Plasma-Enhanced and Thermal ALD of Al_2O_3 from Dimethylaluminium Isopropoxide, $[Al(CH_3)_2(\mu-O^iPr)]_2$

Stephen E. Potts and Erwin Kessels Eindhoven University of Technology, The Netherlands

Christophe Lachaud *Air Liquide Research & Development, France*

EuroCVD 18, Cork, Ireland 6th September 2011

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

TU

Outline

- Motivation
- Experimental Details

DMAI: $[AI(CH_3)_2(\mu-O'Pr)]_2$ TMA: $[AI(CH_3)_3]_2$

- Plasma-ehnahced and thermal ALD Characteristics of DMAI
 - At 'standard' ALD temperatures (150 and 200 °C)
 - Temperature series study: comparison with TMA
 - Film composition at room temperature (plasma only)
- Al₂O₃ from DMAI as a Surface Passivation Layer
 - Effective lifetime of charge carriers in c-Si
- Conclusions

Motivation

Many applications for ALD-synthesised Al₂O₃

- Microelectronics: medium-*k* dielectric material
- Protective coatings (e.g. moisture barriers)
- Passivation layer in solar cells
- Etc...
- ALD precursors
- Al₂Cl₆: source of CI and gives corrosive by-products
- [Al(CH₃)₃]₂ (TMA): 'model' ALD processes, but pyrophoric
- Safer, alternative precursors are being sought

Can DMAI perform as well as TMA?

Front contact

Back surface field

Si base (200 µm)

Rear contact

Surface passivating film (10 nm)

Textured surface

Back reflector

Precursor Properties

Property	ТМА	DMAI
Structure	$H_{3}C$ H	H_3C CH_3 H_3C CH_3 H_3C CH_3 H_3C CH_3
Physical State (R.T.P.)	Liquid	Liquid
Melting Point	15 °C	< R.T.
Boiling Point	125 °C	186 °C
Vapour Pressure	9 Torr at 16.8 °C	9 Torr at 66.5 °C
Decomposition Temp.	~330 °C	~370 °C
Pyrophoricity	High	Very low
Data from Air Liquide Applied Physics / S. E. Potts		LIQUIDE TU/e Technische Universite Eindhoven University of Technolo

Experimental: Reactor and Diagnostics

Oxford Instruments OpAL reactor

Experimental: ALD Cycles on OpAL

ALD Characteristics

- DMAI saturates within 0.5 s (TMA ~0.02 s)
- DMAI shows linear increase with number of cycles
- No nucleation delay on Si/SiO₂

In Situ QMS: Thermal ALD

In Situ QMS: Plasma-Enhanced ALD

Growth per Cycle (GPC)

Plasma-enhanced

- Lower GPC for DMAI
- Drop for TMA GPC caused by dehydroxylation
- DMAI less affected by this

Thermal

- More thermal activation required for DMAI
- Insufficient thermal energy at lower temperatures
- O'Pr groups may start decomposing at higher temperatures

Thermal energy input required: s-OH + Al $-O^{i}Pr >$ s-OH + Al $-CH_{3}$

echnische Universiteit **indhoven** Jniversity of Technology

Film Composition

- Obtained using Rutherford backscattering spectrometry and elastic recoil detection
- GPC is affected by film density
- DMAI affords fewer AI atoms per cycle
 - Plasma ALD almost half
 - Increase of AI with temperature confirms thermal input
- Density between two precursors does not differ significantly
 - Plasma ALD films slightly denser than thermal
 - DMAI films less dense than TMA

Film Composition

- General trend: more H and O at lower temperatures
- Typically due to OH in the films
- Films from DMAI contain more O and H than those from TMA
 - At 25 °C,
 - O/AI for DMAI > TMA
 - O/AI > 3 (DMAI), suggests carbonate or formate incorporation
 - Most likely a result of OⁱPr

XPS: Thermal ALD

200 °C 'standard temperature'

- Same for 150 °C and above
- Only Al₂O₃ environment
- C not observed
- Same for films from TMA

100 °C

- Some OH
- No C observed in 'bulk'
- Similar to films from TMA but higher OH concentration (RBS).

12

XPS: Plasma-Enhanced ALD

200 °C 'standard temperature'

- Same for 100 °C and above
- No C observed
- As with thermal ALD, only Al₂O₃

25 °C

- Substantial concentration of
 - Hydroxide
 - Oxyhydroxide
 - Carbonates, confirmed by C
- Consistent throughout the film
- Carbonates generally observed in ozone-based and O₂ plasma ALD

Al assignments: T. Gougousi *et al.*, *Chem. Mater.*, **17**, 5903 (2005). / Applied Physics / S. E. Potts

- AI–O^{*i*}Pr requires more thermal energy for reaction
- Lower growth per cycle than TMA
- ≥150 °C equivalent to those from TMA
- <150 °C higher [OH], inclusion of carbonates at 25 °C</p>
- How does it behave as a surface passivation layer for c-Si?

Surface Passivation of c-Si for Solar Cells

[/] Applied Physics / S. E. Potts

- Solar cells are a huge business!
- Vast amount of TMA required
- An Al₂O₃ layer can passivate the c-Si surface
- Effective lifetime of charge carriers increased → increased efficiency
- Is DMAI a suitable alternative?

AIR LIQUIDE

Al₂O₃ as a Surface Passivation Layer

- 30 nm Al₂O₃ applied to n- and p-type Si floatzone wafers at 200 °C
- Annealing step: 10 min, 400 °C under N₂
- Effective lifetimes: 1-5 ms
- Good surface passivation for c-Si for solar cell applications

Conclusions

- Al₂O₃ from ALD using DMAI
 - AI–O^{*i*}Pr requires more thermal energy for reaction
 - Lower growth per cycle than TMA
 - ≥150 °C equivalent to those from TMA
 - <150 °C higher [OH], inclusion of carbonates at 25 °C

 Al₂O₃ from DMAI affords good surface passivation of *n*- and *p*-type Si

DMAI is a viable alternative to TMA

H. B. Profijt, S. E. Potts, M. C. M. van de Sanden and W. M. M. Kessels, Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities and Challenges, *J. Vac. Sci. Technol. A*, **29**, 050801 (2011).

Plasma-Enhanced ALD

Plasma

- Collection of free charged particles and other gas-phase species:
 - lons Electrons
- essential for plasma formation
- Neutral species ("plasma radicals")
- Electrically neutral, on average
- Plasma radicals are the main reacting species with surface groups

• Degree of ionisation is typically very low, ≤0.02%

W. M. M. Kessels, H. B. Profijt, S. E. Potts and M. C. M. van de Sanden, **Plasma Atomic Layer Deposition** in *Atomic Layer Deposition of Nanostructured Materials*, editors: M. Knez and N. Pinna, Wiley-VCH, **in press** (2011).

H. B. Profijt, S. E. Potts, M. C. M. van de Sanden and W. M. M. Kessels, **Plasma-Assisted Atomic Layer Deposition: Basics**, **Opportunities and Challenges**, *J. Vac. Sci. Technol. A*, **29**, 050801 (2011).

c-Si Solar Cell Passivation

Uniformity (200 mm wafer)

500 cycles at 150 °C

Identical conditions to TMA.

