019; Steyn et al., 2018). Interestingly, ACSL5

SNPs and its overexpression have been associated with rapid

weight loss in humans, as has another ALS-associated gene,

GPX3 (Adamo et al., 2007; Teng et al., 2009; Langhardt et al.,

2018). Genetic factors, such as variants in the ACSL5 and

GPX3 genes, could contribute to this phenomenon in ALS pa-

tients. Our investigation of the effect of ACSL5 and GPX3

SNPs on patients’ weight in the MEND-MND cohorts (77 cases

and 77 controls) showed a potential association between the

ACSL5 SNP rs58854276 and a lower fat-free mass in patients

(�2.1 ± 1.3 kg/A allele, p = 0.053) and no effect in controls.

Furthermore, no significant evidence for association in cases

or controls for GPX3 SNP rs3828599 was shown, although for

cases, the effect was in the expected direction (�1.0 ± 1.3 kg/

A allele, p = 0.22). No association of ACSL5 and GPX3 SNPs

with lower BMI or weight was observed in the SALSA dataset.

In the interpretation of these results, it is important to recognize

that given the size of the effect of our SNPs on fat-free mass in

theMEND-MNDcohorts, the dataset provided insufficient statis-

tical power to reliably reject the null hypothesis. Furthermore,

BMI and weight do not always accurately reflect changes in

fat-free mass in ALS (Ioannides et al., 2017b; Kirk et al., 2019).

Considering that other ACSL5 SNPs have been previously asso-

ciated with weight loss outside the context of ALS, it may be that

ACSL5 SNPs have a pleiotropic effect, influencing both ALS risk

and weight independently. These previously reported SNPs are

in weak LD with the SNPs identified in our study (r2 < 0.20),

and the effect on fat-free mass we observed in cases was not

observed in controls, suggesting that they might be on the

same causal pathway. However, if weight loss and ALS risk

were on the same causal pathway, its direction, i.e., whether

weight loss is a consequence of ALS risk or ALS risk is a conse-

quence of weight loss, cannot be clarified with the data currently

available. Larger sample sizes with genotype data and multiple

measurements of body weight and composition per individual

are needed to draw more robust conclusions about the relation-

ship between these genes, weight loss, and ALS. To maximize

power for a given sample size, fat-freemass should bemeasured

as this is most affected over the life course of ALS.

ZDHHC6 encodes for a DHHC enzyme (palmitoyltransfer-

ase), which localizes to the endoplasmic reticulum (ER) and

controls stability, localization, trafficking, and function of a

panel of key ER substrates (Abrami et al., 2017), a function

common to other ALS genes (Johnson et al., 2010; Ferrara

et al., 2018). Although all the genome-wide significant SNPs

were in ACSL5, these were in strong LD (r2 > 0.80) with a num-

ber of ZDHHC6 SNPs, and ZDHHC6 was itself genome-wide

significant in the gene-based analysis. Our attempt to fine-

map the two genes using cis-eQTL data from GTEx showed

that the lead SNP was in LD with cis-eQTLs of ZDHHC6 in brain

tissues, suggesting that ZDHHC6 might be the relevant dis-

ease-associated gene. We considered testing the effect of

ZDHHC6 SNPs on patients’ fat-free mass. However, given

the strong LD between ACSL5 and ZDHHC6 SNPs, a large pro-
6 Cell Reports 33, 108323, October 27, 2020
portion of the observed effect of the ACSL5 SNPs is expected

to be shared by the ZDHHC6 SNPs. Because of the very limited

sample size of the MEND-MND dataset, we preferred to avoid

increasing the number of tests and the consequential multiple

testing burden.

The B4GALNT1 gene encodes an enzyme involved in the

biosynthesis of complex gangliosides (beta-1,4-N-acetylgalac-

tosaminyl transferase). Variants in this gene cause dramatic

loss of series-a and series-b gangliosides in human brain and he-

reditary spastic paraplegias (Boukhris et al., 2013; Harlalka et al.,

2013). G2E3 is a ubiquitin ligase (E3) that regulates the DNA

damage response (DDR) (Brooks et al., 2007). Numerous dis-

eases are associated with defects in the DDR, including neuro-

degenerative disorders, age-related diseases, and cancer (Jack-

son and Bartek, 2009). Interestingly, not only did common SNPs

support its association with ALS but also we reported that rare

variants in G2E3might be risk factors for ALS (p = 0.0019) using

the results of our previously published gene-burden analysis of

rare variants in ALS (van der Spek et al., 2019). Such results,

considering the role of G2E3 in the regulation of DDR, suggest

that it could play an important role in the development of ALS.

SCFD1 is also involved in vesicle transport (Hou et al., 2017);

we previously reported the association between ALS and

SCFD1 SNPs in a European GWAS using linear mixed model

analysis (van Rheenen et al., 2016) and in our recently developed

machine learning method for gene discovery in ALS (Bean et al.,

2020). However, our attempts in both the same GWAS (van

Rheenen et al., 2016) and successive GWASs (Nicolas et al.,

2018; Benyamin et al., 2017) failed to replicate it. The ATXN3

gene provides instructions for making ataxin-3, an enzyme found

in cells throughout the body. Ataxin-3 is involved in the ubiquitin-

proteasome system that destroys and removes excess or

damaged proteins. The protein encoded by the ATXN3 gene

contains CAG repeats in the coding region, and the expansion

of these repeats from the normal range of 13–36 to 68–79 is

the cause of Machado-Joseph disease (Kawaguchi et al.,

1994), also known as SCA type 3 (SCA3). Intermediate expan-

sions of an identical repeat within ATXN1 or ATXN2 have been

associated with an increased risk of ALS (Conforti et al., 2012;

Tazelaar et al., 2020). However, ATXN3 repeat expansions

were not shown to have the same effect (Gispert et al., 2012).

ATXN3 expression controls and is essential for the recruitment

of mutated SOD1 into toxic aggresomes (Wang et al., 2012),

one of the most common causes of ALS. Also, ATXN3 was pre-

dicted by our machine learning method (Bean et al., 2020).

TRIP11 encodes for a protein associated with the Golgi appa-

ratus and is involved in vesicle transport (Follit et al., 2008). Mu-

tations in this gene cause achondrogenesis type IA (Smits et al.,

2010).
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Schön, M.R., Gärtner, D., Lohmann, T., Dressler, M., et al. (2018). Ef-

fects of Weight Loss on Glutathione Peroxidase 3 Serum Concentrations

and Adipose Tissue Expression in Human Obesity. Obes. Facts 11,

475–490.

Machiela, M.J., and Chanock, S.J. (2015). LDlink: a web-based application for

exploring population-specific haplotype structure and linking correlated alleles

of possible functional variants. Bioinformatics 31, 3555–3557.

Mishra, A., Ferrari, R., Heutink, P., Hardy, J., Pijnenburg, Y., and Posthuma, D.;

International FTD-Genomics Consortium (2017). Gene-based association

studies report genetic links for clinical subtypes of frontotemporal dementia.

Brain 140, 1437–1446.

Morita, M., Al-Chalabi, A., Andersen, P.M., Hosler, B., Sapp, P., Englund, E.,

Mitchell, J.E., Habgood, J.J., de Belleroche, J., Xi, J., et al. (2006). A locus

on chromosome 9p confers susceptibility to ALS and frontotemporal demen-

tia. Neurology 66, 839–844.

Ngo, S.T., van Eijk, R.P.A., Chachay, V., van den Berg, L.H., McCombe,

P.A., Henderson, R.D., and Steyn, F.J. (2019). Loss of appetite is associ-

ated with a loss of weight and fat mass in patients with amyotrophic

lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener. 20,

497–505.

Nicolas, A., Kenna, K.P., Renton, A.E., Ticozzi, N., Faghri, F., Chia, R., Domi-

nov, J.A., Kenna, B.J., Nalls, M.A., and Keagle, P. (2018). Genome-wide ana-

lyses identify KIF5A as a novel ALS gene. Neuron 97, 1268–1283.

Purcell, S., Cherny, S.S., and Sham, P.C. (2003). Genetic Power Calculator:

design of linkage and association genetic mapping studies of complex traits.

Bioinformatics 19, 149–150.
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Plink 1.9 Chang et al., 2015 http://www.cog-genomics.org/plink/1.9

LDlink Machiela and Chanock, 2015 https://ldlink.nci.nih.gov

Other

GTEx cis-eQTL data eGTEx Project, 2017 https://www.gtexportal.org/

European ALS GWAS Nicolas et al., 2018 http://als.umassmed.edu

Chinese ALS GWAS Benyamin et al., 2017 https://cnsgenomics.com/

Project MinE rare-variant GWAS van der Spek et al., 2019 http://databrowser.projectmine.com

1000 Genomes phase 3 Auton et al., 2015 https://www.internationalgenome.org/
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for data should be directed to and will be fulfilled by the Lead Contact, Dr. Alfredo Iacoangeli

(alfredo.iacoangeli@kcl.ac.uk).

Materials Availability
This study did not generate new materials.

Data and Code Availability
The summary statistics of the final meta-analysis are available to download from the following link: https://github.com/

KHP-Informatics/ALSMetaAnalysis2020.

Nicolas et al. GWAS (Nicolas et al., 2018) summary statistics can be downloaded from: http://als.umassmed.edu.

Benyamin et al. GWAS (Benyamin et al., 2017) summary statistics can be downloaded from: https://cnsgenomics.com/data/

benyamin_et_al_2017_nc/BenyaminEtAl_NatComm_Data.zip.

Van Der Spek et al. GWAS (van der Spek et al., 2019) summary statistics can be downloaded from: http://databrowser.

projectmine.com. Cis-eQTL data from GTEx version 8 is available on the consortium website: https://www.gtexportal.org/.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects
Discovery datasets and cohorts

All samples and datasets involved in our discovery GWAS analyses were described previously (van Rheenen et al., 2016, Benyamin

et al., 2017, Nicolas et al., 2018, van der Spek et al., 2019).

The Australian replication cohort

The Australian ALS cohort consisted of 837 cases and 665 controls of European ancestry (Table S1). Participants were genotyped

on the Infinium CoreExome-24 v1.1 chip, and after standard QC steps, imputed to the Haplotype Reference Consortium (HRC)

panel. The sample included patients and controls ascertained from the University of Sydney as part of the Australian MND

DNA bank, which recruited participants from April 2000 to June 2011. Cases were white Australians older than 25 years recruited

across Australia via state-based MND associations with diagnoses verified by neurologists. The study protocol was approved by

the Sydney South West Area Health Service Human Research Ethics Committee (HREC). Other cases were recruited from clinics

across Australia between 2015 and 2017. Control subjects were healthy individuals free of neuromuscular diseases, recruited as
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either partners or friends of patients with ALS or community volunteers. Written consent was obtained from all individuals enrolled

in this study, and the study was approved by the corresponding HREC at the different sites: University of Sydney, Western Sydney

Local Health District, The Royal Brisbane and Women Hospital (Metro North), South Metropolitan Health Service, and Macquarie

University. All ALS cases were diagnosed with definite or probable ALS according to the revised El Escorial criteria. Those with a

recorded family history of ALS were excluded. Additional controls were contributed from the Older Australian Twin Study(Sachdev

et al., 2009) (OATS) comprising 90monozygotic (MZ) twin pairs recruited at QIMR Berghofer Medical Research Institute, University

of New SouthWales and the University of Melbourne, with the studies being approved by their respective HRECs. The OATS study

recruited MZ twins aged 65 years and over. Twin pair data helped in quality control checks but only one twin from each pair was

used in our analyses.

The MEND-MND and the SALSA samples

Genotype data and weight-related measures were available in two additional Australian cohorts. These two datasets were used

only to investigate the difference in body weight and composition between cases and controls, and the effect of the ACSL5 and

GPX3 genotype on these measures. The MEND-MND cohort (Ioannides et al., 2017a) (Table S4) consisted of 77 ALS cases and 77

controls of European ancestry. For these samples, body weight, BMI, fat-free mass, and fat mass at first visit were available.

Follow up data for the MEND-MND cohort was available for 67 cases. For the 77 cases, a total of 320 measurements per measure

were obtained, with the mean time between follow up visits equal to 4.1 months (SD = 1.5 months), and the mean number of visits

per participants equal to 4.2 (SD = 2.5). Fat-free mass and fat mass were determined by air displacement plethysmography using

the BodPod system (Cosmed) (Dempster and Aitkens, 1995, Ioannides et al., 2017a). BMI was defined as body weight divided by

the square of patient height (kg/m2). The SALSA cohort (Table S5) provided 217 European ancestry cases for whom genotypes,

BMI and weight measures at first visit were available. The cases were independent of the MEND-MND cases and included 62

cases from the 837 cases used for the SNP association replication. SALSA cases were recruited from clinics across Australia,

including those listed above. Additional sites included Calvary Health Care Bethlehem (Melbourne) and the Fiona Stanley Hospital

(Perth). All SALSA participants were diagnosed with definite or probable ALS, according to the revised El Escorial criteria. In all

cohorts, those with a family history of ALS, or those who had been tested positive for known SOD1 or C9orf72 mutations were

excluded.

METHOD DETAILS

Fine-mapping using GTEx eQTL data
To assess whether the SNPs that we identified to be associated with the risk of ALS modify gene expression, we used the cis-eQTL

data fromGTEx version 8 for brain and blood tissues (e, 2017). For the seven genes identified in our meta-analysis, ACSL5, ZDHHC6,

SCFD1, G2E3, TRIP11, ATXN3 and B4GALNT1, we selected their independent lead SNPs (r2 < 0.80). Corresponding matching SNPs

were extracted from the GTEx data for brain and blood tissues. If no matching SNP was available, we selected proxies in LD (r2 >

0.50).

Genome-wide meta-analysis
Inverse variance SNP-based meta-analysis was conducted using METAL (Willer et al., 2010). The SNP genome-wide p-value signif-

icance threshold was 5x10�8. Putative ALS genes were defined as those for which at least one SNP p-valuewas < 5x10�7 and genes

that were genome-wide significant in the gene-based analysis. The gene-based association study was performed with the Magma

‘SNPtoGENE’ protocol (de Leeuw et al., 2015) on the FUMA webserver (Watanabe et al., 2017) to assess the overall association be-

tween all SNPs in a gene and a given phenotype. The SNPs were mapped to 18,067 protein coding genes. Therefore genome-wide

significance was defined according to the conservative Bonferroni correction method at p-value = 0.05/18,067 = 2.8x10�6. We also

investigated the association of rare variants (minor allele frequency < 0.01) in our candidate genes with ALS risk, using the summary

statistics from a gene-burden analysis of disruptive, damaging and missense variants previously performed on 4,389 ALS patients

and 1,846 controls (van der Spek et al., 2019). We used the Bonferroni correction based on the number of genes tested to assess

significance (i.e., p = 0.05/7 = 0.0071). All annotation, genomic positions and variants refer to the reference human genome hg19/

GRCh37. The 1000 genomes project Phase 3 Reference panel was used to compute r2 and minor allele frequency (Auton et al.,

2015) with Plink 1.9 (Chang et al., 2015) and LDlink (Machiela and Chanock, 2015).

QUANTIFICATION AND STATISTICAL ANALYSIS

Body weight and composition analyses in the MEND-MND and SALSA datasets
We investigated body weight and composition differences between cases and controls and the effect of the ACSL5 and GPX3 SNPs

on the individuals’ body weight and composition in an additive model. For the MEND-MND cohort, using a linear regression model

(Chambers, 1992), we first tested the differences at baseline (first visit) in body weight and composition measures between cases

and controls and within cases and controls with different ACSL5 and GPX3 SNP alleles. Second, we tested the difference in terms

of themean decline over time (change between first visit and last visit divided by time between first and last visit) in cases with different

ACSL5 andGPX3 SNP alleles. Using a repeated-measures linear mixedmodel (Bates et al., 2014) for cases, we assessed the effect of
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time on body weight and composition, and the effect of our selected SNPs on patients’ fat-free mass. This uses the repeated-mea-

sures nature of the data to improve precision of the association of SNP with our measures. Taking fat-free mass as an example, we

regressed fat-freemass on days since first visit, fitting individuals as a randomeffect. The 217 samples of theSALSA cohort hadweight

and BMI at first visit available. We used a linear regression model to test the difference of BMI and weight in patients with different

ACSL5 andGPX3 SNP alleles. Sex was fitted as a covariate in all analyses. We used the lm R function for the linear regression model
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and the lmer function from the lme4 R package (Bates et al., 2014) for the repeater-measures linear mixed model. Power calculation

was performed using the Genetic Power Calculator (Purcell et al., 2003) with type I error rate equal to 0.05 and the allele frequencies of

rs58854276 and rs3828599 A alleles from the 1000 genomes project phase 3. Using these parameters, a dataset of 77 individuals pro-

vides 80% power to detect an effect > = 5.9 kgs of fat-free mass per allele in a linear additive model.
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