
1

Multi-UAV Deployment for Throughput
Maximization in the Presence of Co-Channel

Interference
Iman Valiulahi, Christos Masouros, Senior Member, IEEE

Abstract—Over the past few years, there has been a growing
interest in using Unmanned Aerial Vehicles (UAVs) for high-
rate wireless communication systems due to their highly flexible
deployment and maneuverability. The aim of this paper is
to propose a three dimensional (3D) multi-UAV deployment
approach to provide quality of service (QoS) requirements for
different types of user distributions in the presence of co-channel
interference by maximizing the minimum achievable system
throughput for all of the ground users. The proposed approach
is divided into two separate algorithms. In the first algorithm,
by using the mean-shift technique and prior knowledge of users’
positions provided by Global Positioning System (GPS), it has
been shown that one can simultaneously find xy coordinates of
UAVs where are associated with the maximum of users’ density
and schedule users to UAVs. Once the xy-Cartesian coordinates
of UAVs are determined, UAVs altitudes and transmit powers
are separately optimized. Since these problems are non-convex
optimizations, the successive convex optimization technique has
been applied to approximate their non-convex constraints. In
the second algorithm, the block coordinate descent technique
is leveraged to jointly optimize UAVs altitudes and transmit
powers by tightening the bounds obtained for approximations.
It is then proven that the suggested algorithm is guaranteed to
converge. The computational complexity of the proposed place-
ment approach is derived. Numerical experiments are carried
out to evaluate the performance of our technique and show its
superiority to conventional benchmarks.

Index Terms—3D deployment, unmanned aerial vehicles,
mean-shift technique, altitude and transmit power optimizations.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have recently attracted in-
terest as a rapid solution for providing communication services
to ground users [1], [2]. In practice, it is not cost-effective
or even possible to deploy terrestrial base stations (BSs)
in temporary hotspots or disaster areas. On the other hand,
due to the highly flexible deployment and maneuverability
of UAVs, they can be employed in an efficient manner to
serve as aerial BSs [3]–[15]. Moreover, the communication
link between users and UAVs has typically high probabilities
of line-of-sight (LoS) air-to-ground (A2G) channels, which
can mitigate signal blockage and shadowing [16]. In addition,
UAVs can be used in internet of things (IoT) where the goal
is to make connections among IoT devices that are typically
battery-limited sensors and monitors [17]. The limited energy
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constraints of the devices make long-distance communication
services impossible. UAVs, however, can fly toward the IoT
devices and collect their data and transmit them to other
devices which might be located at far ranges [18]. Also, in
the sustainable rural agriculture [19], there has been a growing
interest in the potential of IoT to support poverty alleviation
in rural areas without terrestrial BSs. Additionally, research
is also being conducted on UAV based traffic monitoring
and several techniques proposed to evaluate what is the most
efficient way to transmit and analyze traffic data acquired from
UAVs [20]. UAVs are superior to the conventional technologies
such as video and radar due to their mobility and because the
implementation cost of the operation is considerably lower
than manned systems.

Although there exist many benefits with UAVs for com-
munication purposes, deploying UAVs implicates a number of
challenges. More precisely, in the existing cellular systems, the
A2G link is only a function of users’ positions as the locations
of the terrestrial BSs are fixed. In the UAV-based communi-
cation systems, however, the path loss not only depends on
users’ positions but also on the UAVs’ locations. Furthermore,
in the multi-UAV case, handling the effects of co-channel
interference on system throughput is more complicated than
the conventional terrestrial BSs because UAVs can fly in
arbitrary directions.

Generally speaking, there are two different lines of research
focusing on UAV-based wireless communication platforms [3].
In the first scenario, a wireless communication transmitter is
carried by UAVs that can fly between their served ground
users [4], [5]. Trajectories of UAVs are needed to be designed
in this case. In [6] and [7], authors investigated a single
UAV and multi-UAV trajectory optimizations, respectively.
Moreover, in [8], authors studied a single solar-powered UAV
trajectory design to jointly adapt transmit power and allocate
frequency subcarriers to ground users. In the second area of
research, UAVs are considered as quasi-static BSs and the aim
is to find the fixed locations of UAVs to provide wireless
services to ground users [9]–[12]. More precisely, the 3D
locations of UAVs are needed to be optimized for providing
QoS requirements.

A. Related Works

In [11], a mathematical analysis is provided to evaluate the
effect of the optimal altitude of a single UAV on the maximum
coverage region. Using the minimum transmit power, in [13],
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a scheme is proposed to investigate how the 3D position of
a UAV affects the maximum number of users served by the
UAV. In [14], it is shown that when users require different
QoSs, a multiple circle placement technique can be used to
deploy a single UAV to maximize the number of covered
users. In [21], a joint design of the 3D deployment of a single
solar-powered UAV and the power and subcarrier allocation for
maximizing the sum of data throughput is provided. In [22],
a heuristic algorithm based on particle swarm optimization
is suggested to find the minimum required number of UAVs
to serve ground users in the urban environment. In [12],
authors proposed a new polynomial-time algorithm for multi-
UAV placement that minimizes the number of UAVs required
to provide communication services. In reference [10], an
efficient approach based on circle packing theorem (CPT) is
developed to deploy multi-UAV in the 3D case. Reference
[15] made a step further and proposed an energy efficient
simultaneous deployment method with variable radius (SD-
KMVR) to maximize user coverage and power efficiency.

In this work, we assume that there exist no terrestrial BSs
and focus only on multi-UAV placement in a target area.
This can happen, for example, in the case of a complex
terrain where irregular topographies such as mountains or
coastlines make impossible to deploy conventional terrestrial
infrastructures. Following works [10] and [12], we suppose
that prior information regarding users’ positions is available
by the high-accuracy global positioning system (GPS). We
consider that all UAVs share the same frequency band for
communicating with ground users. Each UAV can serve its
scheduled users by a different cyclical time-division multiple
access (TDMA) scheme regarding the number of its scheduled
users.

In the next subsection, we mention the main contributions of
this paper and briefly compare the results with the benchmarks.

B. Main Contributions of This Paper

• We propose a new 3D multi-UAV deployment based on
convex optimization where we take co-channel interfer-
ence into account. We show that the suggested optimiza-
tion problem contains non-linear and integer constraints.
To simultaneously take advantage of GPS information
and get rid of the non-linear and integer constraints, we
propose an algorithm based on the mean-shift technique
to find xy-Cartesian coordinate of UAVs and schedule
users to UAVs.

• When users are scheduled and xy locations of UAVs are
calculated, we separately optimize UAVs altitudes.

• Once the placement of UAVs is found, we optimize UAVs
transmit powers in a separate block.

• To jointly optimize UAVs altitudes and transmit powers,
an iterative algorithm based on the block coordinate
descent [23] is developed.

• The overall computational complexity of the proposed
placement approach is derived.

• Finally, the simulation results are done to investigate the
performance of the proposed technique and reveal that our
method outperforms the conventional benchmarks CPT
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Fig. 1: System model and the target area.

and SD-KMVR in terms of system sum throughput and
consumed power.

To highlight the results of this paper, we would like to
summarize the following points. We maximize the minimum
achievable system throughput for all ground users. Thus, the
proposed optimization can obtain 100% coverage probability
and provide fairness among ground users in terms of the
system throughout which are significant achievements com-
pared to the conventional methods. Moreover, three novel
deploying strategies are inside of our proposed 3D multi-
UAVs deployment approach that outperform the benchmarks.
First, one can place UAVs in the xy locations where are
associated with the maximum user’s density via Algorithm
1. Compared to the CPT, this approach can automatically
determine the number of UAVs required to serve ground users
and allocate UAVs regarding the user’s distribution. This leads
to a significant saving in the available sources in practice. In
the second deployment approach, one can deploy UAVs in
the xy-Cartesian coordinates obtained from Algorithm 1 and
optimize UAV’s transmit powers. This strategy outperforms
the conventional approaches, SD-KMVR and CPT. In the
third approach, we show that one can jointly optimize the
UAV’s altitude and transmit powers in order to mitigate the
effects of co-channel interference by allowing UAVs to work
in different altitudes. The performance obtained in terms of
system throughput for this approach is better than all other
techniques.

The paper is organized as follows: the system model and
achievable system throughput are given in Section II. In
Section III, the optimization problem for multi-UAV placement
is formulated. In Section IV, an algorithm based on the
mean-shift technique for deploying multi-UAV in xy plane
is proposed. In Section V, UAVs altitudes optimization and a
novel technique to implement it are presented. Section VI is
devoted to UAVs transmit powers optimization. In Section VII,
an iterative algorithm to jointly optimize UAVs altitudes and
transmit powers is developed. The overall computational cost
of the proposed approach is derived in Section VIII. Numerical
experiments are carried out in Section IX. Finally, the paper
is concluded in Section X.

Throughout the paper, scalars are denoted by lowercase
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letters, vectors by lowercase boldface letters, and matrices by
uppercase boldface letters. The k-th element of the vector x
is shown by xk. Function ‖ · ‖2 is reserved for `2 norm. The
operators (·)T and E{·} represent the transpose of a vector
and the expectation of a random process. We use the symbol !
to show the factorial product, i.e., n! = (n)(n− 1) · · · (2)(1).

II. SYSTEM MODEL

As shown in Fig. 1, we consider a wireless communication
square area with side length s where U > 1 low-mobility
users are needed to be served by M >= 1 UAVs. Assume
that U = {1, · · · , U} and M = {1, · · · ,M} are user and
UAV sets, respectively. Let uu = [xu, yu]T ∈ R2×1 represent
the horizontal coordinate of u-th ground user where u ∈ U . We
use mm = [xm, ym, zm]T ∈ R3×1 to denote the 3D Cartesian
coordinate of m-th UAV where m ∈ M. Without loss of
generality, let us assume m̄m = [xm, ym]T where m̄m is the
horizontal coordinate of m-th UAV and z = [z1, · · · , zM ]T

where hmin ≤ zm ≤ hmax in which hmin and hmax are used
to show the minimum and maximum allowed altitude of m-th
UAV, respectively. We also suppose that the down-link transmit
power of m-th UAV satisfies pmin ≤ pm ≤ pmax, where pmin

and pmax are associated with the minimum and maximum
transmit power, respectively. To avoid collision among UAVs,
the horizontal distance between m-th and j-th UAVs is subject
to the following constraint

‖m̄m − m̄j‖2 ≥ dmin, m and j ∈M, (1)

where dmin shows the minimum allowed distance among
UAVs.

It is worth mentioning that this work is not involved with
a trajectory design. We indeed investigate one snapshot of
time and its associated users’ positions. To compensate users’
movements, one is able to regularly repeat the proposed
approach with updated users’ information.

A. Achievable system throughput in the presence of co-channel
interference

In practice, the ground users receive three different kinds of
signals from UAVs including LoS, non-line-of-sight (NLoS),
and multiple reflected signals [24], [11]. These signals oc-
cur with specific probabilities in different environments. As
discussed in [25], the probability of multiple reflected signal
which causes multi-path fading is significantly lower than two
other signals. Thus, the effect of this signal at the receivers is
typically ignored. Here, in line with the literature [7], [8], we
assume that the communication link between ground users and
UAVs is dominated by the LoS signals. Under this assumption,
the channel power gain between u-th users and m-th UAV is
only a function of their Euclidean distance as below

hu,m = ρ0d
−2
u,m, (2)

where ρ0 is a constant showing the power of the channel at
the reference distance d0 = 1 m and du,m is the Euclidean
distance between u-th user and m-th UAV which can be
written as

du,m =
√
z2m + ‖uu − m̄m‖22. (3)

Hence, we have

hu,m =
ρ0

z2m + ‖uu − m̄m‖22
. (4)

As mentioned, the aim is to deploy multi-UAV, thus, each
ground user needs to be associated only by one UAV. Let
define a binary variable αu,m for u-th user and m-th UAV. If
u-th user is scheduled by m-th UAV, αu,m = 1, otherwise,
αu,m = 0. To satisfy these conditions, one can use the
following constraints

M∑
m=1

αu,m ≤ 1,

αu,m ∈ {0, 1}, u ∈ U , and m ∈M. (5)

However, in Section IV, we show that we can circumvent
the above linear and integer constraints using the mean-shift
technique.

Regarding the transmit power and user association, the
achievable system throughput in bits/second/Hertz (bit/s/Hz)
for u-th user can be formulated as below

Ru =

M∑
m=1

αu,m log2(1 + γu,m), u ∈ U , (6)

where γu,m is the signal-to-interference-plus-noise ratio
(SINR) corresponding to the u-th user and m-th UAV, which
can be expressed as

γu,m =
pmhu,m∑M

r=1,r 6=m prhu,r + σ2
, u ∈ U , and m ∈M,

(7)

where σ2 is the power of the additive white Gaussian noise
(AWGN) at u-th user. Note that due to the TDMA operation,
there is no interference from the users served by the same
UAV, and the term

∑M
r=1,r 6=m prhu,r is caused because of co-

channel interference of other UAVs at u-th user. Consequently,
Ru can be recast as below

Ru =

M∑
m=1

αu,m log2(1 +
pmhu,m∑M

r=1,r 6=m prhu,r + σ2
), (8)

for u ∈ U .
As a result of the multi-UAV placement, co-channel inter-

ference could be large enough to obstruct the communication
links between UAVs and their scheduled users. Accordingly,
specifically tailored power allocation is needed to mitigate the
effects of co-channel interference. Moreover, using the GPS,
users’ positions are known with high accuracy in advance. It
will be beneficial if one incorporates this additional informa-
tion into the placement strategy while considering co-channel
interference. In the next section, we formalize an optimization
problem that considers these features.

III. PROBLEM FORMULATION

In this section, we propose an optimization problem that
allocates communication services to all ground users and
hence achieves 100% coverage probability, while considering
all aforementioned conditions for deploying. Let first define
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Fig. 2: Fig. 2(a) demonstrates users’ positions in blue circles. Fig. 2(b) shows user classification using Algorithm 1. Colored
dots are used to denote the mean-shift centers. Voronoi diagram constructed by the mean-shift centers is drawn in blue lines.
The associated users with each center are colored by the same color as the center points. The means of scheduled users within
each convex region are shown in the colored stars.

p := [p1, · · · , pM ]T the transmit power vector, L ∈ R3×M

as the position matrix that its m-column is corresponded to
the 3D Cartesian coordinate of m-UAV, and A ∈ RU×M as
the scheduling matrix that its element is associated with αu,m.
To provide communication services for all ground users, we
maximize the minimum of the achievable system throughput
of each user subject to mentioned placement conditions as
below

max
ψc,p,A,L

ψc

s.t.

M∑
m=1

αu,m log2(1 +
pmhu,m∑M

r=1,r 6=m prhu,r + σ2
) ≥ ψc,

u ∈ U , (9a)
M∑
m=1

αu,m ≤ 1,

αu,m ∈ {0, 1}, u ∈ U and m ∈M, (9b)
pmin ≤ pm ≤ pmax, m ∈M, (9c)
hmin ≤ zm ≤ hmax, m ∈M (9d)
‖m̄m − m̄j‖2 ≥ dmin, m and j ∈M. (9e)

where ψc is an optimization constant variable. Constraint (9a)
provides a situation in which all users access the minimum
QoS requirements. On the other hand, maximizing ψc, it is
a guarantee to obtain the maximum of this minimum service.
Indeed, this is a max-min optimization. Constraint (9b) stands
for user scheduling and (9c) restricts the UAVs transmit pow-
ers. Constraint (9d) is because of the minimum and maximum
allowed altitudes. Finally, constraint (9e) ensures collision
avoidance.

Solving (9) is difficult due to non-convex constraints (9a)
and (9e) as well as integer constraints (9b). Moreover, this
is a non-convex optimization over a 3D variable L, which
is generally an obstacle to handle in the presence of co-
channel interference. The original optimization problem in (9)
is divided into four stages. More precisely, we first propose a
low complex algorithm based on the mean-shift technique to

Algorithm 1: Finding xy-Cartesian coordinates of UAVs.
1: Let us initialize U and t = 1 as the user set and

iteration step, respectively.
2: Repeat
3: Compute the mean-shift vector m(xti).
4: Move the density estimation window
xt+1
i = xti + m(xti).

5: Update t = t+ 1.
6: Until The mean-shift vector equals zero.
7: Construct the Voronoi diagram and corresponding
convex regions.

8: Compute the means of users within each convex
region.

Result: xy-Cartesian coordinates of UAVs.

obtain the xy-Cartesian coordinate of UAVs and schedule the
ground users to UAVs. Then, we separately optimize UAVs
altitudes and transmit powers in the second and third stages,
respectively. In the last stage, we develop an iterative algorithm
based on the block coordinate descent to jointly optimize
UAVs altitudes and transmit powers. In the next sections, we
present these stages to overcome the difficulties of problem
(9).

IV. STAGE 1: FINDING xy-CARTESIAN COORDINATES OF
UAVS

As discussed, problem (9) is a combination of non-convex
and integer constraints over the 3D variable. Thus, it is chal-
lenging to solve. To simplify this problem, we take advantage
of prior information regarding users’ positions to divide the
target area to M non-overlap partitions using the mean-shift
technique. This can schedule users to UAVs and get rid of
collision avoidance.

The mean-shift technique is a non-parametric approach to
find the maximum density of a function. Applications for the
mean-shift are vast from computer vision to image processing
[26]. However, to the best of our knowledge, this paper is the
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first work that uses the mean-shift technique to classify ground
users in order to deploy multi-UAV. As opposed to alternative
clustering approaches such as K-means [15], the beauty of the
mean-shift is that the number of clusters is not required to
be known in advance. Indeed, the mean-shift technique can
automatically extract the number of clusters. In our work, this
means that the number of UAVs required ro serve ground
users is determined by our prior information regarding users’
positions, which is very useful in practice.

To exploit the mean-shift technique, let us consider xi ∈ R2

for i ∈ {1, · · · , U} as an arbitrary set of users in the 2D
Euclidean space (see Fig. 2 (a)). Let us use Epanechnikov
kernel that can achieve the minimum mean integrated error
(MISE) [26] as below

K(x) =

{
2
cd

(1− ‖x‖22) if ‖x‖22 ≤ 1,

0 otherwise,
(10)

where cd is the area of the unit circle. The multivariate kernel
density estimate with λ-radius using the above kernel can be
written as below

f̂(x) =
1

Uλ2

U∑
i=1

K(
x− xi
λ

). (11)

Defining g(x) := −K ′(x), we can write the mean-shift vector
as

m(x) =

∑U
i=1 g(x−xi

λ )xi∑U
i=1 g(x−xi

λ )
− x. (12)

Let us denote the iteration index of the mean-shift technique as
t. The mean-shift technique can be summarized as computing
the mean-shift vector m(xti), moving the density estimation
window xt+1

i = xti + m(xti) until the mean-shift vector
equals zero. Assume that {yk}k=1,2,··· is the sequence of the
positions of the mean-shift procedure. By setting λ = dmin/2
and the results provided in [26], it is possible to prove that
the density sequence f̂E = {f̂(yk),K} computed at the
points {yk}k=1,2,··· using Epanechnikov kernel, K in (10),
is convergent for any data distribution. In our work, it means
that the mean-shift technique can classify users no matter how
they are distributed. Another important point is that one can
control the area around each mean-shift center by changing
dmin. This comes from the fact that λ, the radius of the
multivariate kernel, depends on dmin. Indeed, by increasing
dmin, λ increases and the number of mean-shift centers to
classify the user distribution decreases and vice versa.

Once the mean-shift centers are extracted (see colored dots
in Fig. 2 (b)), we construct the Voronoi diagram using these
points. We then build the convex hull corresponding to Voronoi
points. Users that are associated with each convex region can
be determined (colored circles in Fig. 2 (b)). We then calculate
the mean of users’ locations within each convex hull where are
associated with the maximum density of users in that convex
region (colored stars in Fig. 2 (b)). Now, we consider these
locations as the xy-Cartesian coordinate of UAVs. For ease of
notations, in the sequel, we use m̂m = [xm, ym]T as the xy
position of m-th UAV and α̂u,m as the binary user scheduling,
showing that u-th user is served by m-th UAV. The details of
the proposed algorithm are summarized in Algorithm 1.

There are three major benefits to this classification. First, we
schedule ground users to UAVs. Thus, the binary constraint in
(9b) is eliminated from the optimization in (9) as Algorithm 1
determined which users must be served by which UAV. Sec-
ond, the xy-Cartesian coordinates of UAVs that are associated
with the maximum density of users in each convex region are
calculated, thus the altitudes of UAVs are the only unknown
variables for UAVs’ positions. Third, non-convex constraint
(9e) for collision avoidance is satisfied by setting λ = dmin/2
in (11).

Therefore, by defining ψ(z,p) := minu∈U Ru as a function
of z and p, we recast problem (9) as below

max
ψ,z,p

ψ

s.t. α̂u,m log2(1 +
pmhu,m∑M

r=1,r 6=m prhu,r + σ2
) ≥ ψ, u ∈ U ,

(13a)
pmin ≤ pm ≤ pmax, m ∈M, (13b)
hmin ≤ zm ≤ hmax, m ∈M. (13c)

Note that the summation in constraint (9a) is removed because
users are scheduled to UAVs by Algorithm 1.

Despite the above simplifications, it is still hard to imple-
ment problem (13) because of non-convex constraint (13a)
respect to z and p. In Section V, we first optimize UAVs
altitudes for given transmit power p. Then, in Section VI, we
optimize transmit power for given UAVs altitudes z. Based
on the fact that these two optimizations are not convex,
we take advantage of the successive convex optimization
technique to relax them and make them convex. In Section
VII, we then propose an iterative algorithm based on the
block coordinate descent to jointly optimize UAVs altitudes
and transmit powers.

Note that Algorithm 1 can classify any user distribution,
thus, the number of ground users served by each UAV might
be different. To avoid unfairness for the users in a cluster
with large number of users, we propose TDMA schemes with
different time slots. More precisely, assuming that UAVs are
required to serve their scheduled users during the transmission
time [0, T ) after deploying and the number of users served by
each UAV is Ũm for m ∈ M. By defining t̄m := T

Ũm
for

m ∈ M as the time slot associated with each UAV, we are
able to provide fairness among the users. Indeed, this strategy
ensures that all users access to communication services during
the transmission interval.

V. STAGE 2: UAVS ALTITUDES OPTIMIZATION

Generally speaking, it is tough to simultaneously optimize z
and p in problem (13) because constraint (13a) is non-convex
respect to both of these variables. To tackle this issue, we first
try to optimize UAVs altitudes for given transmit power p. To
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do so, we recast problem (13) as below

max
ψ,z

ψ

s.t. α̂u,m log2

(
1 +

pmρ0
z2m+‖m̂m−uu‖22∑M

r=1,r 6=m
prρ0

z2r+‖m̂r−uu‖22
+ σ2

)
≥ ψ,

u ∈ U , (14a)
hmin ≤ zm ≤ hmax, m ∈M. (14b)

Note that α̂ and m̂ are obtained after applying Algorithm
1. There exists no efficient approach to solve the above
optimization problem because constraint (14a) is not convex
respect to z. To handle this situation, let us first rewrite the
logarithm in (14a) as follows

log2

(
1 +

pmρ0
z2m+‖m̂m−uu‖22∑M

r=1,r 6=m
prρ0

z2r+‖m̂r−uu‖22
+ σ2

)

= G(z)− log2

( M∑
r=1,r 6=m

prρ0
z2r + ‖m̂r − uu‖22

+ σ2

)
,

(15)

where

G(z) := log2

( M∑
r=1

prρ0
z2r + ‖m̂r − uu‖22

+ σ2

)
,

for any u ∈ U .
It is worth noting that equation (15) is a difference of two

convex functions respect to z. Thus, it is still non-convex.
Regarding the fact that there exists a globally lower bound
on an arbitrary convex function, f(t), at an arbitrary point, t̃,
using its first-order Taylor expansion as below [27]

f(t) ≥ f(t̃) +∇tf(t̃)T (t− t̃), (16)

the lower bound on G(z) at the local points z̃ =
[z̃21 , · · · , z̃2M ]T is given by

log2

( M∑
r=1

prρ0
z2r + ‖m̂r − uu‖22

+ σ2

)

≥ log2

( M∑
r=1

prρ0
z̃2r + ‖m̂r − uu‖22

+ σ2

)

+

M∑
r=1

wz̃(u, r)(z2r − z̃2r ) := Ḡ(z), (17)

where

wz̃(u, r) :=
− prρ0

(z̃2r+‖m̂r−uu‖22)2 ln 2∑M
l=1

plρ0
z̃2l+‖m̂l−uu‖22

+ σ2
. (18)

Note that the derivative is taken respect to z2. By defining
variables vm := z2m for m ∈M in (15) and the above bound,
problem (14) can be recast as

max
ψz,z,v

ψz

s.t.

α̂u,m

(
Ḡ(z)

− log2

( M∑
r=1,r 6=m

prρ0
vr + ‖m̂r − uu‖22

+ σ2

))
≥ ψz, u ∈ U ,

(19a)

vr ≤ z2r ∀u, r 6= m, (19b)
hmin ≤ zm ≤ hmax, m ∈M, (19c)

where ψz := ψz(z,p). Without loss of optimality of this
problem, it can be verified that all constraints in (19b) hold
with equality, otherwise we can always increase v without
decreasing the objective value. Moreover, with respect to the
fact that the set generated by constraint (19b) is the super-
level set of a convex function, it is a non-convex set [27]. To
handle this situation, we again leverage the first-order Taylor
expansion technique for z2 at the local point z̃ as below

z2 ≥ z̃2 + 2z̃(z − z̃). (20)

Then, we have

max
ψz,z,v

ψz

s.t.

α̂u,m

(
Ḡ(z)

− log2

( M∑
r=1,r 6=m

prρ0
vr + ‖m̂r − uu‖22

+ σ2

))
≥ ψz, u ∈ U ,

(21a)

vr ≤ z̃2r + 2z̃r(zr − z̃r) ∀u, r 6= m, (21b)
hmin ≤ zm ≤ hmax, m ∈M. (21c)

The lower bound obtained by the first-order Taylor expansion
in (17) makes the feasible set of problem (21) serves as a
subset for the feasible set of problem (14). Thus, the optimal
objective value in problem (21) is always less than the optimal
objective value in problem (14).

A. UAVs Altitudes Implementation

One is not able to implement problem (21) by the off-the-
shelf convex solvers in the multi-UAV case though its con-
straints are convex. In the following, we present an equivalent
convex problem using a combination of exponential functions,
which can be implemented by convex solvers. More precisely,
the implementation issue of problem (21) is that variable v is
needed to be optimized inside of the logarithm. The simple
case log2( 1

x + σ2) can not indeed be implemented by the



7

available CVX functions 1 as a convex solver. In the 2 UAVs
system, however, one can use the following trick

log2

( 1

x
+ σ2

)
= log2

(1 + σ2x

x

)
= − log2

( x

1 + σ2x

)
= − log2

(
1

σ2

(σ2x+ 1− 1

1 + σ2x

))
= − log2

(
1

σ2

(
1− 1

1 + σ2x

))
, (22)

where the argument of the logarithm can be implemented by a
concave function. But, this technique can not be applied for the
multi-UAV scenario because of the summation inside of the
logarithm in (21a). Therefore, we use the following technique
based on a combination of exponential functions to convert
problem (21) to an implementable convex optimization. Due
to the fact that the logarithm is an increasing function, the
following constraints

log2(
1

x1
+ · · ·+ 1

xn
) ≤ t, xi > 0

can be replaced by

log2(ey1 + · · ·+ eyn) ≤ t,
xi ≥ e−yi , i ∈ {1, · · · , n}. (23)

Then, problem (21) can be given by

max
ψz,z,v,y

ψz

s.t.

α̂u,m

(
G(z)

− log2

( ∑
r=1,r 6=m

eyr+ln(prρ0) + σ2

))
≥ ψz, u ∈ U

(24a)

vr + ‖m̂r − ur‖22 + σ2 ≥ e−yr , u ∈ U , r 6= m, (24b)

vr ≤ z̃2r + 2z̃r(zr − z̃r) u ∈ U , r 6= m, (24c)
hmin ≤ zm ≤ hmax, m ∈M, (24d)

where all constraints in (24) are convex as well as imple-
mentable by off-the-shelf convex solvers such as CVX.

Note that the proposed approach paves the way for imple-
menting not only multi-UAV deployment optimization but also
the multi-UAV trajectory optimization where the 3D positions
of UAVs are needed to be optimized in each time slot. Thus,
one is able to use the presented implementation technique for
this case.

1 As discussed in CVX guide [28], the argument of a logarithm function
must be a concave function, however, inv pos(x) to implement 1

x
returns

a positive convex function. Then, log(σ2 + inv pos(x))/ log(2) for imple-
menting log2(

1
x
+ σ2) leads an error in CVX. One can see a discussion

regarding this by CVX developers on http://ask.cvxr.com/t/minimize-log-1-1-
x-where-0-x-inf/4039.

VI. STAGE 3: UAVS POWERS (UP) OPTIMIZATION

As mentioned, the simultaneous optimization of two vari-
ables p and z is challenging. Therefore, in this section for
given z, we optimize the transmit power vector p. Let consider
the following optimization problem

max
ψ,p

ψ

s.t. α̂u,m log2(1 +
pmhu,m∑M

r=1,r 6=m prhu,r + σ2
) ≥ ψ, u ∈ U ,

(25a)
pmin ≤ pm ≤ pmax, m ∈M. (25b)

The problem is not convex because of the non-convex con-
straint (25a) respect to p. To leverage the successive convex
optimization technique, let us use the same approach with the
previous section by writing the logarithm function in (25a) for
u-th user and m-th UAV as below

log2

(
1 +

pmhu,m∑M
r=1,r 6=m prhu,r + σ2

)

= log2

(
M∑
r=1

prhu,r + σ2

)
−Q(p), (26)

where

Q(p) := log2

(
M∑

r=1,r 6=m

prhu,r + σ2

)
. (27)

Equation (26) is a difference of two convex functions, hence
non-convex. By using (16), an upper bound on Q(p) at the
local point p̃ = [p̃1, · · · , p̃M ]T for u-th user is given by

log2

(
M∑

r=1,r 6=m

prhu,r + σ2

)

≤ log2

(
M∑

r=1,r 6=m

p̃rhu,r + σ2

)

+

M∑
r=1,r 6=m

wmp (u, r)(pr − p̃r) := Q̄(p), (28)

where

wmp (u, r) :=

prhu,r
ln(2)∑M

l=1,l 6=m plhu,l + σ2
. (29)

Consequently, we can rewrite problem (25) as

max
ψp,p

ψp

s.t.

α̂u,m

(
log2

( M∑
r=1

prhu,r + σ2

)
− Q̄(p)

)
≥ ψp, u ∈ U ,

(30a)
pmin ≤ pm ≤ pmax, m ∈M, (30b)

where ψp := ψp(z,p) and constraint (30a) is a combination
of linear and convex constraints respect to p. Thus, it is a
convex problem, which can be efficiently solved by CVX. In

http://ask.cvxr.com/t/minimize-log-1-1-x-where-0-x-inf/4039
http://ask.cvxr.com/t/minimize-log-1-1-x-where-0-x-inf/4039
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Algorithm 2: Successive Convex Approximation Tech-
nique for Problem (13).

1: Let us initialize p(1), z(1), and set the iteration index
t = 1 and ε� 1.

2: Repeat
3: For given p(t), solve the convex optimization problem

in (24) and store the optimal solution ẑ in zt+1,
zt+1 ← ẑ.

4: For given zt+1, solve the convex optimization
problem in (30) and store the optimal solution p̂ in
pt+1, pt+1 ← p̂.

5: Update t = t+ 1.
6: Until The increase in the objective value is less than ε.
Result: Optimal UAVs altitudes and transmit powers zt

and pt, respectively.

addition, the upper bound derived in (28) let the feasible set of
problem (30) be a subset of the feasible set of problem (25).
Accordingly, the optimal objective solution in problem (30) is
always a lower bound for its counterpart in problem (25).

VII. STAGE 4: JOINT UAVS ALTITUDES AND POWERS
(JUAP) OPTIMIZATIONS

First, using Algorithm 1, users were scheduled to UAVs and
the xy positions of UAVs were determined. The optimization
problem in (9) was then converted to problem (13). The re-
sulted problem after user scheduling was still non-convex. The
entire optimization variables, p and z, were then partitioned
into two separate blocks, UAVs altitudes and transmit powers
optimizations in problems (24) and (30), respectively. The suc-
cessive convex optimization technique was used to obtain these
problems. To tighten the derived bounds for problems (24)
and (30), an iterative algorithm based on the block coordinate
descent approach [23] is presented in this section. The details
of the proposed algorithm are summarized in Algorithm 2.
After the initializing step in Algorithm 2, problem (24) is
implemented to obtain (t + 1)-th UAVs altitudes for given
transmit power p(t), where t is the iteration step. Problem
(30) is then solved in the next step to achieve p(t+1) for given
the altitudes solution, zt+1, in the previous step. Algorithm 2
is stopped when the fractional increase in the objective value
is less than ε.

In the traditional block coordinate descent algorithm, the
optimal solution of each iteration is used for the next steps
[23]. Here, however, the approximation of the optimal solution
is obtained by the successive convex approximation technique.
Thus, the convergence guarantee of Algorithm 2 is needed to
be proved.

Theorem 1: If the objective value of problem (13) is upper
bounded by a finite value, Algorithm 2 is convergent.
The proof of Theorem 1 is given in Appendix A. Besides
Theorem 1, in Section IX, we numerically show that proposed
Algorithm 2 quickly converges.

VIII. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we evaluate the computational complexity
of the proposed deployment approach. We first analyze the

complexity of finding the xy-Cartesian coordinates of UAVs
in Algorithm 1. To compute the mean-shift vector in the third
step of Algorithm 1, U multiplications, 2U summations, one
division and one subtraction are needed, hence the computa-
tional complexity per user is O(3U + 2). In the next step, U
summations with the computational complexity O(U) should
be implemented for each user. Let us denote the average
number of iterations until convergence of the mean-shift
technique as t1. Thus, for all users O

(
t1(3U2 + U2 + 2U)

)
computations are needed until convergence. As explained in
Algorithm 1, once the mean-shift centers are determined, we
construct the Voronoi diagram with M !

2!(M−2)! = M(M−1)
2

comparisons which is the combination of 2 of M . We then
calculate the means of users in each convex region that needs
U summations and M divisions. Consequently, the overall
costs of Algorithm 1 can be approximated by

O
(
t1(4U2 + 2U) +

M(M − 1)

2
+ U +M

)
≈ O

(
t1
(
4U2

))
, (31)

for U � {M, 1} which typically satisfies in practice.
To investigate the computational complexity of Algorithm

2, note that for solving convex optimizations, CVX uses
the interior point method with Newton steps [29], thus the
implementation complexity of solving convex problems is

O
(

(E + F )1.5E2
)
,

where E and F are the numbers of variables and constraints
in the optimization problem, respectively. UAVs altitudes
optimization in (24) contains 3M + 1 variables and 3U +M

constraints, so the complexity is O
(

(3U + 4M + 1)1.5(3M +

1)2
)

. For UAVs transmit powers optimization in (30), M + 1

variables and U +M constraints are necessary to implement,
hence the complexity is O

(
(U+2M+1)1.5(M+1)2

)
. Let us

denote t2 as the average number of iteration until convergence
of Algorithm 2. The total implementation costs of Algorithm
2 can be written as

O
(
t2
(
(3U + 4M + 1)1.5(3M + 1)2

+ (U + 2M + 1)1.5(M + 1)2
))
≈ O

(
t2
(
48U1.5M2

))
,

(32)

for U � {M, 1}. Therefore, one is able to write the total com-
putational complexity of the proposed deployment approach as

O
(
t1
(
4U2

))
+O

(
t2
(
48U1.5M2

))
, (33)

which can be implemented with a moderate number of users
in practice. Also, from (33), it can be inferred that the com-
plexity of Algorithm 2 is the dominant term. The simulation
experiments in Section IX supports this.

IX. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
deployment approach by several MATLAB simulations. In
the experiments, a 2D area of 3 × 3 km2 is considered.
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Three different types of user distributions are studied. In
this paper, a spatial point process (SPP) is used to model
random user distributions. In practice, users generally follow
three kinds of distributions including homogeneous Poisson
process (HPP), inhomogeneous Poisson process (IPP), and
Poisson cluster process (PCP) [30], [31]. For HPP and IPP,
λs = 5 users/km2 and λs = 5(x2 + y2) users/km2 are set,
respectively. Moreover, for PCP, the parent points follow HPP
with the parameter λs = 1 users/km2 and the children points
are generated by

λs =
αs

2πσ2
s

exp
− 1

2σ2s
(x2+y2)

users/km2,

where αs = 0.9 and σs = 0.02. It is assumed that the mini-
mum and maximum allowed UAVs altitudes are respectively
50 and 200 m, i.e., 50 ≤ zm ≤ 200 for m ∈ M. The
channel power gain at the reference distance d0 = 1 m is
set as ρ0 = −60 dB. The minimum and maximum allowed
UAVs transmit powers are set 0.1 and 1 W, respectively, i.e.,
0.1 ≤ pm ≤ 1 for m ∈ M. The power of dense noise
is assumed to be σ2 = −110 dB. The UAVs altitudes and
transmit powers in Algorithm 2 are initialized by the minimum
and maximum allowed altitude and power, respectively, i.e.,
zm = 50 m and pm = 1 W for m ∈ M. In Algorithm 2,
the parameter ε is set as 10−4. We use the same idea of CPT
to choose dmin for different target areas. Regarding the fact
that CPT deploys UAVs in the fixed locations, the minimum
allowed distance among UAVs can be calculated for any target
areas. For example, in [10], 9 UAVs are deployed to cover the
target area 3 × 3 km2. Consequently, the minimum allowed
distance among UAVs is 1000 m.

It worth pointing out that we do not study the special case
with a single UAV. As there exists no co-channel interference,
the maximum transmit power and the minimum altitude are
optimal. The only thing is to find xy-Cartesian coordinate
of the UAV, which can be determined by the mean-shift
technique.

To evaluate the benefit of the proposed deployment ap-
proach, numerical results based on Monte Carlo simulations
are carried out and the performance of our technique is com-
pared with CPT [10] and SD-KMVR [15] as the conventional
deployment methods. Note that in CPT, we deploy UAVs in
the fixed locations with the minimum allowed altitude and
the maximum transmit power. Also, we consider two different
scenarios for our deployment approach. First, we deploy UAVs
in the xy-Cartesian coordinates obtained by Algorithm 1 with
the minimum allowed altitudes and only optimize UAVs power
(UP) by removing the third step of Algorithm 2. In the second
scenario, joint UAVs altitudes and powers (JUAP) optimization
is considered.

A. 3D Deployment

Intuitively, there exist some trade-offs in the optimal UAVs
altitudes and transmit powers in the presence of co-channel
interference. More precisely, when a UAV works with the
maximum power, although its associated users enjoy better
communication services, it produces more interference to users
served by other UAVs. Thus, the maximum transmit power
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Fig. 3: The 3D multi-UAV placement and corresponding user
scheduling.

for providing communication services might not be efficient
when the received signal at users is corrupted by co-channel
interference. In addition, flying at the higher altitudes can
decrease the effects of co-channel interference by increasing
the Euclidean distance between the UAVs and users. In order
to enhance the performance of communication services, it
is necessary to jointly optimize UAVs transmit powers and
altitudes. Moreover, with respect to the fact that we maximize
the minimum system throughout for all ground users, there
might be other situations that can happen in practice. For
example, if scheduled users to a UAV are more affected by
co-channel interference compared to other users, it might be
better that the UAV works in higher altitudes as it can produce
more interference to others. It is obvious that we are not
able to interpret all situations, but Algorithm 2 can make
a balance between UAVs altitudes and transmit powers to
mitigate the effects of co-channel interference for different
user distributions.

In Fig. 3, we generate users following PCP in the target
area. 4 parent points and their corresponding children are
plotted. The minimum allowed distance between UAVs is set
as dmin = 1000 m. Once users are scheduled by Algorithm
1, we implement Algorithm 2. The 3D deployment of UAVs
is demonstrated in Fig. 3. The optimal UAVs transmit powers
for the black, red, blue, and green UAV are 0.93, 0.78, 0.53,
0.71 W , respectively. Also, the optimal UAVs altitudes of the
black, red, blue, and green UAV are 80.85, 70.02, 51.02, 58.15
m, respectively. It is observed that the black UAV that makes
more co-channel interference than other UAVs works in the
higher altitude to reduce its co-channel interference effects.

B. System Sum Throughput

Intuitively, it can be seen that the system throughput highly
depends on user distributions. More precisely, when users
are intrinsically clustered, the proposed method extracts the
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Fig. 4: Empirical system sum throughput (bits/s/Hz) versus
the number of users for different user distributions, PCP, IPP,
HPP in the target area with s = 3000.

clustering properties and tries to deploy UAVs with the optimal
altitudes and transmit powers in places where the density of
users is high. On the other hand, when users are uniformly
distributed in the target area, the Euclidean distance between
UAVs and their scheduled users increases compared to the
clustered users. Indeed, when the user points tend to have an
uneven distribution, users enjoy better communication services
as UAVs can be deployed in the places where are generally
close to all of them. Therefore, it is expected that for the
proposed approach, the system sum throughput for PCP is
more than IPP and HPP. Since K-mean algorithm is used in
SD-KMVR [15], similar to our approach, it is able to extract
cluster properties of users. Therefore, we expect that the sys-
tem sum throughput for PCP is more than other distributions.
Conversely, it can be inferred that when UAVs are fixed in their
locations, where happens in the CPT technique, the uniformly
distributed users are more likely to be closed to UAVs. Hence,
it is not surprising to see that the system sum throughput for
HPP is more than IPP and PCP when CPT is employed to
place UAVs.

In the same number of users, it is obvious that the number
of UAVs to serve ground users for PCP is less than HPP and
IPP because our approach does not deploy UAVs in places
where users do not exist (see Fig. 5 (a)). Consequently, the
effects of co-channel interference can considerably decrease
in PCP case. Thus, we expect in the proposed approaches that
are able to extract the clustering features of users, the system
sum throughput for PCP is more than HPP and IPP. Another
important point is that the proposed JUAP deploys UAVs
with the optimal altitudes and transmit powers to mitigate the
effects of co-channel interference. Therefore, it is expected
such an optimal deployment and resource allocation lead
to better performance in terms of system sum throughput
compared to the benchmarks, SD-KMVR and CPT.

The above effects are illustrated in Fig. 4, which we
compare the empirical system sum throughput of the proposed
approach versus the number of users with the conventional
benchmarks for different types of user distributions, PCP,
IPP, HPP in the target area 3 × 3 km2. Each point of the
experiment was achieved over 50 trials. It can be observed
that the system sum throughput of all methods increases
monotonically with the number of users. Moreover, it is
obvious that the performance of the approaches is affected by
different types of distributions. Note that the performance of
the conventional approaches is always less than the proposed
deployment methods even for HPP. This is because of the
fact that the proposed approaches deploy UAVs in places
where the user’s density is high as well as exploits the
optimal values of UAV’s altitudes and transmit powers. Indeed,
the proposed deployment approach is not restricted to fixed
locations, then, it can deploy UAVs according to the change of
user distributions with the optimal UAVs altitudes and transmit
powers. As a result, the effects of co-channel interference can
be reduced significantly. Although SD-KMVR can find the
cluster properties of users, UAVs altitudes and transmit powers
are designed to maximize the coverage probabilities [15], not
to mitigate co-channel interference. Hence, the performance of
SD-KMVR is always less than our proposed approaches. Fig.
4 also demonstrates that when UAV’s altitudes and transmit
powers are jointly optimized, i.e., with the proposed JUAP,
one can achieve a gain more than 67% in the system sum
throughput compared to the benchmarks. The second approach
for deploying multi-UAVs presented in this paper, i.e., UP,
shows gains of up to 60% compared to the benchmarks as
UAVs transmit powers are optimized to mitigate co-channel
interference.

C. Number of UAVs Required and Energy Efficiency

In Fig. 5, we compare the number of UAVs required to serve
ground users and the total transmit power for the proposed
approach with the conventional benchmarks for different user
distributions. Each point of the experiment was carried out
over 50 trials. As explained in Section IV, the required number
of UAVs depends only on Algorithm 1. Regarding this in
Fig. 5 (a), we compare CPT with Algorithm 1. Note that the
required number of UAVs for Algorithm 1 and SD-KMVR is
almost the same because SD-KMVR uses the K-mean method
which is a special case of the mean-shift technique employed
in Algorithm 1 [26] (see [15, Fig. 11]).

In practice, users might gather around some specific spots
in a target area such as rural areas or sports stadiums. It is not
cost-effective to deploy UAVs in places where ground users do
not exist out of the spots. Contrary to CPT that places UAVs
in fixed locations, the proposed algorithm deploys UAVs in
the locations where the user’s density is high. These locations
are the best places in terms of the average distance of users
from UAVs. Thus, we expect that our technique reduces the
required number of UAVs to serve ground users in any user
distribution compared to CPT. To evaluate this, in Fig. 5 (a),
we plot the number of UAVs versus the length of the target
area for Algorithm 1 and CPT. This figure shows significant
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Fig. 5: The required number of UAVs and the total transmit power versus the size of the target area are plotted in Figs. 5 (a)
and (b), respectively.
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Fig. 6: The convergence behavior and computational complexity of Algorithm 1 are plotted in Figs. 6 (a) and (b), respectively.

savings in the number of UAVs with a reduction of up to
6 UAVs for the scenario evaluated compared to CPT. In
particular, in Fig. 3, one can understand that in the area
[1000, 3000] × [0, 1000] m2 where there exist no users, the
proposed approach does not allocate any UAVs to this area.
Moreover, the gap between the required number of UAVs for
Algorithm 1 and CPT significantly increases in the PCP case
when the size of the target area increases. This is also because
of the clustering features of users. However, when the users
are uniformly distributed in the target area, HPP, the number
of UAVs required to serve the ground users is almost equal
to CPT that does not take into account the user distributions.

It is also observed that in IPP, the required number of UAVs
is slightly less than CPT, which confirms the ability of the
proposed approach to extract user classifications. Note that
our proposed approach uses CPT to set dmin as explained in
the first paragraph of Section IX, thus the number of UAVs to
serve the ground users in our approach is upper bounded by
CPT for different user distributions in any target area.

It is worth pointing out that in practice we might have a
limited number of UAVs to serve the ground users. Regarding
the fact that our approach automatically determines the number
of UAVs, there might be a case in which the number of
available UAVs is smaller than the result of Algorithm 1. To
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Fig. 7: The convergence behavior of Algorithm 2 is shown in Fig. 7 (a). The computational complexity of JUAP in comparison
with UP and SD-KMVR is drawn in Fig. 7 (b). Each point of the simulation shows the average execution time for the
convergence of proposed approaches and implementing SD-KMVR over 50 trials.

overcome this practical issue, one can implement Algorithm
1 with different dmin. As explained in Section IV, λ can
control the area around each mean-shift center. On the other
hand, λ ∝ dmin. Therefore, we can implement Algorithm 1
for different amounts of dmin to obtain a user classification
suitable for that number. Also, as proved in Section VIII, the
computational cost of Algorithm 1 is low, thus this procedure
can be efficiently implemented in practical scenarios.

Once the xy-Cartesian coordinates of UAVs determined
using Algorithm 1, we jointly optimize UAV’s altitudes and
transmit powers via Algorithm 2. By setting Pmax = 1 in
the optimization problem in (9), we ensure that the maximum
power consumed by the system is upper bounded by CPT that
all UAVs work with the maximum allowed transmit power.
On the other hand, our proposed approach optimally allocates
transmit powers to UAVs in order to maximize the minimum
achievable system throughput. Thus, we expect that the total
power consumed by the system in our proposed approach
is less than the benchmarks. To investigate this, in Fig. 5
(b), we compare the total power consumed by the proposed
approaches with the traditional methods for different types
of user distributions. It can be observed that UP in the PCP
serves as a lower bound for the total power consumed by the
system because UAVs are deployed in the minimum allowed
altitude. As expected, the power consumed by the system in
CPT serves as an upper bound for all other techniques because
UAVs always transmit data with the maximum allowed power.
Also, our approach is superior to SD-KMVR because the
proposed optimization in SD-KMVR is trying to optimize
the radius of UAVs in order to maximize coverage region.
Indeed, it is observed from this figure that by optimizing
UAVs transmit powers, we can significantly reduce by up

to 6 dBm the total power consumed by the system. Besides
extracting the clustering features of the ground users, which
leads to reducing the required number of UAVs, optimizing
UAVs transmit powers results in better performance in the
term of the total power consumed by the system. Thus, our
proposed approach outperforms the benchmarks.

It is observed from Figs. 4 and 5 (b) that it is possible to
achieve better performance in terms of system sum throughput
and total power consumed by the system by optimizing
UAVs altitudes and transmit powers. This can ensure a longer
operation compared to the conventional approaches. Note that
regarding the fact that we maximize the minimum achievable
system throughput for all ground users, communication ser-
vices will be provided for all of them.

D. Convergence and Computational Complexity of the De-
ployment Approach

As explained in previous sections, the proposed deploy-
ment approach can be divided into Algorithms 1 and 2.
The cumulative distribution function (CDF) to investigate the
convergence behavior of Algorithm 1 is plotted in Fig. 6 (a).
The corresponding user distribution is demonstrated in Fig. 3.
It can be observed that Algorithm 1 can converge in about
25 iterations. In Fig. 6 (b), we draw the average execution
time versus the number of users to evaluate the computational
complexity of Algorithm 1. From Fig. 6 (b), it can be seen
that Algorithm 1 can be implemented quickly. For each point
of the experiment, users were uniformly generated in the
target area over 50 trials. It is observed that the computational
complexity increases as the number of users grows, confirming
the theoretical results in (31).

The convergence behavior of Algorithm 2 is investigated in
Fig. 7 (a), which is shown the minimum system throughput
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Fig. 8: Fairness among ground users in terms of system
throughput versus the number of users over 100 trials.

versus the number of iterations. This figure demonstrates
that Algorithm 2 can converge in about 15 iterations for its
associated user distributions plotted in Fig. 3. It is worth noting
that all users access at least 2.8 bit/s/Hz throughput. In order to
evaluate the complexity costs of the placement approaches, we
compare the average execution time versus the side length of
the target area for different number of users for JUAP, UP and
SD-KMVR in Fig. 7 (b) because as derived in Section VIII,
the computational complexity of the proposed approaches is
a function of both number of users and UAVs. Users were
uniformly distributed in the target area. Each point of simu-
lations shows the average execution time until convergence
for the proposed approaches and implementing SD-KMVR
over 50 trials. As discussed in Section VIII and observed in
Fig. 7 (b), JUAP implementation takes more execution time
than UP. Note that the computational complexity of CPT is
low as the locations of UAVs are fixed, hence, we did not
plot it. From Figs. 6 (b) and 7 (b), it is inferred that the
complexity of Algorithm 1 can be ignored compared to the
complexity of Algorithm 2 for the moderate number of users,
which is consistent with the theoretical results derived in (33).
Eventually, from Figs. 4 and 7 (b), one can understand that
the superiority of JUAP in terms of system sum throughput
compared to UP and other conventional approaches is obtained
in cost of implementation complexity.

E. Fairness Among Ground Users

Intuitively, maximizing the minimum achievable system
throughput for all ground users and deploying UAVs in lo-
cations where the average distance between users and UAVs
is minimum provide fairness among users in terms of system
throughput. However, there exists no such a consideration
in the conventional approaches, they are therefore tailored
towards the stronger users, thus reducing fairness in the system

throughput. To investigate this metric, we first define a Jain’s
index [32] which is given by

fj :=

(∑U
u=1Ru

)2

U
∑U
u=1R

2
u

, (34)

that evaluates fairness among ground users in terms of system
throughput. Accordingly, a high degree of fairness results in fj
values close to one and the lowest is 1/U . For this experiment,
we consider a target area 2 × 2 km2 and set dmin = 1000 m.
Then, we compare fj for the proposed UP, JUAP with the
benchmarks for different numbers of users in different types
of user distribution. In Fig. 8, we plot fj versus the number
of users that shows our proposed approaches outperform up to
17% the benchmarks in terms of fairness. It can be also seen
that fj slightly decreases by increasing the number of users
which is due to increasing the average distance of ground users
from the UAVs. Moreover, when users form clusters, PCP and
IPP, the proposed approaches and SD-KMVR obtain better
performance compared to the uniformly distributed case, HPP.
This is because of extracting the user’s classification feature
of proposed approaches and SD-KMVR. However, in CPT,
due to the fact that UAVs are placed at fixed locations, better
performance in terms of fairness can be achieved in HPP.

X. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

In this paper, we proposed a 3D deployment approach to
provide communication services to all ground users in multi-
UAV communication frameworks. The resulting problem was
a combination of the integer and non-convex constraints with
the system throughput maximization as its objective, hence
difficult to solve. We first proposed a low complexity algorithm
to schedule users to UAVs and find xy-Cartesian coordinates
of UAVs. The suboptimal UAVs altitudes and transmit powers
are separately obtained by the successive convex approxima-
tion. The iterative algorithm using the block coordinate descent
was developed to jointly optimize UAVs altitudes and transmit
powers. The simulation results confirmed that the proposed
approach is guaranteed to converge and unveiled that the
this method can be applied to different user distributions and
achieves a significant enhancement in system sum throughput
compared to the conventional benchmarks with less power
consumed in the cost of more complexity.

There exist several interesting future directions that can be
explored. One may want to relax the integer constraints in (9b)
by 0 ≤ αu,m ≤ 1. Also, the non-convex constraint in (9e) can
be implemented by its lower bound obtained by its first-order
Taylor expansion. It is beneficial if one applies the mentioned
techniques and compares the system sum throughput with our
deployment approach. Moreover, it would be nice if one could
extend the approach [21] to the multi-UAV scenario with co-
channel interference and sees if there exists a similar trade-off
between communication services and energy harvested from
the sun.
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APPENDIX A
PROOF OF THEOREM 1

Since the optimal objective value of problem (24) is ob-
tained for pt and step 3 of Algorithm 2, we have

ψ(zt,pt) ≤ ψ(zt+1,pt). (35)

Also, for given zt+1 and step 4 of Algorithm 2, we have

ψ(zt+1,pt) = ψp(zt+1,pt)

≤ ψp(zt+1,pt+1)

≤ ψ(zt+1,pt+1), (36)

where the equality comes from the fact that the first-order
Taylor expansion used in (28) is tight at the local point.
Indeed, the objective value of problem (30) at pt is equal
to the objective value of problem (25). The first inequality
holds because the objective value of problem (30) is optimally
obtained in step 4 of Algorithm 2. The second inequality stems
from the fact that the objective value of problem (30) serves as
a lower bound for the objective value of its main problem (25).
Thus, the objective value of problem (25) is non-decreasing
in each iteration though we solve it approximately.

From (35) and (36), one can write

ψ(zt,pt) ≤ ψ(zt+1,pt+1). (37)

This inequality implies the convergence of proposed Algo-
rithm 2 because the objective value of problem (13) is upper
bounded by a finite value. This concludes the proof.
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