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Abstract

We study the evolution of the Whitney sphere along the Lagrangian mean curvature
flow. We show that equivariant Lagrangian spheres in C" satisfying mild geometric
assumptions collapse to a point in finite time and the tangent flows converge to a
Lagrangian plane with multiplicity two.
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1 Introduction

The Whitney sphere is the immersion F : S* — R given by

1
F(-x15 e ,xn—H) == —z(xlaxl-xn-'r]’ . -,xnaxnx;1+1)-
1+xn+l

This immersion is Lagrangian, i.e., F*w = 0, where w is the standard symplectic
form on R?*. From the point of view of topology, the Whitney sphere is interesting since
it has the best topological behavior: namely, it fails to be embedded only at the north
and south pole where it has a transversal double point. An well known result of Gromov
asserts that there are no embedded Lagrangian spheres in C". On the geometry side,
this immersion can be characterized by many geometric rigidity properties, see [3,12].
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In this sense, the Whitney sphere plays the role of totally umbilical hypersurfaces in
R” in the class of Lagrangian submanifolds.

Another interesting aspect of the Whitney sphere is that it appears as a limit
surface under Lagrangian mean curvature flow of some well-behaved Lagrangian
submanifolds in R*. Recall that the mean curvature flow (MCF) of an immersion
Fo: M¥ - R"isamap F : M — [0,T] — R™ such that F(x,0) = Fy and
satisfies the equation

d
—F=H,
dt

where H is the mean curvature vector of M". It was shown by Smoczyk that the
Lagrangian condition is preserved by MCF when the ambient space is a Kihler-
Einstein manifold. The Lagrangian mean curvature flow gained a lot of interest recently
as apotential tool to find minimal Lagrangian (special Lagrangian) in a given homology
class or Hamiltonian isotopy class of a Calabi—Yau manifold. Special Lagrangian
submanifolds have the remarkable property of being area minimizing by means of
calibration arguments. The classical approach of minimizing area in a given class,
however, does not seem very effective to find smooth special Lagrangian as shown by
Schoen and Wolfson in [13].

Ideally, one could hope that the evolution of well behaved Lagrangian submanifolds
along mean curvature flow to converge to special Lagrangians. In a series of works,
A. Neves showed that finite time singularities are unavoidable in the Lagrangian mean
curvature flow in general, see [8,10]. It is constructed in [8] a non-compact zero Maslov
class Lagrangian in R* with bounded Lagrangian angle and in the same Hamiltonian
isotopy class of a Lagrangian plane that nevertheless develops a singularity in finite
time. At the singular time the limit surface pictures like a connect sum of a smooth
Lagrangian (diffeomorphic to a Lagrangian plane) with a Whitney sphere. Such con-
struction were later generalized to 4-dimensional Calabi—Yau manifolds, see [10].

There are very few results regarding the evolution of compact Lagrangian subman-
ifolds in C". Motivate by this, we investigate the evolution of the Whitney sphere
along mean curvature flow. Despite its many geometric properties, it is not a self-
similar solution of the flow. By exploiting its rotationally symmetries, one can reduce
its mean curvature flow to a flow about curves in the plane. As a particular case of our
main result we prove

Let F : §" x [0, T) — C" be the maximal existence mean curvature flow of the
Whitney sphere. Then Fr(x) = {0} for every x € S". The tangent flow at the origin is
a Lagrangian plane with multiplicity two.

A Lagrangian submanifold L C C" is called equivariant if there exists a antipodal
invariant curve y : I — C such that L can be written as

L={(yw)Gi(x),...,y(u)G,(x)) eC" : G: ! R,

where G is a the standard embedding of C"~! in R”. Using spherical coordinates
on C", (cos(u) G(x), sin(u)), we check that the Whitney sphere is equivariant with
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Fig.1 Whitney sphere

associated curve yy : (0, 27) — R? given by:

- ( sin(u) sin(u) cos(u)
volu) = 1 4+ cos2(u)’ 1+ cos?(u) )

The equivariant property is preserved by the mean curvature flow and the correspond-
ing evolution equation for y; is

dy yt

K—@m-1 (L.1)
— =k -mn-1 —. .
dr ly |2

— .. g 1 d y 1
Here k£ denotes the curvature vector of y, it is defined by k = UETATAL and y
denotes the normal projection of the position vector y. This flow is known as the

equivariant flow.

Definition 1.1 Let C be the set of antipodal invariant figure eight curves y : C! — C
with only one self-intersection which is transversal and located at the origin.

Definition 1.2 Let ©, be the antipodal invariant region in R? bounded by two lines
through the origin with angle between them equal to « (Fig. 1).

Theorem 1.3 Let y be a curve inC satisfying at least one of the following assumptions:

(i) {y} N CY(R) has at most 4 points for every R > 0;

(i) {y} C Qa.
If {vi}iel0,1) is the maximal equivariant flow of y, then yr = {0}. Moreover, the
tangent flow at the origin is a line with multiplicity two.
Remark 1.4 The assumptions in Theorem 1.3 are sharp. In Sect. 3 we construct for
every a > 7 acurve y € Csuch that {y} C Q, that develops a non-trivial singularity
at the origin along the equivariant flow (1.1) when n = 2.

The proof of Theorem 1.3 follows closely the ideas in [8,9] where it is shown that
singularities for the mean curvature flow of monotone Lagrangian submanifolds in R*
are modeled on area minimizing cones.
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2 Preliminaries

Let L be a Lagrangian submanifold in C". This implies that w|;= 0, where w =

>, @dzi A dz; is the standard symplectic form on C". Let © be the complex

valued n-form given by
Q=dz; A...Adz,.
A standard computation implies that
QL= e"%voly. .1

The multivalued function 6 is called the Lagrangian angle of L. If 6 is a single
valued function, then L is called zero-Maslov class. If 0 = 6, then L is calibrated by
Re(e~'% Q) and hence area-minimizing. In this case, L is called special Lagrangian.
More generally, the Lagrangian angle and the geometry of L are related through

7—1) = J(V0). Recall also the Liouville one form given by
n
A= indyi — yidx;.
i=1

One can check that dA = w. In particular, [A] € H{(L). When [A] = c[df] for some
c € R, then L is said to be a monotone Lagrangian.

Let L be a equivariant Lagrangian submanifold in R?". Hence, there exists a regular
curve y in R? such that

L:{(ycl,...,ycn)eRZ",ZG?:L} (2.2)

i=1

After choosing a parametrization of y we have

) }// y n—1
Qr:=dzi A - Adz,| = eIQVO]L = . (—) volz, (2.3)

L ly'l \lyl

where z - w denotes the standard multiplication of complex numbers; here we consider
y as complex valued function. The Lagrangian angle relates to the geometry of L.
If L; is the mean curvature flow starting at L, then L, shares the same rotational

symmetries of L, i.e., L; = {y;Gy,...,Gn) : G = (Gy,...,Gy) € (C”_l}.
Moreover,
dy — yt
— =k -(n-1)"—. 2.4
- (=D 2.4)

€L
Although the term Kﬁ is not well defined at the origin the quantity has its meaning
even when a curve goes through the origin as we can see below.
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Lemma2.1 Let y : [—a, a]l — R? a smooth regular curve such that y (0) = 0. Then

J_

m |2(s) 0.

Proof Let us write the left hand side as

L()_L<y y/>_y_’:i<—y—sy/(0) i)/_/>l,)/_/
ly|? 2\ e T e sz Ty 1y

= y/(0) and applying the L’Hopital’s rule twice, we obtain

1 ’
Y 11 < "0). i Y (0) > y'(0)  1-

lim — = — = — k (0).
My = 2o\ Qo) o T2 O

m}

Proposition 2.2 (Neves [10]) Let y;; : [—a,a] — R2i=12and0 <t < T,
smooth regular curves satisfying

(1) vii(=s) = —vis(s) forall0 <t < T and for every s € [—a, a].
(2) The curve y; 1, i = 1,2, solves the equation

d 1
LT -l
dz [yl

(3) v1.0Ny2.0 = {0} (non-tangential intersection) and dy1;Ny2; = Y2 Ny1 =¥
forallt.

Then for all 0 <t < T we have y1; N y2,; = {0}.

Proof 1t suffices to restrict to what happens near the origin since the proposition
follows from the standard maximum principle applied to the first time of tangential
intersection.

First notice that y; ; can be written as a graph on [—§, §] for some § > 0. Hence,
vit(s) = (s, fi.:(s)) and we define h; ;(s) = @ Let’s check that £; ;(s) is smooth:
if s # 0, then

s — 1 PN e
W' (s) = fs 5 f and h'(s) = (fs+r—f )54 (f's — f)2s
§ s
=Lyl _3f - 2.5)
s s

Since f(0) = 0and f”(0) = 0 (item (1)), we can apply L’Hopital’s rule to show that
o’ and «” in (2.5) have a limit when s — 0. Hence, h is twice differentiable.
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Finally we consider the function u,;(s) = hi; — hy;. Notice that ugp > 0 by
assumption (3) and u; (s) = u;(—s). Recall thatin the case of a graph y (s) = (s, f(s))
we have

/’ -1 "
Vo=, v D = —f—3v
V14 (f1? (14 ("2
Besides,
Py S N
> s2+ 21+ (F)2
Therefore, the equatlon k —(n— )lzllz implies
df 1" Y
Ezmﬁ-(n—l) arctan; .
Standard computations imply that i; ; = f’ satisfies
i _ },lg/” 4 2 +(n— 1)@ L
dt L+ (shj, + hi)? s 14+ (shi, + hi)? s 14 hl?’l

Now we proceed to find the equation for d[’ Using that ™ is also smooth, one
can checked that

/
% = C2u!! + Cou, + Cauy + C22
where each Cy is a smooth and bounded function. By item (3), the function u,—¢ is
strictly positive since y; and y» have a non-tangential intersection at the origin.
Suppose T is the first time where u; has a zero say at so. Hence, so is a minimum
point as ur, > 0. We consider the function v; = ue= €'+ e(r — Ty) where C is very
large and ¢ is a very small positive number. So at (sg, 71) we have

ou (SO) —CT]

dU[ d CTy
0> —(s0,T1) = —(So,Tl)e +e>e+Ci——
dt S0

We used in the equality part that ur, (sy = 0 and that u’Tl (so) = 0 and u’T’l (s)y < Osince
5o is a minimum point for uz,. If 5o # O then the second term in the right hand side
is zero and we get a contradiction. If 5o = 0 then that term is just u/ (0)e~T! by the
L’Hopital’s rule, hence, non-negative and we obtain a contradiction again. O

Corollary 2.3 The set C is preserved by the equivariant flow. Moreover, if y € C
satisfies item (i) (respectively, item (ii)) in Theorem 1.3, then so does y;.
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Proof The symmetries of the curve y are preserved by the equivariant flow, hence y;
is also antipodal invariant. Proposition 2.2 guarantees that the only self intersection
of y, is at the origin and it is transversal for every ¢. Hence, C is preserved by the
equivariant flow. Moreover, Proposition 2.2 also implies that y;(s) can only intersect

-
the line se'? cr, with T < B < m— T, only at the origin for every ¢ € [0, T).
Therefore, if {y} C Qz, then {y;} C Q=z also. Finally, by Theorem 1.3 in [2], the
number of intersections between {y} and C'(R) is non-increasing along the flow. O

Lemma24 If y € Q%, then for every t > 0 there exists 8; > 0 such that {y,;} C
Qz_g,.

Proof Since y € C is antipodal invariant and passes through the origin, one can check

1
that limg_ ¢ Kﬁ(s) = 0, where y(s) is a local parametrization of y with y(s) =

—y(—s). By Lemma 2.1, we have that ?(Zo) = ?(—Zo) = 0, where y(z09) =
y (—z0) = 0. Consequently, ﬁ(zg) = ﬁ(—zg) = 0. This implies that zgp and —z are
critical points of the Lagrangian angle 6y . It can be check easily that they correspond
to local minimum and local maximum critical points. The strong maximum principle
applied to %9 = A0 implies that 6;(z9) < 6(zo) and 6;(—z¢) > 6(—z20)- O

Let us use Area(y) to denote the area enclosed by y € C. By the Stokes’ theorem
we have that Area(y;) = —% f " (y1, v)d,,, where v is the unit outward normal vector
of y.

Lemma 2.5
(T —t) < Area(y;) — Area(yr) < 3n(T —1t).
Proof Let y,(u) be a parametrization of y;. Using that v = iV—’, we have that

v/’
Area(y,) = —% fyt(y,, i y/)du. Hence,

1
—5/ ((3z% Py 4+ (y.i (3t)/)/)>du
Vi

1

—5/ ((Bz% iy + (v idy) — (i azy))du
V43

Area’ (1)

1
—/ @y, iy/))du — 3 (e, idy) du = — [ (3y,v)dy:.
Yi Vi Vi

The last equality follows from the Fundamental Theorem of Calculus. Hence,

L

’ - Z —
Area (t):—/ <k —(n—l)?,v>dy, :—/(k,v}dy,.
Vi Vi

|z

2z
[EH
and the fact that z = 0 is not in the interior of the region enclosed by y;. Combining

The last equality follows from the Divergence Theorem applied to vector field X =
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the Gauss—Bonnet theorem and the fact that the exterior angle «; of y; at the origin is
in [—7, r] we obtain

— —
/.(k,—v)dyr+a,=2n:>n5/(k,—v)d,,,5371.
Vi Yt

Therefore, —37 < Area’(y;) < —m. The Lemma now follows if we integrate this
quantity from 7 to 7. O

3 Proof of the Theorem

Let L; be a solution of the mean curvature flow starting on a k-dimensional submanifold
L in R™. Consider the backward heat kernel

1 7|x—x0\2
Py 7 (5, 1) = ————— e T
@An(T —1))2

The following formula is known as the Huisken’s monotonicity formula:
d
a /L f t q)xo, Tde

_ [ (4 (@ —xo)*
AR

2
k
ST f,)cbxo,TdH : 3.1)

where d’H¥ denotes the k-dimensional Hausdorff measure.
Recall that if {L,},¢[0,7) is the Lagrangian mean curvature flow starting at L, then

LY =0 (LTJF(:;Z —xo) )

for s € [~T A2, 0), also satisfies the Lagrangian mean curvature flow and is referred
as the tangent flow at xg. The following is a restatement of Theorem 1.3:

Theorem 3.1 Let y be a curve in C which satisfies at least one of the following assump-
tions

(i) {y} N CYR) has at most 4 points for every R > 0;
(i) {r) € Q.

If {vt}iet0,1) is the maximal equivariant flow of y, then yr = {0}. Moreover, the
tangent flow at the origin is a line with multiplicity two.

Proof Let us prove first that if z = 0 is a singular point, then y7 = {0}. Arguing by
contradiction, we assume that z = 0 is a singular point for {y;}o</<r and yr # {0}.
Given o; — oo, let y; = ojyr .

i
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Lemma 3.2 Let a and b real numbers such that a < b < 0. Then

b —
'lim/ / <| [ |2+|)/J‘|2> dH'ds =0,
i=ooJa JyinA(k.n,0)

where A(%, n, 0) is an annulus centered at z = 0 with inner and outer radius n and

%, respectively.

Proof Let Li_ be the immersed Lagrangian sphere in C> obtained via Ll =
(¥{G1,...,y{Gp). Itis proved in Lemma 5.4 in [8] that

b
lim / / (|H|2 + |xl|2> dH" (x)ds = 0, (3.2)
120 Jg JLINBR(0)

where H is the mean curvature vector of L’Y For the convenience of the reader let us
recall the proof of this fact. It is a standard computation to check that the Lagrangian
angle 6 obeys the following evolution equation %Ol.z’x = AQI.Z’X — 2|H|?. Applying
3.1) with f; = Gi%s and f; = 1, we obtain

d 2 n 2 XL ? 2 n
as b ®dH" = g —2/HI" = |H = —| 6, |]®dH (3.3)
d | XL
g KI)dH”:/_—‘H—X S an", (3.4)
L Lt

respectively. Integrating (3.3) from a to b gives

b
2 lim / |H> ®dH"ds < lim | 6, &dH" — lim [ 67, &dH" =0.
a L»"r ’ ’

i—00 i—00 LZ i—oo JIi
a

The last inequality follows from the scale invariance and monotonicity of | L, 6% dAH".
Similarly, we obtain

b
lim//
i—o0 J, i

It follows from the triangular inequality that

b
lim//
i—o0 J, i

2
ddH"ds = lim [ ®dH?>— lim [ ®dH" =0.

i—>00 LZ i—oo Jri
a

Pl
H-—
2s

2

pu i
—| ®dH"ds =0.
2s
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This completes the proof of (3.2). As |H[? = [k — (n — 1)ﬁ|2 and |x 1> = |y 1%,
we obtain for each n > 0 that

b —
lim / (| K>+ Iyle)dHlds =0.
i—00 J, yiﬁA(%,n,O)

s

O From previous lemma it follows that for almost every s € (a, b) that

%
lim (| k| + |yl|2)dH1 =0.
=00 JyiNA(;.n.0)

L ; . 1Y
This implies that y; converges to a union of lines in C,,’ (R? — {0}). In fact, each
connected component of y! inside Bg(0) — {0} converge to a line segment with

1
multiplicity one since the convergence is in C lluf (R? — {0})).

Assume first that y satisfies item i), then by Proposition 2.2 and Corollary 2.3,
the curve ysi in Bgr(0) — {0} has two embedded connected components. Hence, each
converges to a line segment with multiplicity one in Bg(0) — {0}. Equivalently, in a
neighborhood of the origin L; is a union of two smooth embedded discs intersecting
transversally at a interior point. Hence, each piece of Lé converges weakly to a plane
with multiplicity one. Since yr # {0}, we can talk about the localized Gaussian
density of each connected component of L, N B, (0) computed at (0, 7)) which will be
very close to one. Applying White’s Local Regularity Theorem, see localized version
Theorem 5.6 in [4]), to each component of L; N B, (0), we conclude that the origin is
not a singularity of {L;};¢[0,), contradiction.

To handle other connected components of in in B4r(0) we study the Lagrangian
angle 6. Let 8 be a primitive of A,. It is proved in [9] that VB = J(x1) and % B =
AB — 26. This implies that the function u = B + 2(t — 1y)6 satisfies %f(u) =
Af@) — f"W)xt +2(t — t9)H|*, where f € C5°(R). Plugging the function f (u)
in (3.1), we obtain

d : L
_/ f(ug)cpz_/ H_
ds Jpi Li 2s

Integrating this formula from —1 to sg and using (3.2) , we obtain

2 2

Fly®d + fwl)|xt 4+ 2(s — so)H| @.

lim F(BL)® = lim FBL, —2(1 + 50)6" ) @.

i=00 JLi NB4g (0) =00 JLL |NB4r(0)

Let yi be a connected component of yf ' in B4 (0) that intersects Bg(0) and does not
passes through the origin. Since |V f(B;)| is bounded, there exists a constant by, such
that lim; o0 f(Bg,) = f(bsy). Similarly, lim;_ o0 f(BL)) = f(b_1). As before, y;

—
converges in C 13 (R? — {0}) to lines l;; and l;; in the direction of the vectors v; .
Moreover, : ’
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2
lim f(ﬂ_ —2(1+ So)@l D dH! = / fb—1 —2(1 + 50)0;)d dH'.
I3

i—00

Note that (2.3) implies that 0; converge to a constant in each connected component of
vi N(BR(0) — B, (0)). We claim that 8; = 6,. Otherwise, by choosing f with support
near by, and equal to 1 near by,, we obtain

Z / ddH' = / o dH!,
7 NBR(0) —>ﬂBR(0)

contradiction.

Let us assume that y satisfies item (ii). In this case, )/Si M B4r(0) has a connected
component yi intersecting Byr which converges in C l'%(BR (0) — {0}) to the lines
ya and yp with multiplicity one. Moreover, 6! converge to a constant 6y on each
connected component of yi N (Br(0) — B, (O)) This 1mphes that y4 = yp with the
same orientation or the angle between y4 and yp is 7. The first case cannot happen
since Iz(ﬁ‘é, CY0,r)) = 0, where (-, -) is the intersection number mod 2. The
second case cannot happen since {y;} C Q%—a, by Lemma 2.4. Hence, the origin is
not a singularity if we assume that yr # {0}.

On the other hand, no singularities away from the origin occur. Indeed, in [11]
Oaks complement the work of Angenent on singularities of equations of type %y, =

V(?, k)]_\/> by showing that near the singularity the curve y; must lose a self inter-
section. Since Proposition 2.2 asserts the only self intersection of y; is at the origin
we are done.

Now let us prove that the tangent flow at the singular point is a line through the
origin with multiplicity 2. For this we choose a sequence of scale factors A; — 400
and we set y! = )LinJr% defined in [—T27, 0).

As discussed before 7/A converges in C1 : (R? — {0}) to a union of two lines through
the origin for almost every s fixed. Let us denote them by /4 and /p. As Area(y;) is
going to zero there exist a unique #; € [0, T') for which Area(y;,) = ;—2 This implies

that Area(yi-) = 1, where s’i is given by s{ = —A.Z(T —t;).Sincen (T —1t) < A(t) <
1
3
then lim supl_)ooArea(yS*) < 1. Therefore, ys must converge to 2y4 + 2)/3 or
YA = yp since ysi* is becoming non-compact enclosing bounded area.

The first case does not happen as it violates the assumptions (i) and (ii) as discussed
above. O

37(T —1) by Lemma 2.5, we obtain that s1 € [——, ——] In particular, if s*

The next example constructs equivariant Lagrangian spheres in R* that do not
collapse to a point along the mean curvature flow.

Example 3.3 Let y be the curve y*(u) = sin(%)_%(cos(u), sin(u)) with u € R.
The existence of a solution of the equivariant flow starting at y“ is given in [8], let
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Fig.2 Curve g8

us denote it by {y;};¢[0,7,)- It is shown in [8] that when o > %, then 7, < oo and

y; develops a singularity at the origin. When « € (0, ), then y is contained in 2y
and it is asymptotic to its boundary. Consider the region U, in €2, that is bounded by
{y*}U{—y*}. One can check that U, has infinite area. Choose 8 € C contained in U,
whose area enclosed, Area(), is greater than 37 T,. See Fig. 2 for the case o = 7.
Let {B:}:¢[0,1) be the solution of the equivariant flow starting at 8. By the avoidance
principle, §; and y; do not intersect. Hence, T < Ty. On the other hand, by Lemma
2.5 we have that Area(87) > Area(8) —3nT > 3n(Ty — T) > 0. Therefore, a non
trivial singularity must occur at the origin.

Let us show that any Type Il dilation of y; near the singularity converges to an eternal
solution of curve shortening flow. As in Chapter 4 in [7], there exist for each k > 0,
points zx € y; (CYH, 5 e[0, T— %], and scaling A > 0 such that ,Bf = A (}/T+L2 —Zk)

M

satisfies
d , - (BE + Mzt
—pBr =k —(n—-1H=—""
g = ) D
where s € (ag, by). Moreover, limy_, o ay = —00, limg_ oo by = 00, and 0 <

limg— 00 SUP (g, 1) <! | K (B5)| < €. 1tis proved that B¥ converge smoothly as k —
oo to a non-compact flow (B;)ser. We claim that limg—, oo Axzx = oo. If not, then
we could replace the points zx by z = 0 and obtain the same conclusion. This is
impossible since central dilations converge to lines. Therefore, as k — oo,

d —
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