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Systematic screening for diabetic retinopathy (DR) has been widely recommended for
early detection in patients with diabetes to address preventable vision loss. However,
substantial manpower and financial resources are required to deploy opportunistic
screening and transition to systematic DR screening programs. The advent of artifi-
cial intelligence (AI) technologies may improve access and reduce the financial burden
for DR screening while maintaining comparable or enhanced clinical effectiveness.
To deploy an AI-based DR screening program in a real-world setting, it is imperative
that health economic assessment (HEA) and patient safety analyses are conducted to
guide appropriate allocation of resources and design safe, reliable systems. Few studies
published todate include these considerationswhen integratingAI-based solutions into
DR screening programs. In this article, we provide an overview of the current state-of-
the-art of AI technology (focusing on deep learning systems), followed by an appraisal
of existing literature on the applications of AI in ophthalmology. We also discuss practi-
cal considerations that drive the development of a successful DR screening program,
such as the implications of false-positive or false-negative results and image gradeabil-
ity. Finally, we examine different plausiblemethods for HEA and safety analyses that can
be used to assess concerns regarding AI-based screening.

Introduction

Ageing populations and other demographic shifts
have made diabetes mellitus (DM) a major epidemic
of the 21st century.1 Despite improvements in health
care that have led to decreasing age-specific mortality
worldwide,2 there is an increasing net burden of DM
disease, lives lost, and years lived with the disease and
its complications.1 At a prevalence of over one-third
of patients with DM,3 diabetic retinopathy (DR) is
one such disabling complication of the disease that
now presents a mounting challenge to over-stretched

eye care services worldwide.3–5 The need for regular
screening has been established for early detection
of DR along with diabetic macular edema (DME)6;
wherebyDME can develop anytime as DR progresses,7
and is a frequent cause of severe visual impairment in
these patients.8

These trends give rise to an urgent need for solutions
that can sift through the growing crowds of at-risk
individuals and triage patients in need of early treat-
ment to prevent permanent vision loss.9,10 Fortu-
nately, progress in the parallel fields of ophthalmic
imaging and the deep learning (DL) branch of artificial
intelligence (AI) have enabled promising solutions that
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automate the detection of major blinding eye diseases
in ophthalmic images.10 Automation of screening using
AI-based solutions could thereby free up limited health
care resources to provide more complex eye care
services, cater to subpopulations with barriers to health
care access, or facilitate transition from opportunistic
to systematic screening programs.

Clinically acceptable performance of these AI-
based solutions in health care has been established
for the application of DR screening based on classi-
fication of ophthalmic imaging, with area under the
receiver operating characteristic curve, sensitivity, and
specificity in excess of 80%.9 These solutions thereby
enable accurate diagnosis of disease severity for triage
and right siting of patients.10,11 However, despite the
increasing interest in these AI-based solutions, few
have been implemented across populations owing to
uncertainty regarding their application to different
health care settings, as well as the potential safety
challenges.10,12,13 In this article, we highlight the major
challenges in integrating AI-based solutions for DR
screening, along with considerations for conducting
health economic assessment (HEA) and safety analy-
sis of these solutions.

Applications of AI in DR Screening

The clinical features of DR in the retina that are
indicative of clinical severity and outcomes (e.g., blind-
ness) have been described in the existing literature and
consolidated in clinical guidelines, such as the Inter-
national Clinical Classification of Diabetic Retinopa-
thy Scale.14 This body of knowledge has fueled appli-
cations of AI in the form of classical feature-based
image analysis and machine learning (ML) algorithms
for DR screening training based on individual feature
labeling by experts. These methods have been success-
fully used to automate classification of retinal fundus
photographs based on the presence/absence (binary
classification) and/or clinical severity (multiclassifica-
tion) of DR.15

The advent of deep learning systems (DLS) heralds
a new era in the processing of medical data using AI,
whereby algorithms are trained on large repositories
of imaging data without individual feature labeling.
Instead, training is conducted using imaging data with
labeling of overall clinical severity by experts. The DLS
then self-learns predictive features from these labels
usingmathematical functions.10 Recent reports of DLS
outperforming the classical feature-based image analy-
sis in screening for DR and other ocular diseases have
been described.10,16

The development and validation of several novel
DLS solutions for automated DR screening have been

reported by groups from various countries, including
Singapore, United States, United Kingdom, China,
Thailand, India, and Africa.17–23 These investigators
reported clinically acceptable performance of their
DLS tools for classifyingDR in color fundus photogra-
phy or optical coherence tomography (OCT) imaging.9
Some AI-based solutions for DR screening have been
approved as medical devices for automated classifica-
tion of ophthalmic imaging based on evidence from
studies conducted in several high-income countries.
These solutions also have tremendous potential to
enhance health care in resource-limited settings.18,24

Methods of HEA

Given the scarcity of resources available within
a health system, HEA of novel health technolo-
gies is required for decision-makers to efficiently
allocate resources. DR screening and teleophthal-
mology programs are cost-effective in a variety of
developed25–31 and developing settings.32,33 Before the
advent of DL, feature-based computing techniques
had been developed for automated retinal image
screening.20,34–36 Such automated retinal screening
has been shown to be cost-effective when applied to
the national screening program in Scotland and the
United Kingdom.34–37

However, few studies have incorporated HEA for
teleophthalmology services augmented with DL-based
classifiers for DR screening. The few existing reports
on HEA based on the implementation of DL-based
solutions for DR screening are from the United
Kingdom and Singapore. These studies show AI to be
cost-effective in Singapore and the United Kingdom.
However, this finding may not be generalizable given
that they are both high-income countries with estab-
lished teleophthalmology DR screening program.
Cost-effectiveness may differ between countries owing
to variations in disease prevalence, geographic barriers,
availability/cost of the relevant skilled manpower, and
health care resources. There have not been any studies
conducting HEA of AI applications for DR screen-
ing in resource-limited settings, or countries without
established teleophthalmology DR screening programs
to date.

The most appropriate HEA method for a given
test or intervention is determined by several factors
depending on the existing evidence for the solution and
the intended clinical context for its application. Given
the relatively nascent nature of AI-based solutions
for health care, there is a need to identify suitable
methods of HEA to evaluate them. In the follow-
ing section, we outline common types of HEA and
the contexts in which they are applied. These include
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Table 1. Types of HEA

Method Measurement of Effect Questions Raised Measurement of Cost

CUA Healthy years (typically measured as
quality-adjusted life years)

Given financial constraints, what is
the most efficient way of allocating
limited resources for improved
outcomes?

Monetary units

CEA Natural units (e.g., life years gained, cases of
blindness avoided, and others)

Given financial constraints, what is
the most efficient way of allocating
limited resources for improved
outcomes?

Monetary units

CMA Assumption is that the clinical effectiveness
of each alternative is the same

Given a certain objective, what is the
most efficient way to achieve it?

Monetary units

CBA Monetary units Should a given goal or objective be
pursued and to what extent?

Monetary units

cost-effectiveness analysis (CEA), cost-utility analysis
(CUA), cost-minimization analysis (CMA), and cost-
benefit analysis (CBA) (Table 1).38,39

Cost-Utility/Cost-Effectiveness Analysis

CEA and CUA are two distinct forms of HEA
that are often used interchangeably in the litera-
ture,38 although CUA is technically more comprehen-
sive. CEA generally uses a single clinical outcome (life
years), whereas CUA often uses quality-adjusted life
years (i.e., calculated based on preferences for a partic-
ular health state).38–40 Health Economics authorities
(e.g., Washington Panel41 and the official requirements
of economic evaluations of the United Kingdom42)
have recommended the use of CUA. When conduct-
ing CEA, other clinical outcomes (e.g., case of blind-
ness avoided or cases of DR detected) can be used
instead based on the disease studied.38 Examples of
other outcomes that may be relevant to DR screen-
ing are blindness cases averted in a primary health
care setting,43 or number of cases of proliferative DR
detected in a screening network.28

Cost-Minimization Analysis

CMA is often used when it has been established
that two or more health technologies/interventions
have comparable clinical effectiveness. In this context,
researchers are primarily interested in assessing which
alternative is less costly and quantifying the potential
saving associated with the least expensive alternative.44
However, one of the major concerns with CMA is that
it is often difficult to establish whether two alternatives
are indeed equivalent (e.g., in a longitudinal study).38
Several researchers argued that even when there is no

statistical difference found between the effectiveness
of the two alternatives (i.e., no statistically significant
difference in clinical outcomes), CEA is still preferred
for HEA.45–47

CMA is primarily used in situations with an
established expert consensus (e.g., professional, based
on research) that the two alternatives are equiva-
lent in clinical effectiveness.48 It has been suggested
that CMA is most suitable for clear-cut scenar-
ios when alternatives represent similar state-of-the-
art solutions (e.g., screening tools of the same
class).45,48 A research practice report by the Interna-
tional Society for Pharmacoeconomics and Outcomes
Research indicated that CMA provides useful insights
on budget impact for decision-makers.46

In DR screening, the current literature has
concluded that AI-based solutions using DL
techniques have demonstrated clinically comparable
performance to human assessment in established DR
screening programs, both in publicly available datasets
and real-world settings.10 A recent meta-analysis on
DLS published has further confirmed this conclu-
sion.11 As such, CMA is a viable method to conduct
HEA of comparable AI-based solutions in health
systems with established DR screening programs.

Cost-Benefit Analysis

CBA is often used to quantitatively evaluatewhether
a new intervention should be adopted by directly
comparing costs of the intervention against exist-
ing practices. For CBA, clinical outcomes and effects
(e.g., disability days avoided, life years gained, medical
complications avoided, or quality-adjusted life years
gained) are converted into monetary value to evaluate
the foreseeable net costs of adopting a given solution
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Table 2. Health Economic Studies on DR Screening Using AI

Author, Year,
Country Comparators Screening Model Measurement of Effect Economic Outcomes

Scotland et
al,34 2007,
UK

Semi-automated
grading (hybrid
approach) vs.
manual grading
alone

Digital photography
and multilevel
manual grading
systems

The number of
appropriate screening
outcomes (i.e., defined
as final decisions
appropriate to actual
grade of retinopathy
present) and true
referable cases
detected in one year

Compared to the manual
grading model, the
semi-automated model
led to a saving of £4088
per additional referable
case detected, and of
£1990 per additional
appropriate screening
outcome.

Tufail et al,20

2016, UK
AI-based ML tool as
placement for initial
manual grading
(semi-automated
hybrid)

AI-based (ML)
two-field fundus
photos

Appropriate outcomes
(defined as
identification of DR
present vs. absent by
the AI-based software)

AI-based semi-automated
hybrid approach
(Retmarker and EyeArt)
had sufficient specificity
to make them
cost-effective to manual
grading alone, as ICER
was $18.69 and $7.14,
respectively

Xie et al,50

2019,
Singapore

Semi-automated
hybrid approach
(DLS-based) vs.
manual grading
alone

Retinal fundus
photographs

QALYs DLS-based
(semi-automated hybrid
approach) resulted in a
lifetime cost-saving of
$135 per patient while
maintaining
comparable QALYs
gained.

QALYs, quality-adjusted life years;
ICER, incremental cost-effectiveness ratio;
manual grading is equivalent to human assessment.

within a clinical pathway.48 The difficulty of applying
CBA effectively in health, however, is the difficulty in
assigning a monetary value to clinical outcomes (e.g.,
quality-adjusted life years or blindness prevented).39

In discrete choice experiments, patients are invited
to express their strength of preference based on specific
clinical outcomes to help ascribe a monetary value to
them.However, this is subject to variation from cultural
differences, and there are challenges (e.g., uncertainty
about the validity of the outcomes of interventions)
that need to be addressed for CBA to be used in HEA
of AI-based solutions for DR screening. Cartwright49
has contributed an insightful review of several reports
applying CBA to the intervention of drug abuse treat-
ment services. Notably, they highlighted challenges in
the measurement of clinical outcomes, need for repre-
sentative populations of patients recruited, and lack of
standardization in the application of CBA.

HEA of AI-Based Solutions for DR
Screening

The previous section indicated that the existing
reports of HEA of AI-based solutions for DR screen-
ing are from countries with established teleophthalmol-
ogy programs, and systems for training and regular
examination of human assessors for DR screen-
ing (i.e., United Kingdom and Singapore). Having
reviewed these reports, one would arrive at the conclu-
sion that semi-automated screening models are cost-
effective (Table 2).20,34,50 Tufail et al.20 reported the
cost saving to be 12% to 21% for DR screening in the
United Kingdom using ML (an AI-based technology)
in comparison with human assessors.17,20 A Scottish
study showed a 46.7% cost-reduction by replacing
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first-level human assessment with automated grading
in a national DR screening program.34,37 A study
from Singapore suggested that the semi-automated/AI-
assisted screening model is cost-effective compared to
human assessment for DR screening over a lifetime
horizon.50 However, there is no published HEA of a
fully-automated DR screening model to date.

Implications of False Negatives (FNs) in
Screening Programs

FN cases are patients with referable DR that are
mislabeled as being normal. As a result, these patients
may receive delayed care if they are only referred at
a subsequent screening interval that could be months
or years later. The clinical impact of delayed care
is the risk of interim disease progression.51 For DR
this can lead to permanent vision loss in severe cases,
as they tend to progress faster.52 Even when effec-
tive treatment is readily available, a high FN rate puts
patients at increased risk of disease progression and
vision loss.53,54 Notwithstanding the financial burden
on the health care system from disease progression due
to late detection, studies also report a psychological
impact on patients, loss of public confidence in screen-
ing programs, and legal implications as other major
consequences of FNs.55

Implications of False Positives (FPs) in
Screening Programs

In contrast to FN, a high FP rate of screen-
ing programs results in referrals of normal screening
subjects for further assessment by an ophthalmolo-
gist when it is not required. This will create additional
costs for the health care system in terms of resources
and manpower being utilized to attend to unneces-
sary referrals.Moreover, FPs from a screening program
could result in unnecessary anxiety and psychological
stress for patients.54 However, there is no expert consen-
sus on the acceptable FP rate performance for DR
screening to date.56

Image quality is another important consideration in
real-world screening implementation. Images with low
quality (ungradable images) would be referred to the
assessors and could incur additional costs for regrading
images or repeat image acquisition if necessary. Never-
theless, the treatment of ungradable images as FP is not
yet standard practice. In reports of DL models, several
groups have excluded ungradable images from their
analyses.18,54 However, this may not reflect the true
performance of these solutions in practical application.

In a study of automated eye screening, Tufail
et al.20 reported results after including images of
poor quality or classified as ungradable by the human
assessors. Similarly, Ting et al.16 in Singapore also
considered ungradable as referable DR to avoid
missing possible DR cases. Discrepancies in reporting
FP rate would impact the HEA of screening programs.
The authors recommend that images classified as
ungradable by AI-based solutions for DR screening
should be included in the assessment of performance
to reflect the practical need for these patients to be
referred for definitive assessment.

In developing a screening solution, there is a trade-
off between minimizing for FP or FN. The ideal
balance for each health system may vary slightly
depending on their system factors, such as cost
structures, availability of resources, as well as resolu-
tion of competing clinical and financial interests.
However, when clinical considerations are prioritized,
minimizing FN in the context of these high perform-
ing AI-based solutions is generally favored because of
the potential clinical safety impact of FN, whereas that
for FP is mitigated when patients are reviewed by the
attending ophthalmologist.

Challenges of Conducting HEA in the
Real-World Setting

A number of recent studies suggest that the use of
traditional techniques for HEA to quantify the impact
of complex health services, such as a national screening
program, can be challenging.57–61 They explained that
the evaluation of complex interventions involving both
human services and advanced assistive technologies
will likely encounter a number of problems. Among
them, the heterogeneity of the user groups, partici-
pant selection (bias), the degree of participation of
the user groups carrying out the intervention, and the
composition of these groups lead to complexities that
may require modifications to traditional assessment
methods.59

In addition, conducting a comprehensive evalu-
ation of an AI-based solution for DR screening
requires consideration of local context, such as the
availability of skilled manpower and DR screening
resources. Therefore investigating the implementation
in resource-limited settings is also an important area
for future health services research. This is needed to
evaluate the interventions in these settings based on
their unique practical considerations, such as limited
availability of internet access and the forms of imaging
devices available (table-mounted, handheld, smart-
phone adapter-based, and others) that may affect
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image quality and the performance of AI-based
solutions for DR screening, such as the incidence of
FPs and FNs.24

Summary Recommendations for HEA of
AI-Based DR Screening

In summary, the choice of the specific HEAmethod
for a particular clinical application of AI would
depend on the form of application, clinical outcomes
relevant to the intervention, availability of preexist-
ing representative datasets, and the nature of assump-
tions associated with the solution. CMA is useful for
rapid comparison of interventions with established
comparable clinical effectiveness. Where this has yet
to be established, CUA is often the preferred mode
of analysis, although the nature of measurable clinical
outcomes may require CEA to be considered instead.
In resource-limited settings with high unmet clinical
needs, CBA provides a tool for quantitative assess-
ment of interventions to identify the most financially
prudent option.

Based on these considerations, CMA can be consid-
ered to evaluate AI-based solutions for DR screen-
ing in developed countries with established DR screen-
ing programs. CEA/CUA may need to be conducted
for other dissimilar contexts to evaluate both clini-
cal outcomes and costs based on the health system
in question. Given the pressing need for solutions to
expand the capacity of DR screening capabilities, HEA
using data from clinical trials would be ideal to provide
reliable and timely results with high internal valid-
ity to aid administrators in decision-making regard-
ing the adoption of these AI-based solutions.60 The
selected HEA method needs to be applied with estab-
lishedHEA strategies such as use of multiple compara-
tor groups, stratified sensitivity analysis using those
groups, and appropriatemodelingmethods, as outlined
in frameworks for the assessment of complex public
health interventions.61

Methods of Safety Analysis for Health
Care

Implementing AI technologies in national screen-
ing programs have the potential to improve patient
safety by providing rapid and reliable identification
of referable eye disease. It also has the potential to
introduce new risks that will need careful analysis
and management.12,62 These risks can be associated
with the underlying AI technologies or the organi-

zational systems that implement them. For example,
mismatches can develop between the data that a DLS
was originally trained on (i.e., training dataset) and the
data it is required to interpret (validation dataset), such
as geographic variations in disease phenotypes, which
can lead to shifts in screening performance.63

Therefore organizational systems and decision-
making processes need to be developed for periodic
monitoring to investigate and address instances in
which the automated screening system does not
provide an appropriate classification to ensure that the
overall screening system can “fail safe.” In addition,
analyzing the safety of a DLS can be challenging,
owing to difficulties in understanding the underlying
decision-making process. The safety analysis of AI-
based screening programs therefore requires the use
of analytic techniques that consider clinical, techni-
cal, social, and organizational sources of safety and
risk. A range of safety analysis methods have been
developed for the prospective analysis of potential risks
in complex sociotechnical systems. However, there has
been limited examination of how these can be applied
to large-scale AI systems in health care to date. In the
following sections, we outline several relevant methods
of safety analysis, including failure mode and effects
analysis (FEMA), system-theoretic process analysis
(STPA), and bowtie tie analysis.

Failure Mode and Effects Analysis

FMEA is a structured and proactive approach
to identifying safety issues in complex sociotechnical
systems that is increasingly applied to health care.64–66
FMEA involves creating a detailed map of processes
for a service or activity to identify all the potential
manners that those processes might fail, and what the
causes and effects of those failures might be. Each
failure is then assessed according to the severity of the
outcome, the probability of occurrence, and the likeli-
hood of detection, to prioritize mitigating action and
resources.

One of the key requirements of conducting an
effective FMEA is to establish a team with deep
and broad expertise in all aspects of the system
being analyzed, encompassing clinical, technical, and
organizational components.67 Conducting FMEAs can
be time-consuming and resource intensive. Because
of the focus on analyzing individual failure modes,
capturing complex interactions between different parts
of a system is also a challenge. However, FMEA
provides a systematic approach to understand and
develop solutions for a broad range of technical and
organizational safety risks and could be effectively
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applied to the implementation of AI-based screening
programs.68

System-Theoretic Process Analysis

STPA is a safety analysis method that analyses the
way safety is controlled within a complex system, such
as through automatedmonitoring, management super-
vision, or regular audits. It identifies where potential
gaps in those control systems may occur, and how
serious those unsafe control actions might be.68,69 One
of the core premises of this approach is that all systems
have hierarchical control structures: for example, local-
level control might be performed by technicians or
clinicians; higher-level supervision may be conducted
by program managers; and overall oversight may be
performed by systems regulators.

The STPA method seeks to identify hazards in
terms of potential failures of control, such as scenar-
ios in which clinicians may not become aware of
ungradable images. STPA is a relatively new method
that requires extensive expertise in systems-analysis.
It has seen limited application in health care to date,
although its associated incident analysis model has
been applied with useful outputs.70,71 STPA may be
particularly valuable in identifying and optimizing the
safety monitoring and governance systems required
for AI-based screening programs. These may include
routine algorithmic audits, peer review, and adjudi-
cation processes, which have already been described
as solutions for grader variability when training
automated solutions for DR screening.72

Bowtie Analysis

Bowtie analysis is a barrier-based approach to safety
analysis that is widely used in highly automated safety-
critical industries, such as aviation, and is beginning
to be applied in health care.71,73,74 It provides a visual
method to identify and map factors that contribute to
a particular failure, the consequences that can result
from that failure, and the barriers and risk controls
that can protect against those contributing factors and
consequences. One of the main strengths of bowtie
analysis is the ability to produce comprehensive graphic
representations of complex models of risk, which can
be used to explore both the sources of risk and safety in
relation to specific types of failure. Directly identifying
safety barriers and risk controls also provides practical
insight into the actions that are needed tomitigate risks
when implementing a new system.75

Conducting Safety Analyses of
AI-Based Solutions for DR Screening

In the earlier section, we have reviewed several
important methods (FMEA, STPA, bowtie analysis)
that can be used to analyze the safety concerns in
implementing AI-based solutions in ophthalmology.
To use these methods for safety analyses, a thorough
understanding is required of the various potential
models that AI-based solutions for DR screening
can be implemented within a health system. The use
of AI with teleophthalmology has been suggested
as a sustainable solution to rapidly scale-up DR
screening.10,13

Existing teleophthalmology screening programs
utilize remote human assessment (by manual graders)
to identify the presence of DR in ophthalmic imaging
captured in community-based settings. To deploy AI-
based DR screening programs, there are two differ-
ent models that could be used: the semi-automated
(using DLS as a filter prior to human assessment), and
the fully-automated (using DLS as a complete replace-
ment of human assessment).16 Figure 1 depicts the two
DLS-basedDR screeningmodels (Figs. 1B, 1C), along-
side an existing teleophthalmology human assessment
model (Fig. 1A).

The semi-automated model (Fig. 1B) is a hybrid
approach using an AI-based solution as a prelimi-
nary filter prior to human assessment. Here refer-
able cases from the solution undergo secondary assess-
ment by human assessors in a centralized reading
center. Cheung et al.76 suggested that the benefits of
the semi-automatedmodel include decreased workload
on nonreferable retinal images, and reduced FP
cases referred to ophthalmologists. However, a fully-
automated model (Fig. 1C) with complete replace-
ment of human assessment may be more relevant for
countries without existing systems and manpower for
teleophthalmology. Ultimately, the manner in which
various AI-based solutions are to be integrated into
different health care systems needs to be considered
based on the performance of the tool, the constraints
of the system, and the safety considerations for partic-
ipating patients.

Because of the scalability of AI and ability to meet
the needs of varied populations of patients, there is
growing interest to examine potential safety issues
that need to be considered.12 The earlier-mentioned
methods for safety analyses can be used to inform the
development of regulatory standards for assessment
of safety and efficacy that are still evolving with the
advances of AI applications in medicine.77
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Figure 1. Three potential DR screening models using manual grading (A), semi-automated (B), and fully-automated (C).

Discussion

In this article, we provide a brief summary of the
literature regarding the implementation of AI-based
DR screening programs, highlighting the need forHEA
and safety analyses. A brief discussion on various types
of these HEA and safety analysis methods and when to
use them in the evaluation of new technologies (e.g.,
AI) is also included. Practical considerations for the
implementation of anAI-basedDR screening program
have also been outlined, such as the clinical implica-
tions of FN rates, FP rates, and image gradeability.

Developing screening tools with a low FN rate has
been highlighted as a clinically relevant goal due to
patient safety implications. A balance of minimizing
both FP and FN needs to be determined based on
the intended clinical context. The ideal balance for
each context will ultimately be governed by the cost
of provider manpower (for adjudication or review of
FPs), availability of relevant resources (e.g., various
forms of imaging), and the needs of the population
it serves (e.g., disease prevalence). Besides screening
thresholds, image gradeability is another considera-
tion in evaluating performance of a screening program.
This is an important modifiable factor that could affect
the HEA of a DLS screening program due to costs
involved to reacquire or regrade images and should
be included in the evaluation of AI-based solutions.
Where relevant resources and technical capabilities are
available, additional sources of information, such as
three-dimensional OCT scans, may be incorporated to

reduce the FP rate in the application of DLS for DR
screening, in the same way they have been applied to
other eye diseases.78,79

This article primarily discusses the role of AI-
based solutions for DR screening, which has estab-
lished cost-effectiveness and has been incorporated in
evidence-based practice given improved outcomes with
early detection and treatment.6 AI-based solutions to
screen for other major eye diseases, such as glaucoma
and age-related macular degeneration (AMD), have
also been developed.80–82 However population screen-
ing for these conditions are not yet widely accepted
due to inconclusive evidence based on HEA,83 and
clinically acceptable screening performance may vary
for these conditions. That being said, incorporation
of AI-based solutions may lower manpower costs
and help make population screening for these condi-
tions more affordable. Furthermore, Ting et al. have
demonstrated that a single AI-based solution for DR
screening could be trained to simultaneously detect
referable AMD and glaucoma for broad-based eye
screening.16 These considerations will need to be
addressed in future research studying the implementa-
tion of AI-based solutions for eye screening.

Looking ahead, future research using the tools
outlined for HEA and safety analyses are needed to
achieve a better understanding of the implementation
of AI-based solutions in different settings (e.g.,
resource-limited settings, remote areas) and with novel
screening models (e.g., fully-automated DLS). The
required transitions in service delivery along with
their associated requirements/costs also need to be
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investigated. These include transitioning from oppor-
tunistic/population DR screening, with or without
teleophthalmology services, over to DR screening
incorporating AI-based solutions.

Conclusions

To facilitate the real-world integration of AI-based
solutions, future studies should also assess the technical
feasibility and patient acceptability of implementing
these solutions in various primary eye care settings.85
As these AI-based solutions will influence the practice
of ophthalmology and medicine in the near future, it
is important to create mechanisms for the direct users
(such as optometrists or clinicians) to evaluate and
utilize such “black box” AI-based screening programs
in clinical practice. Therefore studies to evaluate the
health professionals’ acceptance and interpretability of
AI will be useful to identify barriers to adoption to
develop targeted solutions accordingly.10,13
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