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Abstract 

 

Objective: To assess the effect of anti-CD20 B-cell depletion with rituximab (RTX) on relapse 

rates in myelin oligodendrocyte glycoprotein antibody-associated disorder (MOGAD). 

Methods: Retrospective review of RTX-treated MOGAD patients from 29 centres in 13 

countries. The primary outcome measure was change in relapse rate after starting rituximab 

(Poisson regression model).  

Results: Data on 121 patients were analysed, including 30 (24.8%) children. Twenty/121 

(16.5%) were treated after one attack, of whom 14/20 (70.0%) remained relapse-free after 

median (IQR) 11.2 (6.3-14.1) months. The remainder (101/121, 83.5%) were treated after two 

or more attacks, of whom 53/101 (52.5%) remained relapse-free after median 12.1 (6.3-24.9) 

months. In this ‘relapsing group’, relapse rate declined by 37% (95%CI=19-52%, p<0.001) 

overall,  63% (95%CI=35-79%, p=0.001) when RTX was used first line (n=47), and 26% 

(95%CI=2-44%, p=0.038) when used after other steroid-sparing immunotherapies (n=54). 

Predicted 2-year relapse-free survival was 55% for first-line RTX therapy, and 18% for second-

/third-line therapy. Circulating CD19+ B-cells were suppressed to <1% of total circulating 

lymphocyte population at the time of 45/57 (78.9%) relapses.  

Conclusion: RTX reduced relapse rates in MOGAD. However, many patients continued to 

relapse despite apparent B-cell depletion. Prospective controlled studies are needed to validate 

these results. 
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Introduction 

Autoantibodies targeting human myelin oligodendrocyte glycoprotein (MOG-IgG) have been 

identified in the sera of children and adults with a CNS inflammatory disease that is distinct 

from multiple sclerosis (MS).[1-3] 30-80% of patients relapse after an initial attack,[4-7] and 

some fulfil diagnostic criteria for aquaporin-4 antibody (AQP4-IgG)-negative neuromyelitis 

optica spectrum disorders (NMOSD).[7,8] A proportion of patients with MOG-IgG-associated 

disorder (MOGAD) accrue substantial disability and may benefit from long-term 

immunomodulatory treatment.[5-7,9,10] However, natural history and treatment responses in 

MOGAD are unclear.  

 

Anti-CD20 B-cell depletion with rituximab (RTX) is effective in MS [11-14] and AQP4-IgG-

NMOSD.[15-24] It is therefore hoped that RTX may be effective in MOGAD. However, its 

benefit is not yet defined, and several small case series suggest a lower efficacy than 

expected.[7,9,10]  

 

Objective 

To examine the effectiveness of RTX in a large international cohort of MOGAD patients 

 

Methods 

Investigators submitted anonymised retrospective data on all patients in their care meeting the 

inclusion criteria: (1) At least one clinical and MRI-confirmed CNS inflammatory event; (2) 

MOG-IgG positive by cell-based assay (live or fixed) incorporating full-length human MOG 

in its conformational form and an IgG-specific secondary antibody; (3) AQP4-IgG negative by 

live or fixed cell-based assay; (4) treatment with RTX. Acceptable initial RTX dosing regimens 
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were 1000mg on day 0 and day 15 or a body surface area [BSA]-adjusted dose of 375mg/m2 

weekly for 4 weeks. The interval between subsequent treatment courses was either fixed at 6-

months or determined by periodic testing of circulating CD19+ B-cell or CD19+/CD27+ 

memory B-cell levels (maximum testing interval of 2 months). Both approaches have been 

used successfully in large cohorts of AQP4-IgG-NMOSD patients.15-24  

 

Relapses were defined as a new or worsening symptomatic presentation, with a change in 

neurological examination, and confirmed by MRI as necessary.   

 

Informed written consent and local ethics committee approval were mandatory for 

participation. All data were anonymised and were collected between August 2017 and 

September 2018.   

 

Statistical analysis 

Stata version 15 and SAS version 9.3 were used for data analysis. A Poisson regression model 

was fitted to the data, with a random effect by patient level, to compare the relapse rate before 

and after initiating RTX. We compared median annualised relapse rates (ARR) pre- and post-

RTX using Wilcoxon signed rank tests. ARR is defined as the total number of attacks divided 

by the number of years of disease. Relapse-free survival on RTX was estimated with Kaplan-

Meier survival curves. Several subgroup analyses were performed.  

 

Results 

Data were obtained from 29 centres in 13 countries – Argentina, Austria, Brazil, France, 

Germany, Netherlands, India, Italy, Japan, Korea, Switzerland, United Kingdom and United 

States of America. The total number of MOGAD patients attending all study centres was 875. 
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RTX was administered to 132/875 (15.1%). We did not have the resources to also obtain and 

analyse data on the 743 patients who were not treated with RTX. Eleven patients were excluded 

due to incomplete data (6), inadequate treatment protocol (4) and diagnostic uncertainty (1). 

 

Demographics 

Data on 121 patients (71/121, 58.7% female) were analysed (table 1). Median (interquartile 

range, IQR) age at onset attack was 24.8 (13.1-39.6) years and age at first RTX infusion was 

29.7 (18.2-44.0) years. Race distribution was 103/121 (85.1%) White, 10/121 (8.3%) Asian, 

1/121 (0.8%) Black, and 7/121 (5.8%) mixed race. Paediatric patients (age <18 years at RTX 

initiation) comprised 30/121 (24.7%).  

 

The most common MOGAD phenotypes in adults were relapsing optic neuritis (ON) (27/91, 

29.7%) and relapsing ON with transverse myelitis (TM) (25/91, 27.5%). Acute disseminated 

encephalomyelitis (ADEM) with relapses (13/30, 43.3%) was the predominant paediatric 

phenotype.  

 

Relapses and immunotherapy prior to rituximab 

For all patients, the median (IQR) disease duration prior to RTX initiation was 19.1 (5.9-55.0) 

months. RTX was started after the index attack in 20/121 (16.5%), and after at least two attacks 

in 101/121 (83.5%). The pre-treatment median (IQR) ARR was 1.82 (0.74-3.40) for the 101 

relapsing patients, of whom 54/101 (53.5%) had received one or more prior non-steroid 

maintenance immunotherapies (table 1). These included azathioprine (26/101, 25.7%), 

mycophenolate mofetil (20/101, 19.8%), other immunosuppressive drugs (13/101, 12.8%), 

intravenous immunoglobulin (IVIg) (7/101, 6.9%), and MS disease-modifying therapies (MS-
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DMTs) (11/101, 10.9%, these are listed in the legend for table 1). There was no standardised 

‘wash-out’ period of prior immunotherapies.  

 

Table 1: Cohort demographics, clinical phenotypes and previous immunotherapies 

 Whole cohort Adults  
 

Children Single attack   
pre-RTX  
(all ages) 
 

Multiple 
attacks  
pre-RTX  
(all ages) 

Patients, n 121 91 30 20 101 

Female, n (%) 71 (58.7) 56 (61.5) 15 (50.0) 14 (70.0) 57 (56.4) 

White, n (%) 103 (85.1) 84 (92.3) 19 (63.3) 19 (95.0) 84 (83.2) 

Median (IQR) onset age, yrs  24.8 (13.1-39.6) 33.0 (22.7-43.5) 7.6 (4.0-9.9) 31.9 (22.5-40.9) 23.2 (10.9-38.8) 

Median (IQR) RTX start age, yrs 29.7 (18.2-44.0) 37.7 (25.5-48.5) 11.7 (8.3-14.0) 32.1 (22.7-41.5) 27.2 (16.4-44.1) 

Disease onset <18years, n (%)  39 (32.2) 9 (9.9) 30 (100) 0  39 (38.6) 

RTX initiation <18years, n (%) 30 (24.7) 0 30 (100) 0  30 (29.7) 

Median (IQR) disease duration 
pre-RTX, mths 

19.1 (5.9-55.0) 12.8 (5.0-49.1) 33.0 (16.3-69.6) 3.3 (1.7-5.1) 26.0 (9.8-70.9) 

Phenotypes pre-RTX, n (%):      
Single attack 20 (16.5) 20 (22.0) 0 20 (100)  

- ON     6 (5.0)     6 (6.6)      6 (30.0)  
- TM     9 (7.4)     9 (9.9)      9 (45.0)  
- ON + TM     5 (4.1)     5 (5.5)      5 (25.0)  

Relapsing 101 (83.5) 71 (78.0) 30 (100)  101 (100) 
- ON     29 (24.0)     27 (29.7)     2 (6.7)      29 (28.7) 
- TM     6 (5.0)     5 (5.5)     1 (3.3)      6 (5.9) 
- ON + TM     29 (24.0)     25 (27.5)     4 (13.3)      29 (28.7) 
- ADEM/ADEM-like     15 12.4)     2 (2.2)     13 (43.3)      15 (14.9) 
- Other / brain    

   involvement 
    22 (18.2)     12 (13.2)     10 (33.3)  

 
    22 (21.8) 

Median pre-RTX ARR 2.25 2.34 1.64  1.82 

No. of steroid-sparing ITs prior  
to RTX, n (%): 

     

- 0 66 (54.5) 59 (64.8) 7 (23.3) 19 (95.0) 47 (46.5) 
- 1  35 (28.9) 19 (20.9) 16 (53.3) 1 (5.0) 34 (33.7) 
- 2 13 (10.7) 9 (9.9) 4 (13.3) 0 13 (12.9) 
- 3+ 7 (5.8) 4 (4.4) 3 (10.0) 0 7 (6.9) 

Types of prior steroid-sparing  
ITs prior to RTX, n (%) 

     

- None 66 (54.5) 59 (64.8) 7 (23.3) 19 (95.0) 47 (46.5) 
- AZA 27 (22.3) 13 (14.3) 14 (46.7) 1 (5.0) 26 (25.7) 
- MMF 20 (16.5) 14 (15.4) 6 (20.0) 0 20 (19.8) 
- Other IS * 13 (10.7) 9 (9.9) 4 (13.3) 0 13 (12.9) 
- IVIg 7 (5.8) 1 (1.1) 6 (20.0) 0 7 (6.9) 
- Maintenance PLEX 2 (1.7) 1 (1.1) 1 (3.3) 0 2 (2.0) 
- Any MS-DMT 11 (9.1) 8 (8.8) 3 (10.0) 0 11 (10.9) 
- Injectable MS-DMT ** 9 (7.4) 6 (6.6) 3 (10.0) 0 9 (8.9) 
- Oral / infusible  

MS-DMT *** 
5 (4.1) 5 (5.5) 0 0 5 (5.0) 
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* Other IS comprised cyclophosphamide (6), mitoxantrone (3), methotrexate (2), tacrolimus 

(1) and ciclosporin (1). ** Injectable MS-DMT comprised beta-interferon (8) and glatiramer 

acetate (4). *** Oral / infusible MS-DMT comprised natalizumab (5), dimethyl fumarate (1), 

alemtuzumab (1) and fingolimod (1). Abbreviations: ARR, annualised relapse rate; ADEM, 

acute disseminated encephalomyelitis; AZA, azathioprine; IS, immunosuppressive drug; IT, 

immunotherapy; IQR interquartile range; IVIg, intravenous immunoglobulin; MMF, 

mycophenolate mofetil; MS-DMT, multiple sclerosis disease modifying therapy; ON, optic 

neuritis; PLEX, plasma exchange; RTX, rituximab; TM, transverse myelitis.  

 

Rituximab dosing 

RTX was administered 6-monthly to 115/121 (95.0%). Others (6/121, 5.0%) were retreated 

according to repopulation of circulating CD19+ B-cells or CD19+/CD27+ memory B-cells. If 

only a single treatment course was given, treatment duration was considered as 6 months. 

 

Most patients (79/121, 65.3%) received RTX 1000mg, administered either once (day 0), or 

twice (day 0 and day 15) per treatment course. A BSA-adjusted dose of 375mg/m2 weekly for 

4 weeks was given to 28/121 (23.1%) – predominantly paediatric patients. A minority of 

patients received a combination of both regimens (4/121, 3.3%), or exact dosing was not 

specified (10/121, 8.3%).  

 

The effect of RTX started after index attack (n=20) 

RTX was started after the index attack in 20/121 (16.5%) cases from 11/29 centres. Because a 

proportion of MOGAD patients appear not to relapse irrespective of treatment (i.e. 

“monophasic disease”), we analysed this group separately from those with an established 

relapsing phenotype. After median (IQR) 11.2 (6.3-14.1) months on RTX, 14/20 (70%) 

remained relapse-free. Eleven relapses occurred in 6/20 (30.0%) patients, with a median (IQR) 

time to first relapse of 2.6 (1.3-4.5) months. The relapses comprised TM (6/11), ON (4/11) and 

simultaneous TM/ON (1/11). 
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The effect of RTX started after two or more attacks (n=101) 

RTX was started after two or more attacks in 101/121 (83.5%). The median (IQR) pre-

treatment duration was 26.0 (9.8-70.9) months.  After median (IQR) 12.1 (6.3-24.9) months on 

RTX, 53/101 (52.5%) remained relapse-free. 102 relapses occurred in 48/101 (47.5%) patients 

(figure 2) with a median (IQR) time to first relapse of 4.4 (1.8-8.5) months. The relapses 

comprised ON (73/102, 71.6%), TM (17/102, 16.7%), ADEM/encephalitis (5/102, 4.9%), 

cerebellitis/rhombencephalitis (5/102, 4.9%) and multifocal/unspecified relapses (2/102, 

2.0%). The Poisson regression model showed a 37% (95%CI 19-52%, p<0.001) reduction in 

relapse rate following treatment with RTX. The Kaplan-Meier estimate of relapse-free survival 

was 55% (95%CI 44-65%) at 1 year of RTX therapy and 33% (95%CI 20-46%) at 2 years 

(figure 3a).  

 

The effect of RTX on median ARR is shown in table 2. For all patients (n=101), median ARR 

declined after initiation of RTX from 1.82 to 0.00 (p<0.001; Wilcoxon signed rank test). 

Because calculation of ARR is dependent on pre- and post-treatment observation periods, we 

repeated the analysis after excluding patients with short observation periods (table 2). In 

patients with at least 12 months observation both pre- and post-RTX treatment (34/101, 

33.7%), median ARR declined from 1.18 to 0.56 (p=0.002; Wilcoxon signed rank test).  

 

 

 

 

 

 

Table 2: The effect of rituximab on relapse rates in MOGAD 
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Abbreviations: ARR, annualised relapse rate; 95%CI, 95% confidence interval; IQR, 

interquartile range; MS-DMT multiple sclerosis disease modifying therapy; RTX, rituximab. 

 

Early relapses after starting RTX (n=97) 

Some studies of RTX in AQP4-IgG-NMOSD have described a lag time of 3-4 weeks to the 

onset of relapse-preventing action, despite complete B-cell depletion occurring within days of 

RTX infusion.[20,25] We therefore re-analysed relapse rates after excluding relapses occurring 

 
 

Number 
of 
patients, 
n 

Median 
(IQR) 
disease 
duration  
pre-RTX 

Median 
(IQR) 
follow-up 
time on RTX 

Reduction in 
relapse rate 
after RTX  
(95%CI), 
Poisson 
regression 

Median 
(IQR) ARR  
pre-RTX 

Median 
(IQR) ARR  
on RTX 

Median 
change in 
ARR  

Change in 
ARR, 
significance, 
Wilcoxon 
signed rank 
test 

Whole cohort (all patients with ≥2 attacks pre-RTX): 

All patients  
 
 

101 26.0 
(9.8-70.9) 

12.1 
(6.3-24.9) 

37% (19-52%) 
p<0.001 

1.82 
(0.74-3.40) 

0.00 
(0.00-1.25)   

-1.09 
 

p<0.001 

Patients with ≥12mths 
observation pre-RTX  

71 49.2 
(23.1-99.0) 

11.4 
(6.0-21.9) 

 1.09 
(0.64-1.90) 
 

0.00 
(0.00-1.26) 

-0.46 p<0.001 

Patients with ≥12mths 
observation post-RTX 
 

51 25.2 
(8.4-71.2) 

24.9 
(18.1-33.5) 

 1.84 
(1.02-3.87) 

0.43 
(0.00-1.02) 

-1.26 p<0.001 

Patients with ≥12mths 
observation pre- and 
post-RTX  

34 
 

49.1 
(27.5-80.0) 

22.0 
(16.7-29.9) 

 1.18 
(0.73-1.68) 

0.56 
(0.00-1.17) 

-0.40 p=0.002 

Exclusion of early relapses:  

Exclusion of the first 1 
month post-RTX  
 

97 25.5 
(9.4-70.0) 

12.0 
(6.4-25.1) 

43% (26-57%) 
p<0.001 

1.84 
(0.84-3.47) 

0.00 
(0.00-1.25) 

-1.09 p<0.001 

Exclusion of the first 3 
months post-RTX  
 

88 25.7 
(9.1-70.5) 

13.7 
(7.8-26.1) 

55% (40-67%) 
p<0.001 

1.83 
(0.84-3.51) 

0.00 
(0.00-1.11) 

-1.27 p<0.001 

Exclusion of patients co-treated with maintenance corticosteroid or steroid-sparing immunotherapies: 

Patients on RTX 
monotherapy 

61 29.3 
(9.4-76.0) 

11.3 
(5.3-22.3) 

42% (15-60%) 
p=0.005 

1.54 
(0.64-3.50) 

0.00 
(0.00-1.00) 

-1.09 p<0.001 

Treatment naïve patients versus those with prior exposure to steroid-sparing immunotherapies:  

Treatment naïve 
patients 
 

47 14.8  
(6.6-64.2) 

10.0 
(5.2-22.3) 

63% (35-79%) 
p=0.001 

2.36 
(0.53-4.82) 

0.0 
(0.00-0.15) 

-2.13 
 

p<0.001 

Prior immunotherapy 
exposure (any drug) 
 

54 36.0  
(18.8-72.3) 

13.8 
(8.0-26.8) 

26% (2-44%) 
p=0.038 

1.45 
(1.01-2.51) 

0.90 
(0.00-1.79) 

-0.61 
 

p<0.001 

Prior immunotherapy 
exposure (excluding 
MS-DMTs) 

43 30.0 
(18.0-71.2) 

16.7 
(8.0-27.5) 

25% (-3-46%) 
p=0.077 

1.23 
(0.92-2.62) 

0.62 
(0.00-1.44) 

-0.70 p<0.001 

Adults versus children:  

Adults  
 
 

71 26.0 
(8.0-74.1) 

12.7 
(6.1-24.4) 

42% (20-59%) 
p=0.001 

1.84 
(0.82-4.70) 

0.00 
(0.00-1.28) 

-1.13 
 

p<0.001 

Children  
 
 

30 33.0 
(16.3-69.6) 

11.8 
(6.6-27.1) 

29% (-7-53%) 
p=0.103 

1.64 
(0.76-2.92) 

0.37 
(0.00-1.12) 

-0.75 
 

p<0.001 
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within 1 month of RTX initiation (5/99, 5.1%). With this adjustment, the Poisson regression 

model showed a 43% (95%CI 26-57%, p<0.001) reduction in relapse rate. Decline in median 

ARR was unchanged (table 2).  If relapses occurring within 3 months of RTX initiation (26/99, 

26.3%) are excluded, relapse rate reduced by 55% (95%CI 40-67%, p<0.001) post-treatment. 

 

B-cell depletion (n=121) 

A CD19+ B-cell count <1% of circulating lymphocytes is a commonly used indicator of 

effective B-cell depletion by RTX.[26] B-cell counts were available at the time of 57/113 

(50.4%) relapses. In 12/57 (21.1%) relapses the CD19+ B-cell count was ≥1%, indicating that 

the effect of RTX had waned. However, circulating CD19+ B-cells were supressed <1% in 

45/57 (78.9%), indicating disease activity despite effective B-cell depletion. In 22/57 (38.6%) 

relapses, B-cells were completely undetectable.  

 

The effect of RTX on treatment naïve patients (n=47, 46.5%) versus those with prior exposure 

to non-steroid immunotherapies (n=54, 53.5%) 

A greater decline in median ARR (p=0.015, Mann Whitney U test) was observed in treatment 

naïve patients. Relapse rate declined by 63% (95%CI 35-79%, p=0.001, Poisson regression) in 

this group. After 1 and 2 years, 79% (95%CI 62-89%) and 55% of patients treated first-line 

with RTX are predicted to be relapse-free respectively (Kaplan-Meier analysis, figure 3b). 

 

When RTX was given second- or third-line, relapse rate declined by 26% (95%CI 2-44%, 

p=0.038, Poisson regression). After 1 and 2 years, 38% (95%CI 25-52%) and 18% (95% CI 7-

34%) are predicted to be relapse-free respectively (Kaplan-Meier analysis, figure 3b). Repeat 

analysis after excluding the 11 patients with MS-DMTs exposure obtained similar results, 

though the 25% (95%CI -3-46%, p=0.077, Poisson regression) decline in relapse rate was not 



Whittam et al., p.14 

 

statistically significant. In the 11 patients exposed to MS-DMTs, median ARR declined from 

2.19 pre-treatment (median observation period 49 months) to 1.79 after RTX initiation (median 

observation period 13 months). For the 7 patients with at least 12 months observation pre- and 

post-RTX, median ARR declined from 1.71 to 0.89.   

 

The effect of RTX in adults (n=71) versus children (n=30) 

All 30 children experienced two or more attacks prior to starting RTX. We therefore compared 

the effect of RTX in 30 children versus 71/91 (78.0%) adults, who had established relapsing 

disease pre-RTX (table 2). Median duration on RTX was 12.7 months for adults and 11.8 

months for children, in which 31/71 (43.7%) adults and 17/30 (56.7%) children relapsed. 

Relapse rate declined by 42% (95%CI 20-59%, p=0.001, Poisson regression) in adults and by 

29% (95%CI -7-53%, p=0.103) in children. Treatment naïve patients comprised 40/71 (56.3%) 

adults versus 7/30 (23.3%) children. CD19+ B-cell counts were available for 22/62 (35.5%) 

relapses in adults and 30/40 (75.0%) relapses in children, and were suppressed <1% in 19/22 

(86.4%) and 21/30 (70.0%) respectively.  

 

Use of corticosteroids and steroid-sparing immunotherapies (n=121) 

Maintenance corticosteroid therapy, defined as daily or alternate day dosing of oral 

prednisolone, was used in 32/121 (26.4%) of patients while receiving RTX, of which 17/121 

(14.0%) received continuous treatment, 7/121 (5.8%) were gradually tapered to cessation, and 

8/121 (6.6%) restarted maintenance corticosteroids after relapse. Maintenance corticosteroid 

dosing did not follow a set protocol, so was individualised and variable throughout the 

observation period. It was therefore not possible to analyse corticosteroid use in greater detail.  

Maintenance corticosteroids were not used in 78/121 (64.5%). Information about steroid use 

was not available in 11/121 (9.1%).   
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Continuation or addition of other immunotherapies with RTX occurred in 20/121 (16.5%) 

patients: mycophenolate mofetil (8), IVIg (6), azathioprine (3), methotrexate (2), IVIg with 

azathioprine (1). One patient received low dose IVIg (0.2mg/kg monthly) for RTX-induced 

hypogammaglobulinemia, which developed after 35 months of treatment. One patient had 

recent exposure to alemtuzumab (33 and 21 months pre-RTX).   

 

Exclusion of all patients co-treated with maintenance corticosteroid and steroid-sparing 

immunotherapies left 61/101 (60.4%) patients (those who started maintenance corticosteroid 

only after a relapse were included in this analysis, but their follow-up was censored at the point 

of starting corticosteroid). For this group, the median (IQR) treatment duration was 11.3 (5.3-

22.3) months. The Poisson regression model showed a 42% (95%CI 15-60%, p=0.005) 

reduction in relapse rate following treatment with RTX. Median ARR declined from 1.54 to 

0.00 (p<0.001; Wilcoxon signed rank test). 

 

Treatment switches (n=121) 

Twenty-two/121 (18.2%) patients discontinued RTX due to relapses (16/22, 72.7%), de-

escalation of immunotherapy (5/22, 22.7%), and infection (1/22, 4.5%). They switched to 

mycophenolate mofetil (4), tocilizumab (3), azathioprine (3), IVIg (4) or multi-drug regimens. 

 

Expanded disability status scale (EDSS) scores (n=121) 

We compared EDSS at RTX initiation and at last review or on RTX discontinuation. EDSS 

data were available for 97/121 (80.2%) patients, but scores were not assessed at defined time 

points with respect to relapses. Median (IQR) EDSS score improved from 3.0 (2.0-3.5) at RTX 

initiation to 2.0 (1.0-3.0) at follow-up (z=3.36, p=0.001; Wilcoxon signed rank test).   
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Tolerance and adverse events  

We did not systematically acquire data on adverse events. However, the following serious 

adverse events were reported: anaphylactoid infusion reaction (1), hypogammaglobulinemia 

(1) and cryptococcal meningoencephalitis (1). The latter occurred a 13-year-old boy on RTX 

for 2 years, with prior exposure to azathioprine and prednisolone. No patients died during 

treatment with RTX.  

 

Discussion 

This is the first study examining the effectiveness of RTX in a large MOGAD cohort. RTX led 

to a 37% decline in relapse rate, and after 2 years, 33% of patients are predicted to remain 

relapse-free. This is a less beneficial effect than observed with anti-CD20 B-cell depletion in 

MS and AQP4-IgG-NMOSD.[11-24] Where data were available, 79% of relapses occurred 

despite apparent robust B-cell depletion. The greatest treatment effect (63% decline in relapse 

rate) was observed in patients who received RTX as a first-line maintenance immunotherapy 

(see further discussion below). Patients receiving RTX second- or third-line experienced only 

a 25% decline in relapses. Separate analyses of adults and children suggested a better response 

in adult patients (42% versus 29% reduction in relapse rates). 

 

The true benefit of RTX in MOGAD may be even less than that observed in this study, when 

one considers the potential influence of regression to the mean (the tendency of a group to 

return to the average, rather than to sustain an above average relapse rate). For example in 

randomised controlled MS trials, regression to the mean can account for up to 40% of the 

reduction in relapse rate observed in both treatment and placebo arms.[27] In MOGAD cohorts, 

estimates of median ARR vary greatly and have been prejudiced by testing bias, variable 
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treatment paradigms and short observation periods. It is therefore difficult to quantify the effect 

of regression to the mean in this study, but given that the observed treatment effect is relatively 

small, it is particularly important to consider this phenomenon.  

 

Previous studies of MOGAD treatment responses included smaller numbers of RTX-treated 

patients. They also observed reduced relapse rates following RTX treatment. Some described 

frequent early relapses: A German study reported that 6/9 patients relapsed on RTX therapy.[7] 

An Australasian study included six RTX-treated patients, one of whom relapsed twice despite 

B-cell depletion.[10] Finally, in a European paediatric study, 6/9 RTX-treated children 

relapsed, including one life-threatening relapse despite confirmed B-cell depletion. Of the three 

RTX responders, two were additionally receiving maintenance IVIg.[9]   

 

It is not clear why RTX appears less effective for MOGAD than for MS and AQP4-IgG-

NMOSD. Phase I and II trials of RTX and phase III trials of ocrelizumab (another anti-CD20 

therapy) in relapsing MS,[11-13] and retrospective studies of RTX in NMOSD,[15-24] have 

consistently reported high efficacy. The largest meta-analysis of 46 NMOSD studies, including 

438 predominantly AQP4-IgG positive patients, calculated a 79% reduction in relapse rate.[23] 

RTX has therefore become a dependable maintenance therapy for AQP4-IgG-NMOSD in 

many countries. 

 

One explanation for apparently poor efficacy is that this study has selected out a subgroup of 

highly active treatment-refractory MOGAD patients from specialist centres. Only 15.1% of all 

MOGAD patients at the participating centres were treated with RTX. The pre-treatment median 

ARR (1.09 for those with >12 months of pre-treatment observation) was relatively high in our 

study, as compared to unselected incident MOGAD cohorts.[5,6] A treatment paradox, in 
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which higher relapse rates and poorer outcomes are seen in those receiving more therapy, 

reflects the a priori threshold for initiating such treatments and has been observed in other 

neuroinflammatory disorders.[28,29] In line with this, we observed a much better response in 

treatment-naïve patients versus those who had failed an alternative steroid-sparing maintenance 

therapy (63% reduction in relapses versus 25%). We also saw a paradoxical improvement in 

RTX effectiveness (42% reduction in relapses versus 37%) when excluding patients co-treated 

with maintenance corticosteroid and steroid-sparing immunotherapies. 

 

We explored if early relapses may account for poor treatment response, by excluding the 5% 

of relapses occurring within one month of RTX initiation. The decline in relapse rate increased 

slightly from 37% to 43%. The validity of this adjustment is uncertain in MOGAD, but stems 

from experience in AQP4-IgG-NMOSD, where a lag time of 3-4 weeks to achieve relapse-

preventing effect has been described, despite complete B-cell depletion within days of RTX 

infusion.[20,25] Relapse risk may in fact be paradoxically high during this lag period,[30,31] 

but most consider this not to reflect truly RTX-refractory disease.[26] An even greater delay to 

therapeutic effect is possible: Decline in relapse rate improved to 55% when relapses within 

three months of RTX initiation were excluded. However, a more prolonged median follow-up 

than 12.1 months would be required to properly discriminate between delayed therapeutic onset 

and lack of efficacy.     

 

Notwithstanding the above considerations, the obvious explanation may be that anti-CD20 B-

cell depletion is indeed not as effective in MOGAD compared to MS and AQP4-IgG- NMOSD. 

It is notable that most relapses occurred in the context of apparent robust B-cell depletion.  
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Despite their overlapping phenotypes, many differences have been identified between the 

immunopathogenic mechanisms underpinning these disorders. Both AQP4-IgG and MOG-IgG 

are immunoglobulin G1 antibodies, but the evidence that MOG-IgG is directly pathogenic to 

the CNS is less assured than for AQP4-IgG. It appears that the pathogenicity of human MOG-

IgG is dependent on interactions with cognate T-cells.[32] Additionally, the abundance of 

circulating MOG-specific B-cells differs greatly between MOGAD patients, and does not 

correlate with serum titres of MOG-IgG.[33] It may therefore be that the predominant source 

of MOG-IgG production in some patients is by CD20- long-lived plasma cells in the bone 

marrow (which are not depleted effectively with RTX), rather than by continuous activation 

and differentiation of CD20+ MOG-specific B-cells in the peripheral circulation. Systematic 

longitudinal assessment of MOG-IgG titres and B-cell populations were not available in this 

study but would be informative in future studies of RTX, particularly with respect to treatment 

failure. 

 

The children in this study experienced only a 29% (p=0.103) reduction in relapse rates on RTX, 

compared to the 42% decline observed in adults. Children comprised only a quarter of the 

cohort, and a much smaller proportion of children (23% versus 56% of adults) were treatment 

naïve prior to RTX. This may have confounded the comparison between adults and children, 

given that treatment-naïve patients appeared to respond more favourably to RTX. Finally, of 

all relapses known to have occurred in the context of inadequate B-cell depletion, 9/12 (75%) 

occurred in children.  This may suggest that children may benefit from closer B-cell 

monitoring.  While possible, it seems unlikely that use of the BSA-adjusted dosing regimen in 

children accounts for the lesser efficacy observed, as this is a conventional dosing protocol that 

is proven to cause complete circulating B-cell depletion with established efficacy in numerous 

autoimmune and haemato-oncological disorders.  
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Although 45% of the cohort relapsed on RTX, only 18% switched to an alternative 

immunotherapy. This could be because relapses were mild or responded well to acute therapy. 

We could not explore this as EDSS data (which did show a trend towards improving disability) 

were available for only 80% of the cohort and were not calculated at designated time points 

with respect to relapses. Alternatively, neurologists may continue RTX despite ongoing 

MOGAD relapses due to limited third-line therapy options. Paediatric studies have suggested 

possibly superior responses to either IVIg or oral corticosteroid, but this requires further 

study.[9,34] Tocilizumab (interleukin-6 blockade) has been used effectively in some patients 

with RTX-refractory MOGAD.[35-37] 

 

Important limitations of this study include its retrospective design and the inclusion of many 

patients with relatively short duration of treatment. The latter will bias analysis of ARR, often 

utilised in this type of study, which is why we used Poisson regression to provide a more 

meaningful analysis of treatment effect. Other limitations include the absence of a relapse 

adjudication committee, and the heterogeneity of the cohort in terms of patient ages, MOGAD 

phenotypes and prior drug exposure. Furthermore, some patients received concomitant 

corticosteroid treatment at changing doses, there was no standardised washout from prior 

steroid-sparing medications and a minority of patients continued these treatments alongside 

RTX therapy. These limitations are inherent to real-world, retrospective studies of this nature 

and the inclusion of all cases improves the generalisability of the study and reflects the 

challenge of managing this rare and unpredictable disorder.  

 

In summary, this is largest study of RTX effectiveness in MOGAD. RTX seems less beneficial 

than expected for MOGAD, when compared with AQP4-IgG-NMOSD, supporting 
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observations from small case series. Prospective studies in well-defined cohorts of adults and 

children are needed to confirm or refute our findings and to better understand the role of anti-

CD20 therapy in the treatment of MOGAD.    

 

 

Figure Legends 

 

Figure 1: Flow diagram demonstrating data analysis 

 

Figure 2: MOGAD relapses occurring before and after treatment with rituximab 

 

Figure 3: Kaplan-Meier plots of relapse-free survival following initiation of rituximab for (a) 

all relapsing patients (n=101); and (b) comparing treatment-naïve patients (blue line, n=47) a 

and those with previous exposure to non-steroid immunotherapies (red line, n=54). 
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