Clinical Outcomes of a Hospital-based

Teleophthalmology Service: What happens to patients

in a virtual clinic?

Kern Christoph ^{1,2}, Kortuem Karsten ^{1,2}, Hamilton Robin ¹, Fasolo Sandro ¹, Cai Yijun ¹, Balaskas Konstantinos ¹, Keane Pearse ^{1,3,4}, Sim Dawn ^{1,3,4}

¹ Moorfields Eye Hospital, London, United Kingdom (UK)

² Department of Ophthalmology, University Hospital LMU, Munich, Germany

³ National Institute for Health and Research (NIHR) Biomedical Centre, Moorfields Eye Hospital, London, UK

⁴ Institute of Ophthalmology, University College of London (UCL), London, UK

Corresponding author: Christoph Kern Financial support: none Conflict of interest: no conflicting relationship exists for any author Running head: Clinical outcomes of a virtual medical retina clinic Address for reprint: Christoph Kern Moorfields Eye Hospital, NHS Foundation Trust 62 City Rd, London EC1V 2PD, United Kingdom +44 (0)20 7253 3411 Email: christoph.kem@nhs.net

Abstract

Objective: Demographic changes as well as increasing referral rates from national screening services put pressure on available ophthalmologic resources in the UK. To improve resource allocation, virtual medical retina clinics were introduced in 2016 in Moorfields Eye Hospital, South Division. The scope of this work was to assess clinical outcomes of patients followed up in a virtual clinic setting.

Design: Retrospective database study.

Participants: Patients booked for a consecutive appointment in our virtual medical retina clinic.

Methods: 728 patients booked for their second virtual clinic appointment in a in a tertiary eye care referral center between November 2016 and July 2018 were identified retrospectively from our electronic health records and patient administration systems. Information about disease grade, clinical and visual outcomes was assessed.

Main Outcome measures: Clinical outcome of the virtual clinic visit: virtual follow-up; urgent referral to face-to-face clinic or discharge.

Results: 712 out of all 728 patients received a clinical outcome. 497 (70%) patients were eligible for further virtual follow up after the second virtual clinic visit, whereas 15% each (107 and 108 patients) were either discharged or referred to a face to face clinic. In total 661 patients attended their appointments in person and were reviewed by trained staff. 17 patients were referred for urgent treatment and 8 patients were not suitable for virtual follow up. With 542 (82%) of all cases, diabetic retinopathy was the most common diagnosis.

Conclusion: This study reports clinical outcomes of a virtual model of care for medical retina clinics which imply safety of patient care in this clinic setting. This clinic format optimizes the use of already available resources and serves to upskill our existing workforce whilst maintaining high quality clinical standards.

1 Advanced retinal imaging modalities revolutionized ophthalmology with optical coherence

2 tomography (OCT) in recent years becoming a cornerstone in diagnosing and treatment monitoring

3 of patients with retinal disorders like age related macular degeneration and diabetic macular edema.

4 ^{1,2} Diagnosis as well as treatment efficacy relies increasingly on imaging devices than on binocular

5 fundoscopy. ³ These advancing retinal imaging technologies and the comparability of ultra-wide field

6 images to the "gold standard" of Early Treatment Diabetic Retinopathy Study (ETDRS) standard fields

7 photography, facilitates telemedicine especially in the subspecialty of medical retina.^{4,5}

8 The increasing age of the population in industrialized countries and continued growth in diabetes

9 prevalence has resulted in an expanding demand for ophthalmological care. ^{6,7} This trend is evident

10 in the United Kingdom (UK) with already a low number of ophthalmologists per capita and an

11 expected growth of the population over 60 years at twice the rate of the profession.⁸

12 Ophthalmology resources are particularly disproportionate in the field of medical retina.

13 Since 2003 a national screening program (Diabetic Retinopathy Screening Service [DRSS]) for all

14 diabetic patients is in place, reaching more than 80% of all diabetic patients within the UK. ⁹ By

15 picking up previously undetected diabetic retinopathy, an increase of 30% in eye clinic attendances

16 was observed within the last 5 years throughout the UK. ¹⁰ The low threshold for referable disease in

17 the DRSS further raises the workload in ophthalmology. ^{11,12} To address this increasing workload and

18 to optimize usage of available resources, a virtual medical retina clinic (VMRC) setting for low risk

19 referrals is in place since September 2016 in four sites of Moorfields Eye Hospital, South Division,

20 London, UK. ¹³ Our work group described the implementation of this clinic setting and reported the

21 outcome of the first virtual clinic visit after referral.

22 The term "virtual clinic" was borrowed from our orthopedic colleagues who coined it whilst

developing the Glasgow Fracture Pathway: a virtual clinic first implemented in 2011 that has
 successfully upscaled across the country. ^{14,15} The British Broadcasting Corporation succinctly

successfully upscaled across the country. ^{14,15} The British Broadcasting Corporation succinctly

25 reported this success as "Virtual clinics reduce waiting times". ¹⁶ To overcome imbalance between

26 supply and demand, ophthalmologic subspecialties like glaucoma introduced virtual clinic settings

27 consisting of visual acuity testing, color photos of the optic disc and a visual field examination by

28 specially trained nurses. ¹⁷ These clinics were shown to reduce the patients' journey time in the

29 outpatient departments allowing more patients to be monitored. ¹⁸ No difference was found

30 between the functional outcome of patients monitored in virtual or regular glaucoma clinics. ¹⁹ This

31 suggests that virtual clinics may offer a safe and resource-efficient alternative to regular face-to-face

32 clinics (F2FC). ²⁰ Telemedicine has already been successfully applied for other diseases like

- retinopathy of the prematurity and diabetic retinopathy and shown the potential to maximize the
 usage of available resources. ^{4,21,22}
- 35 Differential labelling of a similar pathway (e.g. stable monitoring clinics or digital surveillance clinics)
- 36 led to some controversy in the use of the term "virtual" in Ophthalmology. This has largely been due
- to the interpretation of healthcare commissioners and insurers about the construct of an
- 38 ophthalmology virtual clinic; where patients are not monitored at home but instead attend for the
- 39 collection of clinical parameters without seeing a doctor in a face-to-face setting. Their clinical
- 40 encounter is therefore replaced by optometrists who have been trained to take relevant clinical
- 41 history and perform ocular measurements. The terminology used to describe this pathway is
- 42 important; Standards defined in the well-established field of telemedicine must be embedded into
- 43 teleophthalmology to allow systematic evaluation of quality.
- 44 In this study we report on patient characteristics and clinical outcomes of patients attending follow-
- 45 up appointments in consultant-led virtual medical retina clinics at Moorfields Eye Hospital.

46 Materials and Methods

- 47 All second attendances (follow-up visits) at the virtual medical retina clinic at Moorfields Eye
- 48 Hospital, NHS foundation Trust, South Division (St. George's Hospital, The Nelson Health Centre,
- 49 Purley War Memorial Hospital and Croydon University Hospital) were included into this study. This
- 50 work was registered with the Service Improvement Department of Moorfields Eye Hospital and
- 51 complies with the criteria defined in the Declaration of Helsinki.
- Inclusion criteria applying to all patients in this study were: Patients must have had a first virtual appointment with the clinical outcome to be kept in a virtual clinic setting and formed part of our initial study. ¹³ General inclusion criteria for internal and external referrals to attend our virtual clinic are presented in **Figure 1**. Period of observation for clinical outcomes of the second virtual visit was from November 2016 to July 2018.
- Each virtual appointment consisted of collection of clinical parameters by trained nurses and
 ophthalmic technicians. Past medical and ocular history as well as visual acuity and non-contact
 intraocular pressure were taken and entered in an electronic health record system which differs
 between the sites; either Medisoft (Medisoft, Leeds, UK) or OpenEyes (OpenEyes Foundation,
 London, UK). Patients virtual follow-up visits were allocated into a "color fundus" or "Ultra-Wide
 Field Imaging" (UWFI) driven clinic depending on DR grade, reviewer's choice and availability. Every
 patient receives a macular OCT volume scan by Topcon 3D OCT-2000 (Topcon Corporation, Tokyo,
- 64 Japan), followed by fundus photography. This is performed by two 45° field color fundus

65 photography by Topcon 3D OCT-2000 (Topcon Corporation, Tokyo, Japan) centered on optic disc and fovea in the "color fundus" and by ultra-wide field fundus photography (Optos, Dunfermline, UK) in 66 67 the "UWFI" clinic. An intranet-based worklist, containing data from the electronic health record and 68 patient administration system (Silverlink, Newcastle upon Tyde, UK), is regularly created using SQL 69 Server Reporting Services Software (Microsoft, Redmond, WA, United States of America) to select 70 patients awaiting reporting. This was performed by 5 reviewers; one ophthalmological consultant, 71 two medical retina fellows, one optometrist and one senior screener with DRSS background. All diabetic patients were graded following the national UK guidelines of retinopathy severity: none 72 (R0), background (R1), preproliferate (R2) and proliferative (R3). ²³ Diabetic maculopathy was graded 73 74 as absent (M0) or present (M1). For further analysis, each patient was graded following his worse 75 eye (higher R grading). A clinical outcome letter was sent to the patient, the general practitioner, 76 and if applicable to the local screening service. Outcome was classified as: follow-up in the virtual 77 clinic (virtual); follow up in a face-to-face medical retina clinic (F2FC); or discharge. 78 Primary study endpoint was the outcome of the second virtual visit. Secondary endpoints were 79 disease classification, attendance rates and processing time (time between patient's visit and virtual 80 review). If the outcome was face-to-face or discharge, further classification applied. For face-to-face 81 this was: 82 Urgent referral: This means treatable disease was detected and urgent treatment • 83 (intravitreal injections or panretinal laser coagulation) is necessary within less than 4 weeks. 84 • Worsening of monitored disease: Retinopathy grading or monitored disease worsened 85 compared to the first virtual visit and must be assessed by a clinician within more than 4 86 weeks. Urgent referral criteria not met. 87 Routine referral: e.g. due to cataract or glaucoma suspicious disc. • 88 • Poor image quality: in case of inadequate photographs (either due to media opacities or 89 compliance). 90 Booking Error: The patient was accidentally booked to a face-to-face setting ٠ Not suitable for virtual clinic: If patients have physical inabilities (neck kyphosis, wheelchair 91 • 92 etc.) 93 All patients discharged were categorized to discharge back to the diabetic retinopathy screening 94 service, discharge after two consecutive missed appointments (did not attend x2; DNAx2) or 95 deceased.

- 96 Data from the hospital's data warehouse, the electronic health record and the patient
- 97 administration system was exported to an Excel spreadsheet for further statistical analyses
- 98 performed by using SPSS Version 24 (IBM, Armonk, USA).

99 Results

100 728 patients were booked for a second virtual medical retina clinic appointment after planned

- 101 virtual follow-up in the first visit. 224 (30.8%) patients had appointments booked in the color fundus
- 102 clinic and 504 (69.2%) in the UWFI clinic. The average time between the first and second virtual
- appointment was 226.8 days (SD ± 89.7 days) compared to a suggested follow-up time of 214.3 days
- 104 (SD ± 80.5 days) by the reviewers of the first VMRC visit. The average age was 62.8 [20;95] years and
- 105 308 (42.3%) patients were female. The mean best corrected visual acuity of the better eye was 83.3
- 106 (SD ± 10.2) ETDRS letters (20/25) on the second VMRC appointment. The average reviewing process
- took place within 5.0 days (SD ± 5.5 days) after attending the appointment.

108 Attendance rates for the second virtual medical retina appointment

109 Of 728 patients booked for a second virtual appointment 661 (90.8%) attended their appointment. 110 123 (16.9%) of all booked patients did not attend their second virtual clinic appointment at least 111 once and 67 (9.2%) cancelled at least one second appointment. 59 (8.1%) patients were discharged 112 from the virtual out of administrative reasons (40 – DNAx2, 12 – deceased and 7 – lost-to-follow-up 113 (LTF)) without assessment. Thereof, 41 (5.6%) patients did not attend and 18 (2.5%) patients cancelled their second appointment before discharge. At the end of the observation period 9 114 patients still had their second virtual clinic appointment pending. In St. George's Hospital, we 115 116 observed 17 (2.3%) patients booked into virtual clinics were seen due to a booking error in a face-toface clinic. 117

Diagnoses of patients seen for a follow-up appointment in virtual medical retina clinics

Diabetic retinopathy was the most common diagnosis with 542 cases (82%) of all patients seen in a
 virtual clinic. This was followed by patients with age-related macular disease, retinal vein occlusions,
 choroidal naevi and central serous chorioretinopathy. All other diagnoses like Sickle-Cell retinopathy,
 Macular Telangiectasia Type II, vitelliform macular degeneration and other degenerative disorders
 were summarized in "other". Table 1 gives and overview over the diagnosis and the diabetic
 retinopathy grading.

126 Outcome of second virtual medical retina clinic visit

- 127 Of 728 booked patients, 712 patients received an outcome for their second virtual clinic
- 128 appointment until the end of observation period. We identified 16 patients without a clinical

129 outcome, whereof seven patients were loss to follow-up after not attending or cancelling their 130 second virtual appointment and nine patients had an appointment in the future. 661 patients 131 attended their appointments in person and were reviewed. 70% of the patients were kept in the 132 virtual setting. An equal amount of almost 15% each was either discharged or seen in a face-to-face for their next appointment. The reasons for discharge and face-to-face referrals are summarized in 133 134 Table 2. The outcomes differed following stratification by diagnosis or clinical rank of the reviewer 135 (Figure 2 and Figure 3). Time until next follow-up was 211.3 days (± 79.3 days) in the virtual and 136 122.7 days (± 87.1 days) in the face-to-face setting.

137 Discussion

In this study we examined patient characteristics and clinical outcome for patients followed up in a 138 139 virtual medical retina clinic. Of all 728 patients that were booked initially for their second virtual 140 appointment we were able to observe the outcome of 712 patients. Diabetic retinopathy was the 141 most common diagnosis in all patients. Most of the patients (70%) were eligible for further virtual 142 follow up after the second virtual visit, whereas 15% each were either discharged or referred to a 143 face-to-face setting. In total 17 patients were referred for urgent treatment and eight patients were 144 not suitable for virtual follow up due to poor image quality (e.g. increasing cataract since first virtual 145 appointment). The turnaround time for obtaining a review letter was five days for all patients.

146 The process of implementation and initial clinical outcomes in our virtual medical retina clinic were 147 published recently by our workgroup. ¹³ After implementation, a reduction of referral to appointment time and suitability as a first-line rapid-access clinic for low-risk referrals was shown. 148 149 More than half of the patients was eligible for virtual follow up, but we observed a face-to-face 150 referral rate of 30% due to various reasons. In this study major differences of clinical outcomes have 151 been revealed between the first and second virtual visit. Whereas55 % of first referrals continued 152 follow-up in a virtual setting, in this follow-up study more than 70% were kept within the virtual 153 clinic. The discharge rate was 15% for the first as well as the second virtual visit. A major difference 154 was seen for the face to face referrals. After the first appointment in a virtual clinic the face-to-face 155 rate was more than 30% whereas it was only 15% in the follow up visit. Urgent referrals were less in 156 the follow-up visit compared to the first visit (15% vs. 20% of face-to-face referrals). Figure 3 gives an 157 overview of the clinical outcome of the first and the second virtual visit stratified by disease grade and diagnosis. The lower face-to-face referral rate of the second visit can be explained about the 158 159 triage that already took place after initial referral to a virtual clinic. The number of patients that 160 were "not suitable" for a virtual setting or were seen face-to-face due to "poor image quality" was 161 reduced from 34.7% to 1% in the second virtual visit. Time to next follow- up was comparable for

virtual appointments (215 days vs. 211 days). For face-to-face visits, time to follow-up was less in
this study (173 days vs. 123 days), which could be explained by the high rate of "worsening of the
monitored disease" of 47% of all face-to-face referrals with a mean follow-up time of only 100.2
days ± 45.1 days.

By optimizing the workflow within the reviewing process, we achieved to reduce the average processing time from nine days after the first visit to five days in the second visit. This was achieved by better training as well as increasing experience in digital reviewing, even though the number of reviewers reduced from 6 to 5. The use of several software programs in reviewing patients was a new and unfamiliar approach for decision making after initial introduction of virtual clinics. We suggest that the review process is accelerating as reviewers are familiar with patient history and disease in a follow-up visit, like face-to-face clinics of other specialities.²⁴

173 Diabetic retinopathy telemedicine programs are classified into 4 categories by the American 174 Telemedicine Association depending on the accuracy of disease stratification and the function of the 175 program. ²⁵ Whereas category 1 programs only differentiate between "presence" or "absence" of diabetic changes, category 2 programs like the DRSS categorize for "vision threatening" and "non-176 177 vision threatening" disease severity. ⁹ Category 3 programs enable remote decision making by more 178 accurate disease stratification. Currently there are no telemedicine programs qualifying for the most 179 complex category 4, where imaging methods used for disease stratification must be comparable to 180 gold standard. Considering that ultra-wide field imaging was found equal to ETDRS photographs in determining diabetic retinopathy disease severity, our UWFI virtual clinic setting might qualify into a 181 182 category 3 program. ⁵ 30% of patients have been seen in a color fundus driven clinic, where retinal imaging does not achieve the standards of seven fields ETDRS photography and must be classified in 183 184 category 2 accordingly. For a tertiary eye care referral center, category 3 should be targeted not only 185 because of resources available, but also to guarantee patients safety.

186 Even though Telemedicine has the advantage of distinguishing between patients that only require 187 surveillance and those who need urgent treatment, a major concern of this new setting was, if it is safe to keep patients within a virtual setting. ²⁶ Virtual clinic settings have been described as a safe 188 and efficient alternative to face-to-face in diagnosing and managing eye diseases. ²⁷ A prospective 189 evaluation of a teleophthalmology clinic for age related macular degeneration found no difference 190 191 for the visual acuity outcomes between virtual and face-to-face setting.²⁸ In Our study, no 192 deterioration in mean visual acuity or mean diabetic retinopathy severity grades could be observed 193 between the first and second virtual visit. The visual acuity of all patients attending our virtual clinic 194 was 66.2 ETDRS letters (20/50) at first referral and 83.3 ETDRS letters (20/25) at their second visit.

195 The number of patients with preproliferative (R2) or proliferative (R3) retinopathy decreased from 196 16% in the first visit to 14.5% in the follow-up virtual visit. Moreover, an increased number of 197 patients remained in the virtual clinic (70% compared to 55% at the first virtual review) and a 198 reduction in the number requiring urgent referral (17 compared to 66 at the first virtual review) has 199 been observed. These results may have been influenced by positive selection after the first visit 200 (eligible for further virtual follow up). Based on the observed changes in clinical outcomes, we 201 suggest that the virtual clinic is a safe environment for medical retina patients and continues to 202 improve as the pathway matures.

203 We reduced our face-to-face referral rate from more than 30% to 15% in the second virtual visit. 204 This was defined as our internal benchmark for the outcome of first virtual visits, where we should 205 also aim for a 15% face-to-face referral rate only. To achieve this goal, several measures for initial 206 internal and external referrals to our virtual clinic are in place. (Figure 1) Not only by positive 207 selection after the first visit, but also by better training of technicians with OCT and widefield 208 devices, we achieved to reduce the rate of face-to face referral due to poor image quality from 209 34.7% to 1.0%. We believe that a virtual medical retina setting as described offers an opportunity to 210 improve medical resource allocation in a setting of broad use of validated telemedicine for the remoted diagnosis and management of retinal conditions. 211

212 The retrospective study design and the allocation to a color and UWFI clinic is a limitation when 213 interpreting these study results. Ongoing quality assurance programs should be embedded in 214 teleophthalmology services to allow more dynamic service evaluation and to be able to respond to 215 the need of population served. Further examinations must evaluate safety of a virtual clinic setting 216 by comparing clinical outcomes in a prospective setting to today's clinical standard: a face-to-face 217 examination including binocular dilated fundoscopy. Patient acceptance and quality of patient education were found to be similar in virtual and face-to-face glaucoma clinics.²⁹ To cover patient 218 219 experience in a virtual medical retina clinic setting, we will explore acceptability and satisfaction in a 220 future work.

With the results of this study we presented clinical outcomes of patients in a virtual medical retina clinic. Reduction in urgent referral rates and consistent DR gradings between the first and second virtual visit may imply the safety of this specific clinic setting. The use of already available resources is optimized and serves to upskill our existing workforce whilst maintaining high quality clinical standards. Future application of artificial intelligence algorithms such as Deep learning on OCT retinal scans may further improve workflow and resource utilization. ³⁰ For such an eventuality,

- evidence of baseline quality assurance processes as evidenced in this paper must be in place to
- 228 provide a benchmark for the introduction of new technologies.

References

- Kiernan DF, Mieler WF, Hariprasad SM. Spectral-domain optical coherence tomography: a comparison of modern high-resolution retinal imaging systems. *Am J Ophthalmol.* 2010;149(1):18-31.
- Health Quality O. Optical coherence tomography for age-related macular degeneration and diabetic macular edema: an evidence-based analysis. Ont Health Technol Assess Ser. 2009;9(13):1-22.
- 3. Eladawi N, Elmogy MM, Ghazal M, et al. Classification of retinal diseases based on OCT Images. *Front Biosci (Landmark Ed).* 2018;23:247-264.
- 4. Chee RI, Darwish D, Fernandez-Vega A, et al. Retinal Telemedicine. *Curr Ophthalmol Rep.* 2018;6(1):36-45.
- Silva PS, Cavallerano JD, Sun JK, Noble J, Aiello LM, Aiello LP. Nonmydriatic ultrawide field retinal imaging compared with dilated standard 7-field 35-mm photography and retinal specialist examination for evaluation of diabetic retinopathy. *Am J Ophthalmol.* 2012;154(3):549-559 e542.
- 6. Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. *Lancet Glob Health.* 2014;2(2):e106-116.
- 7. Hendrick AM, Gibson MV, Kulshreshtha A. Diabetic Retinopathy. *Prim Care.* 2015;42(3):451-464.
- 8. Resnikoff S, Felch W, Gauthier TM, Spivey B. The number of ophthalmologists in practice and training worldwide: a growing gap despite more than 200,000 practitioners. *Br J Ophthalmol.* 2012;96(6):783-787.
- 9. Scanlon PH. The English National Screening Programme for diabetic retinopathy 2003-2016. *Acta Diabetol.* 2017;54(6):515-525.
- 10. MacEwen C. Increasing demand on hospital eye services risks patients losing vision. *RCOphth.* 2016;https://www.rcophth.ac.uk/2016/03/increasing-demand-on-hospital-eye-services-risks-patients-losing-vision/.
- 11. Looker HC, Nyangoma SO, Cromie DT, et al. Rates of referable eye disease in the Scottish National Diabetic Retinopathy Screening Programme. *Br J Ophthalmol.* 2014;98(6):790-795.
- 12. Prasad S, Kamath GG, Jones K, Clearkin LG, Phillips RP. Effectiveness of optometrist screening for diabetic retinopathy using slit-lamp biomicroscopy. *Eye (Lond)*. 2001;15(Pt 5):595-601.
- 13. Kortuem K, Fasler K, Charnley A, et al. Implementation of medical retina virtual clinics in a tertiary eye care referral centre. *Br J Ophthalmol.* 2018.
- 14. Vardy J, Jenkins PJ, Clark K, et al. Effect of a redesigned fracture management pathway and 'virtual' fracture clinic on ED performance. *BMJ Open.* 2014;4(6):e005282.
- 15. Jayaram PR, Bhattacharyya R, Jenkins PJ, Anthony I, Rymaszewski LA. A new "virtual" patient pathway for the management of radial head and neck fractures. *Journal of shoulder and elbow surgery.* 2014;23(3):297-301.
- 16. 'Virtual' clinics to reduce waiting times. *BBC News.* 2018.
- 17. Trikha S, Macgregor C, Jeffery M, Kirwan J. The Portsmouth-based glaucoma refinement scheme: a role for virtual clinics in the future? *Eye (Lond).* 2012;26(10):1288-1294.

- 18. Kotecha A, Baldwin A, Brookes J, Foster PJ. Experiences with developing and implementing a virtual clinic for glaucoma care in an NHS setting. *Clin Ophthalmol.* 2015;9:1915-1923.
- 19. Jones L, Bryan SR, Miranda MA, Crabb DP, Kotecha A. Example of monitoring measurements in a virtual eye clinic using 'big data'. *Br J Ophthalmol.* 2018;102(7):911-915.
- 20. Clarke J, Puertas R, Kotecha A, Foster PJ, Barton K. Virtual clinics in glaucoma care: face-to-face versus remote decision-making. *Br J Ophthalmol.* 2017;101(7):892-895.
- 21. Rathi S, Tsui E, Mehta N, Zahid S, Schuman JS. The Current State of Teleophthalmology in the United States. *Ophthalmology*. 2017;124(12):1729-1734.
- 22. Biten H, Redd TK, Moleta C, et al. Diagnostic Accuracy of Ophthalmoscopy vs Telemedicine in Examinations for Retinopathy of Prematurity. *JAMA Ophthalmol.* 2018;136(5):498-504.
- 23. Harding S, Greenwood R, Aldington S, et al. Grading and disease management in national screening for diabetic retinopathy in England and Wales. *Diabetic Medicine*. 2003;20(12):965-971.
- 24. Lin CT, Albertson GA, Schilling LM, et al. Is patients' perception of time spent with the physician a determinant of ambulatory patient satisfaction? *Archives of internal medicine*. 2001;161(11):1437-1442.
- 25. Li HK, Horton M, Bursell SE, et al. Telehealth practice recommendations for diabetic retinopathy, second edition. *Telemedicine journal and e-health : the official journal of the American Telemedicine Association*. 2011;17(10):814-837.
- Garg S, Jani PD, Kshirsagar AV, King B, Chaum E. Telemedicine and retinal imaging for improving diabetic retinopathy evaluation. *Archives of internal medicine*. 2012;172(21):1677-1678.
- 27. Bowman RJ, Kennedy C, Kirwan JF, Sze P, Murdoch IE. Reliability of telemedicine for diagnosing and managing eye problems in accident and emergency departments. *Eye (Lond)*. 2003;17(6):743-746.
- 28. Li B, Powell AM, Hooper PL, Sheidow TG. Prospective evaluation of teleophthalmology in screening and recurrence monitoring of neovascular age-related macular degeneration: a randomized clinical trial. *JAMA Ophthalmol.* 2015;133(3):276-282.
- 29. Court JH, Austin MW. Virtual glaucoma clinics: patient acceptance and quality of patient education compared to standard clinics. *Clin Ophthalmol.* 2015;9:745-749.
- 30. De Fauw J, Ledsam JR, Romera-Paredes B, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. *Nature medicine*. 2018;24(9):1342-1350.

Figure legends

Figure 1 Guidance for initial referral into "color fundus" or "UWFI" driven virtual medical retina clinics

Figure 2 Available Outcomes for 712 out of 728 patients booked for a second virtual visit stratified by clinical rank: virtual medical retina clinic (VMRC); face-to-face clinic (F2FC) and discharge. Vertical axis gives percentage, numbers on bars give absolute numbers of patients. No data available for patients with an appointment in the future (n=9) and lost-to-follow-up (n=7).

Figure 3 Comparison of the Outcomes of the first and the second virtual visit stratified by clinical rank: virtual medical retina clinic (VMRC); face-to-face clinic (F2FC) and discharge. Vertical axis gives

percentage, numbers on bars give absolute numbers of patients. AMD, age-related macular degeneration; RVO, retinal vein occlusion; CSCR, central serous chorioretinopathy.