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Abstract
We study the evolution of the Whitney sphere along the Lagrangian mean curvature
flow. We show that equivariant Lagrangian spheres in C

n satisfying mild geometric
assumptions collapse to a point in finite time and the tangent flows converge to a
Lagrangian plane with multiplicity two.
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1 Introduction

The Whitney sphere is the immersion F : Sn → R
2n given by

F(x1, . . . , xn+1) = 1

1 + x2n+1

(x1, x1xn+1, . . . , xn, xnxn+1).

This immersion is Lagrangian, i.e., F∗ω = 0, where ω is the standard symplectic
formonR2n . From thepoint of viewof topology, theWhitney sphere is interesting since
it has the best topological behavior: namely, it fails to be embedded only at the north
and south polewhere it has a transversal double point. Anwell known result ofGromov
asserts that there are no embedded Lagrangian spheres in C

n . On the geometry side,
this immersion can be characterized by many geometric rigidity properties, see [3,12].
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In this sense, the Whitney sphere plays the role of totally umbilical hypersurfaces in
R
n in the class of Lagrangian submanifolds.
Another interesting aspect of the Whitney sphere is that it appears as a limit

surface under Lagrangian mean curvature flow of some well-behaved Lagrangian
submanifolds in R

4. Recall that the mean curvature flow (MCF) of an immersion
F0 : Mk → R

m is a map F : M → [0, T ] → R
m such that F(x, 0) = F0 and

satisfies the equation
d

dt
F = H ,

where H is the mean curvature vector of Mn . It was shown by Smoczyk that the
Lagrangian condition is preserved by MCF when the ambient space is a Kähler-
Einsteinmanifold. TheLagrangianmean curvature flowgained a lot of interest recently
as a potential tool tofindminimalLagrangian (specialLagrangian) in a givenhomology
class or Hamiltonian isotopy class of a Calabi–Yau manifold. Special Lagrangian
submanifolds have the remarkable property of being area minimizing by means of
calibration arguments. The classical approach of minimizing area in a given class,
however, does not seem very effective to find smooth special Lagrangian as shown by
Schoen and Wolfson in [13].

Ideally, one could hope that the evolution of well behaved Lagrangian submanifolds
along mean curvature flow to converge to special Lagrangians. In a series of works,
A. Neves showed that finite time singularities are unavoidable in the Lagrangian mean
curvature flow in general, see [8,10]. It is constructed in [8] a non-compact zeroMaslov
class Lagrangian in R4 with bounded Lagrangian angle and in the same Hamiltonian
isotopy class of a Lagrangian plane that nevertheless develops a singularity in finite
time. At the singular time the limit surface pictures like a connect sum of a smooth
Lagrangian (diffeomorphic to a Lagrangian plane) with a Whitney sphere. Such con-
struction were later generalized to 4-dimensional Calabi–Yau manifolds, see [10].

There are very few results regarding the evolution of compact Lagrangian subman-
ifolds in C

n . Motivate by this, we investigate the evolution of the Whitney sphere
along mean curvature flow. Despite its many geometric properties, it is not a self-
similar solution of the flow. By exploiting its rotationally symmetries, one can reduce
its mean curvature flow to a flow about curves in the plane. As a particular case of our
main result we prove

Let F : S
n × [0, T ) → C

n be the maximal existence mean curvature flow of the
Whitney sphere. Then FT (x) = {0} for every x ∈ S

n . The tangent flow at the origin is
a Lagrangian plane with multiplicity two.

A Lagrangian submanifold L ⊂ C
n is called equivariant if there exists a antipodal

invariant curve γ : I → C such that L can be written as

L = {(γ (u)G1(x), . . . , γ (u)Gn(x)) ∈ C
n : G : Cn−1 → R

n},

where G is a the standard embedding of Cn−1 in R
n . Using spherical coordinates

on C
n , (cos(u)G(x), sin(u)), we check that the Whitney sphere is equivariant with
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Fig. 1 Whitney sphere

associated curve γ0 : (0, 2π) → R
2 given by:

γ0(u) =
(

sin(u)

1 + cos2(u)
,
sin(u) cos(u)

1 + cos2(u)

)
.

The equivariant property is preserved by the mean curvature flow and the correspond-
ing evolution equation for γt is

dγ

dt
= −→

k − (n − 1)
γ ⊥

|γ |2 . (1.1)

Here
−→
k denotes the curvature vector of γ , it is defined by

−→
k = 1

|γ ′|
d
du

γ ′
|γ ′| , and γ ⊥

denotes the normal projection of the position vector γ . This flow is known as the
equivariant flow.

Definition 1.1 Let C be the set of antipodal invariant figure eight curves γ : C1 → C

with only one self-intersection which is transversal and located at the origin.

Definition 1.2 Let �α be the antipodal invariant region in R
2 bounded by two lines

through the origin with angle between them equal to α (Fig. 1).

Theorem 1.3 Let γ be a curve in C satisfying at least one of the following assumptions:

(i) {γ } ∩ C
1(R) has at most 4 points for every R > 0;

(ii) {γ } ⊂ �π
n
.

If {γt }t∈[0,T ) is the maximal equivariant flow of γ , then γT = {0}. Moreover, the
tangent flow at the origin is a line with multiplicity two.

Remark 1.4 The assumptions in Theorem 1.3 are sharp. In Sect. 3 we construct for
every α > π

2 a curve γ ∈ C such that {γ } ⊂ �α that develops a non-trivial singularity
at the origin along the equivariant flow (1.1) when n = 2.

The proof of Theorem 1.3 follows closely the ideas in [8,9] where it is shown that
singularities for the mean curvature flow of monotone Lagrangian submanifolds inR4

are modeled on area minimizing cones.
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2 Preliminaries

Let L be a Lagrangian submanifold in C
n . This implies that ω|L= 0, where ω =∑n

i=1

√−1
2 dzi ∧ dzi is the standard symplectic form on C

n . Let � be the complex
valued n-form given by

� = dz1 ∧ . . . ∧ dzn .

A standard computation implies that

�|L= eiθ volL . (2.1)

The multivalued function θ is called the Lagrangian angle of L . If θ is a single
valued function, then L is called zero-Maslov class. If θ = θ0, then L is calibrated by
Re(e−iθ0�) and hence area-minimizing. In this case, L is called special Lagrangian.
More generally, the Lagrangian angle and the geometry of L are related through−→
H = J (∇θ). Recall also the Liouville one form given by

λ =
n∑

i=1

xidyi − yidxi .

One can check that dλ = ω. In particular, [λ] ∈ H1(L). When [λ] = c[dθ ] for some
c ∈ R, then L is said to be a monotone Lagrangian.

Let L be a equivariant Lagrangian submanifold inR2n . Hence, there exists a regular
curve γ in R2 such that

L =
{

(γ G1, . . . , γ Gn) ∈ R
2n,

n∑
i=1

G2
i = 1.

}
(2.2)

After choosing a parametrization of γ we have

�L := dz1 ∧ · · · ∧ dzn

∣∣∣∣
L

= eiθvolL = γ ′

|γ ′| ·
(

γ

|γ |
)n−1

volL , (2.3)

where z ·w denotes the standard multiplication of complex numbers; here we consider
γ as complex valued function. The Lagrangian angle relates to the geometry of L.

If Lt is the mean curvature flow starting at L , then Lt shares the same rotational
symmetries of L , i.e., Lt = {γtG1, . . . , γtGn) : G = (G1, . . . ,Gn) ∈ C

n−1}.
Moreover,

dγ

dt
= −→

k − (n − 1)
γ ⊥

|γ |2 . (2.4)

Although the term γ ⊥
|γ |2 is not well defined at the origin the quantity has its meaning

even when a curve goes through the origin as we can see below.
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Lemma 2.1 Let γ : [−a, a] → R
2 a smooth regular curve such that γ (0) = 0. Then

lim
s→0

γ ⊥

|γ |2 (s) = 1

2
−→
k (0).

Proof Let us write the left hand side as

γ ⊥

|γ |2 (s) = 1

|γ |2
〈
γ, i

γ ′

|γ ′|
〉
i

γ ′

|γ ′| = s2

|γ |2
〈
γ − sγ ′(0)

s2
, i

γ ′

|γ ′|
〉
i

γ ′

|γ ′| .

Using that lims→0
γ (s)
s = γ ′(0) and applying the L’Hopital’s rule twice, we obtain

lim
s→0

γ ⊥

|γ |2 (s) = 1

2

1

|γ ′(0)|2
〈
γ ′′(0), i γ ′(0)

|γ ′|(0)
〉
i

γ ′(0)
|γ ′(0)| = 1

2
−→
k (0).

�

Proposition 2.2 (Neves [10]) Let γi,t : [−a, a] → R

2, i = 1, 2 and 0 ≤ t ≤ T ,
smooth regular curves satisfying

(1) γi,t (−s) = −γi,t (s) for all 0 ≤ t ≤ T and for every s ∈ [−a, a] .
(2) The curve γi,t , i = 1, 2, solves the equation

dγ

dt
= −→

k − (n − 1)
γ ⊥

|γ |2 .

(3) γ1,0∩γ2,0 = {0} (non-tangential intersection) and ∂γ1,t ∩γ2,t = ∂γ2,t ∩γ1,t = ∅
for all t .

Then for all 0 ≤ t ≤ T we have γ1,t ∩ γ2,t = {0}.
Proof It suffices to restrict to what happens near the origin since the proposition
follows from the standard maximum principle applied to the first time of tangential
intersection.

First notice that γi,t can be written as a graph on [−δ, δ] for some δ > 0. Hence,

γi,t (s) = (s, fi,t (s)) and we define hi,t (s) = fi,t (s)
s . Let’s check that hi,t (s) is smooth:

if s �= 0, then

h′(s) = f ′s − f

s2
and h′′(s) = ( f ′′s + f ′ − f ′)s2 − ( f ′s − f )2s

s4

= f ′′

s
+ 2

f − f ′s
s3

. (2.5)

Since f (0) = 0 and f ′′(0) = 0 (item (1)), we can apply L’Hopital’s rule to show that
α′ and α′′ in (2.5) have a limit when s → 0. Hence, h is twice differentiable.
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Finally we consider the function ut (s) = h1,t − h2,t . Notice that u0 > 0 by
assumption (3) and ut (s) = ut (−s). Recall that in the case of a graph γ (s) = (s, f (s))
we have

γ ′ = (1, f ′), ν = ( f ′,−1)√
1 + ( f ′)2

and
−→
k = − f ′′

(1 + ( f ′)2) 3
2

ν.

Besides,

γ ⊥

|γ |2 = s f ′ − f

s2 + f 2
1√

1 + ( f ′)2
ν.

Therefore, the equation dγ
dt

⊥ = −→
k − (n − 1) z⊥

|z|2 implies

d f

dt
= f ′′

1 + ( f ′)2
+ (n − 1)

(
arctan

f

s

)′
.

Standard computations imply that hi,t = fi,t
s satisfies

d hi,t
dt

= h′′
i,t

1 + (s h′
i,t + hi,t )2

+ h′
i,t

s

2

1 + (s h′
i,t + hi,t )2

+ (n − 1)
h′
i,t

s

1

1 + h2i,t
.

Now we proceed to find the equation for dut
dt . Using that hi,t

s is also smooth, one
can checked that

dut
dt

= C2
1u

′′
t + C2u

′
t + C3ut + C2

4
u′
t

s
,

where each Ck is a smooth and bounded function. By item (3), the function ut=0 is
strictly positive since γ1 and γ2 have a non-tangential intersection at the origin.

Suppose T1 is the first time where ut has a zero say at s0. Hence, s0 is a minimum
point as uT1 ≥ 0. We consider the function vt = ute−Ct + ε(t − T1) where C is very
large and ε is a very small positive number. So at (s0, T1) we have

0 ≥ dvt
dt

(s0, T1) = dut
dt

(s0, T1)e
−CT1 + ε ≥ ε + C2

4
u′
t (s0)

s0
e−CT1 .

We used in the equality part that uT1(s) = 0 and that u′
T1

(s0) = 0 and u′′
T1

(s) ≤ 0 since
s0 is a minimum point for uT1 . If s0 �= 0 then the second term in the right hand side
is zero and we get a contradiction. If s0 = 0 then that term is just u′′

t (0)e
−CT1 by the

L’Hopital’s rule, hence, non-negative and we obtain a contradiction again. �

Corollary 2.3 The set C is preserved by the equivariant flow. Moreover, if γ ∈ C
satisfies item (i) (respectively, item (ii)) in Theorem 1.3, then so does γt .
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Proof The symmetries of the curve γ are preserved by the equivariant flow, hence γt
is also antipodal invariant. Proposition 2.2 guarantees that the only self intersection
of γt is at the origin and it is transversal for every t . Hence, C is preserved by the
equivariant flow. Moreover, Proposition 2.2 also implies that γt (s) can only intersect

the line s
−→
eiβ s∈R, with π

n < β < π − π
n , only at the origin for every t ∈ [0, T ).

Therefore, if {γ } ⊂ �π
n
, then {γt } ⊂ �π

n
also. Finally, by Theorem 1.3 in [2], the

number of intersections between {γ } and C
1(R) is non-increasing along the flow. �


Lemma 2.4 If γ ∈ �π
n
, then for every t > 0 there exists δt > 0 such that {γt } ⊂

�π
n −δt .

Proof Since γ ∈ C is antipodal invariant and passes through the origin, one can check

that lims→0
γ ⊥
|γ |2 (s) = 0, where γ (s) is a local parametrization of γ with γ (s) =

−γ (−s). By Lemma 2.1, we have that
−→
k (z0) = −→

k (−z0) = 0, where γ (z0) =
γ (−z0) = 0. Consequently,

−→
H (z0) = −→

H (−z0) = 0. This implies that z0 and −z0 are
critical points of the Lagrangian angle θL . It can be check easily that they correspond
to local minimum and local maximum critical points. The strong maximum principle
applied to d

dt θ = �θ implies that θt (z0) < θ(z0) and θt (−z0) > θ(−z0). �

Let us use Area(γ ) to denote the area enclosed by γ ∈ C. By the Stokes’ theorem

we have that Area(γt ) = − 1
2

∫
γt

〈γt , ν〉dγt , where ν is the unit outward normal vector
of γ .

Lemma 2.5

π(T − t) ≤ Area(γt ) − Area(γT ) ≤ 3π(T − t).

Proof Let γt (u) be a parametrization of γt . Using that ν = i γ ′
t

|γ ′
t | , we have that

Area(γt ) = − 1
2

∫
γt

〈γt , i γ ′
t 〉du. Hence,

Area′(t) = −1

2

∫
γt

(
〈∂tγ, i γ ′

t 〉 + 〈γ, i (∂tγ )′〉
)
du

= −1

2

∫
γt

(
〈∂tγ, i γ ′

t 〉 + 〈γt , i∂tγ 〉′ − 〈γ ′, i ∂tγ 〉
)
du

= −
∫

γt

〈∂tγ, i γ ′
t 〉 du − 1

2

∫
γt

〈γt , i∂tγ 〉′ du = −
∫

γt

〈∂tγ, ν〉 dγt .

The last equality follows from the Fundamental Theorem of Calculus. Hence,

Area′(t) = −
∫

γt

〈−→
k − (n − 1)

z⊥

|z|2 , ν

〉
dγt = −

∫
γt

〈−→k , ν〉dγt .

The last equality follows from theDivergenceTheorem applied to vector field X = z
|z|2

and the fact that z = 0 is not in the interior of the region enclosed by γt . Combining
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the Gauss–Bonnet theorem and the fact that the exterior angle αt of γt at the origin is
in [−π, π ] we obtain

∫
γt

〈−→k ,−ν〉dγt + αt = 2π �⇒ π ≤
∫

γt

〈−→k ,−ν〉dγt ≤ 3π.

Therefore, −3π ≤ Area′(γt ) ≤ −π . The Lemma now follows if we integrate this
quantity from t to T . �


3 Proof of the Theorem

Let Lt be a solutionof themean curvatureflowstartingon a k-dimensional submanifold
L in Rm . Consider the backward heat kernel

�x0,T (x, t) = 1

(4π(T − t))
k
2

e− |x−x0 |2
4(T−t) .

The following formula is known as the Huisken’s monotonicity formula:

d

dt

∫
Lt

ft�x0,T dHk

=
∫
Lt

(
d

dt
ft − � ft −

∣∣∣∣H − (x − x0)⊥

2(T − t)

∣∣∣∣
2

ft

)
�x0,T dHk, (3.1)

where dHk denotes the k-dimensional Hausdorff measure.
Recall that if {Lt }t∈[0,T ) is the Lagrangian mean curvature flow starting at L , then

Lσ
s = σ

(
LT+ s

σ2
− x0

)
,

for s ∈ [−Tλ2, 0), also satisfies the Lagrangian mean curvature flow and is referred
as the tangent flow at x0. The following is a restatement of Theorem 1.3:

Theorem 3.1 Let γ be a curve in C which satisfies at least one of the following assump-
tions

(i) {γ } ∩ C
1(R) has at most 4 points for every R > 0;

(ii) {γ } ⊂ �π
n
.

If {γt }t∈[0,T ) is the maximal equivariant flow of γ , then γT = {0}. Moreover, the
tangent flow at the origin is a line with multiplicity two.

Proof Let us prove first that if z = 0 is a singular point, then γT = {0}. Arguing by
contradiction, we assume that z = 0 is a singular point for {γt }0≤t<T and γT �= {0}.
Given σi → ∞, let γ i

s = σiγT+ s
σ2i

.
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Lemma 3.2 Let a and b real numbers such that a < b < 0. Then

lim
i→∞

∫ b

a

∫
γ i
s ∩A( 1

η
,η,0)

(
|−→k |2 + |γ ⊥|2

)
dH1ds = 0,

where A( 1
η
, η, 0) is an annulus centered at z = 0 with inner and outer radius η and

1
η
, respectively.

Proof Let Li
s be the immersed Lagrangian sphere in C

2 obtained via Li
s =

(γ i
s G1, . . . , γ

i
s Gn). It is proved in Lemma 5.4 in [8] that

lim
i→∞

∫ b

a

∫
Li
s∩BR(0)

(
|H |2 + |x⊥|2

)
dHn(x)ds = 0, (3.2)

where H is the mean curvature vector of Li
s . For the convenience of the reader let us

recall the proof of this fact. It is a standard computation to check that the Lagrangian
angle θ obeys the following evolution equation d

dt θ
2
i,s = �θ2i,s − 2|H |2. Applying

(3.1) with ft = θ2i,s and ft = 1, we obtain

d

ds

∫
Li
s

θ2i,s�dHn =
∫
Li
s

(
− 2|H |2 −

∣∣∣∣H − x⊥

2s

∣∣∣∣
2

θ2i,s

)
� dHn (3.3)

d

ds

∫
Li
s

�dHn =
∫
Li
s

−
∣∣∣∣H − x⊥

2s

∣∣∣∣
2

� dHn, (3.4)

respectively. Integrating (3.3) from a to b gives

2 lim
i→∞

∫ b

a

∫
Li
s

|H |2 � dHnds ≤ lim
i→∞

∫
Li
b

θ2i,b� dHn − lim
i→∞

∫
Li
a

θ2i,a� dHn = 0.

The last inequality follows from the scale invariance andmonotonicity of
∫
Lt

θ2 �dHn .
Similarly, we obtain

lim
i→∞

∫ b

a

∫
Li
s

∣∣∣∣H − x⊥

2s

∣∣∣∣
2

� dHnds = lim
i→∞

∫
Li
b

� dH2 − lim
i→∞

∫
Li
a

� dHn = 0.

It follows from the triangular inequality that

lim
i→∞

∫ b

a

∫
Li
s

∣∣∣∣ x
⊥

2s

∣∣∣∣
2

� dHnds = 0.
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This completes the proof of (3.2). As |H |2 = |−→k − (n − 1) γ ⊥
|γ |2 |2 and |x⊥|2 = |γ ⊥|2,

we obtain for each η > 0 that

lim
i→∞

∫ b

a

∫
γ i
s ∩A( 1

η
,η,0)

(
|−→k |2 + |γ ⊥|2

)
dH1ds = 0.

�
 From previous lemma it follows that for almost every s ∈ (a, b) that

lim
i→∞

∫
γ i
s ∩A( 1

η
,η,0)

(
|−→k |2 + |γ ⊥|2

)
dH1 = 0.

This implies that γ i
s converges to a union of lines in C

1, 12
loc (R2 − {0}). In fact, each

connected component of γ i
s inside BR(0) − {0} converge to a line segment with

multiplicity one since the convergence is in C
1, 12
loc (R2 − {0}).

Assume first that γ satisfies item i), then by Proposition 2.2 and Corollary 2.3,
the curve γ i

s in BR(0) − {0} has two embedded connected components. Hence, each
converges to a line segment with multiplicity one in BR(0) − {0}. Equivalently, in a
neighborhood of the origin Lt is a union of two smooth embedded discs intersecting
transversally at a interior point. Hence, each piece of Li

s converges weakly to a plane
with multiplicity one. Since γT �= {0}, we can talk about the localized Gaussian
density of each connected component of Lt ∩ Br (0) computed at (0, T ) which will be
very close to one. Applying White’s Local Regularity Theorem, see localized version
Theorem 5.6 in [4]), to each component of Lt ∩ Br (0), we conclude that the origin is
not a singularity of {Lt }t∈[0,T ), contradiction.

To handle other connected components of γ i
s in B4R(0) we study the Lagrangian

angle θ is . Let β be a primitive of λL . It is proved in [9] that ∇β = J (x⊥) and d
dt β =

�β − 2θ . This implies that the function u = β + 2(t − t0)θ satisfies d
dt f (u) =

� f (u) − f ′′(u)|x⊥ + 2(t − t0)H |2, where f ∈ C∞
0 (R). Plugging the function f (u)

in (3.1), we obtain

d

ds

∫
Li
s

f (uis)� = −
∫
Li
s

∣∣∣∣H − x⊥

2s

∣∣∣∣
2

f (uis)� + f ′′(uis)
∣∣∣∣x⊥ + 2(s − s0)H

∣∣∣∣
2

�.

Integrating this formula from −1 to s0 and using (3.2) , we obtain

lim
i→∞

∫
Li
s0

∩B4R(0)
f (β i

s0)� = lim
i→∞

∫
Li−1∩B4R(0)

f (β i−1 − 2(1 + s0)θ
i−1)�.

Let γ i be a connected component of γ i
s in B4R(0) that intersects BR(0) and does not

passes through the origin. Since |∇ f (β i
s)| is bounded, there exists a constant bs0 such

that limi→∞ f (β i
s0) = f (bs0). Similarly, limi→∞ f (β i−1) = f (b−1). As before, γi

converges in C1, 12 (R2 − {0}) to lines l−→
vs1

and l−→
vs2

in the direction of the vectors
−→
vsi .

Moreover,
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lim
i→∞

∫
γ i

f (β i−1 − 2(1 + s0)θ
i−1)� dH1 =

2∑
i=1

∫
l−→vi

f (b−1 − 2(1 + s0)θi )� dH1.

Note that (2.3) implies that θ is converge to a constant in each connected component of
γ i
s ∩ (BR(0)− Br (0)). We claim that θ1 = θ2. Otherwise, by choosing f with support

near bs0 and equal to 1 near bs0 , we obtain

2∑
i=1

∫
l−→vi ∩BR(0)

� dH1 =
∫
l−→vi0

∩BR(0)
� dH1,

contradiction.
Let us assume that γ satisfies item (ii). In this case, γ i

s ∩ B4R(0) has a connected

component γ i intersecting B2R which converges in C1, 12 (BR(0) − {0}) to the lines
γA and γB with multiplicity one. Moreover, θ is converge to a constant θ0 on each
connected component of γ i ∩ (BR(0) − Br (0)). This implies that γA = γB with the
same orientation or the angle between γA and γB is π

n . The first case cannot happen
since I2(β i

s ,C
1(0, r)) = 0, where I2(·, ·) is the intersection number mod 2. The

second case cannot happen since {γt } ⊂ �π
n −δt by Lemma 2.4. Hence, the origin is

not a singularity if we assume that γT �= {0}.
On the other hand, no singularities away from the origin occur. Indeed, in [11]

Oaks complement the work of Angenent on singularities of equations of type d
dt γt =

V (
−→
T , k)

−→
N by showing that near the singularity the curve γt must lose a self inter-

section. Since Proposition 2.2 asserts the only self intersection of γt is at the origin
we are done.

Now let us prove that the tangent flow at the singular point is a line through the
origin with multiplicity 2. For this we choose a sequence of scale factors λi → +∞
and we set γ i

s = λiγT+ s
λ2i

defined in [−Tλ2i , 0).

As discussed before γ i
s converges in C

1, 12
loc (R2 − {0}) to a union of two lines through

the origin for almost every s fixed. Let us denote them by lA and lB . As Area(γt ) is
going to zero there exist a unique ti ∈ [0, T ) for which Area(γti ) = 1

λ2i
. This implies

that Area(γ i
si1

) = 1, where si1 is given by s
i
1 = −λ2i (T − ti ). Since π(T − t) ≤ A(t) ≤

3π(T − t) by Lemma 2.5, we obtain that si1 ∈ [− 1
π
,− 1

3π ]. In particular, if s∗ = − 1
3π ,

then lim supi→∞ Area(γ i
s∗) ≤ 1. Therefore, γ i

s∗ must converge to 2γA + 2γB or
γA = γB since γ i

s∗ is becoming non-compact enclosing bounded area.
The first case does not happen as it violates the assumptions (i) and (ii) as discussed
above. �


The next example constructs equivariant Lagrangian spheres in R
4 that do not

collapse to a point along the mean curvature flow.

Example 3.3 Let γ0 be the curve γ α(u) = sin(πu
α

)− α
π (cos(u), sin(u)) with u ∈ R.

The existence of a solution of the equivariant flow starting at γ α is given in [8], let
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Fig. 2 Curve β

us denote it by {γt }t∈[0,Tα). It is shown in [8] that when α > π
2 , then Tα < ∞ and

γt develops a singularity at the origin. When α ∈ (0, π), then γ α is contained in �α

and it is asymptotic to its boundary. Consider the region Uα in �α that is bounded by
{γ α}∪{−γ α}. One can check thatUα has infinite area. Choose β ∈ C contained inUα

whose area enclosed, Area(β), is greater than 3π Tα . See Fig. 2 for the case α = π .
Let {βt }t∈[0,T ) be the solution of the equivariant flow starting at β. By the avoidance
principle, βt and γt do not intersect. Hence, T < Tα . On the other hand, by Lemma
2.5 we have that Area(βT ) ≥ Area(β) − 3πT ≥ 3π(Tα − T ) > 0. Therefore, a non
trivial singularity must occur at the origin.

Let us show that anyType II dilation of γt near the singularity converges to an eternal
solution of curve shortening flow. As in Chapter 4 in [7], there exist for each k > 0,
points zk ∈ γt (C

1), tk ∈ [0, T − 1
k ], and scaling λk > 0 such that βk

s = λk(γT+ s
λ2k

−zk)

satisfies

d

ds
βk
s = −→

k (βk
s ) − (n − 1)

(βk
s + λk zk)⊥

|βk
s + λk zk |2 ,

where s ∈ (ak, bk). Moreover, limk→∞ ak = −∞, limk→∞ bk = ∞, and 0 <

limk→∞ sup(ak ,bk )×C1 |−→k (βk
s )| ≤ C . It is proved that βk

s converge smoothly as k →
∞ to a non-compact flow (βs)s∈R. We claim that limk→∞ λk zk = ∞. If not, then
we could replace the points zk by z = 0 and obtain the same conclusion. This is
impossible since central dilations converge to lines. Therefore, as k → ∞,

d

ds
βs = −→

k (βs).
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