

Supplementary Materials for

Prebiotic synthesis of cysteine peptides that catalyze peptide ligation in neutral water

Callum S. Foden, Saidul Islam, Christian Fernández-García, Leonardo Maugeri, Tom D. Sheppard and Matthew W. Powner*

Correspondence to: matthew.powner@ucl.ac.uk

This PDF file includes:

Materials and Methods Figs. S1 to S209 Tables S1 to S14 References (*46-51*)

CONTENTS

MATERIALS AND METHODS	6
ATTEMPTED STRECKER SYNTHESIS OF CYSTEINE NITRILE FROM β -MERCAPTOACETALDEHYDE	7
STRECKER SYNTHESIS OF SERINE NITRILE FROM GLYCOLALDEHYDE	9
SYNTHESIS OF α -AMIDOCYSTEINES FROM α -AMIDODEHYDROALANINE NITRILES	11
Preparative synthesis and isolation of DL-serine nitrile	11
Acetylation of DL-serine nitrile with thioacetate	13
Acetylation of DL-serine nitrile with N-acetylimidazole	16
Preparative synthesis and isolation of N-acetyl-DL-serine nitrile by oxidative acetylation with thioacetat	e19
Preparative synthesis and isolation of N,O-diacetyl-DL-serine nitrile by acetylation with N-acetylimidaze	ole21
Acetylation of DL-serine nitrile with N-acetylimidazole in competition with other alcohols	23
Acetylation of L-serine with N-acetylimidazole	25
Acetylation of L-threonine with N-acetylimidazole	26
Acetylation of L-serine and L-threonine with N-acetylimidazole	27
Acetylation of L-serinamide with N-acetylimidazole	
Acetylation of L-threoninamide with N-acetylimidazole	29
Acetylation of L-serinamide and L-threoninamide with N-acetylimidazole	
Acetylation of N-acetyl-DL-serine nitrile and N-acetyl-L-threonine nitrile with N-acetylimidazole	31
Synthesis DL-phosphoserine nitrile	
Acetylation of DL-phosphoserine nitrile	33
Preparative synthesis and isolation of N-acetyl-phospho-DL-serine nitrile	34
Synthesis of N,O-diacetylserinamide	
Synthesis of N-acetyldehydroalanine nitrile from N,O-diacetyl-DL-serine nitrile in water	
Synthesis of N-acetyldehydroalanine nitrile from N-acetyl-O-phospho-DL-serine nitrile in water	40
Attempted N-acetyldehydroalaninamide formation from N,O-diacetyl-L-serinamide	41
N-Acetyldehydroalanine nitrile formation from N,O-diacetyl-DL-serine nitrile in the presence of N,O- serinamide	diacetyl-L- 42
Addition of hydrogen sulfide to N-acetydehydroalanine nitrile	
Addition of thioacetic acid to N-acetyldehydroalanine nitrile	
Addition of hydrogen sulfide to N.S-diacetyl-DL-cysteine nitrile	
Preparative synthesis and isolation of N.S-diacetyl-DL-cysteine nitrile	
Preparative synthesis and isolation of N-acetyl-DL-cysteine thioamide	
Preparative synthesis and isolation of N-acetyl-DL-cysteine nitrile	
Incubation of N.S-diacetyl-DL-cysteine nitrile with hydrogen sulfide	
Hydrolysis of N.S-diacetyl-DL-cysteine nitrile	56
Synthesis of N-acetyl-DL-valinyl-DL-serine nitrile	57
Acetvlation of N-acetvl-DL-valinyl-DL-serine nitrile with thioacetate	59
Acetylation of N-acetyl-DL-valinyl-DL-serine nitrile with N-acetylimidazole	64
Synthesis of N-acetyl-DL-valinyldehydroalanine nitrile from N,O-diacetyl-DL-valinylserine nitrile in pho acetic acid elimination	osphate by 66
Synthesis of N-acetyl-DL-valinyldehydroalanine nitrile from N,O-diacetyl-DL-valinyl-DL-serine nitrile i	ישאינפי ז water by
מטפווט מטוע פווווווומנוטוו	

Addition of thioacetate to N-acetyl-DL-valinyldehydroalanine nitrile in phosphate buffer at pH 7	69
One-pot cysteine thioester-mediated aminonitrile acetylation	73
SYNTHESIS OF α -AMIDOCYSTEINES BY COUPLING OF α -AMIDONITRILES WITH L-CYSTEINE	74
N-ACETYLGLYCYL-L-CYSTEINE SYNTHESIS VIA THIAZOLINE INTERMEDIATE	75
N-ACETYL-DL-ALANYL-L-CYSTEINE	80
N-ACETYL-DL-SERINYL-L-CYSTEINE	83
N-ACETYL-DL-VALINYL-L-CYSTEINE	86
CATALYTIC PREBIOTIC PEPTIDE AND AMIDINE SYNTHESES FROM α -AMIDONITRILES	89
CATALYST SCREENING FOR THE COUPLING OF N-ACETYLGLYCINE NITRILE WITH GLYCINE	89
OPTIMISATION OF THE COUPLING OF N-ACETYLGLYCINE NITRILE WITH GLYCINE CATALYSED BY N-ACETYL-L-CYSTE	INE90
Incubation of N-acetylglycine nitrile with N-acetyl-L-cysteine at pH 7 and 60 $^{\circ}\text{C}$	92
GENERAL PREBIOTIC COUPLING PROCEDURES	93
N-Acetyl-L-cysteine catalysed coupling of N-acetylaminonitrile with $lpha$ -amino acids	93
N-Acetyl-L-cysteine catalysed coupling of N-acetylglycine nitrile with α -amino amides	93
SUPPLEMENTARY TABLE OF COUPLING YIELDS AND HIGH-RESOLUTION MASS SPECTROMETRY DATA	94
Coupling of N-acetylaminonitrile Ac-AA-CN with $lpha$ -amino acids AA ¹ at pH 7 and 60 $^{\circ}\!$	94
Coupling of N-acetylglycine nitrile Ac-Gly-CN with α -amino amides AA¹-NH ₂ at pH 7 and 60 °C	95
Characterisation of coupling reactions of N-acetyl-L-cysteine-catalysed coupling of N-acet	YLGLYCINE
NITRILE AND α -AMINO ACIDS	96
Coupling of N-acetylglycine nitrile Ac-Gly-CN with glycine Gly at pH 7 and 60 °C	96
Coupling of N-acetylglycine nitrile Ac-Gly-CN with DL-alanine DL- Ala at pH 7 and 60 °C	97
Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-arginine Arg at pH 7 and 60 $^{\circ}\!$	98
Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-aspartic acid Asp at pH 7 and 60 $^{\circ}\!\mathrm{C}$	102
Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-glutamine GIn at pH 7 and 60 °C	103
Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-glutamic acid Glu at pH 7 and 60 $^{\circ}\!\mathrm{C}$	104
Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-histidine His at pH 7 and 60 °C	105
Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-isoleucine IIe at pH 7 and 60 $^{\circ}\!$	106
Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-leucine Leu at pH 7 and 60 °C	107
Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-lysine Lys at pH 7 and 60 $^{\circ}\!$	108
Coupling of N-acetylglycine nitrile Ac-Gly-CN with DL-methionine DL- Met at pH 7 and 60 $^{\circ}\!\mathrm{C}$	110
Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-phenylalanine Phe at pH 7 and 60 $^{\circ}$ C	111
Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-proline Pro at pH 7 and 60 °C	113
Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-serine Ser at pH 7 and 60 $^{\circ}$ C	115
Coupling of Ac-Gly-CN with L-threonine Thr at pH 7 and 60 °C	116
Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-tryptophan Trp at pH 7 and 60 $^{\circ}$ C	117
Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-tyrosine Tyr at pH 7 and 60 $^{\circ}\!$	119
Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-valine Val at pH 7 and 60 ℃	120
Coupling of N-acetyl-2-aminoglutaronitrile Ac-GIx-CN with glycine Gly at pH 7 and 60 $^{\circ}$ C	122
Coupling of N-acetyl-DL-alanine nitrile Ac-Ala-CN with glycine Gly at pH 7 and 60 $^{\circ}\!\mathrm{C}$	123
Coupling of N-acetyl-DL-alanine nitrile Ac-Ala-CN with L-alanine L- Ala at pH 7 and 60 $^{\circ}$ C	124
Coupling of N-acetyl-DL-serine nitrile Ac-Ser-CN with glycine Gly at pH 7 and 60 $^{\circ}$ C	125

Coupling of N-acetyl-DL-serine nitrile Ac-Ser-CN with L-alanine Ala at pH 7 and 60 °C	126
Coupling of N-acetyl-DL-valine nitrile Ac-Val-CN with glycine Gly at pH 7 and 60 $^{\circ}$ C	127
CHARACTERISATION OF COUPLING REACTIONS OF N-ACETYL-L-CYSTEINE-CATALYSED COUPLING OF N-ACETYI	_GLYCINE
NITRILE AND α -AMINO AMIDES	128
Coupling of N-acetylglycine nitrile Ac-Gly-CN with glycinamide Gly-NH $_2$ at pH 7 and 60 $^{\circ}\!$	128
Coupling of N-acetylglycine nitrile Ac-Gly-CN with D-alaninamide D- Ala-NH $_2$ at pH 7 and 60 $^{\circ}\!\mathrm{C}$	129
Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-argininamide Arg-NH $_2$ at pH 7 and 60 $^{\circ}\!$	130
Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-asparaginamide Asn-NH $_2$ at pH 7 and 60 $^{\circ}\!$	131
Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-aspartamide Asp-NH $_2$ at pH 7 and 60 $^{\circ}\!$	133
Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-glutaminamide GIn-NH $_2$ at pH 7 and 60 $^{\circ}\!\mathrm{C}$	135
Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-glutamic acid amide Glu-NH $_2$ at pH 7 and 60 $^{\circ}$ C	136
Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-histidinamide His-NH $_2$ at pH 7 and 60 $^{\circ}\!$	138
Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-isoleucinamide IIe-NH₂ at pH 7 and 60 ℃	140
Coupling of N-acetylglycine nitrile Ac-Gly-CN with D-leucinamide D- Leu-NH₂ at pH 7 and 60 ℃	142
Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-lysinamide Lys-NH ₂ at pH 7 and 60 ℃	144
Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-methioninamide Met-NH ₂ at pH 7 and 60 ℃	146
Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-phenylalaninamide Phe-NH $_2$ at pH 7 and 60 $^{\circ}\!\mathrm{C}$	148
Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-prolinamide Pro-NH ₂ at pH 7 and 60 ℃	
Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-serinamide Ser-NH $_2$ at pH 7 and 60 $^{\circ}\!\mathrm{C}$	152
Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-threoninamide Thr-NH $_2$ at pH 7 and 60 $^{\circ}\!$	154
Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-tryptophanamide Trp-NH $_2$ at pH 7 and 60 $^{\circ}\!$	156
Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-tyrosinamide Tyr-NH ² at pH 7 and 60	158
Coupling of N-acetylglycine nitrile Ac-Gly-CN with D-valinamide D- Val-NH $_2$ at pH 7 and 60 $$ °C	
PREBIOTIC THIOL-CATALYSED PEPTIDE FRAGMENT LIGATIONS	162
N-Acetylglycylglycylglycyl-DL-methioninylglycine Ac-Gly-Gly-Gly-Met-Gly-OH	163
N-Acetylglycylglycylglycyl-DL-alanyl-L-alanyl-L-alanine Ac-Gly-Gly-Gly-Ala-Ala-Ala-OH	
N-Acetylglycylglycylglycyl-DL-alanylglycyl-L-alanine Ac-Gly-Gly-Gly-Ala-Gly-Ala-OH	
N-Acetylglycylglycylglycylglycylglycylglycine Ac-Gly-Gly-Gly-Gly-Gly-Gly-OH	170
N-Acetylglycylglycylglycylglycyl-L-alanylglycine Ac-Gly-Gly-Gly-Gly-Ala-Gly-OH	173
N-Acetylglycylglycylglycyl-DL-leucyl-L-leucyl-L-leucine Ac-Gly-Gly-Gly-Leu-Leu-Leu-OH	176
N-Acetylglycylglycylglycylglyclglycyl-L-histidine Ac-Gly-Gly-Gly-Gly-Gly-His-OH	177
N-Acetylglycylglycylglycyl-DL-methionyl-L-alanyl-L-serine Ac-Gly-Gly-Gly-Met-Ala-Ser-OH	179
N-Acetylglycylglycylglycyl-DL-phenylalanylglycylglycine Ac-Gly-Gly-Gly-Gly-Phe-Gly-Gly-OH	181
PEPTIDE DEUTERATION STUDIES	183
COMPETITION EXPERIMENTS	193
COMPETITIVE COUPLING OF GLYCINE AND GLYCINAMIDE WITH N-ACETYLGLYCINE NITRILE	193
Catalytic synthesis of proteinogenic α -peptides in the presence of non-proteinogenic substrates	194
Catalytic coupling of N-acetylglycine nitrile with glycine in the presence N-acetyl- β -alanine nitrile	194
Catalytic coupling of N-acetylglycine nitrile with DL-alanine in the presence of α -aminoisobutyric acid	
Catalytic coupling of N-acetylglycine nitrile with glycine in the presence of β -alanine	

MISCELLANEOUS PREPARATIVE SYNTHESES	198
N-ACETYL-2-AMINOGLUTARONITRILE (N-ACETYLGLUTAMINE DINITRILE)	198
N-ACETYLGLYCYLCYSTEAMINE	
REFERENCES	202

Materials and Methods

Reagents and solvents were obtained and used without further purification, unless specified, from the following commercial sources: Alfa Aesar, Acros Organics, Apollo Scientific, BDH, Sigma Aldrich, Fluorochem, MerckMillipore, Fisher Scientific, VWR International, Carbosynth, Manchester Organics, Lancaster, Molekula, Honeywell, TCI and Santa Cruz Biotechnology. Sodium hydrosulfide hydrate (NaSH·×H₂O (50%), CAS: 207683-19-0, Acros Organics) and sodium sulfide (Na₂S, CAS: 1313-82-2, Sigma Aldrich) were used without purification. Deionized water was obtained from an *Elga Option 3* purification system. ¹H, ¹³C and ³¹P NMR spectra were recorded on *Bruker* NMR spectrometers AVANCE Neo 700, AVANCE III 600, AVANCE III 400 and AVANCE 300, equipped with a Bruker room temperature 5 mm multinuclear gradient probe (700 MHz), 5 mm DCH cryoprobe (600 MHz) and a gradient probe (400 and 300 MHz). All chemical shifts (δ) are reported in parts per million (ppm) relative to residual solvent peaks, and ¹H and ¹³C chemical shifts relative to TMS were calibrated using the residual solvent peak (residual solvent peaks: (δ_H) D₂O – 4.79; DMSO d_6 – 2.50; CDCl₃ – 7.26; CD₃OD – 3.31). Carbon and proton assignments were made using 2D NMR homo- and heteronuclear correlation spectroscopy (1H-1H COSY; 1H-13C HSQC; 1H-13C HMBC). Solvent suppression pulse sequence with presaturation and spoil gradients was used to obtain ¹H NMR spectra with solvent suppression (noesygppr1d, Bruker) and ¹H-¹³C HMBC NMR spectra (hmbcgplpndprqf, Bruker). Coupling constants are reported in Hertz (Hz). Spin multiplicities are indicated by symbols: s (singlet); d (doublet); t (triplet); g (quartet); gn (quintet); spt (septet); oct (octet), m (multiplet); obs. (obscured/coincidental signals), or a combination of these. Diastereotopic geminal (AB) spin systems coupled to one additional nuclei is reported as ABX. NMR data are reported as follows: chemical shift (multiplicity, coupling constants (J), number of protons, nuclear assignment). Spectra were recorded at 298 K. Infrared spectra (IR) were recorded on a Shimadzu IR Tracer 100 FT-IR spectrometer as a solid or neat oil/liquid. Absorption maxima are reported in wavenumber (cm⁻¹). Mass spectra and accurate mass measurements were recorded on a Waters LCT Premier QTOF connected to a Waters Autosampler Manager 2777C, Thermo Finnigan MAT900, and an Agilent LC connected to an Agilent 6510 QTOF mass spectrometer at the Department of Chemistry, University College London and the UCL School of Pharmacy. Solution pH values were measured using a Mettler Toledo Seven Compact pH meter with a Mettler Toledo InLab semi-micro pH probe with a Fisherbrand FB68801 semi-micro pH probe. The readings for D₂O solutions are reported as pH, and corrected according to Covington et al. (46) The readings for H₂O and H₂O/D₂O (9:1) solutions are reported uncorrected.

Attempted Strecker synthesis of cysteine nitrile from β -mercaptoacetaldehyde

A suspension of β -mercaptoacetaldehyde dimer (**S1**; 76 mg, 0.5 mmol), sodium cyanide (74 mg, 1.5 mmol), ammonium hydroxide (384 µL, 5.0 mmol), and monosulfonylmethane (**MSM** (internal standard), 15.6 mg, 0.17 mmol) in water (8 mL) were adjusted to pH 9.2 with conc. HCI. The total volume was adjusted to 10 mL with water and the suspension was stirred vigorously at room temperature. Aliquots (0.5 mL) were removed periodically, centrifuged, and the supernatant analyzed by ¹H NMR spectroscopy. The appearance of 2-hydroxy-3-mercaptopropanenitrile (S2; 77%) was observed after 20 mins, but was observed to degrade over 24 h (Fig. S1). A low (trace) concentration of Cys-CN was observed in the reaction (<5% yield) over 12 h. Analysis after 24 h revealed (upon acute signal amplification (x1000)) a complex slew of resonances in the ¹H NMR spectrum. Low abundance of water-soluble material and high level of complexity of ¹H NMR resonances were observed – no further attempt was made to characterize this complex mixture. The precipitate was heated at 100 °C in a sealed vial with conc. HCl for 1 h. The precipitate persisted throughout the period of heating in acidic solution. The suspension was cooled, centrifuged, and the supernatant analyzed by NMR spectroscopy. No cysteine derivatives were detected. Our data are consistent with reports that cysteine nitrile Cys-CN (as well as cysteine thioesters and cysteine-peptidyl nitriles Cys-AA-CN), undergo irrevocable oligomerization and form insoluble polythiazolines (7). Cys-CN instability has been previously determined following the synthesis of cysteine nitrile trifluoroacetic acid salt (Cys-CN TFA), using conventional synthetic protecting-group chemistry and trifluoroacetic acid deprotection in dichloromethane (47). Whilst Cys-CN was observed to be stable in highly acidic solutions, incubation of Cys-CN at pH 5-6 was observed to rapidly degrade Cys-CN and yield insoluble precipitates. These precipitates are likely to be similar to those observed in the Strecker reaction of S1 that has been described here and elsewhere (7, 47, 48). In contrast, serine nitrile Ser-CN (Fig. S2) formed readily (>90%; 2 d) at pH 9.2 and unaltered until monitoring of the reaction mixture ceased (after 6 d).

Data for 2-hydroxy-3-mercaptopropanenitrile S2

¹H NMR (600 MHz, H₂O) δ 4.41 (ABX, *J* = 5.6, 9.1 Hz, 1H, (C2)–H), 2.74 (ABX, *J* = 5.6, 12.4 Hz, 1H, (C3)–H), 2.70 (ABX, *J* = 9.1, 12.4 Hz, 1H, (C3)–H').

Fig. S1. ¹H NMR (600 MHz, H₂O, noesygppr1d, 1.50–5.00 ppm) to show the reaction of β -mercaptoacetaldehyde (**BMA**; 100 mM), sodium cyanide (150 mM) and ammonium hydroxide (500 mM) at pH 9.2 after a. 20 min; b. 6 h; c. 12 h; d. 24 h; e. Spectrum d (24 h), but with increased signal intensity to show the slew of residual baseline resonances. See text for details describing the formation of insoluble polymer due to cysteine nitrile **Cys-CN** self-destruction.

Strecker synthesis of serine nitrile from glycolaldehyde

Glycolaldehyde (**GCA**; 60 mg, 1.0 mmol), sodium cyanide (74 mg, 1.5 mmol), ammonium hydroxide (384 μ L, 5.0 mmol), and monosulfonylmethane (**MSM** (internal standard), 15.6 mg, 0.17 mmol) in water (8 mL) were adjusted to pH 9.2 with conc. HCI. The total volume was adjusted to 10 mL with water and the solution was stirred at room temperature. The reaction was monitored by periodic acquisition of NMR spectra until complete conversion of glyceronitrile **S3** to serine nitrile **Ser-CN** (>90%) was observed over 2 d (Fig. S2). The reaction was monitored for a further 4 d to confirm the stability of **Ser-CN** at pH 9.2. In contrast, the attempted Strecker synthesis of cysteine nitrile **Cys-CN** (Fig. S1) from β -mercaptoacetaldehyde resulted in the formation of insoluble precipitates.

Data for glyceronitrile S3

¹H NMR (600 MHz, H₂O) δ 4.64 (t, J = 5.0 Hz, 1H, (C2)–H), 3.75 (d, J = 5.0 Hz, 2H, (C3)–H₂).

Data for serine nitrile Ser-CN

¹H NMR (600 MHz, H₂O) δ 3.92 (ABX, *J* = 4.7, 5.8 Hz, 1H, (C2)–H), 3.76 (ABX, *J* = 4.7, 11.4 Hz, 1H, (C3)–H), 3.68 (ABX, *J* = 5.8, 11.4 Hz, 1H, (C3)–H').

Fig. S2. ¹H NMR (600 MHz, H₂O, noesygppr1d, 1.50–5.00 ppm) to show the reaction of glycolaldehyde (100 mM), sodium cyanide (150 mM) and ammonium hydroxide (500 mM) at pH 9.2 after a. 30 min; b. 24 h; c. 48 h; d. 6 days.

Synthesis of α -amidocysteines from α -amidodehydroalanine nitriles

Preparative synthesis and isolation of DL-serine nitrile

Glycolaldehyde **GCA** (1.20 g, 20.0 mmol), sodium cyanide (1.08 g, 22.0 mmol) were dissolved in H₂O/D₂O (9:1; 15 mL). Ammonium chloride (5.35 g, 100 mmol) was added and the solution was adjusted to pH 9.2 with HCl/NaOH, followed by adjustment of the total reaction volume to 20 mL. The reaction was monitored by periodic acquisition of NMR spectra until complete conversion of glyceronitrile to serine nitrile **Ser-CN** (>95%) was observed. The reaction was concentrated *in vacuo* and the residue repeatedly triturated with methanol until **Ser-CN** was completely recovered from the solid. The organics were then concentrated *in vacuo* to give serine nitrile **Ser-CN** as a yellow oil (680 mg), which was used without further purification. ¹H NMR (700 MHz, D₂O, noesygppr1d) δ 3.97 (dd, *J* = 4.7, 5.8 Hz, 1H, (C2)–H), 3.82 (ABX, *J* = 4.7, 11.4 Hz, 1H, (C3)–H), 3.74 (ABX, *J* = 5.8, 11.4 Hz, 1H, (C3)–H'). ¹³C NMR (176 MHz, D₂O) δ 121.9 (C1), 63.3 (C3), 45.3 (C2). HRMS-ESI [M+H⁺]⁺ calculated for formula C₃H₇N₂O⁺, 87.0553; found 87.0558. IR (cm⁻¹): 3331, 3280, 3182, 2935, 2838, 2233, 1672, 1606.

Fig. S3. ¹H NMR (700 MHz, D₂O, noesygppr1d, 1.50 – 5.00 ppm) spectrum to show Ser-CN.

Fig. S4. 13 C NMR (176 MHz, D₂O 0 – 220 ppm) spectrum to show **Ser-CN**.

Acetylation of DL-serine nitrile with thioacetate

Acetylation of crude DL-serine nitrile with thioacetate

Glycolaldehyde **GCA** (1 M), sodium cyanide (1.2 equiv) and ammonium chloride (5 equiv.) were dissolved in water and the solution was adjusted to pH 9.2 by addition of HCl/NaOH. The solution was then stirred at room temperature. After 24 h the reaction was diluted twenty-fold with water ([**Ser-CN**] = 50 mM). Potassium thioacetate (3 equiv.; 150 mM) was added and the solution adjusted to pH 7.0 or pH 9.0 by addition of 4 M HCl/NaOH. Potassium hexacyanoferrate(III) (K₃[Fe(CN)₆); 9 equiv.; 450 mM) was added, and the solution was stirred at room temperature whilst maintaining the solution at pH 7.0 or pH 9.0 with 4 M HCl/NaOH. After 20 min the reaction was centrifuged, and the supernatant analysed by NMR spectroscopy. Yields are reported in Table S1, and NMR spectra are shown in Fig. S5.

nH	Amount (%)				
pn	Ac-Ser-CN	Ac-Ser ^{Ac} -CN	Ser-CN		
7	70	10	7		
9	>95	n.d	n.d		

Table S1. Yields of acetylation of crude **Ser-CN** (50 mM; produced from the reaction of glycolaldehyde (**GCA**), sodium cyanide (NaCN) and ammonia (NH₃) at pH 9.2) after reaction with **AcSK** (150 mM) and potassium hexacyanoferrate(III) (K_3 [Fe(CN)₆] (450 mM) at pH 7 or pH 9 and room temperature. n.d = not detected by ¹H NMR spectroscopy.

Fig. S5. ¹H NMR spectra to show the acetylation of crude **Ser-CN** with potassium thioacetate (**AcSK**) and potassium hexacyanoferrate(III) (K_3 [Fe(CN)₆]). Glycolaldehyde (**GCA**; 1 M), NaCN (1.2 equiv.) NH₄Cl (5 equiv.) were dissolved in water at pH 9.2 and stirred at room temperature for 24 h. The reaction was diluted twenty-fold with water to give crude **Ser-CN** (50 mM), which was reacted with **AcSK** (3 equiv.) and (K_3 [Fe(CN)₆]; 9 equiv.) at **a.** pH 7.0 after 20 min (600 MHz, H₂O, noesygppr1d, 3.50–5.50 ppm), and **b.** pH 9.0 after 20 min (700 MHz, H₂O, noesygppr1d, 3.50–5.50 ppm).

DL-Serine nitrile **Ser-CN** (50 – 100 mM) and potassium thioacetate (**AcSK**, 3 – 10 equiv.)) in water were adjusted to pH 7.0 or pH 9.0 by addition of 4 M HCI/NaOH. Potassium hexacyanoferrate(III) (9 – 20 equiv.) was added, and the solution was stirred at room temperature whilst maintaining the pH at 7.0 or 9.0 with 4 M HCI/NaOH. After 1 h the reaction was centrifuged, and the supernatant analysed by NMR spectroscopy. Yields are reported in Table S2, and NMR spectra are shown in Fig. S6 ([**Ser-CN**] = 50 mM) and Fig. S7 ([**Ser-CN**] = 100 mM).

Ser-CN/mM	AcSK K ₃ [Fe(CN) ₆]		K ₃ [Fe(CN) ₆]	Amount (%)		
		(equiv.)	(equiv.)	Ac-Ser-CN	Ac-Ser ^{Ac} -CN	Ac-Dha-CN
50	7	3	9	43	53	n.d
50	9	3	9	42	52	n.d
100	7	5	10	18	71	6
100	7	10	20	<5%	91	n.d

Fig. S6. ¹H NMR spectra to show the reaction of **Ser-CN** (50 mM) with potassium thioacetate (3 equiv.) and potassium hexacyanoferrate(III) (K_3 [Fe(CN)₆]; 9 equiv.) at **a**. pH 7.0 (600 MHz, H₂O, noesygppr1d, 1.50–5.50 ppm, and **b**. pH 9.0 (700 MHz, H₂O, noesygppr1d, 1.50–5.50 ppm).

Fig. S7. ¹H NMR spectra (700 MHz, H₂O, noesygppr1d, 1.00–6.00 ppm) to show: a) DL-serine nitrile **Ser-CN** at pH 9.2 and room temperature; b) the reaction of **Ser-CN** (100 mM) with potassium thioacetate (5 equiv.) and potassium hexacyanoferrate(III) (K₃[Fe(CN)₆];10 equiv.) at pH 7.0. c) the reaction of **Ser-CN** (100 mM) with potassium thioacetate (10 equiv.) and potassium hexacyanoferrate(III) (K₃[Fe(CN)₆]; 20 equiv.) at pH 7.0. c) the appearance of **Ac-Dha-CN** in spectrum b. was attributed to temporary sampling of the reaction at pH 8.0 during stabilisation of the reaction pH at 7 prior to NMR analysis.

Acetylation of DL-serine nitrile with N-acetylimidazole

A solution of DL-serine nitrile **Ser-CN** (100 mM) was adjusted to pD 7 with 4 M DCI/NaOD. *N*-Acetylimidazole **NAI** (2.5–10 equiv.) was added and the solution readjusted to pD 7. The reaction was monitored by NMR spectroscopy at room temperature. Product distributions are reported in Table S3. See Fig. S8 and Fig. S9 for representative NMR spectra, and a ¹H–¹³C HMBC NMR spectrum (Fig. S10) to confirm the assignment of the intermediate *O*-acetyl-DL-serine nitrile **Ser^{Ac}-CN**.

Data for O-acetyl-DL-serine nitrile Ser^{Ac}-CN

1H NMR (700 MHz, D₂O) δ 4.29 (ABX, *J* = 5.1, 11.2 Hz, 1H, (C3)–H), 4.22 (ABX, *J* = 5.1, 11.2 Hz, 1H, (C3)–H'), 4.16 (dd, *J* = 5.1, 5.1 Hz, 1H, (C2)–H), 2.12 (obs. s, 3H, COCH₃).

Data for N,O-diacetyI-DL-serine nitrile Ac-Ser^{Ac}-CN

1H NMR (700 MHz, D₂O) δ 5.09 (dd, *J* = 4.9, 5.0 Hz, 1H, (C2)–H), 4.37 (ABX, *J* = 5.4, 11.7 Hz, 1H, (C3)–H), 4.31 (dd, J = 4.9, 11.7 Hz, 1H, (C3)–H'), 2.10 (s, 3H, COCH₃), 1.98 (s, 3H, COCH₃).

Data for N-acetyl-DL-serine nitrile Ac-Ser-CN

1H NMR (700 MHz, D₂O) δ 4.82 (dd, *J* = 5.4, 5.4 Hz, 1H, (C2)–H), 3.82 (ABX, *J* = 5.4, 11.4 Hz, 1H, (C3)–H), 3.79 (ABX, *J* = 5.4, 11.4 Hz, 1H, (C3)–H'), 1.99 (s, 3H, COCH₃).

Data for N-acetyldehydroalanine nitrile **Ac-Dha-CN** (partial assignment)

1H NMR (700 MHz, D₂O) δ 5.80 (d, J = 1.6 Hz, 1H, (C3)–H), 5.69 (d, J = 1.6 Hz, 1H, (C3)–H').

NAI	Time	Amount (%)			
(equiv.)	(h)	Ac-Ser-CN	Ac-Ser ^{Ac} -CN	Ac-Dha-CN	
2.5	2	16	40	n.d	
2.5	19	24	37	5	
2.5	64	25	28	11	
5	2	6	78	n.d	
5	19	5	72	6	
5	64	6	68	10	
10	4	4	91	2	

Table S3. Yields of acetylation of **Ser-CN** (100 mM) after reaction with *N*-acetylimidazole **NAI** (2.5 - 10 equiv.) at pD 7 and room temperature. n.d = not detectable by ¹H NMR spectroscopy.

Fig. S8. ¹H NMR spectra (700 MHz, D_2O , 3.50–6.00 ppm) to show the reaction of **Ser-CN** (100 mM) with *N*-acetylimidazole **NAI** (250 mM) at pD 7 and room temperature after a) 5 min; b) 2 h; c) 19 h.

Fig. S9. ¹H NMR spectra (700 MHz, D₂O, 3.50–6.00 ppm) to show the reaction of **Ser-CN** (100 mM) with *N*-acetylimidazole **NAI** (500 mM) at pD 7 and room temperature after 19 h.

Fig. S10. ¹H–¹³C HMBC (¹H–700 MHz [3.50–5.50 ppm], ¹³C–176 MHz [20–190 ppm]) spectrum showing the diagnostic ³J_{CH} coupling of (C3)–H and (C3)–H' of **Ser^{Ac}-CN** at 4.29 and 4.22 ppm with ¹³C resonances at 173.6 ppm (**C**OCH₃) and 120.6 ppm (C1), acquired after 5 min from the reaction of **Ser-CN** (100 mM) and *N*-acetylimidazole **NAI** (250 mM) at pD 7 and room temperature. Note that (C2)–H of **Ser-CN** has a ²J_{CH} coupling to C1, but no ³J_{CH} to **C**OCH₃. See Fig. S8a for the ¹H NMR spectrum.

Glycolaldehyde **GC** (600 mg, 10 mmol), sodium cyanide (588 mg, 12 mmol) and ammonium chloride (2.65 g, 50 mmol) were dissolved in water (10 mL) and the solution was adjusted to pH 9.2 by addition HCl/NaOH. The solution was then stirred at room temperature. After 24 h the reaction was diluted with water (190 mL). Potassium thioacetate (3.42 g; 30 mmol) was added and the pH adjusted to 9.0 by addition of HCl/NaOH. Potassium hexacyanoferrate(III) (29.6 g; 90 mmol) was added, and the solution was stirred at room temperature for 20 min. The solution was adjusted to pH 9.0, centrifuged, and concentrated *in vacuo*. The residue was repeatedly triturated with methanol until **Ac-Ser-CN** was completely recovered from the solid. The methanolic extracts were concentrated *in vacuo*, and the residue purified by flash column chromatography (SiO₂; eluting with a gradient of petroleum ether/ethyl acetate 1:1 to 0:1). **Ac-Ser-CN** was obtained as a white solid (1.16 g, 91%). ¹H NMR (600 MHz, D₂O) $\delta_{\rm H}$ 4.81 (1H, dd, *J* = 5.3, 5.3 Hz, H–(C2)), 3.80 (1H, ABX, *J* = 5.3, 11.7 Hz, H_a–(C3)), 3.76 (1H, ABX, *J* = 5.3, 11.7 Hz, H_b–(C3)), 1.97 (3H, s, COCH₃). ¹³C NMR (151 MHz, D₂O) δ 174.7 (**C**OCH₃), 118.3 (C1), 61.2 (C3), 43.7 (C2), 22.2 (CO**C**H₃). IR (cm⁻¹) 3260, 2938, 2240, 1618, 1526. HRMS-ESI [M+H⁺]⁺ calculated for formula C₅H₉N₂O₂⁺, 129.0659; found 129.0660.

Fig. S11. ¹H NMR (600 MHz, D_2O , 1.50 – 5.50 ppm) spectrum to show **Ac-Ser-CN**.

Fig. S12. 13 C NMR (151 MHz, D₂O, 0 – 220 ppm) spectrum to show Ac-Ser-CN.

Preparative synthesis and isolation of N,O-diacetyl-DL-serine nitrile by acetylation with N-acetylimidazole

N-Acetyl-DL-serine nitrile **Ac-Ser-CN** (0.82 g, 6.38 mmol) and *N*-acetyl imidazole (2.81 g, 25.5 mmol) were dissolved in water (64 mL) at pH 7.0, incubated for 4 h and then lyophilised. The residue was then purified by flash column chromatography (SiO₂; eluting with petroleum ether/ethyl acetate 9:1 to 0:1) to yield *N*,*O*-diacetyl-DL-serine nitrile **Ac-Ser^{Ac}-CN** as a white solid (1.06 g, 98%). ¹H NMR (700 MHz, D₂O) δ_{H} 5.12 - 5.16 (1H, m, H-(C2)), 4.41 (1H, ABX, *J* = 11.2, 5.4 Hz, H_a-(C3)), 4.35 (1H, ABX, *J* = 11.2, 4.9 Hz, H_b-(C3)), 2.13 (3H, s, OCOCH₃), 2.02 (3H, s, NCOCH₃). ¹³C NMR (176 MHz, D₂O) δ 174.5 (N<u>C</u>OCH₃), 173.8 (O<u>C</u>OCH₃), 117.4 (C1), 63.1 (C3), 40.7 (C2), 22.1 (NCO<u>C</u>H₃), 20.6 (OCO<u>C</u>H₃). IR (cm⁻¹) 3298, 3043, 2804, 2257, 1733, 1698, 1651. HRMS-ESI [M+H⁺]⁺ calculated for formula C₇H₁₁N₂O₃⁺, 171.0764; found 171.0765.

Fig. S14. 13 C NMR (176 MHz, H₂O, 0 – 220 ppm) spectrum to show **Ac-Ser^{Ac}-CN**.

Acetylation of DL-serine nitrile with N-acetylimidazole in competition with other alcohols

A solution of DL-serine nitrile **Ser-CN** (100 mM), an alcohol **R–CH₂OH** (100 mM) was adjusted to pD 7 with 4 M DCI/NaOD. *N*-Acetylimidazole **NAI** (5 equiv.) was added and the solution was readjusted to pD 7. The reaction was monitored by NMR spectroscopy (Fig. S15 – Fig. S17). Yields are reported in Table S4 after 6 h.

Competitor	Alcohol	-OH (%)	OAc (%)	Ser-CN:ROH
HOCH ₂ CH ₂ OH	Ser-CN	6	92	4
	ROH	70	28 (6)*	4
AcNHCH ₂ CH ₂ OH	Ser-CN	7	92	2
	ROH	68	32	3
NCCH ₂ CH ₂ OH	Ser-CN	7	91	1
	ROH	20	80	

Table S4. Yields of hydroxyl-acetylation of Ser-CN (100 mM) and an alcohol RCH₂OH (100 mM) after reaction with *N*-acetylimidazole NAI (5 equiv.) at pD 7 and room temperature. N.B. >98% Ser-CN was *N*-acetylated, and hydroxyl acetylation (Ser-OAc) yield are reported for Ac-Ser^{Ac}-CN. * 6% di-acetylated product (diacetylethylene glycol) was observed (Fig. S15).

Fig. S15. ¹H NMR spectrum (700 MHz, D₂O, 1.50–6.00 ppm) to show the reaction of **Ser-CN** (100 mM) and ethylene glycol (100 mM) with *N*-acetylimidazole **NAI** (500 mM) at pD 7 and room temperature.

Fig. S16. ¹H NMR spectrum (700 MHz, D₂O, 1.50–6.00 ppm) to show the reaction of **Ser-CN** (100 mM) and *N*-acetylethanolamine (100 mM) with *N*-acetylimidazole **NAI** (500 mM) at pD 7 and room temperature.

Fig. S17. ¹H NMR spectrum (700 MHz, D₂O, 1.50–6.00 ppm) to show the reaction of **Ser-CN** (100 mM) and 3-hydroxypropionitrile (100 mM) with *N*-acetylimidazole **NAI** (500 mM) at pD 7 and room temperature.

A solution of L-serine **Ser** (100 mM) was adjusted to pD 7 with 4 M DCI/NaOD. *N*-Acetylimidazole **NAI** (5 equiv.) was added and the solution was readjusted to pD 7. The reaction was monitored by NMR spectroscopy, until the complete consumption of **NAI** was observed (5 h). *N*-Acetyl-L-serine **Ac-Ser-OH** was observed (88%) alongside *N*,*O*-diacetyl-L-serine **Ac-Ser^{Ac}-OH** (11%) (Fig. S18).

Data for N-acetyl-L-serine Ac-Ser-OH

¹H NMR (700 MHz, D₂O) δ 4.16 (dd, *J* = 3.8, 6.3 Hz, 1H, (C2)–H), 3.74 (dd, *J* = 3.8, 11.6 Hz, 1H, (C3)–H), 3.69 (dd, *J* = 6.3, 11.6 Hz, 1H, (C3)–H'), 1.92 (s, 3H, COCH₃).

Data for N,O-diacetyl-L-serine Ac-Ser^{Ac}-OH

¹H NMR (700 MHz, D₂O) δ 4.35 (dd, *J* = 3.8, 5.2 Hz, 1H, (C2)–H), 4.26 (dd, *J* = 5.2, 11.3 Hz, 1H, (C3)–H), 4.23 (dd, *J* = 3.8, 11.3 Hz, 1H, (C3)–H'), 1.95 (s, 3H, COCH₃), 1.91 (s, 3H, COCH₃).

Fig. S18. ¹H NMR spectum (700 MHz, D₂O, 1.50–6.00 ppm) to show the reaction of **Ser** (100 mM) with *N*-acetylimidazole **NAI** (500 mM) at pD 7 and room temperature.

A solution of L-threonine **Thr** (100 mM) was adjusted to pD 7 with 4 M DCI/NaOD. *N*-Acetylimidazole **NAI** (5 equiv.) was added and the solution was readjusted to pD 7. The reaction was monitored by NMR spectroscopy, until the complete consumption of **NAI** was observed (5 h). *N*-Acetyl-L-threonine **Ac-Thr-OH** (>95%) was observed (Fig. S19) alongside trace amounts of *N*,*O*-diacetyl-L-threonine nitrile **Ac-Thr^{Ac}-OH**.

Data for N-acetyl-L-threonine Ac-Thr-OH

¹H NMR (700 MHz, D₂O) δ 4.11 (dq, *J* = 4.0, 6.5 Hz, 1H, (C3)–H), 4.01 (d, *J* = 4.0 Hz, 1H, (C2)–H), 1.93 (s, 3H, COCH₃), 1.04 (d, *J* = 6.5 Hz, 3H, (C4)–H₃).

Data for N,O-diacetyl-L-threonine **Ac-Thr^{Ac}-OH** (partial assignment).

¹H NMR (700 MHz, D₂O) δ 5.25 (dq, J = 3.2, 6.4 Hz, 1H, (C3)–H), 4.22 (d, J = 3.2 Hz, 1H, (C2)–H).

Fig. S19. ¹H NMR (700 MHz, D_2O , 0.00 – 5.00 ppm) spectrum to show the reaction of L-threonine (**Thr**; 100 mM) with *N*-acetylimidazole (**NAI**; 5 equiv.) after 5 h at pD 7 and room temperature.

A solution of L-serine **Ser** and L-threonine **Thr** (100 mM) was adjusted to pD 7 with 4 M DCI/NaOD. *N*-Acetylimidazole **NAI** (5 equiv.) was added and the solution was readjusted to pD 7. The reaction was monitored by NMR spectroscopy, until the complete consumption of **NAI** was observed (5 h). **Thr** underwent conversion to **Ac-Thr-OH** (>95%), with **Ac-Thr^{Ac}-OH** detected in only trace amounts. **Ser** underwent conversion to a mixture of **Ac-Ser-OH** (86%) and **Ac-Ser^{Ac}-OH** (6%) (Fig. S20).

Fig. S20. ¹H NMR (700 MHz, D_2O , 0.50 – 6.00 ppm) spectrum to show the reaction of L-threonine (**Thr**; 100 mM) and L-serine (**Ser**; 100 mM) with *N*-acetylimidazole (**NAI**; 5 equiv.) after 5 h at pD 7 and room temperature.

A solution of L-serinamide **Ser-NH**₂ (100 mM) was adjusted to pD 7 with 4 M DCI/NaOD. *N*-Acetylimidazole **NAI** (5 equiv.) was added and the solution was readjusted to pD 7. The reaction was monitored by NMR spectroscopy, until the complete consumption of **NAI** was observed. *N*,*O*-Diacetyl-L-serinamide **Ac-Ser**^{Ac}-**NH**₂ (67%) and *N*-acetyl-L-serinamide (33%) were observed after 5 h.

Data for N-acetyl-L-serinamide Ac-Ser-NH₂

¹H NMR (600 MHz, D₂O) δ 4.20 (dd, *J* = 4.6, 5.1 Hz, 1H, (C2)–H), 3.70 (dd, *J* = 5.1, 11.7 Hz, 1H, (C3)–H), 3.66 (dd, *J* = 4.6, 11.7 Hz, 1H, (C3)–H'), 1.89 (s, 3H, COCH₃).

Data for N,O-diacetyl-L-serinamide Ac-Ser^{Ac}-NH₂

¹H NMR (600 MHz, D₂O) δ 4.44 (dd, *J* = 4.2, 5.1 Hz, 1H, (C2)–H), 4.27 (dd, *J* = 5.1, 11.6 Hz, 1H, (C3)–H), 4.15 (dd, *J* = 4.2, 11.6 Hz, 1H, (C3)–H'), 1.92 (s, 3H, COCH₃), 1.88 (s, 3H, COCH₃).

Fig. S21. ¹H NMR spectum (600 MHz, D₂O, 1.50–5.50 ppm) to show the reaction of **Ser-NH**₂ (100 mM) with *N*-acetylimidazole **NAI** (500 mM) at pD 7 and room temperature.

Acetylation of L-threoninamide with N-acetylimidazole

A solution of L-threoninamide **Thr-NH**² (100 mM) was adjusted to pD 7 with 4 M DCI/NaOD. *N*-Acetylimidazole **NAI** (5 equiv.) was added and the solution was readjusted to pD 7. The reaction was monitored by NMR spectroscopy, until the complete consumption of **NAI** was observed. *N*,*O*-Diacetyl-L-threoninamide **Ac-Thr**^{Ac}-**NH**² (<5%) and *N*-acetyl-L-threoninamide (95%) were observed after 5 h (Fig. S22).

Data for N-acetyl-L-threoninamide Ac-Thr-NH2

¹H NMR (600 MHz, D₂O) δ 4.11 - 4.05 (m, 2H, (C2)–H, (C3)–H), 1.91 (s, 3H, COCH₃), 1.02 (d, *J* = 6.3 Hz, 3H, (C4)–H₃).

Data for N,O-diacetyl-L-threoninamide Ac-Thr^{Ac}-NH2

¹H NMR (600 MHz, D₂O) δ 5.22 (dq, *J* = 2.9, 6.5 Hz, 1H, (C3)–H), 4.32 (d, *J* = 2.0 Hz, 1H, (C2)–H), 1.93 (s, 3H, COCH₃), 1.88 (s, 3H, COCH₃), 1.08 (d, *J* = 6.5 Hz, 3H, (C4)–H₃).

Fig. S22. ¹H NMR spectum (600 MHz, D₂O, 0.50–5.50 ppm) to show the reaction of **Thr-NH**₂ (100 mM) with *N*-acetylimidazole **NAI** (500 mM) at pD 7 and room temperature.

Acetylation of L-serinamide and L-threoninamide with N-acetylimidazole

A solution of L-serinamide **Ser-NH**₂ and L-threoninamide **Thr-NH**₂ (100 mM) was adjusted to pD 7 with 4 M DCI/NaOD. *N*-Acetylimidazole **NAI** (5 equiv.) was added and the solution was readjusted to pD 7. The reaction was monitored by NMR spectroscopy, until the complete consumption of **NAI** was observed (5 h). **Thr-NH**₂ underwent conversion to **Ac**-**Thr-OH** (95%) and **Ac-Thr**^{Ac}-**NH**₂ (5%). **Ser-NH**₂ underwent conversion to a mixture of **Ac-Ser-NH**₂ (51%) and **Ac**-**Ser**^{Ac}-**NH**₂ (49%).

Fig. S23. ¹H NMR (700 MHz, D2O, 1.50 – 5.50 ppm) spectrum to show the reaction of L-threoninamide (**Thr-NH**₂; 100 mM) and L-serinamide (**Ser-NH**₂; 100 mM) with *N*-acetylimidazole (**NAI**; 5 equiv.) after 5 h at pD 7 and room temperature

Acetylation of N-acetyl-DL-serine nitrile and N-acetyl-L-threonine nitrile with N-acetylimidazole

A solution of *N*-acetyl-DL-serine nitrile **Ac-Ser-CN** (100 mM) and *N*-acetyl-L-threonine nitrile **Ac-Thr-CN** (100 mM) was adjusted to pD 7 with 4 M DCI/NaOD. *N*-Acetylimidazole **NAI** (1 equiv.) was added and the solution was readjusted to pD 7. The reaction was monitored by NMR spectroscopy, until the complete consumption of **NAI** was observed (1 h). **Ac-Thr-CN** underwent conversion to **Ac-Thr^{Ac}-OH** (10%). **Ac-Ser-CN** underwent conversion to **Ac-Ser^{Ac}-CN** (65%) and trace amounts of **Ac-Dha-CN** (Fig. S24).

Data for N-acetyl-DL-serine nitrile Ac-Ser-CN

¹H NMR (700 MHz, D₂O, noesygppr1d) δ 4.85 (dd, *J* = 5.4, 5.4 Hz, 1H, (C2)–H), 3.85 (ABX, *J* = 5.4, 11.7 Hz, 1H, (C3)–H), 3.82 (ABX, *J* = 5.4, 11.7 Hz, 1H, (C3)–H'), 2.02 - 2.01 (m, 3H, COCH₃).

Data for N,O-diacetyl-DL-serine nitrile Ac-Ser^{Ac}-CN

¹H NMR (700 MHz, D₂O, noesygppr1d) δ 5.13 (dd, *J* = 5.2, 5.2 Hz, 1H, (C2)–H), 4.40 (ABX, *J* = 5.2, 11.4 Hz, 1H, (C3)–H), 4.34 (ABX, *J* = 5.2, 11.4 Hz, 1H, (C3)–H'), 2.13 (m, 3H, COCH₃), 2.01 (s, 3H, COCH₃).

Data for N-acetyl-L-threonine nitrile Ac-Thr-CN

¹H NMR (700 MHz, D₂O, noesygppr1d) δ 4.83 (d, *J* = 4.9 Hz, 1H, (C2)–H), 4.13 (dq, *J* = 4.9, 6.4 Hz, 1H, (C3)–H), 2.03 (s, 3H, COCH₃), 1.25 (d, *J* = 6.4 Hz, 3H, (C4)–H₃).

Data for N,O-diacetyl-L-threonine nitrile Ac-Thr^{Ac}-CN (partial assignment)

¹H NMR (700 MHz, D₂O, noesygppr1d) δ 5.23 (dq, *J* = 4.7, 6.4 Hz, 1H, (C3)–H), 5.07 (d, *J* = 4.7 Hz, 1H, (C2)–H), 2.11 (s, 3H, COCH₃), 1.30 (d, *J* = 6.4 Hz, 3H, (C4)–H₃).

Data for N-acetyldehydroalanine nitrile Ac-Dha-CN

¹H NMR (700 MHz, D₂O, noesygppr1d) δ 5.83 (d, *J* = 1.8 Hz, 1H, (C3)–H), 5.72 (d, *J* = 1.8 Hz, 1H, (C3)–H').

Fig. S24. ¹H NMR (700 MHz, D_2O , noesygppr1d,, 1.00 – 6.00 ppm) spectrum to show the reaction of *N*-acetyl-DL-serine nitrile (**Ac-Ser-CN**; 100 mM) and *N*-acetyl-L-threonine nitrile (**Ac-Thr-CN**; 100 mM) with *N*-acetylimidazole (**NAI**; 100 mM) after 1 h at pD 7 and room temperature.

Glycolaldehyde phosphate **GAP** (200 mM), sodium cyanide (3 equiv.) and ammonium chloride (5 equiv.) were dissolved in water and the solution was adjusted to pH 9.5 by addition of HCl/NaOH. The reaction was then was monitored by periodic acquisition of NMR spectra (Fig. S25a). DL-Phosphoserine nitrile **Sep-CN** was used without further purification. ¹H NMR (700 MHz, H₂O) δ 4.06 (1H, app. t, *J* = 5.4 Hz, H-(C2)), 3.90 (1H, ABXY, *J* = 10.5, 5.8, 5.4 Hz, H_a-(C3)), 3.86 (1H, ABXY, *J* =, 10.5, 5.8, 5.4 Hz, 1 H). ¹³C NMR (176 MHz, H₂O) δ 122.0 (C1), 65.4 (d, *J* = 4.0 Hz, C3), 44.5 (d, *J* = 8.4 Hz, C2). ³¹P NMR (284 MHz, H₂O ¹H decoupled) δ 4.0. (*33*)

Acetylation of DL-phosphoserine nitrile

A solution of DL-phosphoserine nitrile **Sep-CN** (100 mM, pH 7.0) was sparged with argon for 15 minutes before potassium hexacyanoferrate(III) (K₃[Fe(CN)₆];10 equiv.) and potassium thioacetate (5 equiv.) were added. The solution was stabilised at pH 7.0 by addition of HCI/NaOH and then incubated at room temperature. After 1 h the reaction was centrifuged and the supernatant analysed by NMR spectroscopy (Fig. S25b). The formation of **Ac-Sep-CN** was observed in 80% yield.

Fig. S25. ¹H NMR spectra (700 MHz, H₂O, noesygppr1d, 1.00–6.00 ppm) to show: **a**) the formation of **Sep-CN** from the reaction of glycolaldehyde phosphate **GAP** (200 mM), sodium cyanide (1.2 equiv.) and ammonia (5 equiv.) at room temperature and pH 9.5 after 6 d; **b**) the reaction of **Sep-CN** (100 mM) with potassium thioacetate (5 equiv.) and potassium hexacyanoferrate(III) (K_3 [Fe(CN)₆];10 equiv.) at pH 7.0.

Preparative synthesis and isolation of N-acetyl-phospho-DL-serine nitrile

Glycolaldehyde phosphate **GAP** (200 mM, 1 mmol), sodium cyanide (3 equiv.) and ammonium chloride (5 equiv.) were dissolved in water at pH 9.5 and stirred for 6 d. The solution was then cooled to 0 °C and acetic anhydride (25 equiv.) was added. The resulting solution was stirred for 20 min at 0 °C, before a second batch of acetic anhydride (12 equiv.) was added. The solution was then stirred at 0 °C for 30 min. The solution was then warmed to room temperature and lyophilised. The residue was the purified by ion exchange chromatography (formate (CO_2H^-) form, prepared from Dowex[®] 50W×8 ion-exchange resin (200-400 mesh, Cl⁻ form), eluting with a 0.1 M to 1 M gradient of ammonium formate at pH 4.0). The fractions that contained **Ac-Sep-CN** (0.4 M and 0.5 M formate) were lyophilised to give a white solid (0.43 mmol, 43%). ¹H NMR (700 MHz, H₂O) δ 5.02–4.93 (1H, m, H-(C2)), 4.11–4.06 (1H, m, H_a-(C3)), 4.06–4.02 (1H, m, H_b-(C3)), 2.06 (3H, s, CH₃). ¹³C NMR (176 MHz, H₂O) δ 174.1 (CO), 117.7 (C1), 62.8 (d, *J* = 4.5 Hz, C3), 42.4 (d, *J* = 7.3 Hz, C2), 21.8 (d, *J* = 16.2 Hz, CH₃). ³¹P NMR (284 MHz, H₂O, pH 4, ¹H decoupled) δ 1.76. HRMS-ESI [M+H⁺]⁺ calculated for formula C₅H₁₀N₂O₅P⁺, 209.0322; found 209.0327.

S34

Fig. S27. ^{13}C NMR (176 MHz, H2O, 0 – 220 ppm) spectrum to show <code>Ac-Sep-CN</code>.

N-Acetyl-L-serinamide **Ac-Ser-NH**₂ (146 mg, 1.00 mmol) and *N*-acetyl imidazole (450 mg, 4.08 mmol) were dissolved in water (10 mL) and the solution was adjusted to pH 8 with 4 M HCl. The solution was maintained at pH 8 until all *N*acetylimidazole had dissolved. The reaction was incubated for 4 h at room temperature and then lyophilised. The lyophilite was then purified by flash column chromatography (SiO₂; eluting with petroleum ether/ethyl acetate 9:1 to 0:1, followed by ethyl acetate/methanol 100:0 to 1:1) to yield *N*, *O*-diacetyl-L-serinamide **Ac-Ser**^{Ac}-**NH**₂ as a white solid which was contaminated with imidazole. The crude solid was dissolved in water and H⁺-Dowex® was added until the solution was observed to be at pH 3.2. The solution was filtered then and concentrated *in vacuo* to give **Ac-Ser**^{Ac}-**NH**₂ as a white solid (141 mg) that was contaminated with residual **Ac-Ser-NH**₂ (3%) and acetate ($^{-}CO_2CH_3$, 58%). The compound was used without further purification. ¹H NMR (700 MHz, D₂O) δ 4.62 (1H, dd, *J* = 5.4, 4.1 Hz, H-(C2)), 4.44 (1H, ABX, *J* = 11.6, 5.4 Hz, H_a-(C3)), 4.32 (1H, ABX, *J* = 11.6, 4.1 Hz, H_b-(C3)), 2.09 (3H, s, CH₃CO₂), 2.05 (3H, s, CH₃CONH). ¹³C NMR (176 MHz, H₂O) δ 174.5 (CH₃CONH), 173.8 (C1), 173.6 (CH₃CO₂), 63.6 (C3), 52.6 (C2), 21.8 (CH₃CO₂), 20.1 (CH₃CONH). IR (cm⁻¹): 3165, 3061, 1744, 1671, 1657, 1559. HRMS-ESI [M+H⁺]⁺ calculated for formula C₇H₁₃N₂O₄⁺, 189.0867; found 189.0875.

Fig. S29. 13 C NMR (176 MHz, H₂O, 0 – 220 ppm) spectrum to show **Ac-Ser^{Ac}-CN**.

Synthesis of N-acetyldehydroalanine nitrile from N,O-diacetyl-DL-serine nitrile in water

N,*O*-Diacetyl-DL-serine nitrile **Ac-Ser**^{Ac}-**CN** (500 mg, 2.94 mmol) was dissolved in water at pH 8. The solution pH was monitored and periodically readjusted to pH 8 with NaOH. After 4 d the reaction composition was **Ac-Dha-CN:Ac-Ser**^{Ac}-**CN:Ac-Ser-CN** 85:10:5. The reaction was lyophilised and the residue was purified by flash column chromatography (SiO₂; eluting with a gradient of petroleum ether/ethyl acetate 9:1 to 1:9). *N*-Acetyldehydroalanine nitrile **Ac-Dha-CN** was obtained as a colourless solid (213 mg, 66%). ¹H NMR (700 MHz, D₂O) δ 5.84 (1H, s, H_a-(C3)), 5.73 (1H, s, H_b-(C3)), 2.05 (1H, s, 3H, COCH₃). ¹³C NMR (176 MHz, D₂O) δ 173.4 (<u>C</u>OCH₃), 121.5 (C3), 116.0 (C2), 115.6 (C1), 22.7 (CO<u>C</u>H₃). IR (cm⁻¹) 2925, 2359, 2349, 1599. HRMS-ESI [M+H⁺]⁺ calculated for formula C₅H₇N₂O⁺, 111.0553; found 111.0548.

Fig. S30. ¹H NMR spectra (700 MHz, H₂O, noesygppr1d, 1.00–6.00 ppm) to show: a) *N*,*O*-diacetyl-DL-serine nitrile **Ac-Ser^{Ac}-CN** (100 mM) at pH 7; b) incubation of **Ac-Ser^{Ac}-CN** (100 mM) at pH 8 for 3 d; c) incubation of **Ac-Ser^{Ac}-CN** (100 mM) at pH 8 for 4 d.

Fig. S32. 13 C NMR (176 MHz, D₂O, 0–220 ppm) spectrum to show *N*-acetyldehydroalanine nitrile **Ac-Dha-CN**.

Synthesis of N-acetyldehydroalanine nitrile from N-acetyl-O-phospho-DL-serine nitrile in water

1. phosphate buffer (500 mM), pH 7, 60 $^{\rm o}{\rm C}$ 2. MgCl_2 (250 mM), pH 7, 60 $^{\rm o}{\rm C}$

N-Acetyl-*O*-phospho-DL-serine nitrile **Ac-Sep-CN** (50 mM) was dissolved in phosphate buffer (500 mM) (condition 1) or magnesium chloride solution (MgCl₂; 250 mM) at pH 7 (condition 2). The resulting solutions were heated at 60 °C and monitored periodically by NMR spectroscopy. The formation of **Ac-Dha-CN** (8%) was observed in phosphate buffer after 3 d (Fig. S33b). The formation of **Ac-Dha-CN** (24%) was also observed in the presence of MgCl₂ (Fig. S33c) after 24h.

Fig. S33. ¹H NMR spectra (700 MHz, H₂O, noesygppr1d, 1.00–6.00 ppm) to show: **a**) **Ac-Sep-CN** (50 mM) in phosphate buffer at pH 7 and room temperature; **b**) incubation of **Ac-Sep-CN** (50 mM) in phosphate buffer (500 mM) at pH 7 and 60 °C for 3 d; **c**) incubation of **Ac-Sep-CN** (50 mM) in magnesium chloride solution (MgCl₂; 250 mM) at pH 7 and 60 °C for 24 h.

N,*O*-Diacetyl-L-serinamide **Ac-Ser**^{Ac}-**NH**₂ (100 mM) was dissolved in water at pH 8. The reaction was monitored by periodic NMR spectroscopy. The solution pH was monitored and maintained at pH 8. Ester hydrolysis of **Ac-Ser**^{Ac}-**NH**₂ to *N*-acetyl-L-serinamide **Ac-Ser-NH**₂ (35%) predominated after 6 h, with only trace amounts of *N*-acetyl-L-dehydroalaninamide **Ac-Dha-NH**₂ (<1%) present (Fig. S34), as observed by Jencks and co-workers (*32*). A minor species was observed but not characterised (•) (3%). This was also observed during the incubation of *N*-acetyl-DL-serine nitrile **Ac-Ser**^{Ac}-**CN** and **Ac-Ser**^{Ac}-**NH**₂ at pH 8.0 (Fig. S35).

Fig. S34. ¹H NMR spectra (700 MHz, H₂O, noesygppr1d, 1.00–6.00 ppm) to show: **a**) Ac-Ser^{Ac}-NH₂ (100 mM) at pH 7; **b**) incubation of Ac-Ser^{Ac}-NH₂ (100 mM) at pH 8 for 6 h.

N-Acetyldehydroalanine nitrile formation from N,O-diacetyl-DL-serine nitrile in the presence of N,O-diacetyl-Lserinamide

N,O-Diacetyl-DL-serine nitrile **Ac-Ser**^{Ac}-**CN** (100 mM) and *N*,O-diacetyl-L-serinamide **Ac-Ser**^{Ac}-**NH**₂ (100 mM) were dissolved in water and the solution was adjusted to pH 8 with HCl/NaOH. The reaction was monitored periodically by NMR spectroscopy and the solution maintained at pH 8 with periodic addition of 0.1 M NaOH. After 24 h, the conversion of **Ac-Ser**^{Ac}-**CN** to **Ac-Dha-CN** (77%) was observed. **Ac-Ser**^{Ac}-**NH**₂ underwent ester hydrolysis to give **Ac-Ser-NH**₂ (25%) (Fig. S35), as observed by Jencks and co-workers (32). A minor species was observed but not characterised (•) (19%). This was also observed during the incubation of **Ac-Ser**^{Ac}-**NH**₂ only at pH 8.0 (see Fig. S34).

Fig. S35. ¹H NMR spectra (600 MHz, H₂O, noesygppr1d, 1.00–6.00 ppm) to show: a) Ac-Ser^{Ac}-CN (100 mM) and Ac-Ser^{Ac}-NH₂ (100 mM) at pH 7; b) incubation of Ac-Ser^{Ac}-CN (100 mM) and Ac-Ser^{Ac}-NH₂ (100 mM) at pH 8 after 8 h; c) incubation of Ac-Ser^{Ac}-CN (100 mM) and Ac-Ser^{Ac}-NH₂ (100 mM) at pH 8 after 16 h; d) incubation of Ac-Ser^{Ac}-CN (100 mM) and Ac-Ser^{Ac}-CN (100 mM) at pH 8 after 24 h.

Addition of hydrogen sulfide to N-acetydehydroalanine nitrile

N-Acetyldehydroalanine nitrile **Ac-Dha-CN** (60 mM) was dissolved in water and the solution sparged with argon for 30 min. Sodium hydrosulfide (NaSH·×H₂O; 10 equiv.) was then added, the solution was adjusted to the specified pH with HCI/NaOH, and the reactions were incubated at room temperature. The reaction mixtures were analysed by NMR spectroscopy after 4 h. The formation of *N*-acetyl-DL-cysteine thioamide **Ac-Cys-SNH**₂ (>95%) was observed (Fig. S36). ¹H NMR 700 MHz, D₂O) δ 4.42 (dd, *J* = 7.9, 4.7 Hz, 1H, H-(C2)), 3.00 (ABX, *J* = 13.2, 4.7 Hz, 1H, H_a-(C3)), 2.84 (ABX, *J* = 13.2, 7.9 Hz, 1H, H_b-(C3)), 2.09 (s, 3 H, CH₃). ¹³C NMR (176 MHz, H₂O) δ 205.3 (C1), 174.1 (<u>C</u>O), 64.6 (C2), 29.7 (C3), 22.0 (CH₃).

Fig. S36. ¹H NMR spectra (700 MHz, H₂O, noesygppr1d, 1.00–6.00 ppm) to show: **a**) **Ac-Dha-CN** (60 mM) at pH 7.0; **b**) the reaction of **Ac-Dha-CN** (60 mM) with NaSH (10 equiv.) at room temperature and pH 9 after 4 h.

Fig. S37. ¹H–¹³C HMBC (¹H: 700 MHz [1.00-6.00 ppm], ¹³C: 176 MHz [0-220 ppm], H₂O) to show the reaction of **Ac-Dha-CN** (60 mM) with NaSH (10 equiv.) at room temperature and pH 9 after 4 h showing the diagnostic ¹J_{CH} and ²J_{CH} coupling of Cys-(C3)–H₂ of **Ac-Cys-SNH₂** at 2.78–3.07 ppm with the Cys-(C3) and Cys-(C2) resonances at 29.7 ppm and 64.6 ppm, respectively.

Ac-Dha-CN (100 mM) and thioacetic acid (**AcSH**, 4 equiv.) were incubated in phosphate buffer (500 mM, pH 7). The resulting solution was periodically analysed by NMR spectroscopy. Quantitative (>95%) conversion to *N*,S-diacetyl-DL-cysteine nitrile **Ac-Cys^{Ac}-CN** was observed after 12 h (Fig. S38).

Fig. S38. Stacked ¹H NMR (600 MHz; H₂O, noesygppr1d) spectra to show the formation of *N*,S-diacetyl-DL-cysteine nitrile (**Ac-Cys^{Ac}-CN**) by reaction of *N*-acetyldehydroalanine nitrile (**Ac-Dha-CN**; 100 mM) with thioacetic acid (**AcSH**; 400 mM) in phosphate buffer (500 mM) at pH 7 and room temperature. **a** = 10 min; **b** = 2 h; **c** = 12 h.

Addition of hydrogen sulfide to N,S-diacetyl-DL-cysteine nitrile

N,S-DiacetyI-DL-cysteine nitrile **Ac-Cys^{Ac}-CN** (50 mM) was dissolved in water and the solution was sparged with argon for 30 min. The solution was adjusted to pH 9.0 with HCI/NaOH. Sodium hydrosulfide (NaSH·×H₂O; 10 equiv.) was then added at pH 9 at room temperature, and the reaction was monitored periodically by NMR spectroscopy. The thiolysis of **Ac-Cys^{Ac}-CN** to **Ac-Cys-CN** (58%) and thioacetate **AcS**⁻ was observed after 1.5 h, alongside *N*-acetyI-DL-cysteine thioamide **Ac-Cys-SNH**₂. Further incubation led to **Ac-Cys-SNH**₂ (95%) after 4 h (Fig. S40).

Fig. S39. ¹H NMR spectra (700 MHz, H₂O, noesygppr1d, 1.00–6.00 ppm) to show: **a**) Ac-Cys^{Ac}-CN (50 mM); **b**) the reaction of Ac-Cys^{Ac}-CN (50 mM) with NaSH (10 equiv.) at pH 9 and room temperature after 1.5 h; **c**) the reaction of Ac-Cys^{Ac}-CN (50 mM) with NaSH (10 equiv.) at pH 9 and room temperature after 4 h.

Preparative synthesis and isolation of N,S-diacetyl-DL-cysteine nitrile

N-Acetyldehydroalanine nitrile **Ac-Dha-CN** (74 mg, 0.67 mmol) was dissolved in 500 mM phosphate buffer (pH 7, 6.7 mL) and thioacetic acid (189 μ L, 0.27 mmol) was added. The reaction was incubated at room temperature and monitored by ¹H NMR spectroscopy until quantitative conversion of **Ac-Dha-CN** to *N*,S-diacetyl-DL-cysteine nitrile **Ac-Cys^{Ac}-CN** was observed (12 h). The solution was then extracted with ethyl acetate (4 × 10 mL). The combined organics were washed with water (10 mL), dried over anhydrous sodium sulfate, filtered, and concentrated *in vacuo* to give *N*,S-diacetyl-DL-cysteine nitrile **Ac-Cys^{Ac}-CN** (124 mg, quantitative) as a light brown oil, which became a waxy solid upon standing at 4 °C. ¹H NMR (700 MHz, H₂O/D₂O 9:1) δ 4.95 (1H, app.q, *J* = 7.2 Hz, (C2)–H), 3.40 (1H, ABX, *J* = 14.2, 6.7 Hz, (C3)–H_a), 3.31 (1H, ABX, *J* = 14.2, 7.2 Hz, (C3)–H_b), 2.39 (3H, s, SCOCH₃), 1.98 (3H, s, NCOCH₃). ¹³C NMR (176 MHz, H₂O/D₂O 9:1) δ 199.5 (**C**OS), 174.5 (**C**ONH), 118.3 (C1), 41.54 (C2), 30.7 (C3), 30.4 (SCO**C**H₃), 22.3 (NCO**C**H₃). IR (cm⁻¹) 3331, 3256, 2245, 1692, 1661, 1527. HRMS-ESI [M+H⁺]⁺ calculated for formula C₇H₁₁N₂O₂S⁺, 187.0536; found 187.0531.

Fig. S40. ¹H NMR (700 MHz, H₂O/D₂O, 9:1, 1.5–6.0 ppm, noesygppr1d) spectrum to show N,S-diacetyl-DL-cysteine nitrile (Ac-Cys^{Ac}-CN).

Fig. S41. ¹³C NMR (176 MHz, H₂O/D₂O, 9:1, 0–220 ppm, noesygppr1d) spectrum to show *N*,S-diacetyl-DL-cysteine nitrile (Ac-Cys^{Ac}-CN).

Preparative synthesis and isolation of N-acetyl-DL-cysteine thioamide

N,S-Diacetyl-DL-cysteine nitrile **Ac-Cys^{Ac}-CN** (115 mg, 0.62 mmol) and sodium hydrosulfide hydrate (NaSH·×H₂O; 692 mg, 6.18 mmol) were dissolved in 1 M borate buffer (BBS; pH 9.3, 12.4 mL). The reaction was stirred at room temperature for 1 h. The formation of a white precipitate was observed (assumed to be a sodium borate salt). Tris(2-carboxyethyl)phosphine hydrochloride (**TCEP**·HCl; 177 mg, 1. equiv.) was added and the reaction stirred for 30 min. The solution was decanted from the white precipitate, and the filtrate was extracted with ethyl acetate (3×25 mL). The combined organic layers were washed with water (10 mL), dried over anhydrous sodium sulfate, filtered, and concentrated *in vacuo* to give *N*-acetyl-DL-cysteine thioamide **Ac-Cys-SNH**₂ (81 mg) as an off-white gum. ¹H NMR (700 MHz, D₂O, noesygppr1d) δ 4.70 (ABX, J = 5.8, 6.7 Hz, 1H, (C2)–H), 3.01 (dd, J = 5.8, 14.1 Hz, 1H, (C3)–H_a), 2.98 (dd, J = 6.7, 14.1 Hz, 1H, (C3)–H_b), 2.05 (s, 3H, COCH₃). ¹³C NMR (176 MHz, D₂O) δ 206.1 (C1), 175.0 (**C**OCH₃), 61.9 (C2), 28.2 (C3), 22.4 (CO**C**H₃). HRMS-ESI [M–H]⁻ calculated for C₅H₉N₂OS₂ 177.0156; observed 177.0158.

Fig. S42. ¹H NMR (700 MHz, D₂O, 1.5–5.0 ppm, noesygppr1d) spectrum to show *N*-acetyl-DL-cysteine thioamide (Ac-Cys-SNH₂).

Fig. S43. ¹³C NMR (176 MHz, D₂O, 0–220 ppm) spectrum to show *N*-acetyl-DL-cysteine thioamide (Ac-Cys-SNH₂).

Preparative synthesis and isolation of N-acetyl-DL-cysteine nitrile

Ammonium hydroxide (25%; 275 µL) was added to *N*,S-diacetyl-DL-cysteine nitrile **Ac-Cys^{Ac}-CN** (111 mg; 0.60 mmol) in D₂O (10 mL). The reaction was incubated at room temperature and monitored by NMR spectroscopy. The conversion of **Ac-Cys^{Ac}-CN** to *N*-acetyl-DL-cysteine nitrile **Ac-Cys-CN** (77%) was observed within 10 min. The reaction solution was adjusted from pD 10.0 to pD 7.0 with 4M HCl and concentrated *in vacuo* (T_{bath} = 30 °C). The residue was extracted with dichloromethane (5 mL) and the organic extract was directly loaded onto a silica gel and purified by flash column chromatography (SiO₂; pet. ether (40-60):EtOAc; 25:75→0:100), to give *N*-acetyl-DL-cysteine nitrile **Ac-Cys-CN** (36 mg, 42%) as a colourless oil, which became a glassy solid upon storage at 4 °C. ¹H NMR (400 MHz, D₂O, noesygppr1d) δ 4.89 (app. q, *J* = 6.9 Hz, 1H, (C2)–H), 2.95 (d, *J* = 6.9 Hz, 1H, (C3)–H₂), 2.00 (s, 3H, COCH₃). ¹³C NMR (176 MHz, D₂O δ 174.7 (**C**OCH₃), 118.7 (C1), 44.8 (C2), 26.4 (C3), 22.4 (CO**C**H₃). HRMS-ESI [M+H]⁺ calculated for C₅H₉N₂OS 145.0430; observed 145.0431. IR (cm⁻¹): 3242, 3051, 2245, 1648, 1636, 1540.

Fig. S44. ¹H NMR (700 MHz, D₂O, 1.5–5.2 ppm, noesygppr1d) spectrum to show the formation of *N*-acetyl-DL-cysteine nitrile(**Ac-Cys-CN**) after incubation of *N*,S-diacetyl-DL-cysteine nitrile (**Ac-Cys^{Ac}-CN**; 60 mM) with ammonia (360 mM) after 10 min at room temperature.

Fig. S45. ¹H NMR (400 MHz, D₂O, 1.5–5.5 ppm, noesygppr1d) spectrum to show *N*-acetyl-DL-cysteine nitrile(**Ac-Cys-CN**).

Incubation of N,S-diacetyl-DL-cysteine nitrile with hydrogen sulfide

A solution of *N*,S-diacetyl-DL-cysteine nitrile **Ac-Cys^{Ac}-CN** (50 mM) and sodium hydrosulfide (NaSH•×H₂O; 500 mM) was adjusted to pH 9.0 with 4M HCl/NaOH. The reaction was incubated at room temperature and monitored by NMR spectroscopy. The conversion of **Ac-Cys^{Ac}-CN** to *N*-acetyl-DL-cysteine thioamide **Ac-Cys-SNH**₂ (>95%) was observed after 16 h, followed by the gradual hydrolysis to a mixture of **Ac-Cys-SH** (25%) and **Ac-Cys-NH**₂ (12%), with **Ac-Cys-SNH**₂ (40%) remaining after 6 d (Fig. S47 and Fig. S48).

Data for Ac-Cys-SH

^{SH} ^IH NMR (700 MHz, H₂O) δ 4.32 (ddd, J = 1.1, 3.8, 9.5 Hz, 1H, Cys-(C2)–H), 3.05 (ddd, J = 1.3, 3.8, 13.1 Hz, 1H, Cys-(C3)–H), 2.72 (ddd, J = 1.3, 9.5, 13.1 Hz, 1H, Cys-(C3)–H'), 2.07 (d, J = 1.1 Hz, 3H, COCH₃).

Data for N-acetyl-DL-cysteine thioamide Ac-Cys-SNH2

¹H NMR (700 MHz, H₂O) δ 4.44 (ddd, J = 1.1, 4.9, 7.9 Hz, 1H, Cys-(C2)–H), 3.00 (ddd, J = 1.3, 4.9,
¹NH₂ 13.1 Hz, 1H, Cys-(C3)–H), 2.86 (ddd, J = 1.3, 7.9, 13.1 Hz, 1H, Cys-(C3)–H'), 2.10 (d, J = 1.1 Hz, 3H, COCH₃).

Data for N-acetyI-DL-cysteineamide Ac-Cys-NH2

^{SH} ¹H NMR (700 MHz, H₂O) δ 4.17 (ddd, J = 1.1, 5.1, 7.5 Hz, 1H, Cys-(C2)–H), 2.90 – 2.87 (obs., Cys-NH₂ (C3)–H), 2.80 (ddd, J = 1.5, 7.5, 13.2 Hz, 1H, Cys-(C3)–H'), 2.09 (d, J = 1.5 Hz, 3H, COCH₃).

Fig. S47. ¹H NMR (700 MHz, H₂O, noesygppr1d, 1.50–5.50 ppm) to show the reaction of **Ac-Cys^{Ac}-CN** (50 mM) with NaSH (500 mM) in water after a) 16 h, and b) 6 d.

Fig. S48. ${}^{1}H-{}^{13}C$ HMBC (${}^{1}H-700$ MHz [1.50–5.50 ppm], ${}^{13}C-176$ MHz [150–240 ppm], H₂O) spectrum showing the diagnostic ${}^{2}J_{CH}$ coupling of Cys-(C2)–H at 4.32 ppm, and ${}^{3}J_{CH}$ coupling of Cys-(C3)–H and Cys-(C3)–H' at 3.05 ppm and 2.72 ppm, with a thiocarbonyl resonance at 220.8 ppm. See Fig. S47 for expanded and labelled ${}^{1}H$ NMR spectrum.

Hydrolysis of N,S-diacetyl-DL-cysteine nitrile

N,S-Diacetyl-DL-cysteine nitrile **Ac-Cys^{Ac}-CN** (50 mM) was dissolved in water and adjusted to pH 1.5 by addition of 4 M HCl. The resulting solution was heated at 60 °C for 2 d and then analysed by NMR spectroscopy. A mixture of DL-cysteine **Cys** (7%), DL-cysteinamide **Cys-NH**₂ (10%), *N*-acetyl-DL-cysteine **Ac-Cys-OH** (26%), and *N*-acetyl-DL-cysteinamide **Ac-Cys-NH**₂ (27%) was observed. *N*-Acetyl-DL-cysteine (**Ac-Cys-OH**) and DL-cysteine (**Cys**) were authenticated by sample spiking with authentic commercial standards.

Fig. S49. ¹H NMR spectra (400 MHz, H₂O, noesygppr1d, 1.00–6.00 ppm) to show: **a**) the incubation of **Ac-Cys^{Ac}-CN** (50 mM) at pH 1.5 and 60 °C after 2 d; **b**) spike with commercial *N*-acetyl-L-cysteine (**Ac-Cys-OH**); **c**) spiking with commercial L-cysteine (**Cys**).

Sodium DL-2-acetamido-3-methylbutanethioate (4) **Ac-Val-S⁻Na**⁺ (9.9 mg; 0.05 mmol) and DL-serine nitrile **Ser-CN** 8.6 mg; 0.10 mmol) were dissolved in D₂O (1 mL). The solution was adjusted to pD 9.0 with 4M NaOH. Potassium hexacyanoferrate (III) (49 mg; 0.15 mmol) was added and the reaction was stirred for 20 min. The reaction was concentrated *in vacuo*. The residue was triturated with dichloromethane (3 × 5 mL). The dichloromethane layers were concentrated *in vacuo* and the residue purified by flash column chromatography (SiO₂; EtOAc:MeOH (100:0 \rightarrow 80:20) to give a diastereoisomeric mixture of *N*-acetyl-DL-valinyl-DL-serine nitrile **Ac-Val-Ser-CN** (9.1 mg; 80%) as a white solid. ¹H NMR (700 MHz, D₂O, noesygppr1d) (2 diastereoisomers) δ 4.90 (m, 2H, Ser-(C2)–H), 4.07 (d, *J* = 7.0 Hz, 1H, Val-(C2)–H), 3.90 - 3.81 (m, 4H, Ser-(C3)–H₂), 2.11 - 2.04 (m, 2H, Val-(C3)–H), 2.03 (s, 3H, COCH₃), 2.02 (s, 3H, COCH₃), 0.96 - 0.91 (m, 12H, Val-(C4)–H₃, Val-(C4')–H₃). ¹³C NMR (176 MHz, D₂O) (2 diastereoisomers) δ 175.1 (**C**OCH₃), 175.1 (**C**OCH₃), 174.4 (Val-(C1)), 174.4 (Val-(C1)), 118.0 (Ser-(C1)), 118.0 (Ser-(C1)), 61.0 (Ser-(C3)), 61.0 (Ser-(C3)), 60.2 (Val-(C2)), 60.1 (Val-(C2)), 43.6 (2 × Ser-(C2)), 30.7 (Val-(C3)), 30.5 (Val-(C3)), 22.1 (2 × COCH₃), 18.8 (Val-(C4)), 18.7 (Val-(C4')), 18.2 (Val-(C4')), 18.1 (Val-(C4')). HRMS-ESI [M+H]⁺ calculated for C₁₀H₁₀N₃O₃ 228.1343; observed 228.1343. IR (cm⁻¹): 3283, 2964, 2937, 2410, 1633, 1540.

Fig. S50. ¹H NMR (700 MHz, D₂O, 0.5–5.0 ppm, noesygppr1d) spectrum to show *N*-acetyl-DL-valinyl-DL-serine nitrile (Ac-Val-Ser-CN).

Fig. S51. ¹³C NMR (176 MHz, D₂O, 0–220 ppm) spectrum to show *N*-acetyl-DL-valinyl-DL-serine nitrile (Ac-Val-Ser-CN).

Acetylation of N-acetyl-DL-valinyl-DL-serine nitrile with thioacetate

A solution of *N*-acetyl-DL-valinyl-DL-serine nitrile **Ac-Val-Ser-CN** (25 mM; 5.7 mg, 0.025 mmol) and potassium thioacetate (**AcSK**; 28.6 mg, 0.25 mmol) in D₂O (1 mL) was adjusted to pD 7.0 with HCl/NaOH. Potassium hexacyanoferrate(III) (K₃[Fe(CN)₆]; 164 mg, 0.50 mmol) was added and the reaction was stirred rapidly whilst maintaining the solution at pD 7 with 0.5 M NaOH. After 1 h the reaction was centrifuged and the supernatant analysed by NMR spectroscopy. Complete conversion of **Ac-Val-Ser-CN** to a diastereoisomeric mixture of *N*,O-diacetyl-DL-valinyl-DL-serine nitrile **Ac-Val-Ser-CN** was confirmed by the disappearance of the Ser-(C3)–H₂ of **Ac-Val-Ser-CN** (Fig. S52.) The reaction mixture was lyophilised and the residue purified by flash column chromatography (SiO₂; EtOAc:MeOH (100:0 \rightarrow 80:20) to give a mixture of diastereoisomers of *N*,O-diacetyl-DL-valinyl-DL-serine nitrile **Ac-Val-Ser-CN** (combined isolated material = 5.2 mg; >77%) (Fig. S53–Fig. S57).

Fig. S52. ¹H NMR (700 MHz, D₂O, 0.5–5.5 ppm, noesygppr1d) spectrum to show a diastereoisomeric mixture of *N*,O-diacetyl-DL-valinyl-DL-serine nitrile **Ac-Val-Ser^{Ac}-CN** obtained after the reaction of *N*-acetyl-DL-valinyl-DL-serine nitrile **Ac-Val-Ser-CN** (25 mM) with potassium thioacetate (250 mM) and K₃[Fe(CN)₆] at pD 7.0. The disappearance of Ser-(C3)–H₂ of **Ac-Val-Ser-CN** in the 3.50-4.00 ppm region upon (C3)–OH acetylation results in a discernable lower field resonance of the (C3)–H₂ region of **Ac-Val-Ser^{Ac}-CN** at 4.42–4.52 ppm, which is highlighted with the dotted box and lines.

Data for N,O-Diacetyl-DL-valinyl-DL-serine nitrile **Ac-Val-Ser**^{Ac}-**CN**–(A) (diastereoisomer A (major diastereoisomer in Fig. S53))

¹H NMR (700 MHz, D₂O) δ 5.17 (dd, *J* = 5.0, 5.8 Hz, 1H, Ser-(C2)–H), 4.42 (ABX, *J* = 5.8, 11.4 Hz, 1H, Ser-(C3)–H), 4.38 (ABX, *J* = 5.0, 11.4 Hz, 1H, Ser-(C3)–H)', 4.04 (d, *J* = 7.1 Hz, 1H, Val-(C2)–H), 2.12 (s, 3H, Ser-COCH₃), 2.09 - 2.03 (m, 1H, Val-(C3)–H), 2.02 (s, 3H, Val-COCH₃), 0.95 (d, *J* = 7.1 Hz, 3H, Val-(C4)–H₃), 0.94 (d, *J* = 7.1 Hz, 3H, Val-(C4)–H₃'). ¹³C NMR (176 MHz, D₂O) δ 175.01 (Val-COCH₃), 174.4 (Val-(C1)), 173.7, (Ser-COCH₃), 117.0 (Ser-(C1)), 62.8 (Ser-(C3)), 60.1 (Val-(C2)), 40.6 (Ser-(C2)), 30.6 (Val-(C3)), 22.1 (Val-COCH₃), 20.6 (Ser-COCH₃), 18.7 (Val-(C4)), 18.2 (Val-(C4')). HRMS-ESI for **Ac-Val-Ser^{Ac}-CN** [M+H]⁺ calculated for C₁₂H₂₀N₃O₄ 270.1448; observed 270.1448. IR (cm⁻¹): 3280, 3053, 2965, 2418, 1632, 1539.

Data for N,O-Diacetyl-DL-valinyl-DL-serine nitrile **Ac-Val-Ser^{Ac}-CN**–(B) (diastereoisomer B (minor diastereoisomer in Fig. S53))

¹H NMR (700 MHz, D₂O) δ 5.20 (dd, *J* = 4.9, 6.0 Hz, 1H, Ser-(C2)–H), 4.42 (ABX, *J* = 6.0, 11.4 Hz, 1H, Ser-(C3)–H), 4.39 - 4.36 (obs., 1H, Ser-(C3)–H)', 4.05 (d, *J* = 7.0 Hz, 1H, Val-(C2)–H), 2.12 (s, 3H, Ser-COCH₃), 2.08 - 2.03 (m, 1H, Val-(C3)–H), 2.03 (s, 3H, Val-COCH₃), 0.94 (d, *J* = 7.0 Hz, 3H, Val-(C4)–H₃), 0.92 (d, *J* = 7.0 Hz, 3H, Val-(C4)–H₃'). ¹³C NMR (176 MHz, D₂O) δ 175.03 (Val-COCH₃), 174.3 (Val-(C1)), 173.7, (Ser-COCH₃), 116.9 (Ser-(C1)), 62.9 (Ser-(C3)), 60.2 (Val-(C2)), 40.6 (Ser-(C2)), 30.5 (Val-(C3)), 22.1 (Val-COCH₃), 20.6 (Ser-COCH₃), 18.7 (Val-(C4)), 18.1 (Val-(C4')).

Data for N,O-Diacetyl-DL-valinyl-DL-serine nitrile Ac-Val-Ser^{Ac}-CN-(B) (Fig. S56)

¹H NMR (700 MHz, D₂O) δ 5.20 (dd, *J* = 4.9, 5.9 Hz, 1H, Ser-(C2)–H), 4.42 (ABX, *J* = 5.9, 11.4 Hz, 1H, Ser-(C3)–H), 4.37 (ABX, *J* = 4.9, 11.4 Hz, 1H, Ser-(C3)–H)', 4.05 (d, *J* = 7.0 Hz, 1H, Val-(C2)–H), 2.12 (s, 3H, Ser-COCH₃), 2.07 - 2.03 (m, 1H, Val-(C3)–H), 2.02 (s, 3H, Val-COCH₃), 0.93 (d, *J* = 7.0 Hz, 3H, Val-(C4)–H₃), 0.92 (d, *J* = 7.0 Hz, 3H, Val-(C4)–H₃'. ¹³C NMR (176 MHz, D₂O) δ 175.0 (Val-COCH₃), 174.3 (Val-(C1)), 173.8, (Ser-COCH₃), 116.9 (Ser-(C1)), 62.9 (Ser-(C3)), 60.2 (Val-(C2)), 40.6 (Ser-(C2)), 30.5 (Val-(C3)), 22.1 (Val-COCH₃), 20.6 (Ser-COCH₃), 18.7 (Val-(C4)), 18.1 (Val-(C4')).

Data for N-acetyl-DL-valinyldehydroalanine nitrile Ac-Val-Dha-CN (Fig. S56)

¹H NMR (700 MHz, D₂O, partial data) δ 5.92 (d, *J* = 1.8 Hz, 1H, Dha-(C3)–H), 5.83 (d, *J* = 1.8 Hz, 1H, 1H, Dha-(C3)–H'), 2.05 – 2.03 (m,1H, Val-(C3)–H), 2.03 (s, 3H, COCH₃), 0.96 (d, *J* = 4.7 Hz, 3H, Val-(C4)–H), 0.95 (d, *J* = 4.7 Hz, 3H, Val-(C4)–H'). ¹³C NMR (176 MHz, D₂O) δ 175.1 (CO), 173.3 (CO), 122.8 (Dha-(C3)), 115.6 (Dha-(C2)), 115.1 (Dha-(C1)), 60.4 (Val-(C2)), 30.6 (Val-(C3)), 22.1 (CO**C**H₃), 18.7 (Val-(C4)), 18.1 (Val-(C4')).

Fig. S53. ¹H NMR (700 MHz, D₂O, 0.5–5.2 ppm, noesygppr1d) spectrum to show a diastereoisomeric mixture of *N*,*O*-diacetyl-DL-valinyl-DL-serine nitrile **Ac-Val-Ser^{Ac}-CN** (**Ac-Val-Ser^{Ac}-CN**–(A): **Ac-Val-Ser^{Ac}-CN**–(B); 75:25) after flash chromatography of the crude mixture obtained from the reaction of **Ac-Val-Ser-CN** with thioacetate and K₃[Fe(CN)₆] at pD 7.0.

Fig. S54. ¹³C NMR (176 MHz, D₂O, 0–220 ppm, noesygppr1d) spectrum to show a diastereoisomeric mixture of *N*,*O*-diacetyl-DL-valinyl-DL-serine nitrile **Ac-Val-Ser^{Ac}-CN** (**Ac-Val-Ser^{Ac}-CN**–(A): **Ac-Val-Ser^{Ac}-CN**–(B)) after flash chromatography of the crude mixture obtained from the reaction of **Ac-Val-Ser-CN** with thioacetate and K₃[Fe(CN)₆] at pD 7.0.

Fig. S55. ¹H–¹³C HMBC (¹H–700 MHz [3.9–5.3 ppm], ¹³C–176 MHz [110–185 ppm], D₂O) spectrum showing diagnostic ³J_{CH} couplings of Ser-(C3)– H and Ser-(C3)–H' of both diastereoisomers of **Ac-Val-Ser^{Ac}-CN** between 4.36 and 4.42 ppm with Ser-C1 (CN) resonances at 117.0 ppm (major diastereoisomer A, **Ac-Val-Ser^{Ac}-CN**–(A)) and 116.9 ppm (minor diastereoisomer B, **Ac-Val-Ser^{Ac}-CN**–(B)), and at 173.7 ppm for the C=O resonance of Ser-**C**OCH₃. See Fig. S54 for the ¹H NMR spectrum.

Fig. S56. ¹H NMR (700 MHz, D₂O, 0.5–6.0 ppm, noesygppr1d) spectrum to show the minor diastereoisomer B *N*,O-diacetyl-DL-valinyl-DL-serine nitrile **Ac-Val-Ser^{Ac}-CN**–(B) and *N*-acetyl-DL-valinyldehydroalanine nitrile **Ac-Val-Dha-CN** after flash chromatography of the crude mixture obtained from the reaction of **Ac-Val-Ser-CN** with thioacetate and K_3 [Fe(CN)₆] at pD 7.0.

Fig. S57. ¹³C NMR (176 MHz, D₂O, 0–220 ppm, noesygppr1d) spectrum to show the minor diastereoisomer B *N*, *O*-diacetyl-DL-valinyl-DL-serine nitrile **Ac-Val-Ser**^{Ac}-**CN**–(B) and *N*-acetyl-DL-valinyldehydroalanine nitrile **Ac-Val-Dha-CN** after flash chromatography of the crude mixture obtained from the reaction of **Ac-Val-Ser-CN** with thioacetate and K₃[Fe(CN)₆] at pD 7.0.

Acetylation of N-acetyl-DL-valinyl-DL-serine nitrile with N-acetylimidazole

A solution of *N*-acetyl-DL-valinyl-DL-serine nitrile **Ac-Val-Ser-CN** (100 mM; 22.7 mg, 0.10 mmol) and *N*-acetyl imidazole (55 mg, 0.50 mmol) was adjusted to pH 7. The acetylation of **Ac-Val-Ser-CN** (>95%) to give a diastereoisomeric mixture of **Ac-Val-Ser^{Ac}-CN** (**Ac-Val-Ser^{Ac}-CN**-(A): **Ac-Val-Ser^{Ac}-CN**-(B); 62:38).) was observed after 2 h (Fig. S58).

Data for N,O-diacetyl-DL-valinyl-DL-serine nitrile **Ac-Val-Ser**^{Ac}-**CN**–(*A*) (major diastereoisomer A in Fig. S58) ¹H NMR (700 MHz, D₂O) δ 5.07 (dd, *J* = 5.2, 5.8 Hz, 1H, Ser-(C2)–H), 4.33 (ABX, *J* = 5.8, 11.4 Hz, 1H, Ser-(C3)–H), 4.28 (ABX, *J* = 5.2, 11.4 Hz, 1H, Ser-(C3)–H)'), 3.95 (d, *J* = 7.2 Hz, 1H, Val-(C2)–H), 2.02 (s, 3H, Ser-COCH₃), 1.99 -1.94 (m, 1H, Val-(C3)–H), 1.93 (s, 3H, Val-COCH₃), 0.85 (d, *J* = 7.2 Hz, 3H, Val-(C4)–H₃), 0.84 (d, *J* = 7.2 Hz, 3H, Val-(C4)–H₃').

Data for N,O-diacetyl-DL-valinyl-DL-serine nitrile **Ac-Val-Ser^{Ac}-CN**–(*B*) (major diastereoisomer A in Fig. S58) ¹H NMR (700 MHz, D₂O) δ 5.10 (dd, *J* = 5.0, 5.9 Hz, 1H, Ser-(C2)–H), 4.33 (ABX, *J* = 5.9, 11.4 Hz, 1H, Ser-(C3)–H), 4.28 (ABX, *J* = 5.0, 11.4 Hz, 1H, Ser-(C3)–H)'), 3.95 (d, *J* = 7.2 Hz, 1H, Val-(C2)–H), 2.02 (s, 3H, Ser-COCH₃), 1.99 -1.94 (m, 1H, Val-(C3)–H), 1.93 (s, 3H, Val-COCH₃), 0.85 – 0.84 (obs., 3H, Val-(C4)–H₃), 0.82 (d, *J* = 7.2 Hz, 3H).

Fig. S58. ¹H NMR (700 MHz, D₂O, 0.5–5.2 ppm, noesygppr1d) spectrum to show a diastereoisomeric mixture of *N*,O-diacetyl-DL-valinyl-DL-serine nitrile **Ac-Val-Ser^{Ac}-CN** (**Ac-Val-Ser^{Ac}-CN**–(A): **Ac-Val-Ser^{Ac}-CN**–(B); 38:67) obtained after the reaction of *N*-acetyl-DL-valinyl-DL-serine nitrile **Ac-Val-Ser-CN** (100 mM) with *N*-acetylimidazole (5 equiv.) at pD 7.0 and room temperature after 2 h.

Fig. S59. ${}^{1}H-{}^{13}C$ HMBC (${}^{1}H-700$ MHz [4.2–5.2 ppm], ${}^{13}C-176$ MHz [110–185 ppm], D₂O) spectrum showing diagnostic ${}^{3}J_{CH}$ couplings of Ser-(C3)– H and Ser-(C3)–H' of both diastereoisomers of **Ac-Val-Ser**^{Ac}-**CN** between 4.38 and 4.42 ppm with Ser-C1 (CN) resonances at 116.9 ppm (major diastereoisomer A) and 117.0 ppm (minor diastereoisomer B), and at 173.6 ppm for the C=O resonance of Ser-**C**OCH₃. See Fig. S58 for the ${}^{1}H$ NMR spectrum.

Synthesis of N-acetyl-DL-valinyldehydroalanine nitrile from N,O-diacetyl-DL-valinylserine nitrile in phosphate by acetic acid elimination

N,*O*-Diacetyl-DL-valinyl-DL-serine nitrile **Ac-Val-Ser^{Ac}-CN** (10 mM) was dissolved in phosphate buffer (500 mM) at pH 8. The reaction was incubated at room temperature and periodically analysed NMR spectroscopy. Conversion of **Ac-Val-Ser^{Ac}-CN** to a mixture of *N*,*O*-diacetyl-DL-valinyldehydroalanine nitrile **Ac-Val-Dha-CN** (90%) and *N*-acetyl-DL-valinyl-DL-serine nitrile **Ac-Val-Ser-CN** (10%) was observed after 4 d (Fig. S60).

Fig. S60. ¹H NMR (600 MHz, H₂O, noesygppr1d, 0.50–6.00 ppm) to show conversion of **Ac-Val-Ser**^{Ac}-**CN** (10 mM) to **Ac-Val-Dha-CN** at room temperature in phosphate buffer (pH 8; 500 mM) after a) 30 mins; b) 7 h; c) 24 h; d) 48 h; e) 96 h.

Synthesis of N-acetyl-DL-valinyldehydroalanine nitrile from N,O-diacetyl-DL-valinyl-DL-serine nitrile in water by acetic acid elimination

N,*O*-Diacetyl-DL-valinyl-DL-serine nitrile **Ac-Val-Ser^{Ac}-CN** (5.2 mg; 10 mM;) was dissolved in water (1.93 mL) at pH 8. The solution pH was monitored and periodically readjusted to pH 8 with 0.1 M NaOH. After 4 d the reaction composition was **Ac-Val-Dha-CN:Ac-Val-Ser^{Ac}-CN:Ac-Val-Ser-CN** 66:11:22.The reaction was lyophilised and the residue was purified by flash column chromatography (SiO₂; EtOAc (100%)) to give *N*-Acetyl-DL-valinyldehydroalanine nitrile **Ac-Val-Dha-CN** as a white gum (2.02 mg, 50%).

Data for N-acetyl-DL-valinyldehydroalanine nitrile Ac-Val-Dha-CN

 $\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ &$

NMR (176 MHz, D₂O) δ 175.1 (COCH₃), 173.3 (Val-(C1)), 122.8 (Dha-(C3)), 115.6 (Dha-(C2)), 115.1 (Dha-(C1), 60.4 (Val-(C2)), 30.6 (Val-(C3)), 22.1 (COCH₃), 18.7 (Val-(C4)), 18.1 (Val-(C4')). HRMS-ESI [M+H⁺]⁺ calculated for formula C₁₀H₁₆N₃O_{2⁺}, 210.1241; found 210.1237. IR (cm⁻¹): 3283, 3033, 2972, 1687, 1644, 1627.

Fig. S61. ¹H NMR (700 MHz, D₂O, 0.5–7.0 ppm, noesygppr1d) spectrum to show a *N*-acetyl-DL-valinyldehydroalanine nitrile **Ac-Val-Dha-CN** after flash column chromatography of the crude mixture obtained from the incubation of **Ac-Val-Ser^{Ac}-CN** at pH 8.0 for 4 d.

Fig. S62. ¹³C NMR (176 MHz, D₂O, 0–220 ppm) spectrum to show a *N*-acetyl-DL-valinyldehydroalanine nitrile **Ac-Val-Dha-CN** after flash column chromatography of the crude mixture obtained from the incubation of **Ac-Val-Ser**^{Ac}-**CN** at pH 8.0 for 4 d.

Addition of thioacetate to N-acetyl-DL-valinyldehydroalanine nitrile in phosphate buffer at pH 7

N-Acetyl-DL-valinyldehydroalanine nitrile **Ac-Val-Dha-CN** (24 mg; 0.12 mmol) was dissolved in phosphate buffer (2.28 mL; 500 mM, pH 7). Thioacetic acid **AcSH** (24.6 μ L; 0.34 mmol) was added and the resulting solution was incubated at room temperature and periodically analysed by NMR spectroscopy. Conversion to *N*,S-diacetyl-DL-valinyl-DL-cysteine nitrile **Ac-Val-Cys^{Ac}-CN** (>95%) was observed after 15 h (Fig. S63). The reaction mixture was concentrated *in vacuo* (T_{bath} = 30 °C). The residue was triturated with methanol (3 x 10 mL), and the combined methanolic solution was concentrated *in vacuo* and purified by flash column chromatography (SiO₂; EtOAc (100%)) to give *N*,S-diacetyl-DL-valinyl-DL-cysteine nitrile **Ac-Val-Cys^{Ac}-CN** (16 mg, 38%) as a colourless film (Fig. S64). ¹H NMR (700 MHz, D₂O) δ 5.01 - 4.96 (m, 2H, Cys-(C2)–H × 2), 4.04 (d, *J* = 6.7 Hz, 1H, Val-(C2)–H), 4.02 (d, *J* = 7.2 Hz, 1H, Val-(C2)–H), 3.47 - 3.33 (m, 4H, Cys-(C3)–H₂ × 2), 0.95 - 0.90 (m, 12H, Val-(C4)–H₃ × 2, Val-(C4')–H₃ × 2), 2.39 (s, 6H, SCOCH₃ × 2), 2.08 - 2.04 (m, 2H, Val-(C3)–H × 2), 2.04 (s, 3H, COCH₃), 2.03 (s, 3H, COCH₃). ¹³C NMR (176 MHz, D₂O) (2 diastereoisomers, 1:1) δ 199.5 (SCOCH₃), 199.4 (SCOCH₃), 175.0 (COCH₃), 175.0 (COCH₃), 174.3 (Val-(C1)), 117.9 (Cys-(C1)), 117.9 (Cys-(C1)), 60.2 (Val-(C2)), 60.2 (Val-(C2)), 41.2 (Cys-(C2)), 41.1 (Cys-(C2)), 30.6 (Cys-(C3)), 30.5 (Val-(C3)), 30.5 (Val-(C3)), 30.4 (SCOCH₃ × 2), 22.1 (COCH₃ × 2), 18.8 (Val-(C4)), 18.8 (Val-(C4')), 18.0 (Val-(C4')). HRMS-ESI [M+H⁺]⁺ calculated for C₁₂H₂₀N₃O₃S⁺, 286.1219; found 286.1220. IR (cm⁻¹): 3277, 2965, 2936, 2876, 2418, 1632, 1539.

Fig. S63. Stacked ¹H NMR (600 MHz; H₂O, noesygppr1d) spectra to show the formation of *N*,S-diacetyl-DL-valinyl-DL-cysteine nitrile (**Ac-Val-Cys^{Ac}-CN**) by reaction of *N*-acetyl-DL-valinyldehydroalanine nitrile (**Ac-Val-Dha-CN**; 50 mM) with thioacetic acid (**AcSH**; 150 mM) in phosphate buffer (500 mM) at pH 7 and room temperature. **a** = 10 min; **b** = 3 h; **c** = 12 h.

Fig. S64. ¹H NMR (700 MHz, D₂O, 0.5–55 ppm, noesygppr1d) spectrum to show *N*,S-acetyl-DL-valinyl-DL-cysteine nitrile (Ac-Val-Cys^{Ac}-CN).

Fig. S65. ¹³C NMR (176 MHz, D₂O, 0–220 ppm) spectrum to show *N*,*S*-acetyl-DL-valinyl-DL-cysteine nitrile (Ac-Val-Cys^{Ac}-CN).

Fig. S66. ${}^{1}H-{}^{13}C$ HMBC (${}^{1}H-700$ MHz [1.9–5.2 ppm], ${}^{13}C-176$ MHz [110–210 ppm], D₂O) spectrum showing diagnostic ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of Cys-(C2)–H of **Ac-Val-Cys^c-CN** at 4.96-5.01 ppm with CN resonances at 117.9 ppm and the Val-(C1) resonances at 174.3 ppm (shown in blue). Diagnostic ${}^{3}J_{CH}$ coupling of Cys-(C3)–H₂ at 3.33-3.47 pm with the thioester S**C**OCH₃ at 199.4 and 199.5 ppm are highlighted in red.
One-pot cysteine thioester-mediated aminonitrile acetylation

N-Acetyldehydroalanine nitrile **Ac-Dha-CN** (60 mM), potassium thioacetate (**AcSK**; 120 mM) and glycine nitrile (**Gly-CN**; 60 mM) were dissolved in phosphate buffer (500 mM, pH 7). The acetylation of Gly-CN was periodically monitored by acquisition of NMR spectra. Near-quantitative acetylation of glycine nitrile **Gly-CN** was observed after 3 d, to afford **Ac-Gly-CN** (81%) and **Ac-GlySNH**₂ (13%) (Fig. S67).

Fig. S67. ¹H NMR spectra (700 MHz, H₂O, noesygppr1d, 1.00–6.00 ppm) to show the reaction of **Ac-Dha-CN** (60 mM) with potassium thioacetate (**AcSK**; 120 mM) and **Gly-CN** (60 mM) in phosphate buffer (250 mM, pH 7.0) at room temperature after: **a**) 1 h; **b**) 4 h; **c**) 1 d; **d**) 3 d.

Synthesis of α -amidocysteines by coupling of α -amidonitriles with L-cysteine

General procedure

 α -Amidonitrile (Ac-AA-CN; 200 mM) and L-cysteine (Cys; 1–2 equiv.) were dissolved in water and the solution was adjusted to pH 9.5 with HCl/NaOH. The solution was stirred at room temperature for 1 – 4 h, until the complete consumption of Ac-AA-CN was observed to give a thiazoline intermediate Ac-AA-thiazoline. The solution was then adjusted to either (I) pH 1.5 and incubated at room temperature, (II) pH 7 and incubated at room temperature, (III) pH 7 and incubated at 60 °C. The reactions were incubated until complete consumption of Ac-AA-thiazoline was observed by NMR spectroscopy. The formation of Ac-AA-Cys-OH confirmed by NMR spectroscopy and high-resolution mass spectrometry.

N-Acetylglycyl-L-cysteine synthesis via thiazoline intermediate

Thiazoline formation from N-acetylglycine nitrile with L-cysteine

N-Acetyglycine nitrile (**Ac-Gly-CN**; 200 mM) and L-cysteine (**Cys**; 200 mM) were dissolved in H₂O/D₂O (9:1; 1 mL) and the solution was adjusted to pH 9.5 with HCl/NaOH. The solution was then stirred at room temperature for 1 h. Quantitative conversion to **Ac-Gly-thiazoline** was observed (Fig. S68 and Fig. S69). ¹H NMR (700 MHz ,H₂O:D₂O, 9:1, noesygppr1d) δ 4.95 (dddd, *J* = 1.6, 1.6, 8.2, 9.8 Hz, 1H, (C4)–H), 4.22 (dd, *J* = 1.6, 16.9 Hz, 1H, Gly-(C2)–H), 4.19 (dd, *J* = 1.6, 16.9 Hz, 1H, Gly-(C2)–H'), 3.63 (dd, *J* = 9.8, 11.2 Hz, 1H, (C5)–H), 3.40 (dd, *J* = 8.2, 11.2 Hz, 1H, (C5)–H'). ¹³C NMR (176 MHz, H₂O:D₂O, 9:1) δ 179.0 (C2), 175.2 (CO₂H), 174.6 (**C**OCH₃), 80.2 (C4), 42.1 (Gly-(C2)), 36.9 (C5), 22.4 (CO**C**H₃).

Fig. S68. ¹H NMR (700 MHz, H₂O/D₂O, 1.5–5.5 ppm, noesygppr1d) spectrum to show the formation of **Ac-Gly-thiazoline** from the reaction of *N*-acetylglycine nitrile (**Ac-Gly-CN**; 200 mM) with L-cysteine (**Cys**; 200 mM) at pH 9.5 and room temperature.

Fig. S69. ¹³C NMR (176 MHz, H₂O/D₂O (9:1), 0–220 ppm) spectrum to show the formation of **Ac-Gly-thiazoline** from the reaction of *N*-acetylglycine nitrile (**Ac-Gly-CN**; 200 mM) with L-cysteine (**Cys**; 200 mM) at pH 9.5 and room temperature.

Time course of **Ac-Gly-thiazoline** hydrolysis to N-acetylglycyl-L-cysteine **Ac-Gly-Cys-OH** at pH 7 and room temperature

Ac-Gly-thiazoline (200 mM) in H₂O/D₂O (9:1) was adjusted to pH 7 with HCl. The reaction was monitored by ¹H NMR spectroscopy (Fig. S70) at room temperature. The hydrolysis of Ac-Gly-thiazoline to *N*-acetylglycyl-L-cysteine Ac-Gly-Cys-OH was observed over 5 d (Ac-Gly-thiazoline (8%); Ac-Gly-Cys-OH (78%), Fig. S70d). δ 4.40 (dd, *J* = 4.7, 6.0 Hz, 1H, Cys-(C2)–H), 3.98 – 3.0 (m, 2H, Gly-(C2)–H₂), 2.94 (ABX, *J* = 4.7, 13.9 Hz, 1H, Cys-(C3)–H), 2.91 (ABX, *J* = 6.0, 13.9 Hz, 1H, Cys-(C3)–H'), 2.06 (s, 3H, COCH₃).

Fig. S70. ¹H NMR (700 MHz, H₂O:D₂O, 9:1, noessygppr1d, 1.5-6.0 ppm) spectra to show the hydrolysis of **Ac-Gly-thiazoline** (200 mM) to *N*-acetylglycyl-L-cysteine **Ac-Gly-Cys-OH** after **a**. 3h; **b**. 1 d; **c**. 3 d; **d**. 5 d.

Time course of Ac-Gly-thiazoline hydrolysis to N-acetylglycyl-L-cysteine Ac-Gly-Cys-OH at pH 7 and 60 °C

Ac-Gly-thiazoline (200 mM) in H₂O/D₂O (9:1) was adjusted to pH 7 with HCl. The reaction was heated at 60 °C for 2 h before rapidly cooling the reaction to 0 °C. The hydrolysis of Ac-Gly-thiazoline to *N*-acetylglycyl-L-cysteine Ac-Gly-Cys-OH (90%) was observed by ¹H and ¹³C NMR spectroscopy (Fig. S71 and Fig. S72). ¹H NMR (700 MHz, H₂O/D₂O (9:1), noesygppr1d) δ 4.40 (dd, *J* = 4.8, 5.8 Hz, 1H, Cys-(C2)–H), 3.96 – 3.92 (m, 2H, Gly-(C2)–H₂), 2.94 (ABX, *J* = 4.8, 13.9 Hz, 1H, Cys-(C3)–H), 2.91 (ABX, *J* = 5.8, 13.9 Hz, 1H, Cys-(C3)–H'), 2.06 (s, 3H, COCH₃). ¹³C NMR (176MHz, H₂O/D₂O, 9:1) δ 176.7 (Cys-(C1)), 175.6 (COCH₃), 171.6 (Gly-(C1)), 57.1 (Cys-(C2)), 43.4 (Gly-(C2)), 27.0 (Cys-(C3)), 22.5 (COCH₃). HRMS-ESI [M+H]⁺ calculated for C₇H₁₃N₂O₄S, 221.0593; observed 221.0596.

Fig. S71. ¹H NMR (700 MHz, H₂O/D₂O, 9:1, 1.5–5.0 ppm, noesygppr1d) spectrum to show the conversion of **Ac-Gly-thiazoline** to **Ac-Gly-Cys-OH** after 2 h at pH 7 and 60 °C.

Fig. S72. ¹³C NMR (176 MHz, H_2O/D_2O (9:1), 1.5–5.0 ppm, noesygppr1d) spectrum to show the conversion of **Ac-Gly-thiazoline** to **Ac-Gly-Cys-OH** after 2 h at pH 7 and 60 °C.

N-Acetyl-DL-alanine nitrile (**Ac-Ala-CN**; 22.4 mg, 0.20 mmol) and L-cysteine (**Cys**; 24.2 mg, 0.20 mmol) were dissolved in H_2O/D_2O (9:1; 1 mL). The solution was adjusted to pH 9.5 with HCl/NaOH and incubated at room temperature for 2 h to give **Ac-Ala-thiazoline**. The solution was then adjusted to pH 7 with 4M HCl and then heated at 60 °C for 24 h. The resulting diastereoisomeric mixture of **Ac-Ala-Cys-OH** was used without further purification.

Data for Ac-Ala-thiazoline

¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 2 diastereoisomers (50:50; a:b)): δ 4.90 - 4.82 (m, 2H, (C4)–H_a, (C4)–H_b), 4.67 - 4.58 (m, 2H, Ala-(C2)–H_a, Ala-(C2)–H_b), 3.58 - 3.47 (m, 4H, (C5)–H_a, (C5)–H_b), 3.32 - 3.25 (m, 4H, (C5)–H_a', (C5)–H_b'), 1.92 (s, 3H, COCH_{3a}), 1.92 (s, 3H, COCH_{3b}), 1.34 (d, *J* = 7.3 Hz, 3H, Ala-(C3)–H_{3a}), 1.33 (d, *J* = 7.3 Hz, 3H, Ala-(C3)–H_{3b}). ¹³C NMR (176 MHz, H₂O/D₂O 9:1, 2 diastereoisomers (50:50; a:b)):) δ 179.0 (C2_a), 179.0 (C2_a), 178.9 (CO₂H_a), 178.8 (CO₂H_a), 174.6 (COCH_{3a}), 174.4 (COCH_{3b}), 80.6 (C4_a), 80.5 (C4_b), 48.9 (Ala-(C2_a)), 48.8 (Ala-(C2_a)), 36.8 (C5_a), 36.5 (C5_b), 22.4 (COCH_{3a}), 22.4 (COCH_{3b}), 18.9 (Ala-(C3_a)), 18.8 (Ala-(C3_b)).

Data for Ac-Ala-Cys-OH

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 2 diastereoisomers (50:50)): δ 4.39–4.36 (2H, m, Cys-(C2)–H), 4.29–4.25 (2H, m, Ala-(C2)–H), 2.91–2.85 (4H, m, Cys-(C3)–H₂), 1.99 (3H, s, COCH₃), 1.97 (3H, s, COCH₃), 1.35 (3H, d, *J* = 7.3 Hz, Ala-(C3)–H₃), 1.33 (3H, d, *J* = 7.2 Hz, Ala-(C3)–H₃). ¹³C NMR (176 MHz; H₂O/D₂O 9:1, 2 diastereoisomers (50:50)): δ 176.6 (Cys-(C1)), 176.6 (Cys-(C1)), 175.2 (Ala-(C1))), 175.2 (Ala-(C1)), 174.8 (COCH₃), 174.7 (COCH₃), 57.2 (Cys-(C2)), 56.9 (Cys-(C2)), 50.7 (Ala-(C2)), 50.5 (Ala-(C2)), 27.1 (Cys-(C3)), 27.0 (Cys-(C3)), 22.4 (COCH₃), 22.3 (COCH₃), 17.5 (Ala-(C3)), 17.2 (Ala-(C3)). HRMS-ESI [M+H]⁺ calculated for formula C₈H₁₅N₂O₄S⁺, 235.0752; found 235.0753. IR (cm⁻¹): 3323, 3138, 3044, 2963, 1736, 1644, 1576, 1537.

Fig. S73. ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 0.00–5.50 ppm) spectrum of Ac-Ala-thiazoline.

Fig. S74. ¹³C NMR (176 MHz, H₂O/D₂O 9:1, 0–220 ppm) spectrum of Ac-Ala-thiazoline.

Fig. S75. ¹H NMR (700 MHz, H_2O/D_2O 9:1, noesygppr1d, 1.00–5.50 ppm) spectrum of **Ac-Ala-Cys-OH**.

Fig. S76. ¹³C NMR (176 MHz, H₂O/D₂O 9:1, 0–220 ppm) spectrum of Ac-Ala-Cys-OH.

N-Acetyl-DL-serine nitrile (**Ac-Ser-CN**; 204 mg, 1.59 mmol) and L-cysteine (**Cys**; 193 mg, 1.59 mmol) in H₂O/D₂O (8 mL) was adjusted to pH 9.5 and stirred at room temperature for 1 h to give **Ac-Ser-thiazoline**. The solution was decreased to pH 1.5 and then stirred at room temperature for 12 h. After this time the reaction mixture was concentrated *in vacuo* and the residue purified by flash column chromatography (SiO₂; isopropanol/water 9:1) to yield 250 mg of a diastereomeric mixture of **Ac-Ser-Cys-OH** as a colourless solid.

Data for Ac-Ser-thiazoline

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 2 diastereoisomers (50:50; a:b)): δ 4.97 (ddd, *J* = 1.3, 8.5, 9.6 Hz, 1H, (C4)–H_a), 4.93 (ddd, *J* = 1.6, 8.8, 9.9 Hz, 1H, (C4)–H_b), 4.80 - 4.76 (obs., 2H, Ser-(C2)–H_a; Ser-(C2)–H_b), 3.90 - 3.82 (m, 4H, Ser-(C3)–H_{2a}; Ser-(C3)–H_{2b}), 3.64 - 3.56 (m, 2H, (C5)–H_a, (C5)–H_b), 3.39 - 3.34 (m, 2H, (C5)–H_a', (C5)–H_b'), 2.03 (2 × s, 6H, COCH_{3a}, COCH_{3b}). ¹³C NMR (176 MHz, H₂O/D₂O 9:1, 2 diastereoisomers (50:50; a:b)) (partial assignment): δ 178.9 (CO₂H_a), 178.8 (CO₂H_b), 175.6, 175.1, 175.1, 175.0, 80.7 (C4_a), 80.6 (C4_b), 62.7 (Ser-(C2_a), 62.7 (Ser-(C2_b), 54.7 × 2 ((Ser-(C3_a); (Ser-(C3_b))), 36.8 (C5_a), 36.6 (C5_b), 22.5 (COCH_{3a}), 22.4 (COCH_{3b}).

Data for Ac-Ser-Cys-OH

¹H NMR (700 MHz, D₂O, noesygppr1d): δ 4.64 - 4.59 (m, 2H, Cys-(C2)–H_a; Cys-(C2)–H_b), 4.47 (app. t, *J* = 5.5 Hz, 2H, Ser-(C2)–H_a; Ser-(C2)–H_b), 3.87 (dd, *J* = 4.9, 11.7 Hz, 2H, Ser-(C3)–H_a; Ser-(C3)–H_b), 3.84 (dd, *J* = 6.1, 11.7 Hz, 2H, Ser-(C3)–H_a'; Ser-(C3)–H_b'), 3.02 - 2.93 (m, 4H, Cys-(C3)–H_{2a}; Cys-(C3)–H_{2b}), 2.06 (s, 3H COCH_{3a}), 2.06 (s, 3H, COCH_{3b}). ¹³C NMR (176 MHz, D₂O): δ 174.50 (COCH_{3a}), 174.49 (COCH_{3b}), 173.5 (CO), 173.4 (CO), 171.8 (CO × 2), 61.2 (Ser-(C3_a)), 61.1 (Ser-(C3_b)), 55.7 (Ser-(C2_a)), 55.6 (Ser-(C2_b)), 54.97 (Cys-(C2_a)), 54.95 (Cys-(C2_b)), 25.3 (Cys-(C3_a)), 25.2 (Cys-(C3_b)), 21.8 (COCH_{3a}), 21.7 (COCH_{3b}). HRMS-ESI [M+H]⁺ calculated for formula C₈H₁₅N₂O₅S⁺, 251.0702; found 251.0705. IR (cm⁻¹): 3314, 2946, 1737, 1666, 1633, 1538.

Fig. S77. ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.50–5.50 ppm) spectrum of **Ac-Ser-thiazoline**.

Fig. S78. ^{13}C NMR (176 MHz, H_2O/D_2O 9:1, 0–220 ppm) spectrum of $\mbox{Ac-Ser-thiazoline}.$

Fig. S80. ¹³C NMR (176 MHz, D₂O, 0–200 ppm) spectrum of **Ac-Ser-Cys-OH**.

A solution of *N*-acetyl-DL-valine nitrile (**Ac-Val-CN**; 302 mg, 2.15 mmol) and L-cysteine (**Cys**; 521 mg, 4.31 mmol) in H₂O/D₂O (9:1;10 mL) was adjusted to pH 9.5 and stirred at room temperature for 8 h. The formation of **Ac-Val-thiazoline** was observed. The solution was decreased to pH 1.5 and then stirred at room temperature for 12 h. The reaction mixture was concentrated *in vacuo* and the residue was purified by flash column chromatography (SiO₂; eluting with isopropanol/water 8:2) to yield 411 mg (1.57 mmol, 72%) as a diastereomeric mixture of **Ac-Val-Cys-OH** as a colourless solid.

Data for Ac-Val-thiazoline

¹H NMR (700 MHz; D₂O, 2 diastereoisomers (50:50; a:b)): δ 4.68 - 4.61 (m, 2H, (C4)–H_a; (C4)–H_b), 4.22 (d, *J* = 6.7 Hz, 1H, Val-(C2)–H_a), 4.15 (d, *J* = 7.4 Hz, 1H, Val-(C2)–H_b), 3.31 (t, *J* = 10.7 Hz, 1H, (C5)–H_a), 3.26 (t, *J* = 10.4 Hz, 1H, (C5)–H_b), 3.12 - 3.04 (m, 2H, (C5)–H_a'; (C5)–H_b'), 1.85 - 1.76 (m, 2H, Val-(C3)–H_a; Val-(C3)–H_b), 1.73 (s, 3H, COCH_{3a}), 1.72 (s, 3H, COCH_{3b}), 0.65 - 0.58 (m, 12H, Val-(C4)–H_{3a}; Val-(C4)–H_{3b}). ¹³C NMR (176 MHz, D₂O, 2 diastereoisomers (50:50; a:b)): δ 178.8 (CO₂H_a), 178.5 (CO₂H_b), 177.1 (C2_a), 176.8 (C2_b), 175.0 (2 × COCH₃), 80.6 (C4_a), 80.3 (C4_b), 58.6 (Val-(C2_a)), 58.6 (Val-(C2_b)), 36.6 (C5_a), 36.3 (C5_b), 31.8 (Val-(C3_a)), 31.7 (Val-(C3_b)), 22.4 (2 × CO**C**H₃), 19.3 (Val-(C4_a)), 19.3 (Val-(C4_b)), 17.9 (Val-(C4_a')), 17.7 (Val-(C4_b')).

Data for Ac-Val-Cys-OH

¹H NMR (700 MHz; D₂O, 2 diastereoisomers (44:55; a:b)): δ 4.52 (dd, *J* = 6.7, 4.7 Hz, 1H, Cys-(C2)–H_a), 4.50 (dd, *J* = 6.8, 4.7 Hz, 1H, Cys-(C2)–H_b), 4.09 (d, *J* = 6.9 Hz, 1H, Val-(C2)–H_a), 4.06 (d, *J* = 7.3 Hz, 1H, Val-(C2)–H_b), 2.94–2.87 (m, 4H, Cys–(C3)–H₂ × 2), 2.06–2.01 (m, 2H, Val-(C3)–H × 2), 1.99 (s, 3H, COCH_{3a}), 1.98 (s, 3H, COCH_{3b}), 0.90–0.89 (m, 12H, Val-(C4)–H_{3a}; Val-(C4)–H_{3b}). ¹³C NMR (176 MHz, D₂O, 2 diastereoisomers (44:55; a:b)) (partial assignment): δ 174.42 (COCH_{3a}), 174.38 (COCH_{3b}), 173.8 (CO), 173.7 (CO), 173.68 (CO), 173.66 (CO), 59.70 (Val-(C2_a)), 59.66 (Val-(C2_b)), 55.14 (Cys-(C2_a)), 55.10 (Cys-(C2_b)), 30.1 (Val-(C3_a)), 29.9 (Val-(C3_b)), 25.23 (Cys-(C3_a)), 25.21 (Cys-(C3_a)), 21.63 (COCH_{3a}), 21.56 (COCH_{3b}), 18.4 (Val-(C4_a)), 18.3 (Val-(C4_b)), 17.6 (Val-(C4'_a)), 17.4 (Val-(C4'_b)). HRMS-ESI [M+H]⁺ calculated for formula C₁₀H₁₉N₂O₄S⁺, 263.1064; found 263.1066. IR (cm⁻¹): 3320, 3120, 3032, 2962, 1735, 1644, 1577, 1537.

Fig. S81. 1 H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 0.50–5.50 ppm) spectrum of **Ac-Val-thiazoline**.

Fig. S83. ¹H NMR (700 MHz, D₂O, noesygppr1d, 0.5–5.0 ppm) spectrum of Ac-Val-Cys-OH.

Fig. S84. ^{13}C NMR (176 MHz, D2O, 0–200 ppm) spectrum of Ac-Val-Cys-OH.

Catalytic prebiotic peptide and amidine syntheses from α -amidonitriles

Catalyst screening for the coupling of N-acetylglycine nitrile with glycine

N-Acetylglycine nitrile **Ac-Gly-CN** (200 mM) (5), glycine **Gly** (200 mM), and thiol catalyst (30 mol%) were adjusted to pH 7 with 1 – 4 M HCl/NaOH and the solution was incubated at 60 °C for 24 h. The reaction was then analysed and quantified by NMR spectroscopy (¹H, ¹³C, ¹H–¹³C HMBC, ¹H–¹H COSY, and ¹H–¹³C HSQC). Coupling yields for each thiol catalyst are given in Fig S85

Fig S85. Yields for the formation of **Ac-Gly^N-Gly-OH** by thiol-catalyzed (Catalyst–SH; 30 mol%) coupling of **Ac-Gly-CN** (200 mM) and **Gly** (200 mM) after 24 h. n.d = not detected. ^[a]Coupling (<1%) only observed after 7 d. **MPA** = 3-mercaptopropionic acid; **CoA** = co-enzyme A; **GSH** = glutathione; **CoM** = co-enzyme M.

Optimisation of the coupling of N-acetylglycine nitrile with glycine catalysed by N-acetyl-L-cysteine

N-Acetylglycine nitrile **Ac-Gly-CN** (10 – 200 mM), glycine **Gly** (1 equiv.), and *N*-acetyl-L-cysteine (0.1–2.0 equiv) were adjusted to the specified pH with 1 – 4 M HCI/NaOH and the solution was incubated at the specified temperature for 24 h. The reaction was then analysed and quantified by NMR spectroscopy (¹H, ¹³C, ¹H–¹³C HMBC, ¹H–¹H COSY, and ¹H–¹³C HSQC). Incubation of **Ac-Gly-CN** (200 mM) and glycine **Gly** (200 mM) with no catalyst at pH 7 and 60 °C yielded no observable **Ac-Gly^N-Gly-OH** after 1 d and <1% after 7 d (Fig. S86).

Ac-Gly-CN (mM)	Gly (mM)	Ac-Cys-OH (mol%)	Temp (°C)	рН	Ac-Gly ^N -Gly-OH (%)
200	200	0.3	rt	5.0	0
200	200	0.3	60	5.0	6
200	200	0.1	60	7.0	22
200	200	0.3	rt	7.0	28
200	200	0.3	60	7.0	60
200	200	0.3	rt	9.0	68 ^[a]
200	200	0.3	40	9.0	70 ^[b]
200	200	2.0	60	7.0	>95
200	200	-	60	7.0	n.d
100	100	0.3	60	7.0	62 ^[c]
50	50	0.3	60	7.0	27
25	25	0.3	60	7.0	12
10	10	0.3	60	7.0	4

Table S5. Yields for *N*-acetyl-L-cysteine (Ac-Cys-OH) catalysed formation of of Ac-Gly^N-Gly-OH after the reaction of Ac-Gly-CN with Gly (1.0 eq.) at various pH, catalyst loadings, temperatures, after 24 h. n.d = not detectable after 24 h. $^{[a]}$ Combined yield of peptidyl amidine Ac-Gly^N-Gly-OH (63%) and peptide Ac-Gly-Gly-OH (5%). ^[b] Combined yield of peptidyl amidine Ac-Gly^N-Gly-OH (19%) and peptide Ac-Gly-Gly-OH (51%). ^[c] Combined yield of peptidyl amidine Ac-Gly^N-Gly-OH (56%) and peptide Ac-Gly-Gly-OH (6%).

Fig. S86. ¹H NMR spectra (600 MHz, H₂O, noesygppr1d, 1.50–5.00 ppm) of **Ac-Gly-CN** (200 mM) and **Gly** (200 mM) incubated at pH 7 at 60 °C after: a) 24 h and b) 7 d. **Ac-Gly^N-Gly-OH** was not detectable after 24 h. **Ac-Gly^N-Gly-OH** (<1%) was observed only after 7 d.

Incubation of N-acetylglycine nitrile with N-acetyl-L-cysteine at pH 7 and 60 °C

N-Acetylglycine nitrile **Ac-Gly-CN** (200 mM) and *N*-acetyl-L-cysteine **Ac-Cys-OH** (30 mol %) was dissolved in H₂O (1 mL) and the solution was adjusted to pH 7.0 with 4 M NaOH. The reaction was incubated at 60 °C for 24 h. The reaction was analysed by NMR spectroscopy. *N*-acetylglycinamide **Ac-Gly-NH**₂ (6%) and partial aerial oxidation of **Ac-Cys-OH** to *N*,*N*'-diacetyl-L-cystine (10%) was observed.

Fig. S87. ¹H NMR (600 MHz, H₂O, noesygppr1d, 1.50 – 5.00 ppm) spectrum to show *N*-acetylglycine nitrile **Ac-Gly-CN** (200 mM) and *N*-acetyl-L-cysteine **Ac-Cys-OH** (60 mM) at pH 7 **a.** before heating at 60 °C and **b**. after heating at 60 °C for 24 h.

N-Acetyl-L-cysteine catalysed coupling of N-acetylaminonitrile with α -amino acids

All α -amino acid **AA**¹ couplings were carried out and analysed according to the following procedure unless stated otherwise. A solution of *N*-acetylaminonitrile (**Ac-AA-CN**, 200 mM), **AA**¹ (1 – 2 equiv.), *N*-acetyl-L-cysteine (**Ac-Cys-OH**, 0.3 – 2.0 equiv.), and (methylsulfonyl)methane (MSM, 5 or 50 mM) in H₂O/D₂O (9:1) was adjusted to pH 7 with 0.1 – 4M HCl/NaOH. The solution was then incubated at room temperature or 60 °C for 24 h and analysed by high-resolution mass spectrometry and NMR spectroscopy (¹H, ¹³C, ¹H–¹H COSY, ¹H–¹³C HMBC, and ¹H–¹³C HSQC). The products were quantified by ¹H NMR spectroscopy against the internal MSM standard. Yields of coupling are given in Table S6. α -Amino acids **AA**¹ were all of L-configuration, unless stated otherwise with a modified stereochemical prefix (e.g DL-**AA**¹ or D-**AA**¹).

N-Acetyl-L-cysteine catalysed coupling of N-acetylglycine nitrile with α -amino amides

All α -amino amide **AA**¹-**NH**₂ couplings were carried out and analysed according to the following procedure unless stated otherwise. A solution of *N*-acetylglycine nitrile (**Ac-Gly-CN**, 200 mM), **AA**¹-**NH**₂ (200 mM), *N*-acetyl-L-cysteine (**Ac-Cys-OH**, 60 mM), and MSM (5 or 50 mM) in H₂O/D₂O (9:1) was adjusted to pH 7 with 0.1 – 4M HCl/NaOH. The solution was incubated at 60 °C for 24 h and analysed by high-resolution mass spectrometry and NMR spectroscopy (¹H, ¹³C, ¹H– ¹H COSY, ¹H–¹³C HMBC, and ¹H–¹³C HSQC). The products were quantified by ¹H NMR spectroscopy against the internal MSM standard. Yields are given in Table S7. α -Amino amides **AA**¹-**NH**₂ were all of L- configuration, except for D-valinamide (D-**Val-NH**₂), D-leucinamide (D-**Leu-NH**₂), and D-alaninamide (D-**Ala-NH**₂).

Coupling of N-acetylaminonitrile **Ac-AA-CN** with α -amino acids **AA**¹ at pH 7 and 60 °C

Ac-AA-CN ♦	AA ¹ ■	Yield	(%)	HRMS-ESI for Ac-AA ^N -AA ¹ -OH			
		Ac-AA ^N -AA ¹ -OH	Ac-AA-AA¹-OH▼	Formula	Theoretical	Found	
Ala	Gly	60 (>95 ^[a])	2	$C_7H_{14}N_3O_3 [M+H]^+$	188.1029	188.1033	
Ala	Ala	25 (83 ^[b])	-	C ₈ H ₁₆ N ₃ O ₃ [M+H] ⁺	202.1186	202.1182	
Gly	Gly	60 (>95 ^[c])	-	$C_6H_{12}N_3O_3 [M+H]^+$	174.0873	174.0873	
Gly	DL-Ala	43 (79 ^[d])	-	C7H14N3O3 [M+H] ⁺	188.1030	188.1028	
Gly	Arg	37 (78 ^[e])	-	$C_{10}H_{21}N_6O_3 [M+H]^+$	273.1670	273.1667	
Gly	Asn	9	45 ^[f]	C ₈ H ₁₅ N ₄ O ₄ [M+H] ⁺	231.1088	231.1086	
Gly	Asp	58	-	C ₈ H ₁₄ N ₃ O ₅ [M+H] ⁺	232.0928	232.0925	
Gly	Gln	56	-	C ₉ H ₁₇ N ₄ O ₄ [M+H] ⁺	245.1244	245.1243	
Gly	Glu	58	-	C ₉ H ₁₆ N ₃ O ₅ [M+H] ⁺	246.1084	246.1087	
Gly	His	73	73 - C ₁₀ H ₁₆ N ₅ O ₃ [M+H		254.1248	254.1257	
Gly	lle	55	-	C ₁₀ H ₂₀ N ₃ O ₃ [M+H] ⁺	230.1499	230.1498	
Gly	Leu	53 -		C ₁₀ H ₂₀ N ₃ O ₃ [M+H] ⁺	230.1499	230.1498	
Gly	Lys	70 ^[g]	-	C ₁₀ H ₂₁ N ₄ O ₃ [M+H] ⁺	245.1608	245.1609	
Gly	DL-Met	72	-	C ₉ H ₁₈ N ₃ O ₃ S [M+H] ⁺	248.1063	248.1064	
Gly	Phe	21 (52 ^[h])	-	C ₁₃ H ₁₈ N ₃ O ₃ [M+H] ⁺	264.1343	264.1338	
Gly	Pro	58	-	C ₉ H ₁₆ N ₃ O ₃ [M+H] ⁺	214.1186	214.1188	
Gly	Ser	-	61 (74 ^[i])	C7H12N2O5Na [M+Na]⁺	226.0638 ^[j]	226.0637	
Gly	Thr	-	51 (80 ^[k])	C ₈ H ₁₄ N ₂ O₅Na [M+Na]⁺	241.0795 ^[1]	241.0792	
Gly	Trp	32	5	C ₁₅ H ₁₉ N ₄ O ₃ [M+H] ⁺	303.1452	303.1447	
Gly	Tyr ^[m]	20	-	C ₁₃ H ₁₈ N ₃ O ₄ [M+H] ⁺	280.1292	280.1294	
Gly	Val	42 (79 ^[n])	6	C ₉ H ₁₈ N ₃ O ₃ [M+H] ⁺	216.1343	216.1345	
Glx	Gly	33 (56 ^[o])	-	$C_9H_{15}N_4O_3 [M+H]^+$	227.1141	227.1144	
Ser	Gly	61 (90 ^[p])	-	C7H13N3O4Na [M+Na] ⁺	226.0798	226.0801	
Ser	Ala	25 (71 ^[q])	-	C ₈ H ₁₆ N ₃ O ₄ [M+H] ⁺	218.1135	218.1136	
Val	Gly	3 [(27 ^[r]), (44 ^[s]), (79 ^[t])]	-	C ₉ H ₁₈ N ₃ O ₃ [M+H] ⁺	216.1343	216.1342	

Table S6. Yields and ESI-HRMS data for N-acetyl-L-cysteine (Ac-Cys-OH 🔺 (0.3 eq.)) catalysed formation of Ac-AA^N-AA¹-OH • and Ac-AA-AA¹-OH ▼ from the reaction of Ac-AA-CN (200 mM) with AA¹ ■ (1.0 eq.) at pH 7, 60 °C after 24 h, unless stated otherwise. - = not observed.

- ¹ Reaction of **Ac-Gly-CN** (200 mM), **Ser** (200 mM) and **MPA** (3-mercaptopropionic acid; 200 mM) as the catalyst instead of **Ac-Cys-OH** (60 mM) at pH 7 and 60 °C for 48 h. ¹ ESI-HRMS data given for **Ac-Gly-Ser-OH**.

ESI-HRMS data given for Ac-Thr-Ser-OH.

¹ Reaction of **Ac-Val-CN** (200 mM), **Gly** (400 mM), and **MPA** (3-mercaptopropionic acid; 400 mM) as the catalyst instead of **Ac-Cys-OH**, at pH 7 and 60 °C for 48 h. ¹ Reaction of **Ac-Val-CN** (200 mM), **Gly** (400 mM), and **MPA** (3-mercaptopropionic acid; 400 mM) as the catalyst instead of **Ac-Cys-OH**, at pH 7 and 60 °C for 96 h.

Reaction of Ac-Ala-CN (200 mM), Gly (400 mM), Ac-Cys-OH (400 mM) at pH 7 and 60 °C for 24 h.

^b Reaction of Ac-Ala-CN (200 mM), Ala (400 mM), Ac-Cys-OH (400 mM) at pH 7 and 60 °C for 24 h.

^c Reaction of Ac-Gly-CN (200 mM), Gly (400 mM), Ac-Cys-OH (400 mM) at pH 7 and 60 °C for 24 h.
^d Reaction of Ac-Gly-CN (200 mM), DL-Ala (600 mM), Ac-Cys-OH (60 mM) at pH 7 and 60 °C for 24 h.

^e Reaction of Ac-Gly-CN (200 mM), Arg (400 mM), Ac-Cys-OH (60 mM) at pH 7 and 60 °C for 24 h.

¹ C-terminal succinimide formation (<5%) was observed as an additional product. Succinimide formation of asparaginyl peptides is well documented (49). ⁹ Combined yield for the N², N⁶, and N², N⁶-bis-amidines coupling products (N²-(Ac-Gly^N)-Lys-OH (43%), N⁶-(Ac-Gly^N)-Lys-OH (24%) and N², N⁶-bis(Ac-Gly^N)-Lys-OH (3%)). See Fig. S108.

^h Reaction of Ac-Gly-CN (200 mM), Phe (400 mM), Ac-Cys-OH (60 mM) at pH 7 and 60 °C for 24 h.

k Reaction of Ac-Gly-CN (200 mM), Thr (200 mM) and MPA (3-mercaptopropionic acid; 200 mM) as the catalyst instead of Ac-Cys-OH at pH 7 and 60 °C for 48 h.

^m L-Tyrosine Tyr exhibits extremely low solubility in water. See Reference 50 and 51 for a reported solubility of Tyr in water, No further attempts were made to optimise Tyr coupling. ⁿ Reaction of Ac-Gly-CN (200 mM), Val (400 mM), Ac-Cys-OH (60 mM) at pH 7 and 60 °C for 24 h.

[°] Reaction of N-acetyl-2-aminoglutaronitrile Ac-Gix-CN (200 mM), Gly (200 mM), Ac-Cys-OH (60 mM) at pH 7 and 60 °C for 4 d.

P Reaction of Ac-Ser-CN (200 mM), Gly (400 mM), Ac-Cys-OH (400 mM) at pH 7 and 60 °C for 24 h.
 Reaction of Ac-Ser-CN (200 mM), Ala (400 mM), Ac-Cys-OH (400 mM) at pH 7 and 60 °C for 24 h.
 Reaction of Ac-Val-CN (200 mM), Gly (400 mM), and MPA (3-mercaptopropionic acid; 400 mM) as the catalyst instead of Ac-Cys-OH, at pH 7 and 60 °C for 24 h.

Coupling of N-acetylglycine nitrile **Ac-Gly-CN** with α -amino amides **AA¹-NH**₂ at pH 7 and 60 °C

Trp

Tyr

D-Val

4

3

7

Table S7. Yields and ESI-HRMS data for *N*-acetyl-L-cysteine (Ac-Cys-OH \blacktriangle (0.3 eq.)) catalysed formation of Ac-Gly^N-AA¹-OH \bigcirc and Ac-Gly-AA¹-OH \checkmark from the coupling of Ac-Gly-CN (200 mM) with AA¹-NH₂ \blacksquare (1.0 eq.) at pH 7, 60 °C, after 24 hours, unless stated otherwise. - = not observed.

45

62

50

C₁₅H₁₈N₄O₃Na [M+Na]⁺

C13H17N3O4Na [M+Na]

C₉H₁₇N₃O₃Na [M+Na]⁻

325.1271

302.1111

238.1162

325.1272

302.1116

238.1158

- ^a Reaction carried out with Ac-Gly-CN (200 mM), Asn-NH₂ (200 mM) and Ac-Cys-OH (5 equiv.), pH 7 and 60 °C for 24 h.
- ^b Reported amidine product is the N⁶ coupling product only (N⁶-(Ac-Gly^N)-Lys-NH₂). Bisamidination was not detectable by ¹H NMR spectroscopy. See Fig. S158.
- Reported amide product is the N² coupling product (N²-(Ac-Gly)-Lys-NH₂). Bisacylation was not detectable by ¹H NMR spectroscopy. See Fig. S158.

^d Reaction carried out with Ac-Gly-CN (200 mM), Pro-NH₂ (400 mM) and Ac-Cys-OH (5 equiv.), pH 7 and 60 °C for 24 h.

e An intermediate oxazoline, (2-(acetamidomethyl)-4,5-dihydrooxazole-4-carboxamide (6%), was observed. See Fig. S166.

^f Reaction of Ac-Gly-CN (200 mM), Ser-NH₂ (200 mM) and MPA (3-mercaptopropionic acid; 200 mM) as the catalyst instead of Ac-Cys-OH at pH 7 and 60 °C for 48 h.

⁹ An intermediate oxazoline (2-(acetamidomethyl)-5-methyl-4,5-dihydrooxazole-4-carboxamide (<5%) was observed. See Fig. S167.

^h Reaction of **Ac-Gly-CN** (200 mM), **Thr-NH**₂ (200 mM) and **MPA** (3-mercaptopropionic acid; 200 mM) as the catalyst instead of **Ac-Cys-OH** at pH 7 and 60 °C for 48 h.

Characterisation of coupling reactions of N-acetyl-L-cysteine-catalysed coupling of N-acetylglycine nitrile and α -amino acids

Coupling of N-acetylglycine nitrile Ac-Gly-CN with glycine Gly at pH 7 and 60 °C

Fig. S88. ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (**Ac-Gly-CN**, 200 mM) with glycine (**Gly**, 200 mM) and (**Ac-Cys-OH**, 60 mM, 0.3 eq.), with MSM (50 mM) as the internal standard, after 24 h at pH 7 and 60 °C. \models = *N*,*N*²-diacetyl-L-cystine (formed by aerial oxidation of **Ac-Cys-OH**) and **X** = *N*-acetylglycinamide, **Ac-Gly-NH**₂

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d) (2-acetamido-1-iminoethyl)glycine, Ac-Gly^N-Gly-OH (\bigcirc): δ_H4.27 (2H, s, AcNHCH₂), 3.93 (2H, s, CH₂COOH), 2.10 (3H, s, H₃C(CO)); *N*-Acetylglycylglycine, Ac-Gly-Gly-OH (\checkmark) (partial assignment): δ_H 3.97 (2H, s, AcNHCH₂), 3.74 (2H, AB obs., CH₂COOH); Glycine, Gly (\blacksquare): δ_H 3.56 (2H, s, CH₂); *N*-Acetylglycinamide, Ac-Gly-NH₂ (\bigstar) (partial assignment): δ_H 3.90 (2H, s, CH₂).

Fig. S89. $^{1}H^{-13}C$ HMBC (^{1}H : 700 MHz [3.50-4.50 ppm], ^{13}C : 176 MHz [150-185 ppm], H_2O/D_2O 9:1) spectrum showing the diagnostic $^{2}J_{CH}$ and $^{3}J_{CH}$ coupling of **Gly**- α H-COOH in **Ac-Gly**^N-**Gly-OH** at 3.93 ppm with two resonances at 176 and 164 ppm, which is characteristic of amidine bond formation of **Gly**. See Fig. S88 for expanded and labelled ^{1}H NMR spectrum.

Coupling of N-acetylglycine nitrile Ac-Gly-CN with DL-alanine DL-Ala at pH 7 and 60 ℃

Fig. S90. ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (Ac-Gly-CN, 200 mM) with DL-alanine (DL-Ala, 200 mM) and *N*-acetyl-L-cysteine (Ac-Cys-OH, 60 mM, 0.3 eq.) with MSM (50 mM) as the internal standard after 24 h at pH 7 and 60 °C. \triangleright = *N*,*N*'-diacetyl-L-cystine (formed by aerial oxidation of Ac-Cys-OH) and **x** = *N*-acetylglycinamide, Ac-Gly-NH₂

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d) (2-acetamido-1-iminoethyl)-D,L-alanine, **Ac-Gly^N-Ala-OH** (\bigcirc): δ_{H} 4.26 (1H, AB, J = 17.2 Hz, AcNHCH*H*), 4.22 (1H, AB, J = 17.2 Hz, AcNHCH*H*), 4.13 (1H, q, J = 7.2 Hz, C*H*(CH₃)), 2.10 (3H, s, H₃C(CO)), 1.46 (3H, d, J = 7.2 Hz, CH(CH₃)); DL-Alanine, DL-Ala (\blacksquare): δ_{H} 3.78 (1H, q, J = 7.2 Hz, C*H*(CH₃)), 1.47 (3H, d, J = 7.2 Hz, CH(CH₃)); N-Acetylglycinamide, **Ac-Gly-NH**₂ (**×**) (partial assignment): δ_{H} 3.89 (2H, app. d., CH₂).

Fig. S91. ¹H–¹³C HMBC (¹H: 700 MHz [3.5-4.5 ppm], ¹³C: 176 MHz [150-185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ²J_{CH} and ³J_{CH} coupling of Ala- α H-COOH in Ac-Gly^N-Ala-OH at 4.13 ppm with two resonances at 177 and 164 ppm, which is characteristic of amidine bond formation of DL-Ala. See Fig. S90 for expanded and labelled ¹H NMR spectrum. Stereochemistry on embedded structure is omitted for clarity.

Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-arginine Arg at pH 7 and 60 °C

Fig. S92. ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (**Ac-Gly-CN**, 200 mM) with L-arginine (**Arg**, 200 mM) and *N*-acetyl-L-cysteine (**Ac-Cys-OH**, 60 mM, 0.3 eq.) with MSM (50 mM) as the internal standard after 24 h at pH 7 and 60 °C. \triangleright = *N*,*N*'-diacetyl-L-cystine (formed by aerial oxidation of **Ac-Cys-OH**) and **X** = *N*-acetylglycinamide **Ac-Gly-NH**₂.

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d) (2-acetamido-1-iminoethyl)arginine, **Ac-Gly^N-Arg-OH** (\bigcirc) (partial assignment): δ_{H} 4.27 (1H, AB, J = 17.3 Hz, AcNHCH*H*), 4.24 (1H, AB, J = 17.3 Hz, AcNHCH*H*), 4.15 (1H, dd, J = 7.4, 4.7 Hz, Arg- α H-COOH), 3.22 (1H, t, J = 7.0 Hz, CH₂(guanidyl)), 2.01 (3H, s, H₃C(CO)); *L*-arginine, **Arg** (\blacksquare) (partial assignment): δ_{H} 3.78 (1H, t, J = 6.2 Hz, α H-COOH), 3.25 (2H, t, J = 7.0 Hz, CH₂(guanidyl)); *N*-Acetylglycinamide, **Ac-Gly-NH₂** (**×**) (partial assignment): δ_{H} 3.91 (2H, app. d., CH₂).

Fig. S93. ${}^{1}\text{H}-{}^{13}\text{C}$ HMBC (${}^{1}\text{H}$: 700 MHz [3.5-4.5 ppm], ${}^{13}\text{C}$: 176 MHz [150-185 ppm], ${}^{H_2}\text{O}/\text{D}_2\text{O}$ 9:1) spectrum showing the diagnostic ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of **Arg**- α H-COOH in **Ac-Gly**^N-**Arg-OH** at 4.15 ppm with two resonances at 175 and 165 ppm, which is characteristic of amidine bond formation of **Arg**. See Fig. S92 for expanded and labelled ${}^{1}\text{H}$ NMR spectrum.

Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-asparagine Asn at pH 7 and 60 °C

Fig. S94. ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (**Ac-Gly-CN**, 200 mM) with L-asparagine (**Asn**, 200 mM) and *N*-acetyl-L-cysteine (**Ac-Cys-OH**, 60 mM, 0.3 eq.) with MSM (50 mM) as the internal standard after 24 h at pH 7 and 60 °C. \triangleright = *N*,*N*'-diacetyl-L-cystine (formed by aerial oxidation of **Ac-Cys-OH**) and *****= *N*-(2-amino-2-iminoethyl)acetamide, **Ac-Gly^N-NH**₂.

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d) (2-acetamido-1-iminoethyl)asparagine, **Ac-Gly^N-Asn-OH** (\bullet) (partial assignment): δ_H 4.50-4.45 (1H, m, Asn-αH-COOH), 4.26 (1H, AB, *J* = 17.3 Hz, AcNHCH*H*), 4.23 (1H, AB, *J* = 17.5 Hz, AcNHCH*H*), 2.09 (3H, s, *H*₃C(CO)); *N-Acetylglycyl-L-asparagine*, **Ac-Gly-Asn-OH** (\checkmark): δ_H 4.51 (1H, m, Asn-αH-COOH), 3.95 (1H, AB br., *J* = 17.3 Hz, AcNHCH*H*), 3.91 (1H, AB br., *J* = 18.2 Hz, AcNHCH*H*), 2.77 (1H, ABX, *J* = 15.1, 4.8 Hz, CH(C*H*HCONH₂)), 2.67 (1H, ABX, *J* = 15.1, 8.4 Hz, CH(C*H*HCONH₂)), 2.06 (3H, s, *H*₃C(CO)); *N-(2-((2,5-dioxopyrrolidin-3-yl)amino)-2-iminoethyl)acetamide* (O) (partial assignment): δ_H 4.50-4.45 (1H, m, CH(CH₂CONHCO)), 4.27 (1H, AB, *J* = 17.3 Hz, AcNHCH*H*), 2.10 (3H, s, *H*₃C(CO)); *L-asparagine*, **Asn** (\blacksquare): δ_H 4.00 (1H, dd, *J* = 7.6, 4.3 Hz, αH-COOH), 2.94 (1H, ABX, *J* = 17.1, 4.3 Hz, CH(C*H*HCONH₂)), 2.85 (1H, ABX, *J* = 16.8, 7.9 Hz, CH(C*H*HCONH₂)); *N-(2-amino-2-iminoethyl)acetamide*, **Ac-Gly^N-NH₂ (***) (partial assignment): δ_H 4.20 (2H, s, CH₂).

Fig. S95. ${}^{1}H-{}^{13}C$ HMBC (${}^{1}H$: 700 MHz [3.8-4.8 ppm], ${}^{13}C$: 176 MHz [150-185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of **Asn**- α H-COOH in **Ac-Gly**^N-**Asn-OH** between 4.50-4.45 ppm with two resonances at 175 and 165 ppm, which is characteristic of amidine bond formation of **Asn**, and the ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of **Asn**- α H-COOH in **Ac-Gly**^N-**Asn-OH** between 4.50-4.45 ppm with two resonances at 175 and 165 ppm, which is characteristic of amidine bond formation of **Asn**, and the ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of **Asn**- α H-COOH in **Ac-Gly-Asn-OH** at 4.51 ppm with two resonances at 176 and 171 ppm, which is characteristic of peptide bond formation of **Asn**. See Fig. S94 for expanded and labelled ¹H NMR spectrum.

Coupling of N-acetylglycine nitrile **Ac-Gly-CN** with L-aspartic acid **Asp** at pH 7 and 60 $^{\circ}$ C

Fig. S96. ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (**Ac-Gly-CN**, 200 mM) with L-aspartic acid (**Asp**, 200 mM) and *N*-acetyl-L-cysteine (**Ac-Cys-OH**, 60 mM, 0.3 eq.) with MSM (50 mM) as the internal standard after 24 h at pH 7 and 60 °C. \triangleright = *N*,*N*'-diacetyl-L-cysteine (formed by aerial oxidation of **Ac-Cys-OH**) and **x** = *N*-acetylglycinamide, **Ac-Gly-NH**₂.

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d) (2-acetamido-1-iminoethyl)aspartic acid, **Ac-Gly^N-Asp-OH** (•): δ_{H} 4.39 (1H, dd, *J* = 8.4, 3.7 Hz, Asp-αH-COOH), 4.29 (1H, AB, *J* = 17.3 Hz, AcNHCH*H*), 4.26 (1H, AB, *J* = 17.3 Hz, AcNHCH*H*), 2.84 (1H, ABX, *J* = 16.5, 3.7 Hz, CH(CH*H*COOH)COOH), 2.67 (1H, ABX, *J* = 16.5, 8.4 Hz, CH(CH*H*COOH)COOH), 2.11 (3H, s, *H*₃C(CO)); *L*-aspartic acid, **Asp** (■): δ_{H} 3.91 (1H, dd, *J* = 8.8, 3.6 Hz, αH-COOH), 2.82 (1H, ABX, *J* = 17.5, 3.6 Hz, CH(CH*H*COOH)COOH), 2.69 (1H, ABX, *J* = 17.5, 8.8 Hz, CH(CH*H*COOH)COOH).

Fig. S97. ¹H–¹³C HMBC (¹H: 700 MHz [3.5-4.5 ppm], ¹³C: 176 MHz [150-185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ²J_{CH} and ³J_{CH} coupling of the **Asp**- α H-COOH in **Ac-Gly^N-Asp-OH** at 4.39 ppm with two resonances at 176 and 165 ppm, which is characteristic of amidine bond formation of **Asp**. See Fig. S96 for expanded and labelled ¹H NMR spectrum.

Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-glutamine GIn at pH 7 and 60 °C

Fig. S98. ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (**Ac-Gly-CN**, 200 mM) with L-glutamine (**GIn**, 200 mM) and *N*-acetyl-L-cysteine (**Ac-Cys-OH**, 60 mM, 0.3 eq.) with MSM (50 mM) as the internal standard after 24 h at pH 7 and 60 °C. \geq = *N*,*N*'-diacetyl-L-cysteine (formed by aerial oxidation of **Ac-Cys-OH**), **x** = **Ac-Gly-NH**₂ and **x** = **Ac-Gly^N-NH**₂. ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d) (*2-acetamido-1-iminoethyl*)glutamine, **Ac-Gly^N-Gln-OH** (\bigcirc): δ_{H} 4.25 (2H, s, AcNHC*H*₂), 4.14 (1H, dd, *J* = 7.5, 4.8 Hz, Gln- α H-COOH), 2.53-2.29 (4H, m, C*H*₂CH₂CONH₂), 2.10 (3H, s, *H*₃C(CO)); *L-glutamine*, **Gln** (\blacksquare): δ_{H} 3.76 (1H, t, *J* = 6.2 Hz, α H-COOH 2.26-2.21 (2H, m, C*H*₂CH₂CONH₂), 2.14-2.00

(2H, m, CH₂CONH₂); *N*-Acetylglycinamide, **Ac-Gly-NH**₂ (**×**) (partial assignment): δ_{H} 3.89 (2H, s, CH₂); *N*-(2-amino-2-iminoethyl)acetamide, **Ac-Gly^N-NH**₂ (*****) (partial assignment): δ_{H} 4.20 (2H, s, CH₂).

Fig. S99. ¹H–¹³C HMBC (¹H: 700 MHz [3.5-4.5 ppm], ¹³C: 176 MHz [150-185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ²J_{CH} and ³J_{CH} coupling of the **GIn**- α H-COOH in **Ac-Gly^N-GIn-OH** at 4.14 ppm with two resonances at 175 and 165 ppm, which is characteristic of amidine bond formation of **GIn**. See Fig. S98 for expanded and labelled ¹H NMR spectrum.

Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-glutamic acid Glu at pH 7 and 60 °C

Fig. S100. ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (**Ac-Gly-CN**, 200 mM) with L-glutamic acid (**Glu**, 200 mM) and *N*-acetyl-L-cysteine (**Ac-Cys-OH**, 60 mM, 0.3 eq.) with MSM (50 mM) as the internal standard after 24 h at pH 7 and 60 °C. \triangleright = *N*,*N*'-diacetyl-L-cystine (formed by aerial oxidation of **Ac-Cys-OH**) and **X**= **Ac-Gly-NH**₂.

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d) (2-acetamido-1-iminoethyl)glutamic acid, **Ac-Gly^N-Glu-OH** (\bullet): δ_H δ4.26 (2H, s, AcNHC*H*₂), 4.10 (1H, dd, *J* = 7.4, 5.2 Hz, Glu-αH-COOH), 2.18-2.10 (2H, m, CH₂CH₂COOH), 2.11 (3H, s, *H*₃C(CO)), 2.08-2.00 (2H, m, C*H*₂CH₂COOH); *L-glutamic acid*, **Glu** (\blacksquare): δ_H 3.76 (1H, dd, *J* = 7.2, 4.7 Hz, αH-COOH), 2.39-2.34 (2H, m, C*H*₂CH₂COOH), 2.32-2.23 (2H, m, CH₂CH₂COOH); *N-Acetylglycinamide*, **Ac-Gly-NH**₂ (**×**) (partial assignment): δ_H 3.90 (2H, AB obs., C*H*₂).

Fig. S101. ${}^{1}H{-}{}^{13}C$ HMBC (${}^{1}H$: 700 MHz [3.5-4.5 ppm], ${}^{13}C$: 176 MHz [150-185 ppm], ${}^{H_2O/D_2O}$ 9:1) spectrum showing the diagnostic ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of the **Glu**- α H-COOH in **Ac-Gly**^N-**Glu-OH** at 4.10 ppm with two resonances at 176 and 165 ppm, which is characteristic of amidine bond formation of **Glu**. See Fig. S100 for expanded and labelled ${}^{1}H$ NMR spectrum.

Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-histidine His at pH 7 and 60 °C

Fig. S102. ¹H NMR (700 MHz, H_2O/D_2O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (Ac-Gly-CN, 200 mM) with L-histidine (His, 200 mM) and *N*-acetyl-L-cysteine (Ac-Cys-OH, 60 mM, 0.3 eq.) with MSM (50 mM) and pentaerythritol (14.29 mM) as the internal standard after 24 h at pH 7 and 60 °C. Inset: ¹H NMR (700 MHz, H_2O/D_2O 9:1, noesygppr1d, 6.5-8.3 ppm) showing the aromatic CH resonances present in His and Ac-Gly^N-His-OH. \triangleright = *N*,*N*'-diacetyl-L-cystine (formed by aerial oxidation of Ac-Cys-OH) and **x** = Ac-Gly-NH₂.

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d) (2-Acetamido-1-iminoethyl)histidine, **Ac-Gly^N-His-OH** (\bigcirc) (partial assignment): δ_{H} 7.74 (1H, s, Ar*H*), 6.95 (1H, s, Ar*H*), 4.34 (1H, dd, J = 7.9, 4.7 Hz, His- α H-COOH), 4.15 (2H, s, AcNHC*H*₂), 2.02 (3H, s, *H*₃C(CO)); *L*-Histidine, **His** (\blacksquare) (partial assignment): δ_{H} 7.93 (1H, d, J = 0.9 Hz, Ar*H*), 7.01 (1H, d, J = 0.9 Hz, Ar*H*), 3.94 (1H, dd, J = 8.1, 4.7 Hz, α H-COOH); *N*-Acetylglycinamide, **Ac-Gly-NH**₂ (**×**) (partial assignment): δ_{H} 3.86 (2H, s br., C*H*₂).

Fig. S103. $^{1}H_{-13}^{3}C$ HMBC (^{1}H : 700 MHz [3.6-4.6 ppm], ^{13}C : 176 MHz [150-185 ppm], H_2O/D_2O 9:1) spectrum showing the diagnostic $^{2}J_{CH}$ and $^{3}J_{CH}$ coupling of the **His**- α H-COOH in **Ac-Gly^N-His-OH** at 4.34 ppm with two resonances at 175 and 165 ppm, which is characteristic of amidine bond formation of **His**. See Fig. S102 for expanded and labelled ^{1}H NMR spectrum.

Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-isoleucine Ile at pH 7 and 60 °C

Fig. S104. 1H NMR (700 MHz, H_2O/D_2O 9:1, noesygppr1d, 0.5-5.0 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (Ac-Gly-CN, 200 mM) with L-isoleucine (IIe, 200 mM) and *N*-acetyl-L-cysteine (Ac-Cys-OH, 60 mM, 0.3 eq.) with MSM (50 mM) as the internal standard after 24 h at pH 7 and 60 °C. \ge = *N*,*N*'-diacetyl-L-cysteine (formed by aerial oxidation of Ac-Cys-OH) and **X** = Ac-Gly-NH₂.

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d) (2-acetamido-1-iminoethyl)isoleucine, **Ac-Gly^N-Ile-OH** (\bigcirc) (partial assignment): δ_{H} 4.26 (1H, AB, J = 17.1 Hz, AcNHCH*H*), 4.22 (1H, AB, J = 17.1 Hz, AcNHCH*H*), 3.97 (1H, d, J = 5.8 Hz, Ile- α H-COOH); *L-isoleucine*, **Ile** (\blacksquare) (partial assignment): δ_{H} 3.66 (1H, d, J = 3.8 Hz, α H-COOH); *N-Acetylglycinamide*, **Ac-Gly-NH**₂ (\times) (partial assignment): δ_{H} 3.89 (2H, s, *CH*₂).

Fig. S105. ${}^{1}\text{H}{-}{}^{13}\text{C}$ HMBC (${}^{1}\text{H}$: 700 MHz [3.5-4.5 ppm], ${}^{13}\text{C}$: 176 MHz [150-185 ppm], ${}^{12}\text{O/D}_2\text{O}$ 9:1) spectrum showing the diagnostic ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of the **IIe**- α H-COOH in **Ac-Gly**^N-**IIe-OH** at 4.26 ppm with two resonances at 176 and 165 ppm, which is characteristic of amidine bond formation of **IIe**. See Fig. S104 for expanded and labelled ${}^{1}\text{H}$ NMR spectrum.

Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-leucine Leu at pH 7 and 60 °C

Fig. S106. ¹H NMR (700 MHz, H_2O/D_2O 9:1, noesygppr1d, 0.5-5.0 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (**Ac-Gly-CN**, 200 mM) with L-leucine (**Leu**, 200 mM) and *N*-acetyl-L-cysteine (**Ac-Cys-OH**, 60 mM, 0.3 eq.) with MSM (50 mM) as the internal standard after 24 h at pH 7 and 60 °C. \triangleright = *N*,*N*'-diacetyl-L-cystine (formed by aerial oxidation of **Ac-Cys-OH**) and **X**= **Ac-Gly-NH**₂.

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d) (2-acetamido-1-iminoethyl)leucine, **Ac-Gly^N-Leu-OH** (\bigcirc) (partial assignment): δ_{H} 4.24 (1H, AB, J = 17.1 Hz, AcNHCH*H*), 4.21 (1H, AB, J = 17.1 Hz, AcNHCH*H*), 4.09 (1H, dd, J = 9.6, 4.5 Hz, Leu- α H-COOH), 2.08 (3H, s, H_3 C(CO)); *L-leucine*, **Leu** (\blacksquare) (partial assignment): δ_{H} 3.72 (1H, dd, J = 8.3, 5.2 Hz, α H-COOH); *N*-Acetylglycinamide, **Ac-Gly-NH**₂ (\bigstar) (partial assignment): δ_{H} 3.89 (2H, s, *CH*₂).

Fig. S107. ${}^{1}H{-}{}^{13}C$ HMBC (¹H: 700 MHz [3.5-4.5 ppm], ${}^{13}C$: 176 MHz [150-185 ppm], ${}^{H_2O/D_2O}$ 9:1) spectrum showing the diagnostic ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of the **Leu**- α H-COOH in **Ac-Gly**^N-**Leu-OH** at 4.09 ppm with two resonances at 178 and 165 ppm, which is characteristic of amidine bond formation of **Leu**. See Fig. S106 for expanded and labelled ¹H NMR spectrum.

Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-lysine Lys at pH 7 and 60 $\,^{\circ}$ C

Fig. S108. ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (**Ac-Gly-CN**, 200 mM) with L-lysine (**Lys**, 200 mM) and *N*-acetyl-L-cysteine (**Ac-Cys-OH**, 60 mM, 0.3 eq.) with MSM (50 mM) as the internal standard after 24 h at pH 7 and 60 °C. \geq = *N*,*N*'-diacetyl-L-cystine (formed by aerial oxidation of **Ac-Cys-OH**) and **X** = **Ac-Gly-NH**₂.

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d) N^2 -(2-acetamido-1-iminoethyl)lysine, **N**²-(**Ac-Gly**^N)-**Lys-OH** (•) (partial assignment): δ_H 4.26 (1H, AB, J = 17.3 Hz, N^2 -AcNHCH*H*), 4.24-4.22 (1H, obs., N^2 -AcNHCH*H*), 4.13-4.10 (1H, m, Lys-αH-COOH), 3.02 (2H, t, J = 7.6 Hz, N^6 -H₂NCH₂CH₂), 2.10 (3H, s, N^2 -H₃C(CO)); N^2 , N^6 -di(2-acetamido-1-iminoethyl)lysine, **N**²,**N**⁶-di(**Ac-Gly**^N)-**Lys-OH** (•) (partial assignment): δ_H 4.26 (1H, AB, J = 17.1 Hz, N^2 -AcNHCH*H*), 4.17 (2H, s br., N^6 -AcNHCH₂), 4.12 (1H, dd, J = 7.4, 4.7 Hz, lysyl-αH-COOH), 3.33 (2H, t, J = 7.0 Hz, N^6 -CH₂CH₂), 2.10 (3H, s, N^2 -H₃C(CO)); 2.04 (3H, s, N^6 -H₃C(CO)); N⁶-(2-acetamido-1-iminoethyl)lysine, **N**⁶-(**Ac-Gly**^N)-**Lys-OH** (•) (partial assignment): δ_H 4.17 (2H, s br., N^6 -AcNHCH₂), 3.75 (1H, t, J = 6.1 Hz, CH, Lys-αH-COOH), 3.32-3.30 (2H, m, N^6 -CH₂CH₂), 2.04 (3H, s, N^6 -H₃C(CO)); L-lysine, **Lys** (•) (partial assignment): δ_H 3.76-3.73 (1H, m, CH, Lys-αH-COOH), 3.00 (2H, t, J = 7.4 Hz, N^6 -H₂NCH₂CH₂); N-Acetylglycinamide, **Ac-Gly-NH₂** (**x**) (partial assignment): δ_H 3.89 (2H, app. d, J = 2.9 Hz, CH₂).

Fig. S109. ${}^{1}H-{}^{13}C$ HMBC (${}^{1}H:$ 700 MHz [3.2-4.5 ppm], ${}^{13}C:$ 176 MHz [150-185 ppm], H_2O/D_2O 9:1) spectrum showing the diagnostic ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of the **lysyl**- α H-COOH and **lysyl**- N^6 -CH₂ in **N**²-(**Ac-Gly**^N)-Lys-OH (\bullet), **N**², **N**⁶-di(**Ac-Gly**^N)-Lys-OH (\bullet), **N**⁶-(**Ac-Gly**^N)-Lys-OH (\circ) which are characteristic of amidine bond formations of Lys. See Fig. S108 for expanded and labelled ${}^{1}H$ NMR spectrum.

Coupling of N-acetylglycine nitrile **Ac-Gly-CN** with DL-methionine DL-**Met** at pH 7 and 60 $^{\circ}$ C

Fig. S110. ¹H NMR (700 MHz, H_2O/D_2O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (Ac-Gly-CN, 200 mM) with DL-methionine (DL-Met, 200 mM) and *N*-acetyl-L-cysteine (Ac-Cys-OH, 60 mM, 0.3 eq.) with MSM (50 mM) as the internal standard after 24 h at pH 7 and 60 °C. \geq = *N*,*N*'-diacetyl-L-cysteine (formed by aerial oxidation of Ac-Cys-OH) and \times = Ac-Gly-NH₂.

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d) (2-acetamido-1-iminoethyl)methionine, **Ac-Gly^N-Met-OH** (\bigcirc): δ_{H} 4.27 (1H, dd, *J* = 8.5, 4.3 Hz, Met- α H-COOH), 4.24(2H, s, AcNHC*H*₂), 2.65-2.60 (2H, m, C*H*₂SCH₃), 2.11 (3H, s, CH₂SC*H*₃), 2.10 (3H, s, *H*₃C(CO)); *DL-methionine*, *DL*-**Met** (\blacksquare) (partial assignment): δ_{H} 3.85 (1H, dd, *J* = 7.2, 5.4 Hz, α H-COOH), 2.49 (2H, m, C*H*₂SCH₃), 2.13 (3H, s, CH₂SC*H*₃); *N-Acetylglycinamide*, **Ac-Gly-NH**₂ (*****) (partial assignment): δ_{H} 3.89 (2H, s, C*H*₂).

Fig. S111. $^{1}H^{-13}C$ HMBC (^{1}H : 700 MHz [3.5-4.5 ppm], ^{13}C : 176 MHz [150-185 ppm], H_2O/D_2O 9:1) spectrum showing the diagnostic $^{2}J_{CH}$ and $^{3}J_{CH}$ coupling of the DL-**Met**- α H-COOH in **Ac-Gly^N-Met-OH** at 4.27 ppm with two resonances at 175 and 165 ppm, which is characteristic of amidine bond formation of DL-**Met**. See Fig. S110 for expanded and labelled ^{1}H NMR spectrum.

Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-phenylalanine Phe at pH 7 and 60 °C

Fig. S112. ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (**Ac-Gly-CN**, 200 mM) with L-phenylalanine (**Phe**, 200 mM) and *N*-acetyl-L-cysteine (**Ac-Cys-OH**, 60 mM, 0.3 eq.) with MSM (50 mM) and pentaerythritol (14 mM) as internal standards after 24 h at pH 7 and 60 °C. Inset: ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 7.1-7.6 ppm) showing the aromatic CH resonances present in **Phe** and **Ac-Gly-Phe-OH**. \models = *N*,*N'*-diacetyl-L-cysteine (formed by aerial oxidation of **Ac-Cys-OH**) and **X** = **Ac-Gly-NH₂**.

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d) (2-acetamido-1-iminoethyl)phenylalanine, **Ac-Gly^N-Phe-OH** (\bigcirc): δ_{H} 7.39-7.36 (3H, m, Ar*H*), 7.24 (2H, d, *J* = 7.2 Hz, Ar*H*), 4.38 (1H, ABX, *J* = 7.9, 4.7 Hz, Phe- α H-COOH), 4.12 (2H, br. s, AcNHC*H*₂), 3.31 (1H, dd, *J* = 14.2, 47 Hz, CHCH*H*Ph), 3.07 (1H, dd, *J* = 14.2, 7.9 Hz, CHCH*H*Ph), 2.01 (3H, s, *H*₃C(CO)); *L-phenylalanine*, **Phe** (\blacksquare): δ_{H} 7.43-7.41 (2H, m, Ar*H*), 7.39-7.36 (1H, m, Ar*H*), 7.34-7.32 (2H, m, Ar*H*), 3.99 (1H, ABX, *J* = 7.9, 5.2 Hz, α H-COOH), 3.28 (1H, dd, *J* = 14.5, 5.3 Hz, CHCH*H*Ph), 3.11 (1H, dd, *J* = 14.6, 8.1 Hz, CHCH*H*Ph); *N*-Acetylglycinamide, **Ac-Gly-NH**₂ (**X**) (partial assignment): δ_{H} 3.88 (2H, AB obs., *CH*₂).

Fig. S113. ${}^{1}\text{H}-{}^{13}\text{C}$ HMBC (${}^{1}\text{H}$: 700 MHz [3.5-4.5 ppm], ${}^{13}\text{C}$: 176 MHz [150-185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of the **Phe**- α H-COOH in **Ac-Gly**^N-**Phe-OH** at 4.38 ppm with two resonances at 175 and 164 ppm, which is characteristic of amidine bond formation of **Phe**. See Fig. S112 for expanded and labelled ${}^{1}\text{H}$ NMR spectrum.

Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-proline Pro at pH 7 and 60 °C

Fig. S114. ¹H NMR (700 MHz, H_2O/D_2O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (**Ac-Gly-CN**, 200 mM) with L-proline (**Pro**, 200 mM) and *N*-acetyl-L-cysteine (**Ac-Cys-OH**, 60 mM, 0.3 eq.) with MSM (50 mM) as the internal standard after 24 h at pH 7 and 60 °C. $\geq = N, N'$ -diacetyl-L-cystine (formed by aerial oxidation of **Ac-Cys-OH**) and **X** = **Ac-Gly-NH**₂.

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d) (2-acetamido-1-iminoethyl)proline, mixture of rotamers [A:B, 60:40], **Ac-Gly^N-Pro-OH** (A, \bullet) (partial assignment): δ_{H} 4.53 (1H, dd, J = 8.8, 2.5 Hz, Pro- α H-COOH), 4.30 (1H, AB, J = 17.5 Hz, AcNHCH*H*), 4.05 (1H, AB, J = 17.5 Hz, AcNHCH*H*), 3.67-3.64 (1H, m, NCH*H*CH₂CH₂), 3.57-3.53 (1H, m, NCH*H*CH₂CH₂), 2.09 (3H, s, *H*₃C(CO)), (**B**, \bullet) (partial assignment): δ_{H} 4.41 (1H, dd, J = 8.5, 2.5 Hz, Pro- α H-COOH), 4.37 (1H, AB, J = 17.5 Hz, AcNHCH*H*), 4.30 (1H, obs., AcNHCH*H*), 3.79-3.76 (1H, m, NCH*H*CH₂CH₂), 3.72-3.69 (1H, m, NCH*H*CH₂CH₂), 2.11 (3H, s, *H*₃C(CO)); *L*-proline, **Pro** (**I**) (partial assignment): δ_{H} 4.12 (1H, dd, J = 8.9, 6.6 Hz, α H-COOH), 3.42 (1H, dt, J = 11.6, 7.1 Hz, HNCH*H*CH₂CH₂), 3.33 (1H, dt, J = 11.6, 7.1 Hz, HNCH*H*CH₂CH₂); *N*-Acety/glycinamide, **Ac-Gly-NH**₂ (**x**) (partial assignment): δ_{H} 3.90 (2H, AB obs. C*H*₂).

Fig. S115. ${}^{1}\text{H}{-}{}^{13}\text{C}$ HMBC (${}^{1}\text{H}$: 700 MHz [3.6-4.6 ppm], ${}^{13}\text{C}$: 176 MHz [150-180 ppm], ${}^{H}_2\text{O}/\text{D}_2\text{O}$ 9:1) spectrum showing the diagnostic ${}^{2}J_{\text{CH}}$ coupling of the **Gly**-CH₂ AB systems in both rotamers of **Ac-Gly**^N-**Pro-OH** at 4.38 and 4.35, 4.31 and 4.29 (overlapping AB systems), and 4.07 and 4.04 ppm with two resonances at 162.7 and 162.3 ppm, which is characteristic of amidine bond formation of **Pro**. See Fig. S114 for expanded and labelled ${}^{1}\text{H}$ NMR spectrum.

Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-serine Ser at pH 7 and 60 °C

Fig. S116. ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (**Ac-Gly-CN**, 200 mM) with L-serine (**Ser**, 200 mM) and *N*-acetyl-L-cysteine (**Ac-Cys-OH**, 60 mM, 0.3 eq.) with MSM (50 mM) as the internal standard after 24 h at pH 7 and 60 °C. \triangleright = *N*,*N*'-diacetyl-L-cystine (formed by aerial oxidation of **Ac-Cys-OH**) and **X** = **Ac-Gly-NH**₂.

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d) *N-Acetylglycylserine*, **Ac-Gly-Ser-OH** (\checkmark): δ_{H} 4.31 (1H, ddd, *J* = 7.6, 5.6, 3.8 Hz, Ser- α H-COOH), 3.98 (2H, obs., AcNHC*H*₂), 3.88-3.83 (2H, m, CHC*H*₂OH), 2.07 (3H, s, *H*₃C(CO)); *L-serine*, **Ser** (\blacksquare): δ_{H} 3.99-3.97 (1H, m, CHCH*H*OH), 3.94 (1H, dd, *J* = 12.0, 5.7 Hz, CHCH*H*OH), 3.88-3.83 (1H, m, α H-COOH); *N-Acetylglycinamide*, **Ac-Gly-NH**₂ (\bigstar) (partial assignment): δ_{H} 3.89 (2H, obs. br. C*H*₂).

Fig. S117. ${}^{1}H{-}{}^{13}C$ HMBC (${}^{1}H$: 700 MHz [3.5-4.5 ppm], ${}^{13}C$: 176 MHz [150-185 ppm], ${}^{12}O/D_2O$ 9:1) spectrum showing the diagnostic ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of the **Ser**- α H-COOH in **Ac-Gly-Ser-OH** at 4.31 ppm with two resonances at 177 and 172 ppm, which is characteristic of amidine bond formation of **Ser**. See Fig. S116 for expanded and labelled ${}^{1}H$ NMR spectrum. Stereochemistry on embedded structure is omitted for clarity.

Coupling of Ac-Gly-CN with L-threonine Thr at pH 7 and 60 °C

Fig. S118. ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (**Ac-Gly-CN**, 200 mM) with L-threonine (**Thr**, 200 mM) and *N*-acetyl-L-cysteine (**Ac-Cys-OH**, 60 mM, 0.3 eq.) with MSM (50 mM) as the internal standard after 24 h at pH 7 and 60 °C. \triangleright = *N*,*N*'-diacetyl-L-cystine (formed by aerial oxidation of **Ac-Cys-OH**) and **X** = **Ac-Gly-NH**₂.

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d) *N-Acetylglycylthreonine*, **Ac-Gly-Thr-OH** (\checkmark): δ_H 4.28-4.23 (1H, m, HOC*H*CH₃), 4.19 (1H, app. dd, *J* = 8.8, 3.6 Hz, Thr-αH-COOH), 4.00 (1H, AB, *J* = 17.3 Hz, AcNHCH*H*), 3.97 (1H, AB, *J* = 17.3 Hz, AcNHCH*H*), 2.07 (3H, s, *H*₃C(CO)), 1.32 (3H, d, *J* = 6.5 Hz, HOCHC*H*₃); *L-threonine*, **Thr** (\blacksquare): δ_H 4.28-4.23 (1H, m, HOC*H*CH₃), 3.58 (1H, d, *J* = 4.7 Hz, αH-COOH), 1.16 (3H, d, *J* = 6.5 Hz, HOCHC*H*₃); *N-Acetylglycinamide*, **Ac-Gly-NH**₂ (**×**) (partial assignment): δ_H 3.89 (2H, AB obs., *CH*₂).

Fig. S119. ${}^{1}H{-}{}^{13}C$ HMBC (¹H: 700 MHz [3.5-4.5 ppm], ${}^{13}C$: 176 MHz [150-185 ppm], ${}^{1}2O/D_2O$ 9:1) spectrum showing the diagnostic ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of the **Thr**- α H-COOH in **Ac-Gly-Thr-OH** at 4.19 ppm with two resonances at 177 and 172 ppm, which is characteristic of peptide bond formation of **Thr**. See Fig. S118 for expanded and labelled ¹H NMR spectrum. Stereochemistry on embedded structure is omitted for clarity.

Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-tryptophan Trp at pH 7 and 60 °C

Fig. S120. ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0⁻5.0 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (Ac-Gly-CN, 200 mM) with L-tryptophan (**Trp**, 200 mM) and *N*-acetyl-L-cysteine (Ac-Cys-OH, 60 mM, 0.3 eq.) with MSM (50 mM) as the internal standard after 24 h at pH 7 and 60 °C. Inset: ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 6.9-7.9 ppm) showing the aromatic CH resonances present in **Trp** and **Ac-Gly^N-Trp-OH**. \triangleright = *N*,*N*'-diacetyl-L-cystine (formed by aerial oxidation of Ac-Cys-OH) and **X** = Ac-Gly-NH₂.

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d) (2-acetamido-1-iminoethyl)tryptophan, **Ac-Gly^N-Trp-OH** (\bullet): δ_{H} 7.62 (1H, d, *J* = 8.1 Hz, Ar*H*), 7.48 (1H, d, *J* = 8.1 Hz, Ar*H*), 7.26-7.22 (1H, m, Ar*H*), 7.19 (1H, d, *J* = 1.6 Hz, Ar*H*), 7.18-7.14 (1H, m, Ar*H*), 4.40 (1H, ABX, *J* = 7.4, 4.7 Hz, Trp- α H-COOH), 3.98 (2H, s br., AcNHC*H*₂), 3.45 (1H, dd, *J* = 15.3, 4.7 Hz, CHCH*H*Ar), 3.29 (1H, m, CHCH*H*Ar), 1.88 (3H, s, *H*₃C(CO)); *L*-tryptophan, **Trp** (\blacksquare): δ_{H} 7.70 (1H, d, *J* = 8.1 Hz, Ar*H*), 7.50 (1H, d, *J* = 8.3 Hz, Ar*H*), 7.28 (1H, s, Ar*H*), 7.26-7.22 (1H, m, Ar*H*), 7.18-7.14 (1H, m, Ar*H*), 4.02 (1H, ABX, *J* = 8.2, 4.8 Hz, α H-COOH); *N*-Acetylglycinamide, **Ac-Gly-NH**₂ (**×**): δ_{H} 3.85 (2H, app d., *J* = 4.0 Hz, C*H*₂), 2.04 (3H, s, *H*₃C(CO)).

Fig. S121. ${}^{1}H{-}{}^{13}C$ HMBC (¹H: 700 MHz [3.5-4.5 ppm], ${}^{13}C$: 176 MHz [150-185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of the **Trp**- α H-COOH in **Ac-Gly**^N-**Trp-OH** at 4.40 ppm with two resonances at 175 and 164 ppm, which is characteristic of amidine bond formation of **Trp**. See Fig. S120 for expanded and labelled ¹H NMR spectrum.

Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-tyrosine Tyr at pH 7 and 60 °C

Fig. S122. ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (**Ac-Gly-CN**, 200 mM) with L-tyrosine (**Tyr**, 200 mM) and *N*-acetyl-L-cysteine (**Ac-Cys-OH**, 60 mM, 0.3 eq.) with MSM (50 mM) as the internal standard after 24 h at pH 7 and 60 °C. Residual **Tyr** is not visible by ¹H NMR due to its very low solubility in water. See References 50 and 51. Inset: ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 6.7-7.2 ppm) showing the aromatic CH resonances present in **Ac-Gly^N-Tyr-OH**. \triangleright = *N*,*N'*-diacetyl-L-cystine (formed by aerial oxidation of **Ac-Cys-OH**) and **X** = **Ac-Gly-NH**₂.

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d) (2-acetamido-1-iminoethyl)tyrosine, **Ac-Gly^N-Tyr-OH** (\bullet): δ_{H} 7.11 (2H, d, *J* = 8.5 Hz, Ar*H*), 6.85 (2H, d, *J* = 8.5 Hz, Ar*H*), 4.33 (1H, ABX, *J* = 8.5, 4.6 Hz, Tyr- α H-COOH), 4.13 (2H, s, AcNHC*H*₂), 3.25 (1H, dd, *J* = 14.0, 4.6 Hz, CHCH*H*Ar), 2.96 (1H, dd, *J* = 14.0, 8.5 Hz, CHCH*H*Ar), 2.02 (3H, s, *H*₃C(CO)); *N*-Acetylglycinamide, **Ac-Gly-NH**₂ (**x**) (partial assignment): δ_{H} 3.89 (2H, s br., C*H*₂).

Fig. S123. ${}^{1}H{-}{}^{13}C$ HMBC (¹H: 700 MHz [3.5-4.5 ppm], ${}^{13}C$: 176 MHz [150-185 ppm], ${}^{H_2O/D_2O}$ 9:1) spectrum showing the diagnostic ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of the **Tyr**- α H-COOH in **Ac-Gly^N-Tyr-OH** at 4.33 ppm with two resonances at 175 and 164 ppm, which is characteristic of amidine bond formation of **Tyr**. See Fig. S122 for expanded and labelled ¹H NMR spectrum.

Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-valine Val at pH 7 and 60 °C

Fig. S124. ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 0.5-5.0 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (**Ac-Gly-CN**, 200 mM) with L-valine (**Val**, 200 mM) and *N*-acetyl-L-cysteine (**Ac-Cys-OH**, 60 mM, 0.3 eq.) with MSM (50 mM) as the internal standard after 24 h at pH 7 and 60 °C. \models = *N*,*N*'-diacetyl-L-cystine (formed by aerial oxidation of **Ac-Cys-OH**) and **X** = **Ac-Gly-NH₂**.

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d) (2-acetamido-1-iminoethyl)valine, **Ac-Gly^N-Val-OH** (\bigcirc) (partial assignment): δ_{H} 4.27 (1H, AB, J = 17.1 Hz, AcNHCHH), 4.22 (1H, AB, J = 17.1 Hz, AcNHCHH), 3.95 (1H, d, J = 5.6 Hz, Val- α H-COOH), 2.28-2.21 (1H, m, H₃CCHCH₃), 2.09 (3H, s, $H_{3}C(CO)$), 0.95 (3H, d, J = 6.7 Hz, CH_{3}), 0.93 (3H, d, J = 6.7 Hz, CH_{3}); *N*-Acetylglycylvaline, **Ac-Gly-Val-OH** (\checkmark): δ_{H} 4.09 (2H, dd, J = 8.5, 5.6 Hz, AcNHCH₂), 3.93 (1H, d, J = 7.2 Hz, Val- α H-COOH), 2.28-2.21 (1H, m, H₃CCHCH₃), 2.05 (3H, s, $H_{3}C(CO)$), 0.90 (3H, d, J = 7.0 Hz, CH_{3}), 0.85 (3H, d, J = 7.0 Hz, CH_{3}); *L*-valine, **Val** (\blacksquare): δ_{H} 3.58 (1H, d, J = 4.3 Hz, α H-COOH), 2.28-2.21 (1H, m, H₃CCHCH₃), 1.02 (3H, d, J = 7.0 Hz, CH_{3}), 0.97 (3H, d, J = 7.0 Hz, CH_{3}); *N*-Acetylglycinamide, **Ac-Gly-NH**₂ (**×**) (partial assignment): δ_{H} 3.88 (2H, s, CH_{2}).

Fig. S125. ${}^{1}\text{H}{-}{}^{13}\text{C}$ HMBC (${}^{1}\text{H}$: 700 MHz [3.5-4.5 ppm], ${}^{13}\text{C}$: 176 MHz [150-185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of the **Val**- α H-COOH in **Ac-Gly**^N-**Val-OH** at 3.95 ppm with two resonances at 176 and 165 ppm, which is characteristic of amidine bond formation of **Val**, and the ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of **Val**- α H-COOH in **Ac-Gly**-**Val-OH** at 3.93 ppm with two resonances at 175 and 171 ppm, which is characteristic of peptide bond formation of **Val**. See Fig. S124 for expanded and labelled ${}^{1}\text{H}$ NMR spectrum.

Coupling of N-acetyl-2-aminoglutaronitrile Ac-GIx-CN with glycine Gly at pH 7 and 60 ℃

Fig. S126. ¹H NMR (700 MHz, H_2O/D_2O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of **Ac-Gix-CN** (200 mM) with glycine (**Gly**, 200 mM) and *N*-acetyl-L-cysteine (**Ac-Cys-OH**, 60 mM, 0.3 eq.) with MSM (55 mM) as the internal standard at pH 7 and 60 °C for 4 d.

¹H NMR (700 MHz, H₂O/D₂O 9:1, 1–6 ppm): **Ac-Glx^{***N***}-Gly-OH** (\bigcirc): δ 4.60 (1H, dd, J = 10.0, 4.7 Hz, -CHCH₂CH₂CR), 3.82 (2H, s, Gly-CH₂), 2.66 (2H, td, J = 7.2, 3.4 Hz, -CHCH₂CH₂CN) 2.25–2.13 (2H, m, -CHCH₂CH₂CN), 2.00 (3H, s, H₃C(CO)-). Glycine **Gly** (\blacklozenge): δ 3.46 (2H, s, CH₂).

Fig. S127. ¹H–¹³C HMBC (¹H: 700 MHz [1.9–4.9 ppm], ¹³C: 176 MHz [100–190 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic HMBC coupling between the amidine carbon of **Ac-GIx^{***N***}-GIy-OH** at 166.4 ppm and its glycyl CH₂ moiety at 3.82 ppm, which is characteristic of amidine bond formation of **Gly**. See Fig. S126 for expanded and labelled ¹H NMR spectrum.

Coupling of N-acetyl-DL-alanine nitrile Ac-Ala-CN with glycine Gly at pH 7 and 60 $\,^{\circ}$ C

Fig. S128. ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0–6.0 ppm) spectrum showing the coupling of *N*-acetyl-DL-alanine nitrile (**Ac-Ala-CN**, 200 mM) with glycine (**Gly**, 400 mM) catalysed by *N*-acetyl-L-cysteine (**Ac-Cys-OH**, 400 mM) in presence of **MSM** (50 mM; internal NMR standard) after incubation at 60 °C for 24 h. \ge = *N*,*N'*-diacetyl-L-cystine (formed by aerial oxidation of **Ac-Cys-OH**).

¹H NMR (700 MHz, H₂O/D₂O 9:1, 1–6 ppm) **Ac-Ala^{***N***}-Gly-OH** (•): δ 4.48 (1H, q, *J* = 7.2 Hz, C*H*(CH₃)), 3.80 (2H, s, NHC*H*₂CO₂H), 1.97 (3H, s, *H*₃C(CO)), 1.45 (3H, d, *J* = 7.2 Hz, CH(CH₃)); glycine **Gly** (•): δ 3.46 (2H, s, C*H*₂).

Fig. S129. ${}^{1}H{-}^{13}C$ HMBC (${}^{1}H$: 700 MHz [3.6–4.6 ppm], ${}^{13}C$: 176 MHz [155–180 ppm], ${}^{H_2O/D_2O}$ 9:1) spectrum showing the diagnostic HMBC coupling between the amidine carbon of **Ac-Ala^N-Gly-OH** at 166.4 ppm and its glycyl CH₂ moiety at 3.80 ppm, which is characteristic of amidine bond formation of **Gly**. See Fig. S128 for expanded and labelled ${}^{1}H$ NMR spectrum.

Coupling of N-acetyl-DL-alanine nitrile **Ac-Ala-CN** with L-alanine L-**Ala** at pH 7 and 60 $^{\circ}$ C

Fig. S130. ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0–6.0 ppm) spectrum showing the coupling of *N*-acetyl-DL-alanine nitrile (**Ac-Ala-CN**, 200 mM) with L-alanine (**Ala**, 400 mM) catalysed by *N*-acetyl-L-cysteine (**Ac-Cys-OH**, 400 mM) in presence of **MSM** (50 mM; internal NMR standard) after incubation at 60 °C for 24 h. \geq = *N*,*N'*-diacetyl-L-cysteine (formed by aerial oxidation product of **Ac-Cys-OH**).

¹H NMR (700 MHz, H₂O/D₂O 9:1, 1–6 ppm) **Ac-Ala^{***N***}-Ala-OH** (●) (2 diastereoisomers): δ 4.42 (2H, quintet, *J* = 7.7 Hz, C*H*(CH₃)), 4.00 (2H, m, NHC*H*(CH₃)CO₂H), 1.96 (6H, s, *H*₃C(CO)), 1.42 (m, 6H, NHCH(C*H*₃)CO₂H), 1.35–1.32 (m, 6H, NHCH(C*H*₃)CN₂H); **Ala** (♦): δ 3.68 (1H, q, *J* = 7.2 Hz, C*H*(CH₃)), 1.37 (3H, d, *J* = 7.2 Hz, CH(C*H*₃)).

Fig. S131. ${}^{1}H{-}{}^{13}C$ HMBC (${}^{1}H$: 700 MHz [3.6–4.6 ppm], ${}^{13}C$: 176 MHz [155–180 ppm], ${}^{H_2O/D_2O}$ 9:1) spectrum showing the diagnostic HMBC coupling between the amidine carbon of **Ac-Ala^{***N***}-Ala-OH** at 167.7 ppm and its alanyl CH moiety, which is characteristic of amidine bond formation of **Ala**. See Fig. S130 for expanded and labelled ${}^{1}H$ NMR spectrum.

Coupling of N-acetyl-DL-serine nitrile Ac-Ser-CN with glycine Gly at pH 7 and 60 ℃

Fig. S132. ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0–6.0 ppm) spectrum showing the coupling of *N*-acetyl-DL-serine nitrile (**Ac-Ser-CN**, 200 mM) with glycine (**Gly**, 400 mM) catalysed by *N*-acetyl-L-cysteine (**Ac-Cys-OH**, 400 mM) in presence of **MSM** (50 mM; internal NMR standard) after incubation at 60 °C for 24 h. \models = *N*,*N'*-diacetyl-L-cystine (formed by aerial oxidation of **Ac-Cys-OH**). Acetate (CH₃CO₂⁻) was present as a contaminant from **Ac-Ser-CN** synthesis.

¹H NMR (700 MHz, H₂O/D₂O 9:1, 1–6 ppm) **Ac-Ser^N-Gly-OH** (●): δ 4.67 (1H, t, *J* = 4.7 Hz, C*H*(CH₂OH)), 4.01–3.95 (2H, m, CH(CH₂OH)), 3.94 (2H, s, NHCH₂CO₂H), 2.11 (3H, s, *H*₃C(CO)-); glycine **Gly** (♦): δ (2H, s, NH₂CH₂CO₂H).

Fig. S133. ${}^{1}H{}^{-13}C$ HMBC (${}^{1}H$: 700 MHz [3.8–4.8 ppm], ${}^{13}C$: 176 MHz [155–180 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic HMBC coupling between the amidine carbon of **Ac-Ser^N-Gly-OH** group at 165.4 ppm and its glycyl CH₂ moiety, which is characteristic of amidine bond formation of **Gly**. See Fig. S132 for expanded and labelled ${}^{1}H$ NMR spectrum.

Coupling of N-acetyl-DL-serine nitrile Ac-Ser-CN with L-alanine Ala at pH 7 and 60 °C

Fig. S134. H NMR (700 MHz, H_2O/D_2O 9:1, noesygppr1d, 1.0–6.0 ppm) spectrum showing the coupling of *N*-acetyl-DL-serine nitrile (**Ac-Ser-CN**, 200 mM) with L-alanine (**Ala**, 400 mM) catalysed by *N*-acetyl-L-cysteine (**Ac-Cys-OH**, 400 mM) in presence of **MSM** (50 mM; internal NMR standard) after incubation at 60 °C for 24 h. Acetate ($CH_3CO_2^-$) was present as a contaminant from **Ac-Ser-CN** synthesis.

¹H NMR (700 MHz, H₂O/D₂O 9:1, 1–6 ppm) **Ac-Ser^{***N***}-Ala-OH** (●) (2 diastereoisomers): δ 4.52 (2H, q, *J* = 4.9 Hz, C*H*(CH₂OH)), 4.04 (2H, quintet, *J* = 7.1 Hz, C*H*(CH₃)), 3.89–3.84 (4H, m, CH(CH₂OH)), 2.00 (6H, s, H₃C(CO)-), 1.37–1.33 (6H, m, CH(CH₃)); **Ala** (♦): δ 3.67 (1H, q, *J* = 7.2 Hz, C*H*(CH₃)), 1.36 (3H, d, *J* = 7.2 Hz, CH(CH₃)).

Fig. S135. ${}^{1}H{-}^{13}C$ HMBC (${}^{1}H$: 700 MHz [3.8–4.8 ppm], ${}^{13}C$: 176 MHz [155–180 ppm], H_2O/D_2O 9:1) spectrum showing the diagnostic HMBC coupling between the amidine carbon of **Ac-Ser^N-Ala-OH** at 164.7 ppm and its alanyl CH moiety, which is characteristic of amidine bond formation of **Ala**. See Fig. S134 for expanded and labelled ${}^{1}H$ NMR spectrum.

Coupling of N-acetyl-DL-valine nitrile Ac-Val-CN with glycine Gly at pH 7 and 60 $\,^{\circ}$ C

Fig. S136. ¹H NMR (700 MHz, H_2O/D_2O 9:1, noesygppr1d, 0.5–6.0 ppm) spectrum showing the coupling of *N*-acetyl-DL-valine nitrile (**Ac-Val-CN**; 200 mM) with glycine (**Gly**; 400 mM) catalysed by 3-mercaptopropionic acid (**MPA**; 400 mM) in presence of **MSM** (50 mM; internal NMR standard) after incubation at 60 °C after 48 h.

¹H NMR (700 MHz, H₂O/D₂O 9:1, 1–6 ppm) **Ac-Val^N-Gly-OH** (\bigcirc): δ 4.33 (1H, d, *J* = 6.8 Hz, CHCH(CH₃)₂), 3.90 (2H, s, NHCH₂CO₂H), 2.19 (1H, m, CHCH(CH₃)₂), 2.05 (3H, s, *H*₃C(CO)-), 1.04 (3H, d, *J* = 6.8 Hz, CH(CH₃)(CH₃), 1.03 (3H, d, *J* = 6.8 Hz, CH(CH₃)(CH₃); **Gly** (\blacklozenge): δ 3.55 (s, CH(CH₃)); **Ac-Val-CN** (\blacksquare): 4.59 (1H, d, *J* = 7.0 Hz, CHCH(CH₃)₂), 2.13–2.09 (1H, m, CHCH(CH₃)₂), 2.08 (3H, s, *H*₃C(CO)-), 1.07 (3H, d, *J* = 6.7 Hz, CHCH(CH₃)(CH₃)), 1.02 (3H, d, *J* = 6.8 Hz, CHCH(CH₃)(CH₃)).

Fig. S137. $^{1}H^{-13}C$ HMBC (^{1}H : 700 MHz [3.6–4.7 ppm], ^{13}C : 176 MHz [155–180 ppm], H_2O/D_2O 9:1) spectrum showing the diagnostic HMBC coupling between amidine carbon of **Ac-Val^N-Gly-OH** at 164.7 ppm and its glycyl CH₂ moiety, which is characteristic of amidine bond formation of **Gly**. See Fig. S136 for expanded and labelled ^{1}H NMR spectrum.

Characterisation of coupling reactions of N-acetyl-L-cysteine-catalysed coupling of N-acetylglycine nitrile and α -amino amides

Coupling of N-acetylglycine nitrile Ac-Gly-CN with glycinamide Gly-NH₂ at pH 7 and 60 ℃

Fig. S138. ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (**Ac-Gly-CN**, 200 mM) with glycinamide (**Gly-NH**₂, 200 mM) and *N*-acetyl-L-cysteine (**Ac-Cys-OH**, 60 mM, 0.3 eq.) with MSM (5 mM) as the internal standard after 24 h at pH 7 and 60 °C. \triangleright = *N*,*N*'-diacetyl-L-cystine (formed by aerial oxidation of **Ac-Cys-OH**) and **X** = **Ac-Gly-NH**₂.

¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d) (2-acetamido-1-iminoethyl)glycinamide, Ac-Gly^N-Gly-NH₂ (\bigcirc): δ_{H} 4.28 (2H, s, AcNHCH₂), 4.18 (2H, s, CH₂CONH₂), 2.10 (3H, s, H₃C(CO)); *N*-Acetylglycylglycinamide, Ac-Gly-Gly-NH₂ (\blacktriangledown): δ_{H} 3.95 (2H, s, AcNHCH₂), 3.93 (2H, s, CH₂CONH₂), 2.04 (3H, s, H₃C(CO); Glycinamide, Gly-NH₂ (\blacksquare): δ_{H} 3.75 (2H, s, CH₂); *N*-Acetylglycinamide, Ac-Gly-NH₂ (\bigstar) (partial assignment): δ_{H} 3.89 (2H, s, CH₂).

Fig. S139. ${}^{1}\text{H}{}^{-13}\text{C}$ HMBC (${}^{1}\text{H}$: 600 MHz [3.5-4.5 ppm], ${}^{13}\text{C}$: 151 MHz [150-185 ppm], ${}^{H_2}\text{O}/\text{D}_2\text{O}$ 9:1) spectrum showing the diagnostic ${}^{2}J_{\text{CH}}$ and ${}^{3}J_{\text{CH}}$ coupling of the **Gly**- α H-CONH₂ in **Ac-Gly**^N-**Gly**-**NH**₂ at 4.18 ppm with two resonances at 171 and 167 ppm, which is characteristic of amidine bond formation of **Gly-NH**₂, and the diagnostic ${}^{2}J_{\text{CH}}$ and ${}^{3}J_{\text{CH}}$ coupling of the **Gly**- α H-CONH₂ in **Ac-Gly-Gly-NH**₂ at 3.93 ppm with two resonances at 175 and 173 ppm, which is characteristic of amide bond formation of **Gly-NH**₂. See Fig. S138 for expanded and labelled ¹H NMR spectrum.

Coupling of N-acetylglycine nitrile Ac-Gly-CN with D-alaninamide D-Ala-NH₂ at pH 7 and 60 ℃

Fig. S140. ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (**Ac-Gly-CN**, 200 mM) with D-alaninamide (D-**Ala-NH₂**, 200 mM) and *N*-acetyl-L-cysteine (**Ac-Cys-OH**, 60 mM, 0.3 eq.) with MSM (5 mM) as the internal standard after 24 h at pH 7 and 60 °C. \models = *N*,*N*'-diacetyl-L-cystine (formed by aerial oxidation of **Ac-Cys-OH**) and **X** = **Ac-Gly-NH₂**.

¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d) (2-acetamido-1-iminoethyl)alaninamide, **Ac-Gly^N-Ala-NH**₂ (\bullet): δ_{H} 4.42 (1H, q, *J* = 7.0 Hz, *CH*(CH₃), 4.25 (2H, s, AcNHC*H*₂), 1.53 (3H, d, *J* = 7.0 Hz, *CH*(CH₃)); *N*-Acetylglycylalaninamide, **Ac-Gly-Ala-NH**₂ (\bullet): δ_{H} 4.31 (1H, q, *J* = 7.4 Hz, *CH*(CH₃)), 3.93 (2H, br. s., AcNHC*H*₂), 2.06 (3H, s, *H*₃C(CO)), 1.40 (3H, d, *J* = 7.4 Hz, *CH*(CH₃)); *D*-Alaninamide, D-Ala-NH₂ (\bullet): δ_{H} 4.00 (1H, q, *J* = 7.2 Hz, *CH*(CH₃)), 1.50 (3H, d, *J* = 7.2 Hz, *CH*(CH₃)); *N*-Acetylglycinamide, **Ac-Gly-NH**₂ (\bullet) (partial assignment): δ_{H} 3.89 (2H, s, *CH*₂); *N*-(2-amino-2-iminoethyl)acetamide, **Ac-Gly^N-NH**₂ (\bullet) (partial assignment): δ_{H} 4.21 (2H, s, *CH*₂).

Fig. S141. ${}^{1}H{-}{}^{13}C$ HMBC (${}^{1}H: 600$ MHz [3.5-4.5 ppm], ${}^{13}C: 151$ MHz [150-185 ppm], ${}^{H_2O/D_2O}$ 9:1) spectrum showing the diagnostic ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of the **Ala**- α H-CONH₂ in **Ac-Gly**^N-**Ala-NH₂** at 4.42 ppm with two resonances at 175 and 166 ppm, which is characteristic of amidine bond formation of D-**Ala-NH**₂ and the diagnostic ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of the **Ala**- α H-CONH₂ in **Ac-Gly**-**Ala-NH**₂ at 4.31 ppm with two resonances at 179 and 172 ppm, which is characteristic of amide bond formation of D-**Ala-NH**₂. See Fig. S140 for expanded and labelled ${}^{1}H$ NMR spectrum.

Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-argininamide Arg-NH₂ at pH 7 and 60 ℃

Fig. S142. ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (**Ac-Gly-CN**, 200 mM) with L-argininamide (**Arg-NH**₂, 200 mM) and *N*-acetyl-L-cysteine (**Ac-Cys-OH**, 60 mM, 0.3 eq.) with MSM (5 mM) as the internal standard after 24 h at pH 7 and 60 °C. \models = *N*,*N'*-diacetyl-L-cystine (formed by aerial oxidation of **Ac-Cys-OH**) and **X** = **Ac-Gly-NH**₂.

¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d) *N*-Acetylglycylargininamide, Ac-Gly-Arg-NH₂ (\checkmark) (partial assignment): $\delta_{H}4.32$ (1H, dd, J = 9.2, 5.0 Hz, Arg- α H-CONH₂), 3.95 (2H, s br., AcNHCH₂), 3.22 (2H, br. t., J = 7.0 Hz, CH₂(guanidyl)), 2.06 (3H, s, H₃C(CO)); *L*-argininamide, Arg-NH₂ (\blacksquare) (partial assignment): $\delta_{H}3.56$ (1H, t, J = 6.4 Hz, α H-CONH₂), 3.22 (2H, br. t., J = 7.0 Hz, CH₂(guanidyl)); *N*-Acetylglycinamide, Ac-Gly-NH₂ (\checkmark) (partial assignment): $\delta_{H}3.90$ (2H, s, CH₂); *N*-(2-amino-2-iminoethyl)acetamide, Ac-Gly^N-NH₂ (\bigstar) (partial assignment): $\delta_{H}4.21$ (2H, s, CH₂).

Fig. S143. $^{1}H^{-13}C$ HMBC (^{1}H : 600 MHz [3.5-4.5 ppm], ^{13}C : 151 MHz [150-185 ppm], H_2O/D_2O 9:1) spectrum showing the diagnostic $^{2}J_{CH}$ and $^{3}J_{CH}$ coupling of the **Arg**- α H-CONH₂ in **Ac-Gly-Arg-NH**₂ at 4.32 ppm with two resonances at 177 and 173 ppm, which is characteristic of amide bond formation of **Arg-NH**₂. See Fig. S142 for expanded and labelled ^{1}H NMR spectrum.

Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-asparaginamide Asn-NH₂ at pH 7 and 60 ℃

Fig. S144. ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (Ac-Gly-CN, 200 mM) with L-asparaginamide (Asn-NH₂, 200 mM) and *N*-acetyl-L-cysteine (Ac-Cys-OH, 300 mM) with MSM (50 mM) as the internal standard after 24 h at pH 7 and 60 °C. Inset: ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 3.7-4.7 ppm) showing the region with the (C2)–H. The Asn- α H (C2)–H resonance of Ac-Gly-Asn-NH₂ at 4.63 ppm has become suppressed along with the residual HOD peak, but is confirmed by ¹H–¹³C HMBC analysis. See Fig. S145. \geq = *N*,*N*'-diacetyl-L-cystine (formed by aerial oxidation of Ac-Cys-OH), x = Ac-Gly-NH₂ and *= Ac-Gly^N-NH₂.

¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d) *N-Acetylglycylasparaginamide*, **Ac-Gly-Asn-NH₂** (\checkmark): δ_{H} 4.63 (1H, ABX, *J* = 7.6, 5.3 Hz, Asn- α H-CONH₂), 4.00 (1H, AB, *J* = 16.9 Hz, AcNHCH*H*), 3.96 (1H, AB, *J* = 16.9 Hz, AcNHCH*H*), 2.88 (1H, dd, *J* = 15.3, 5.3 Hz, CH(CH*H*CONH₂)CONH₂), 2.79 (1H, dd, *J* = 15.3 Hz, 7.6 Hz, CH(CH*H*CONH₂)CONH₂), 2.09 (3H, s, *H*₃C(CO)); *L-asparaginamide*, **Asn-NH₂** (\blacksquare): δ_{H} 3.87 (1H, ABX, *J* = 7.8, 5.6 Hz, α H-CONH₂), 2.75 (1H, dd, *J* = 15.3, 5.6 Hz, CH(CH*H*CONH₂)CONH₂), 2.64 (1H, dd, *J* = 15.3, 7.8 Hz, CH(CH*H*CONH₂)CONH₂); *N-Acetylglycinamide*, **Ac-Gly-NH₂** (\bigstar) (partial assignment): δ_{H} 3.93 (2H, s, *CH*₂); *N-(2-amino-2-iminoethyl)acetamide*, **Ac-Gly-NH₂** (\bigstar) (partial assignment): δ_{H} 4.25 (2H, s, *CH*₂).

Fig. S145. ${}^{1}H-{}^{13}C$ HMBC (${}^{1}H:$ 600 MHz [3.7-4.7 ppm], ${}^{13}C:$ 176 MHz [150-185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of the **Asn**- α H-CONH₂ in **Ac-Gly-Asn-NH**₂ at 4.63 ppm with two resonances at 177 and 172 ppm, which is characteristic of amide bond formation of **Asn-NH**₂. See Fig. S144 for expanded and labelled ${}^{1}H$ NMR spectrum.

Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-aspartamide Asp-NH₂ at pH 7 and 60 ℃

Fig. S146. ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (Ac-Gly-CN, 200 mM) with L-aspartamide (Asp-NH₂, 200 mM) and *N*-acetyl-L-cysteine (Ac-Cys-OH, 60 mM, 0.3 eq.) with MSM (5 mM) as the internal standard after 24 h at pH 7 and 60 °C. \geq = *N*,*N*'-diacetyl-L-cystine (formed by aerial oxidation of Ac-Cys-OH), **X** = Ac-Gly-NH₂ and **X** = Ac-Gly^N-NH₂.

¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d) (2-acetamido-1-iminoethyl)aspartamide, Ac-Gly^N-Asp-NH₂ (\bigcirc) (partial assignment): δ_H 4.38-4.35 (1H, m, Asp-αH-CONH₂), 4.27 (1H, AB, *J* = 17.3 Hz, AcNHCH*H*), 4.24 (1H, AB, *J* = 17.3 Hz, AcNHCH*H*), 2.10 (3H, s, *H*₃C(CO)); *N*-Acetylglycylaspartamide, Ac-Gly-Asp-NH₂ (\bigtriangledown) (partial assignment): δ_H 4.59 (1H, ABX, *J* = 7.7, 5.2 Hz, Asp-αH-CONH₂), 3.96 (1H, AB, *J* = 17.1 Hz, AcNHCH*H*), 3.92 (1H, AB, *J* = 17.1 Hz, AcNHCH*H*), 2.69 (1H, dd, *J* = 16.0, 5.2 Hz, CH(CH*H*COOH)CONH₂), 2.63 (1H, dd, *J* = 16.0, 7.7 Hz, CH(CH*H*COOH)CONH₂), 2.07 (3H, s, *H*₃C(CO)); *L*-aspartamide, Asp-NH₂ (\blacksquare) (partial assignment): δ_H 4.38-4.35 (1H, m, αH-CONH₂); *N*-Acetylglycinamide, Ac-Gly-NH₂ (\bigstar): δ_H 3.89 (2H, s, CH₂), 2.06 (3H, s, *H*₃C(CO)); *N*-(2-amino-2-iminoethyl)acetamide, Ac-Gly^N-NH₂ (\bigstar): δ_H 4.21 (2H, s, CH₂), 2.09 (3H, s, *H*₃C(CO)).

Fig. S147. 1 H $-{}^{13}$ C HMBC (1 H: 600 MHz [3.5-4.7 ppm], 13 C: 151 MHz [150-185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of the **Asp**- α H-CONH₂ in **Ac-Gly**^N-**Asp-NH**₂ at 4.38-4.35 ppm with two resonances at 178 and 165 ppm, which is characteristic of amidine bond formation of **Asp-NH**₂, and the diagnostic ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of the **Asp**- α H-CONH₂ in **Ac-Gly**^N-**Asp-NH**₂ at 4.38-4.35 ppm with two resonances at 178 and 165 ppm, which is characteristic of amidine bond formation of **Asp-NH**₂, and the diagnostic ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of the **Asp**- α H-CONH₂ in **Ac-Gly-Asp-NH**₂ at 4.59 ppm with two resonances at 178 and 172 ppm, which is characteristic of amide bond formation of **Asp-NH**₂. See Fig. S146 for expanded and labelled 1 H NMR spectrum.

Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-glutaminamide GIn-NH₂ at pH 7 and 60 ℃

Fig. S148. ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (Ac-Gly-CN, 200 mM) with L-glutamine amide (GIn-NH₂, 200 mM) and *N*-acetyl-L-cysteine (Ac-Cys-OH, 60 mM, 0.3 eq.) with MSM (50 mM) as the internal standard after 24 h at pH 7 and 60 °C. \triangleright = *N*,*N*'-diacetyl-L-cysteine (formed by aerial oxidation of Ac-Cys-OH), **X** = Ac-Gly-NH₂ and *****= Ac-Gly^N-NH₂.

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d) *N*-Acetylglycylglutaminamide, **Ac-Gly-Gln-NH**₂ (\checkmark) (partial assignment) δ_{H} 4.35-4.33 (1H, m, Gln- α H-CONH₂), 3.95 (2H, s, AcNHCH₂), 2.08 (3H, s, H₃C(CO)); *L*-glutaminamide, **Gln-NH**₂ (\blacksquare) (partial assignment): δ_{H} 4.35-4.33 α H-CONH₂; *N*-Acetylglycinamide, **Ac-Gly-NH**₂ (\bigstar): δ_{H} 3.90 (2H, s, CH₂), 2.05 (3H, s, H₃C(CO)); *N*-(2-amino-2-iminoethyl)acetamide, **Ac-Gly^N-NH**₂ (\bigstar): δ_{H} 4.22 (2H, s, CH₂), 2.10 (3H, s, H₃C(CO)).

Fig. S149. ¹H–¹³C HMBC (¹H: 700 MHz [3.5-4.5 ppm], ¹³C: 176 MHz [150-185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ²J_{CH} and ³J_{CH} coupling of the **GIn**- α H-CONH₂ in **Ac-Gly-GIn-NH**₂ at 4.35-4.33 ppm with two resonances at 177 and 172 ppm, which is characteristic of amide bond formation of **GIn-NH**₂. See Fig. S148 for expanded and labelled ¹H NMR spectrum.

Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-glutamic acid amide Glu-NH2 at pH 7 and 60 °C

Fig. S150. ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (Ac-Gly-CN, 200 mM) with L-glutamic acid amide (Glu-NH₂, 200 mM) and *N*-acetyl-L-cysteine (Ac-Cys-OH, 60 mM, 0.3 eq.) with MSM (5 mM) as the internal standard after 24 h at pH 7 and 60 °C. \triangleright = *N*,*N'*-diacetyl-L-cystine (formed by aerial oxidation of Ac-Cys-OH), × = Ac-Gly-NH₂ and * = Ac-Gly^N-NH₂. H).

¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d) *N-Acetylglycylglutamic acid amide*, **Ac-Gly-Glu-NH**₂ (\checkmark) (partial assignment): δ_{H} 4.27 (1H, dd, J = 9.3, 4.9 Hz, Glu- α H-CONH₂), 3.94 (2H, br. s, AcNHCH₂), 2.31-2.22 (2H, m, CH(CH₂CH₂COOH)CONH₂), 2.06 (3H, s, *H*₃C(CO)), 1.97-1.91 (2H, m, CH(CH₂CH₂COOH)CONH₂); *L-glutamic acid amide*, **Glu-NH**₂ (\blacksquare) (partial assignment): δ_{H} 4.27 (1H, dd, J = 9.3, 4.9 Hz, CH(R)), 2.31-2.22 (2H, m, CH(CH₂CH₂COOH)CONH₂), 1.97-1.91 (2H, m, CH(CH₂CH₂COOH)CONH₂), 2.31-2.22 (2H, m, CH(CH₂CH₂COOH)CONH₂), 1.97-1.91 (2H, m, CH(CH₂CH₂COOH)CONH₂); *N-Acetylglycinamide*, **Ac-Gly-NH**₂ (\thickapprox) (partial assignment): δ_{H} 3.89 (2H, s, CH₂), 2.04 (3H, s, H₃C(CO)); *N-(2-amino-2-iminoethyl)acetamide*, **Ac-Gly^N-NH**₂ (\bigstar): δ_{H} 4.20 (2H, s, CH₂), 2.09 (3H, s, H₃C(CO)).

Fig. S151. ${}^{1}\text{H}-{}^{13}\text{C}$ HMBC (${}^{1}\text{H}$: 600 MHz [3.5-4.5 ppm], ${}^{13}\text{C}$: 151 MHz [150-185 ppm], ${}^{H_2}\text{O}/\text{D}_2\text{O}$ 9:1) spectrum showing the diagnostic ${}^{2}J_{\text{CH}}$ and ${}^{3}J_{\text{CH}}$ coupling of the **Glu**- α H-CONH₂ in **Ac-Gly-Glu-NH₂** at 4.27 ppm with two resonances at 177 and 173 ppm, which is characteristic of amide bond formation of **Glu-NH₂**. See Fig. S150 for expanded and labelled ${}^{1}\text{H}$ NMR spectrum.

Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-histidinamide His-NH₂ at pH 7 and 60 °C

Fig. S152. ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (**Ac-Gly-CN**, 200 mM) with L-histidinamide (**His-NH**₂, 200 mM) and *N*-acetyl-L-cysteine (**Ac-Cys-OH**, 60 mM, 0.3 eq.) with MSM (5 mM) as the internal standard after 24 h at pH 7 and 60 °C. Inset: ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 6.8-7.8 ppm) showing the aromatic CH resonances present in **His** and **Ac-Gly-His-NH**₂. \triangleright = *N*,*N'*-diacetyl-L-cystine (formed by aerial oxidation of **Ac-Cys-OH**), **x** = **Ac-Gly-NH**₂ and *****= **Ac-Gly^N-NH**₂.

¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d) *N*-Acetylglycylhistidinamide, **Ac-Gly-His-NH**₂ (\checkmark): δ_{H} 7.69 (1H, s, Ar*H*), 6.97 (1H, s, Ar*H*), 4.56 (1H, ABX, *J* = 8.4, 5.6 Hz, His- α H-CONH₂), 3.88 (1H, AB, *J* = 17.1 Hz, AcNHCH*H*), 3.84 (1H, AB, *J* = 17.1 Hz, AcNHCH*H*), 3.11 (1H, ABX, *J* = 15.0, 5.6 Hz, CHCH*H*Ar), 3.01 (1H, ABX, *J* = 15.0, 8.4 Hz, CHCH*H*Ar), 2.03 (3H, s, *H*₃C(CO)); *L*-histidinamide, **His-NH**₂ (\blacksquare) (partial assignment): δ_{H} 7.70 (1H, s, Ar*H*), 6.97 (1H, s, Ar*H*), 3.74 (1H, t, *J* = 6.7 Hz, α H-CONH₂); *N*-Acetylglycinamide, **Ac-Gly-NH**₂ (\Rightarrow): δ_{H} 3.88 (2H, s, *CH*₂), 2.05 (3H, s, *H*₃C(CO)); *N*-(2-amino-2-iminoethyl)acetamide, **Ac-Gly^N-NH**₂ (\Rightarrow): δ_{H} 4.20 (2H, s, *CH*₂), 2.09 (3H, s, *H*₃C(CO)).

Fig. S153. ${}^{1}H-{}^{13}C$ HMBC (${}^{1}H: 600$ MHz [3.7-4.7 ppm], ${}^{13}C: 151$ MHz [150-185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of the **His**- α H-CONH₂ in **Ac-Gly-His-NH**₂ at 4.56 ppm with two resonances at 176 and 172 ppm, which is characteristic of amide bond formation of **His-NH**₂. See Fig. S152 for expanded and labelled ${}^{1}H$ NMR spectrum.

Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-isoleucinamide IIe-NH₂ at pH 7 and 60 °C

Fig. S154. ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 0.5-5.1 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (Ac-Gly-CN, 200 mM) with L-isoleucinamide (IIe-NH₂, 200 mM) and *N*-acetyl-L-cysteine (Ac-Cys-OH, 60 mM, 0.3 eq.) with MSM (5 mM) as the internal standard after 24 h at pH 7 and 60 °C. \geq = *N*,*N*'-diacetyl-L-cystine (formed by aerial oxidation of Ac-Cys-OH), \approx = Ac-Gly-NH₂ and *= Ac-Gly^N-NH₂.

¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d) (2-acetamido-1-iminoethyl)isoleucinamide, mixture of diastereoisomers [A:B, 57:43], **Ac-Gly^N-IIe-NH**₂ (A, \bullet) (partial assignment): δ_H 4.25 (2H, s br., AcNHC*H*₂), 4.18 (1H, m, IIe-αH-CONH₂), (B, \bullet): δ_H 4.24 (2H, s br., AcNHC*H*₂), 4.18 (1H, m br., IIe-αH-CONH₂); *N*-Acetylglycylisoleucinamide, mixture of diastereoisomers [C:D, 57:43], **Ac-Gly-IIe-NH**₂ (C, \checkmark) (partial assignment): δ_H 4.35 (1H, m., IIe-αH-CONH₂), 3.96 (2H, s br., AcNHC*H*₂), (D, \checkmark) (partial assignment): δ_H 4.35 (1H, s br., IIe-αH-CONH₂), 3.94 (2H, s br., AcNHC*H*₂); *L*isoleucinamide, **IIe-NH**₂ (\blacksquare) (partial assignment): δ_H 3.70 (1H, d, *J* = 5.6 Hz, αH-CONH₂); *N*-Acetylglycinamide, **Ac-Gly-NH**₂ (**×**) (partial assignment): δ_H 3.89 (2H, s, C*H*₂); *N*-(2-amino-2-iminoethyl)acetamide, **Ac-Gly^N-NH**₂ (*****): δ_H 4.20 (2H, s, C*H*₂), 2.09 (3H, s, *H*₃C(CO)).

Fig. S155. ${}^{1}\text{H}{-}{}^{13}\text{C}$ HMBC (${}^{1}\text{H}$: 600 MHz [3.5-4.5 ppm], ${}^{13}\text{C}$: 151 MHz [150-185 ppm], ${}^{H_2}\text{O}/\text{D}_2\text{O}$ 9:1) spectrum showing the diagnostic ${}^{2}J_{\text{CH}}$ and ${}^{3}J_{\text{CH}}$ coupling of the **IIe**- α H-CONH₂ in **Ac-Gly**^{**N**}-**IIe**-**NH**₂ at 4.18 ppm with two resonances at 173 and 166 ppm, which is characteristic of amidine bond formation of **IIe**-**NH**₂, and the diagnostic ${}^{2}J_{\text{CH}}$ and ${}^{3}J_{\text{CH}}$ coupling of the **Gly**- α H in **Ac-Gly**-**IIe**-**NH**₂ at 3.96 and 3.94 ppm with resonances at (176 and 175) and (173 and 172) ppm, which is characteristic of amide bond formation of **IIe**-**NH**₂. See Fig. S154 for expanded and labelled ¹H NMR spectrum.

Coupling of N-acetylglycine nitrile Ac-Gly-CN with D-leucinamide D-Leu-NH₂ at pH 7 and 60 ℃

Fig. S156. ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 0.5-5.0 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (Ac-Gly-CN, 200 mM) with D-leucinamide (D-Leu-NH₂, 200 mM) and *N*-acetyl-L-cysteine (Ac-Cys-OH, 60 mM, 0.3 eq.) with MSM (5 mM) as the internal standard after 24 h at pH 7 and 60 °C. \geq = *N*,*N*'-diacetyl-L-cysteine (formed by aerial oxidation of Ac-Cys-OH), \Rightarrow = Ac-Gly-NH₂ and \Rightarrow = Ac-Gly^N-NH₂.

¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d) (2-acetamido-1-iminoethyl)leucinamide, **Ac-Gly^N-Leu-NH**₂ (•) (partial assignment): δ_{H} 4.34-4.29 (1H, obs., Leu-αH-CONH₂), 4.24 (2H, s, AcNHCH₂), 1.72-1.56 (3H, m, CHCH₂CH(CH₃)₂; CHCH₂CH(CH₃)₂); *N*-Acetylglycylleucinamide, **Ac-Gly-Leu-NH**₂ (•) (partial assignment): δ_{H} 4.31 (1H, dd, *J* = 10.2, 4.0 Hz, Leu-αH-CONH₂), 3.92 (2H, br. s, AcNHCH₂), 2.05 (3H, s, H₃C(CO)), 1.72-1.56 (3H, m, CHCH₂CH(CH₃)₂; CHCH₂CH(CH₃)₂), 0.92 (3H, d, *J* = 6.2 Hz, CH₃), 0.87 (3H, d, *J* = 6.2 Hz, CH₃); *D*-leucinamide, D-Leu-NH₂ (•) (partial assignment): δ_{H} 3.84 (1H, t, *J* = 7.1 Hz, αH-CONH₂), 1.72-1.56 (3H, m, CHCH₂CH(CH₃)₂; CHCH₂CH(CH₃)₂), 0.95 (3H, d, *J* = 6.2 Hz, CH₃), 0.94 (3H, d, *J* = 6.2 Hz, CH₃); *N*-Acetylglycinamide, **Ac-Gly-NH**₂ (*) (partial assignment): δ_{H} 4.39 (3H, s, H₃C(CO)).

Fig. S157. ¹H–¹³C HMBC (¹H: 600 MHz [3.5-4.5 ppm], ¹³C: 151 MHz [150-185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ²J_{CH} and ³J_{CH} coupling of the **Leu**- α H-CONH₂ and glycyl CH₂ in **Ac-Gly**^N-**Leu-NH**₂ at 4.34-4.29 and 4.24 ppm with a resonance at 166 ppm, which is characteristic of amidine bond formation of D-**Leu-NH**₂, and the diagnostic ²J_{CH} and ³J_{CH} coupling of **Leu**- α H-CONH₂ in **Ac-Gly-Leu-NH**₂ at 4.34-4.29 ppm with two resonances at 178 and 173 ppm, which is characteristic of amide bond formation of D-**Leu-NH**₂. See Fig. S156 for expanded and labelled ¹H NMR spectrum.

Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-lysinamide Lys-NH₂ at pH 7 and 60 ℃

Fig. S158. ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.1 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (Ac-Gly-CN, 200 mM) with L-lysinamide (Lys-NH₂, 200 mM) and *N*-acetyl-L-cysteine (Ac-Cys-OH, 60 mM, 0.3 eq.) with MSM (5 mM) as the internal standard after 24 h at pH 7 and 60 °C. \geq = *N*,*N*'-diacetyl-L-cystine (formed by aerial oxidation of Ac-Cys-OH), **x** = Ac-Gly-NH₂ and **x** = Ac-Gly^N-NH₂.

¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d) N⁶-(2-acetamido-1-iminoethyl)lysinamide, **N**⁶-(**Ac-Gly**^N)-Lys-NH₂ (**O**): δ_{H} 4.18 (2H, s, N⁶-AcNHCH₂), 3.79-3.75 (1H, m, lysyl-αH-CONH₂), 3.35-3.31 (2H, m, N⁶-CH₂CH₂), 2.04 (3H, s, N⁶-H₃C(CO)); N²-Acetylglycyllysinamide, **N**²-(**Ac-Gly**)-Lys-NH₂ (**▼**): δ_{H} 4.30 (1H, dd, J = 9.3, 4.9 Hz, lysyl-αH-CONH₂), 3.94 (2H, N²-AcNHCH₂), 3.03-2.99 (2H, m, N⁶-NH₂CH₂CH₂), 2.06 (3H, s, N²-H₃C(CO)); *L*-lysinamide, Lys-NH₂ (**■**): δ_{H} 3.79-3.75 (1H, m, lysyl-αH-CONH₂), 3.03-2.99 (2H, m, N⁶-NH₂CH₂CH₂); N-Acetylglycinamide, **Ac-Gly-NH₂** (*****): δ_{H} 3.89 (2H, s, CH₂); N-(2-amino-2-iminoethyl)acetamide, **Ac-Gly^N-NH₂** (*****): δ_{H} 4.21 (2H, s, CH₂).

Fig. S159. ${}^{1}H-{}^{13}C$ HMBC (¹H: 600 MHz [3.2-4.5 ppm], ${}^{13}C$: 151 MHz [150-185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of the Lys- N^{6} -CH₂ in N^{6} -(Ac-Gly^N)-Lys-NH₂ at 4.18 ppm with two resonances at 177 and 165 ppm, which is characteristic of amidine bond formation of Lys-NH₂ and the diagnostic ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of the Lys- α H-CONH₂ in N^{2} -(Ac-Gly)-Lys-NH₂ at 4.30 ppm with two resonances at 178 and 173 ppm, which is characteristic of amide bond formation of Lys-NH₂. See Fig. S158 for expanded and labelled ¹H NMR spectrum.

Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-methioninamide Met-NH2 at pH 7 and 60 °C

Fig. S160. ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (Ac-Gly-CN, 200 mM) with L-methioninamide (Met-NH₂, 200 mM) and *N*-acetyl-L-cysteine (Ac-Cys-OH, 60 mM, 0.3 eq.) with MSM (5 mM) as the internal standard after 24 h at pH 7 and 60 °C. \blacktriangleright = *N*,*N*'-diacetyl-L-cystine (formed by aerial oxidation of Ac-Cys-OH), **X** = Ac-Gly-NH₂ and **X** = Ac-Gly^N-NH₂.

¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d) (2-acetamido-1-iminoethyl)methioninamide, Ac-Gly^N-Met-NH₂ (\bullet) (partial assignment): δ_H 4.25 (2H, app. d., AcNHC*H*₂); *N*-Acetylglycylmethioninamide, Ac-Gly-Met-NH₂ (\checkmark) (partial assignment): δ_H 4.48 (1H, dd, *J* = 9.7, 4.6 Hz, Met-αH-CONH₂), 3.94 (2H, br. s., AcNHC*H*₂), 2.66-2.59 (1H, m, CH*H*SCH₃), 2.57-2.51 (1H, m, CH*H*SCH₃), 2.17-1.98 (2H, m., CHC*H*₂), 2.11 (3H, s, SC*H*₃), 2.06 (3H, s, *H*₃C(CO)); *L*-methioninamide, Met-NH₂ (\blacksquare): δ_H 3.66 (1H, t, *J* = 6.6 Hz, αH-CONH₂), 2.66-2.59 (1H, m, CH*H*SCH₃), 2.57-2.51 (1H, br. m., CHCH*H*), 2.12 (3H, s, SC*H*₃), 1.95-1.89 (1H, m, CHCH*H*); *N*-Acetylglycinamide, Ac-Gly^N-NH₂ (\bigstar) (partial assignment): δ_H 4.21 (2H, s, C*H*₂).

Fig. S161. ${}^{1}\text{H} - {}^{3}\text{C}$ HMBC (${}^{1}\text{H}$: 600 MHz [3.7-4.7 ppm], ${}^{13}\text{C}$: 151 MHz [150-185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of the **Met**- α H-CONH₂ in **Ac-Gly**^N-**Met-NH**₂ at 4.25 ppm with two resonances at 176 and 166 ppm, which is characteristic of amidine bond formation of **Met-NH**₂, and the diagnostic ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of the **Met**- α H-CONH₂ in **Ac-Gly-Met-NH**₂ at 4.48 ppm with two resonances at 177 and 172 ppm, which is characteristic of amide bond formation of **Met-NH**₂. See Fig. S160 for expanded and labelled ${}^{1}\text{H}$ NMR spectrum.

Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-phenylalaninamide Phe-NH₂ at pH 7 and 60 ℃

Fig. S162. ¹H NMR (600 MHz, H_2O/D_2O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (Ac-Gly-CN, 200 mM) with L-phenylalaninamide (**Phe-NH**₂, 200 mM) and *N*-acetyl-L-cysteine (Ac-Cys-OH, 60 mM, 0.3 eq.) with MSM (5 mM) as the internal standard after 24 h at pH 7 and 60 °C. Inset: ¹H NMR (600 MHz, H_2O/D_2O 9:1, noesygppr1d, 7.0-7.6 ppm) showing the aromatic CH resonances of **Phe-NH**₂, Ac-Gly^N-Phe-NH₂ and Ac-Gly-Phe-NH₂. **Ac-Gly^N-Phe-NH**₂ and Ac-Gly-Phe-NH₂. **F** N,N'-diacetyl-L-cystine (formed by aerial oxidation of Ac-Cys-OH), **X** = Ac-Gly-NH₂ and **X** = Ac-Gly^N-NH₂.

¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d) (2-acetamido-1-iminoethyl)phenylalaninamide, Ac-Gly^N-Phe-NH₂ (\bigcirc) (partial assignment): δ_{H} 4.42 (1H, app. t, J = 5.3 Hz, Phe- α H-CONH₂), 4.05-4.04 (2H, m, AcNHCH₂), 3.23 (1H, ABX, J = 14.0, 4.1 Hz, CHCH*H*); *N*-Acetylglycylphenylalaninamide, Ac-Gly-Phe-NH₂ (\bigtriangledown) (partial assignment): δ_{H} 4.58 (1H, ABX, J = 8.9, 5.8 Hz, Phe- α H-CONH₂), 3.81 (1H, AB, J = 17.1 Hz, AcNHCH*H*), 3.76 (1H, AB, J = 17.1 Hz, AcNHCH*H*), 3.17 (1H, dd, J = 14.0, 5.8 Hz, CHCH*H*Ar), 2.99-2.94 (1H, m, CHCH*H*Ar), 1.99 (3H, s, H_3 C(CO)); *L*-phenylalaninamide, Phe-NH₂ (\blacksquare) (partial assignment): 3.70 (1H, t, J = 6.9 Hz, α H-CONH₂), 2.99-2.94 (1H, m, CHCH*H*Ar), 2.93-2.87 (1H, m, CHCH*H*Ar); *N*-Acetylglycinamide, Ac-Gly-NH₂ (\bigstar) (partial assignment): δ_{H} 4.17 (2H, s, CH₂), 2.07 (3H, s, H_3 C(CO)).

Fig. S163. ${}^{1}\text{H}-{}^{13}\text{C}$ HMBC (${}^{1}\text{H}$: 600 MHz [3.5-4.7 ppm], ${}^{13}\text{C}$: 151 MHz [150-185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of the **Phe**- α H-CONH₂ of **Ac-Gly-Phe-NH**₂ at 4.58 ppm with two resonances at 177 and 172 ppm, which is characteristic of amide bond formation of **Phe-NH**₂. See Fig. S162 for expanded and labelled ${}^{1}\text{H}$ NMR spectrum.

Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-prolinamide Pro-NH₂ at pH 7 and 60 ℃

Fig. S164. ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (Ac-Gly-CN, 200 mM) with L-prolinamide (**Pro-NH**₂, 400 mM) and *N*-acetyl-L-cysteine (Ac-Cys-OH, 300 mM, 5.0 eq.) with MSM (50 mM) as the internal standard after 24 h at pH 7 and 60 °C. \geq = *N*,*N*'-diacetyl-L-cystine (formed by aerial oxidation of Ac-Cys-OH), \Rightarrow = Ac-Gly-NH₂ and *= Ac-Gly^N-NH₂.

¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d) *N*-Acetylglycylprolinamide, **Ac-Gly-Pro-NH₂** (\checkmark) (partial assignment): δ_{H} 4.43-4.40 (1H, m, Pro- α H-CONH₂), 4.10 (2H, app. d, AcNHCH₂), 3.70-3.66 (1H, m, NCHHCH₂CH₂), 3.64-3.60 (1H, m, NCHHCH₂CH₂), 2.08 (3H, s, H₃C(CO)); *L*-prolinamide, **Pro-NH₂** (\blacksquare) (partial assignment): δ_{H} 4.43-4.40 (1H, m, α H-CONH₂), 3.47-3.39 (2H, m, HNCH₂CH₂CH₂); *N*-Acetylglycinamide, **Ac-Gly-NH₂** (\bigstar) (partial assignment): δ_{H} 3.91 (2H, s, CH₂); *N*-(2-amino-2-iminoethyl)acetamide, **Ac-Gly^N-NH₂** (\bigstar) (partial assignment): δ_{H} 4.23 (2H, s, CH₂).

Fig. S165. ¹H–¹³C HMBC (¹H: 600 MHz [3.5-4.5 ppm], ¹³C: 151 MHz [150-185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ²J_{CH} and ³J_{CH} coupling of the **Gly**- α H in **Ac-Gly-Pro-NH**₂ at 4.10 ppm with two resonances at 175 and 170 ppm, which is characteristic of amide bond formation of **Pro-NH**₂. See Fig. S164 for expanded and labelled ¹H NMR spectrum.

Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-serinamide Ser-NH₂ at pH 7 and 60 ℃

Fig. S166. ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (Ac-Gly-CN, 200 mM) with L-serinamide (Ser-NH₂, 200 mM) and *N*-acetyl-L-cysteine (Ac-Cys-OH, 60 mM, 0.3 eq.) with MSM (5 mM) as the internal standard after 24 h at pH 7 and 60 °C. \geq = *N*,*N'*-diacetyl-L-cystine (formed by aerial oxidation of Ac-Cys-OH), \times = Ac-Gly-NH₂ and * = Ac-Gly^N-NH₂. ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d) *N*-Acetylglycylserinamide, Ac-Gly-Ser-NH₂ (\checkmark): δ_{H} 4.45 (1H, app. t, *J*

= 5.0 Hz, Ser-αH-CONH₂), 4.00 (1H, AB, *J* = 17.2 Hz, AcNHCH*H*), 3.97 (1H, AB, *J* = 17.2 Hz, AcNHCH*H*), 3.91 (1H, dd, *J* = 11.6, 5.5 Hz, CHCH*H*OH), 3.87 (1H, dd, *J* = 11.6, 4.4 Hz, CHCH*H*OH), 2.07 (3H, s, *H*₃C(CO)); 2-(acetamidomethyl)-4,5-dihydro-4-carboxamide (O) (partial assignment): $\delta_{\rm H}$ 4.64 (1H, dd, *J* = 10.8, 8.9 Hz, CHCONH₂), 4.11 (1H, AB, *J* = 16.2 Hz, AcNHCH*H*), 4.07 (1H, AB, *J* = 16.2 Hz, AcNHCH*H*); *L*-serinamide, **Ser-NH**₂ (**■**) (partial assignment): $\delta_{\rm H}$ 3.82-3.76 (2H, m, CHCH₂OH), 3.65 (1H, t, *J* = 5.0 Hz, αH-CONH₂); *N*-Acetylglycinamide, **Ac-Gly-NH**₂ (*****): $\delta_{\rm H}$ 4.21 (2H, s, CH₂), 2.10 (3H, s, *H*₃C(CO)).

Fig. S167. ¹H–¹³C HMBC (¹H: 600 MHz [3.5-4.7 ppm], ¹³C: 151 MHz [150-185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ²J_{CH} and ³J_{CH} coupling of the **Ser**- α H-CONH₂ in **Ac-Gly-Ser-NH**₂ at 4.45 ppm with two resonances at 175 and 173 ppm, which is characteristic of amide bond formation of **Ser-NH**₂, and the diagnostic ²J_{CH} and ³J_{CH} coupling of the **Gly**- α H₂ of 2-(acetamidomethyl)-4,5-dihydrooxazole-4-carboxamide at 4.11 and 4.07 ppm with two resonances at 176 and 169 ppm, and a resonance at 4.64 ppm (C4–H) showing a ²J_{CH} to 177 ppm. See Fig. S166 for expanded and labelled ¹H NMR spectrum.

Fig. S168. ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.1 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (Ac-Gly-CN, 200 mM) with L-threoninamide (Thr-NH₂, 200 mM) and *N*-acetyl-L-cysteine (Ac-Cys-OH, 60 mM, 0.3 eq.) with MSM (5 mM) as the internal standard after 24 h at pH 7 and 60 °C. \geq = *N*,*N*'-diacetyl-L-cysteine (formed by aerial oxidation of Ac-Cys-OH), **x** = Ac-Gly-NH₂ and ***** = Ac-Gly^N-NH₂.

¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d) *N*-Acetylglycylthreoninamide, **Ac-Gly-Thr-NH**₂ (\checkmark): δ_H4.35 (1H, d, *J* = 3.4 Hz, Thr-αH-CONH₂), 4.33-4.31 (1H, m, H₃CCHOH), 4.01 (2H, br. s., AcNHCH₂), 2.08 (3H, s, H₃C(CO)), 1.21 (3H, d, *J* = 6.5 Hz, H₃CCHOH); 2-(acetamidomethyl)-5-methyl-4,5-dihydrooxazole-4-carboxamide (O) (partial assignment): δ_H4.86-4.82 (1H, m, OCHCH₃), 4.26 (1H, d, *J* = 6.7 Hz, CHCONH₂), 4.09-4.04 (2H, m, AcNHCH₂), 1.45 (3H, d, *J* = 6.3 Hz, OCHCH₃); *L*-threoninamide, **Thr-NH**₂ (\blacksquare): δ_H4.09-4.04 (1H, m, H₃CCHOH), 3.42 (1H, d, *J* = 4.5 Hz, αH-CONH₂), 1.24 (3H, d, *J* = 6.5 Hz, H₃CCHOH); *N*-Acetylglycinamide, **Ac-Gly-NH**₂ (*****) (partial assignment): δ_H 3.90 (2H, s, CH₂); *N*-(2-amino-2-iminoethyl)acetamide, **Ac-Gly^N-NH**₂ (*****): δ_H4.22 (2H, s, CH₂), 2.10 (3H, s, H₃C(CO)).

Fig. S169. ¹H–¹³C HMBC (¹H: 600 MHz [3.5-4.5 ppm], ¹³C: 151 MHz [150-185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ²J_{CH} and ³J_{CH} coupling of the **Thr**- α H-CONH₂ in **Ac-Gly-Thr-NH**₂ at 4.35 ppm with two resonances at 176 and 173 ppm, which is characteristic of amide bond formation of **Thr-NH**₂. See Fig. S168 for expanded and labelled ¹H NMR spectrum.

Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-tryptophanamide Trp-NH₂ at pH 7 and 60 ℃

Fig. S170 ¹H NMR (600 MHz, H_2O/D_2O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (Ac-Gly-CN, 200 mM) with L-tryptophanamide (**Trp-NH**₂, 200 mM) and *N*-acetyl-L-cysteine (Ac-Cys-OH, 60 mM, 0.3 eq.) with MSM (5 mM) as the internal standard after 24 h at pH 7 and 60 °C. Inset: ¹H NMR (600 MHz, H_2O/D_2O 9:1, noesygppr1d, 6.8-7.75 ppm) showing the aromatic CH resonances present in **Trp-NH**₂, Ac-Gly^N-**Trp-NH**₂, and **Ac-Gly-Trp-NH**₂. = *N*,*N'*-diacetyl-L-cystine (formed by aerial oxidation of **Ac-Cys-OH**), **X** = **Ac-Gly-NH**₂ and **X**= **Ac-Gly^N-NH**₂.

¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d) (2-acetamido-1-iminoethyl)tryptophanamide, **Ac-Gly^N-Trp-NH**₂ (\bullet) (partial assignment): δ_H 7.55 (1H, d, *J* = 7.8 Hz, Ar*H*), 7.42 (1H, d, *J* = 8.3 Hz, Ar*H*), 7.22-7.19 (2H, m, Ar*H*), 7.16-7.09 (1H, obs., Ar*H*), 4.63 (1H, ABX, *J* = 7.6, 5.2 Hz, Trp-αH-CONH₂), 3.97 (2H, app. d, *J* = 3.4 Hz, AcNHCH₂), 1.89 (3H, s, *H*₃C(CO)); *N-Acetylglycyltryptophanamide*, **Ac-Gly-Trp-NH**₂ (\checkmark): δ_H 7.58 (1H, d, *J* = 8.0 Hz, Ar*H*), 7.45 (1H, d, *J* = 8.3 Hz, Ar*H*), 7.22-7.19 (1H, m, Ar*H*), 7.18 (1H, s, Ar*H*), 7.13-7.11 (1H, m, Ar*H*), 4.58 (1H, app. t, *J* = 6.3 Hz, Trp-αH-CONH₂), 3.74 (1H, AB, *J* = 17.2 Hz, AcNHCH*H*), 3.68 (1H, AB, *J* = 17.2 Hz, AcNHCH*H*), 3.27-3.22 (1H, m, CHCH*H*Ar), 3.13 (1H, dd, *J* = 14.4, 7.7 Hz, CHCH*H*Ar), 1.87 (3H, s, *H*₃C(CO)); *L-tryptophanamide*, **Trp-NH**₂ (\blacksquare): δ_H 7.64 (1H, d, *J* = 8.0 Hz, Ar*H*), 7.48 (1H, d, *J* = 8.3 Hz, Ar*H*), 7.22 (1H, m, CHCH*H*Ar), 7.24 (1H, s, Ar*H*), 7.22-7.19 (1H, m, Ar*H*), 7.15 (1H, d, *J* = 7.7 Hz, Ar*H*), 4.02 (1H, app. t, *J* = 6.7 Hz, αH-CONH₂), 3.27-3.22 (1H, m, CHCH*H*Ar), 3.19 (1H, dd, *J* = 15.3, 6.5 Hz, CHCH*H*Ar); *N*-*Acetylglycinamide*, **Ac-Gly-NH**₂ (**x**): δ_H 3.91 (2H, s, CH₂), 1.95 (3H, s, *H*₃C(CO)); *N-(2-amino-2-iminoethyl)*acetamide, **Ac-Gly^N-NH**₂ (**x**): δ_H 4.14 (2H, s, CH₂), 2.06 (3H, s, *H*₃C(CO)).

Fig. S171. ${}^{1}\text{H}{-}{}^{13}\text{C}$ HMBC (${}^{1}\text{H}$: 600 MHz [3.5-4.7 ppm], ${}^{13}\text{C}$: 151 MHz [150-185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of the **Trp**- α H-CONH₂ in **Ac-Gly**^N-**Trp-NH**₂ at 4.63 ppm with two resonances at 173 and 165 ppm, which is characteristic of amidine bond formation of **Trp-NH**₂, and the diagnostic ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of the **Trp**- α H-CONH₂ in **Ac-Gly**-**Trp-NH**₂ at 4.58 ppm with two resonances at 177 and 172 ppm, which is characteristic of amide bond formation of **Trp-NH**₂. See Fig. S170 for expanded and labelled ${}^{1}\text{H}$ NMR spectrum.

Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-tyrosinamide Tyr-NH2 at pH 7 and 60

Fig. S172. ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (Ac-Gly-CN, 200 mM) with L-tyrosinamide (Tyr-NH₂, 200 mM) and *N*-acetyl-L-cysteine (Ac-Cys-OH, 60 mM, 0.3 eq.) with MSM (5 mM) as the internal standard after 24 h at pH 7 and 60 °C. \models = *N*,*N*'-diacetyl-L-cystine (formed by aerial oxidation of Ac-Cys-OH), **X** = Ac-Gly-NH₂ and **X** = Ac-Gly^N-NH₂.

¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d) *N*-Acetylglycyltyrosinamide, **Ac-Gly-Tyr-NH**₂ (\checkmark): δ_H 7.10 (2H, d, *J* = 8.4 Hz, ArH), 6.82 (2H, d, *J* = 8.5 Hz, ArH), 4.50 (1H,ABX, *J* = 8.1, 5.9 Hz, Tyr-αH-CONH₂), 3.82 (1H, AB, *J* = 16.9 Hz, AcNHCH*H*), 3.77 (1H, AB, *J* = 16.9 Hz, AcNHCH*H*), 3.06 (1H, ABX, *J* = 13.9, 5.9 Hz, CHCH*H*Ar), 2.88 (1H, ABX, *J* = 13.9, 8.1 Hz, CHCH*H*Ar), 1.98 (3H, s, *H*₃C(CO)); *L*-tyrosinamide, **Tyr-NH**₂ (\blacksquare): δ_H 7.91 (2H, d, *J* = 9.1 Hz, Ar*H*), 6.83 (2H, m, Ar*H*), 3.69 (1H, t, *J* = 6.8 Hz, αH-CONH₂), 2.90 (1H, m, CHCH*H*Ar), 2.84 (1H, dd, *J* = 13.9, 6.8 Hz, CHCH*H*Ar); *N*-Acetylglycinamide, **Ac-Gly-NH**₂ (*****) (partial assignment): δ_H 3.86 (2H, s, C*H*₂); *N*-(2-amino-2-iminoethyl)acetamide, **Ac-Gly^N-NH**₂ (*****): δ_H 4.17 (2H, s, C*H*₂), 2.07 (3H, s, *H*₃C(CO)).

Fig. S173. 1 H– 13 C HMBC (1 H: 600 MHz [3.5-4.7 ppm], 13 C: 151 MHz [150-185 ppm], H₂O/D₂O 9:1) spectrum showing the diagnostic $^{2}J_{CH}$ and $^{3}J_{CH}$ coupling of the **Tyr**- α H-CONH₂ in **Ac-Gly-Tyr-NH**₂ at 4.50 ppm with two resonances at 177 and 172 ppm, which is characteristic of amide bond formation of **Tyr-NH**₂. See Fig. S172 for expanded and labelled 1 H NMR spectrum.

Coupling of N-acetylglycine nitrile Ac-Gly-CN with D-valinamide D-Val-NH₂ at pH 7 and 60 ℃

Fig. S174. ¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d, 0.5-5.0 ppm) spectrum to show the reaction of *N*-acetyl glycine nitrile (Ac-Gly-CN, 200 mM) with D-valinamide (D-Val-NH₂, 200 mM) and *N*-acetyl-L-cysteine (Ac-Cys-OH, 60 mM, 0.3 eq.) with MSM (5 mM) as the internal standard after 24 h at pH 7 and 60 °C. \models = *N*,*N*'-diacetyl-L-cysteine (formed by aerial oxidation of Ac-Cys-OH), **X** = Ac-Gly-NH₂ and **X** = Ac-Gly^N-NH₂.

¹H NMR (600 MHz, H₂O/D₂O 9:1, noesygppr1d) (2-acetamido-1-iminoethyl)valinamide, **Ac-Gly^N-Val-NH**₂ (\bullet) (partial assignment): δ_H 4.27 (2H, app. d, *J* = 6.6 Hz, AcNHC*H*₂), 4.16 (1H, m, Val-αH-CONH₂), 2.30-2.20 (1H, m, H₃CC*H*CH₃), 1.03 (3H, obs., *H*₃CCHCH₃), 0.79 (3H, d, *J* = 6.9 Hz, *H*₃CCHCH₃); *N*-Acetylglycylvalinamide, **Ac-Gly-Val-NH**₂ (\checkmark) (partial assignment): δ_H 4.15-4.14 (1H, m, Val-αH-CONH₂), 3.97 (1H, AB, *J* = 17.3 Hz, AcNHCH*H*), 3.94 (1H, AB, *J* = 17.3 Hz, AcNHCH*H*), 2.15-2.07 (1H, m, H₃CC*H*CH₃), 0.96 (3H, d, *J* = 6.9 Hz, *H*₃CCHCH₃), 0.94 (3H, d, *J* = 6.9 Hz, *H*₃CCHCH₃); *D*-valinamide, D-Val-NH₂ (\blacksquare): δ_H 3.65 (1H, d, *J* = 5.8 Hz, αH-CONH₂), 2.15-2.07 (1H, m, H₃CC*H*CH₃), 1.02 (3H, d, *J* = 7.0 Hz, *H*₃CCHCH₃), 1.00 (3H, d, *J* = 7.0 Hz, *H*₃CCHCH₃); *N*-Acetylglycinamide, **Ac-Gly-NH**₂ (\bigstar) (partial assignment): δ_H 3.89 (2H, s, C*H*₂); *N*-(2-amino-2-iminoethyl)acetamide, **Ac-Gly^N-NH**₂ (\bigstar): δ_H 4.21 (2H, s, C*H*₂).

Fig. S175. ${}^{1}H-{}^{13}C$ HMBC (${}^{1}H: 600$ MHz [3.5-4.5 ppm], ${}^{13}C: 151$ MHz [150-185 ppm], H_2O/D_2O 9:1) spectrum showing the diagnostic ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of the **Val**- α H-CONH₂ in **Ac-Gly**^N-**Val-NH**₂ at 4.16 ppm with two resonances at 173 and 166 ppm, which is characteristic of amidine bond formation of D-**Val-NH**₂, and the diagnostic ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of the **Val**- α H-CONH₂ in **Ac-Gly**-**Val-NH**₂ at 4.16 ppm with two resonances at 173 and 166 ppm, which is characteristic of amidine bond formation of D-Val-NH₂, and the diagnostic ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of the **Val**- α H-CONH₂ in **Ac-Gly-Val-NH**₂ at 4.15-4.14 ppm with two resonances at 177 and 172 ppm, which is characteristic of amide bond formation of D-Val-NH₂. See Fig. S174 for expanded and labelled ${}^{1}H$ NMR spectrum.

N-Acetylglycylglycylglycine nitrile **Ac-Gly₃-CN** (*4*) (100 mM) and peptide **AA**_n-**OH** (100 mM) and 3-mercaptopropionic acid (160 mM) were dissolved in H₂O and the solution was adjusted to pH 7.0 with 4 M NaOH. The resulting solution was then heated at 60 °C for 24 h. The reaction was cooled to room temperature and analysed by NMR spectroscopy (¹H; ¹³C; ¹H–¹H COSY; ¹H–¹³C HSQC; ¹H–¹³C HMBC). The presence of ligation product **Ac-Gly₃-AA**_n-**OH** was quantified using relative integral analysis by ¹H NMR, ¹H–¹³C HMBC NMR correlation analysis, and high-resolution mass spectrometry. Yields and HRMS-ESI data are given in Table S8. *N*-Acetylpeptides were then precipitated by dilution of the reaction mixtures with acetone (**Ac-Gly-Gly-Gly-Gly-Ala-Ala-Ala-Ala-OH** and **Ac-Gly-Gly-Gly-Gly-Ala-Gly-OH**) or ethanol (**Ac-Gly-Gly-Gly-Gly-Gly-Gly-Gly-Gly-OH**) until precipitate was observed. The precipitate was isolated by centrifugation and then dried *in vacuo* to give a white powder.

Entry	(AA) _n -OH	Ac-(Gly) _n -(AA) _n -OH	HRMS-ESI Data for Ac-(Gly)n-(AA)n-X		
		(%)	Formula	Calculated	Found
1	Met-Gly-OH	80	C ₁₅ H ₂₆ N₅O ₇ S [M+H] ⁺	420.1547	420.1552
2	Ala-Ala-Ala-OH	90	$C_{17}H_{29}N_6O_8 \ [M+H]^+$	445.2041	445.2044
3	Ala-Gly-Ala-OH	84	$C_{16}H_{27}N_6O_8 \ [M+H]^+$	431.1885	431.1893
4	Gly-Ala-Gly-OH	87	$C_{15}H_{25}N_6O_8 \ [M+H]^+$	417.1728	417.1739
5	Gly-Gly-Gly-OH	89	C ₁₄ H ₂₃ N ₆ O ₈ [M+H] ⁺	403.1572	403.1570
6	Gly-Gly-His-OH	89	C ₁₈ H ₂₇ N ₈ O ₈ [M+H] ⁺	483.1946	483.1968
7	Leu-Leu-Leu-OH ^[a]	76	C ₂₆ H ₄₇ N ₆ O ₈ [M+H] ⁺	571.3450	571.3460
8	Met-Ala-Ser-OH	77	C ₁₉ H ₃₃ N ₆ O ₉ S [M+H]⁺	521.2024	521.2022
9	Phe-Gly-Gly-OH	77 ^[b]	C ₂₁ H ₂₇ N ₆ O ₈ [M–H] ⁻	491.1889	491.1890

Table S8. NMR yields and high resolution mass spectrometry (electrospray ionization) data of 3-mercaptopropionic acid (**MPA**; 160 mM) catalysed coupling of **Ac-Gly₃-CN** (100 mM) with peptide **AA_n-OH** (100 mM) after heating at 60 °C for 24 h at pH 7.0 in water. ^[a] Reaction with **Leu-Leu-Leu-OH** heated at 60 °C for 48 h at pH 7.0 in water. ^[b] **Ac-Gly-Gly-Gly-Gly-Gly-OH** (12%) was also observed. Total ligation yield was 89%.

N-Acetylglycylglycylglycyl-DL-methioninylglycine Ac-Gly-Gly-Gly-Met-Gly-OH

Fig. S176. ¹H NMR (700 MHz, H₂O, noesygppr1d, 1.0–5.0 ppm) spectrum to show the reaction of *N*-acetylglycylglycylglycine nitrile(**Ac-Gly₃-CN**; 100 mM), L-methionylglycine (**Met-Gly-OH**; 100 mM) and 3-mercaptopropionic acid (**MPA**; 160 mM) in H₂O (1 mL) at pH 7 at 60 °C. \checkmark = 2-Carboxyethyldisulfide (formed by aerial oxidation of **MPA** \blacktriangle). Top = ¹H NMR spectrum acquisition before the reaction was heated 60 °C. Bottom = ¹H NMR spectrum acquisition after the reaction was heated 60 °C for 24 h.

Fig. S177. ¹³C NMR (176 MHz, H₂O, 0–220 ppm) spectrum to show the reaction of *N*-acetylglycylglycylglycylglycine nitrile(**Ac-Gly₃-CN**; 100 mM), methionylglycine (**Met-Gly-OH**; 100 mM) and 3-mercaptopropionic acid (**MPA**; 160 mM) in H₂O (1 mL) at pH 7 at 60 °C. \checkmark = 2-Carboxyethyldisulfide (formed by aerial oxidation of **MPA** \bigstar).

¹H NMR (700 MHz, H₂O, noesygppr1d): *N-Acetylglycylglycylglycyl-DL-methionylglycine* **Ac-Gly-Gly-Gly-Met-Gly-OH** (•) (Fig. S176): δ 4.52 (dd, *J* = 4.5, 9.6 Hz, 1H, Met-(C2)–H), 3.96 (s, 4H, Gly₂-(C2)–H₂, Gly₃-(C2)–H₂), 3.93 (s., 2H, Gly₁-(C2)–H₂), 3.78 - 3.73 (m, 1H, Gly₅-(C2)–H_a), 3.73 - 3.68 (m, 1H, Gly₅-(C2)–H_b), 2.63 - 2.57 (m, 1H, Met-(C4)–H_a), 2.53 - 2.47 (m, 1H, Met-(C4)–H_b), 2.18 - 2.10 (m, 1H, Met-(C3)–H_a), 2.07 (s, 3H, -SCH₃), 2.04 (s, 3H, COCH₃), 2.01 - 1.93 (m, 1H, Met-(C3)–H_b). ¹³C NMR (176 MHz, H₂O, noesygppr1d) (Fig. S177): δ 176.8 (Gly₅-(C1)), 175.6 (COCH₃), 173.7 (CO), 173.1 (CO), 172.8 (CO), 172.2 (CO), 53.2 (Met-(C2)), 44.0 (Gly₅-(C2)), 43.3 (Gly-(C2)), 43.2 (Gly-(C2) × 2)), 30.9 (Met-(C3)), 29.9 (Met-(C4)), 22.4 (COCH₃), 14.7 (SCH₃).

N-Acetylglycylglycylglycyl-DL-alanyl-L-alanyl-L-alanine Ac-Gly-Gly-Gly-Ala-Ala-Ala-OH

Fig. S178. ¹H NMR (700 MHz, H₂O, noesygppr1d, 1.0–5.0 ppm) spectrum to show the reaction of *N*-acetylglycylglycylglycine nitrile (**Ac-Gly₃-CN**; 100 mM), L-alanyl-L-alanyl-L-alanine (**Ala-Ala-Ala-OH**; 100 mM) and 3-mercaptopropionic acid (**MPA**; 160 mM) in H₂O (1 mL) at pH 7 at 60 °C. \checkmark = 2-Carboxyethyldisulfide (formed by aerial oxidation of **MPA** \blacktriangle). Top = ¹H NMR spectrum acquisition before the reaction was heated 60 °C. Bottom = ¹H NMR spectrum acquisition after the reaction was heated 60 °C for 24 h.

¹H NMR (700 MHz, H₂O, noesygppr1d): *N-Acetylglycylglycylglycylglycyl-DL-alanyl-L-alanyl-L-alanine* **Ac-Gly-Gly-Gly-Ala-Ala-Ala-OH** (•) (2 diastereoisomers) (Fig. S178): δ 4.33 - 4.25 (m, 4H, 2 × Ala-(C2)-H), 4.11 - 4.03 (m, 2H, Ala-(C2)-H), 3.95 (br. s., 4H, Gly-(C2)-H₂), 3.93 (br. s., 8H, 2 × Gly-(C2)-H₂), 2.03 (s, 6H, COCH₃), 1.39 - 1.32 (m, 12H, 4 × Ala-(C3)-H₃), 1.31 - 1.27 (m, 6H, 2 × Ala-(C3)-H₃).

Fig. S179. ¹H NMR (700 MHz, D₂O, noesygppr1d, 1.0–5.0 ppm) spectrum to show a single diastereoisomer of **Ac-Gly-Gly-Gly-Ala-Ala-OH** isolated after precipitation by acetone from the crude mixture obtained from the reaction of *N*-acetylglycylglycylglycine nitrile (**Ac-Gly-CN**; 100 mM), L-alanyl-L-alanine (**Ala-Ala-Ala-OH**; 100 mM) and 3-mercaptopropionic acid (**MPA**; 160 mM) in H₂O (1 mL) at pH 7 at 60 °C. \checkmark = residual 2-carboxyethyldisulfide (formed by aerial oxidation of **MPA** \checkmark).

Fig. S180. ¹³C NMR 176 MHz, D₂O, 0–220 ppm) spectrum to show a single diastereoisomer of **Ac-Gly-Gly-Gly-Ala-Ala-OH** isolated after precipitation by acetone from the crude mixture obtained from the reaction of *N*-acetylglycylglycylglycine nitrile (**Ac-Gly-CN**; 100 mM), L-alanyl-L-alanyl-L-alanine (**Ala-Ala-OH**; 100 mM) and 3-mercaptopropionic acid (160 mM) in H₂O (1 mL) at pH 7 at 60 °C. \checkmark = residual 2-Carboxyethyldisulfide (formed by aerial oxidation of **MPA** \blacktriangle).

N-Acetylglycylglycylglycylalanylalanylalanine **Ac-Gly-Gly-Gly-Ala-Ala-Ala-OH** (single diastereoisomer) (Fig. S179): ¹H NMR (700 MHz, D₂O) δ 4.34 - 4.27 (m, 2H, 2 × Ala-(C2)–H), 4.12 (q, *J* = 7.2 Hz, 1H, Ala-(C2)–H), 3.96 (s, 2H, Gly-(C2)–H₂), 3.95 - 3.93 (2 × s , 4H, 2 × Gly-(C2)–H₂), 2.04 (s, 3H, COCH₃), 1.37 (d, *J* = 7.4 Hz, 6H, 2 × Ala-(C3)–H₃), 1.33 - 1.31 (d, *J* = 7.4 Hz, 3H, Ala-(C3)–H₃). ¹³C NMR (176 MHz, D₂O) (Fig. S180): δ 180.0 (Ala-(C1)), 175.6 (**C**OCH₃), 175.2 (Ala-(C1)), 174.3 (Ala-(C1)), 173.1 (Gly-(C1)), 172.7 (Gly-(C1)), 171.7 (Gly-(C1)), 51.3 (Ala-(C2)), 50.1 (Ala-(C2)), 50.1 (Ala-(C2)), 43.1 (Gly-(C2)), 42.8 (Gly-(C2)), 22.3 (COCH₃), 17.9 (Ala-(C3)), 17.2 (Ala-(C3)), 17.0 (Ala-(C3))).

N-Acetylglycylglycylglycyl-DL-alanylglycyl-L-alanine Ac-Gly-Gly-Gly-Ala-Gly-Ala-OH

Fig. S181. ¹H NMR (700 MHz, H₂O, noesygppr1d, 1.0–5.0 ppm) spectrum to show the reaction of *N*-acetylglycylglycylglycine nitrile(**Ac-Gly₃-CN**; 100 mM), L-alanylglycyl-L-alanine (**Ala-Gly-Ala-OH**; 100 mM) and 3-mercaptopropionic acid (**MPA**; 160 mM) in H₂O (1 mL) at pH 7 at 60 °C. \checkmark = 2-Carboxyethyldisulfide (formed by aerial oxidation of **MPA** \blacktriangle). Top = ¹H NMR spectrum acquisition before the reaction was heated 60 °C. Bottom = ¹H NMR spectrum acquisition after the reaction was heated 60 °C for 24 h.

N-Acetylglycylglycylglycyl-DL-alanylglycyl-DL-alanine **Ac-Gly-Gly-Gly-Ala-Gly-Ala-OH** (2 diastereoisomers) (•) (Fig. S181): ¹H NMR (700 MHz, H₂O) δ 4.35 - 4.28 (m, 2H, Ala-(C2)–H), 4.15 - 4.08 (m, 2H, Ala-(C2)–H), 3.98 - 3.93 (m, 8H, 2 × Gly-(C2)–H), 3.93 (s, 4H, Gly-(C2)–H), 3.89 (s, 4H, Gly-(C2)–H), 2.03 (s, 6H, COCH₃), 1.38 - 1.35 (m, 6H, Ala-(C3)–H₃), 1.31 - 1.29 (m, 6H, Ala-(C3)–H₃).

Fig. S182. ¹H–¹³C HMBC (¹H: 700 MHz [3.80-4.40 ppm], ¹³C: 176 MHz [160-185 ppm]) spectrum showing the diagnostic ²J_{CH} and ³J_{CH} coupling of **Ala**₄-(C2)–H and **Ala**₆-(C2)–H in a diastereoisomeric mixture of **Ac-Gly-Gly-Gly-Ala-Gly-Ala-OH** (δ_{H} = 4.31 ppm, δ_{c} = 176.1, 176.0, 171.8, 171.9; δ_{H} = 4.11 ppm, δ_{c} 170.7 (× 2), 180.37, 180.34 ppm.). See Fig. S181 for expanded and labelled ¹H NMR spectrum.

N-Acetylglycylglycylglycylglycylglycylglycine Ac-Gly-Gly-Gly-Gly-Gly-Gly-OH

Fig. S183. ¹H NMR (700 MHz, H₂O, noesygppr1d, 1.0–5.0 ppm) spectrum to show the reaction of *N*-acetylglycylglycylglycine nitrile(**Ac-Gly₃-CN**; 100 mM), glycylglycylglycine (**Gly-Gly-Gly-OH**; 100 mM) and 3-mercaptopropionic acid (**MPA**; 160 mM) in H₂O (1 mL) at pH 7 at 60 °C. \checkmark = 2-Carboxyethyldisulfide (formed by aerial oxidation of **MPA** \blacktriangle). Top = ¹H NMR spectrum acquisition before the reaction was heated 60 °C. Bottom = ¹H NMR spectrum acquisition after the reaction was heated 60 °C for 24 h.

¹H NMR (700 MHz, H₂O, noesygppr1d): *N-Acetylglyc*

Fig. S184. ¹H NMR (700 MHz, D₂O, noesygppr1d, 1.0–5.0 ppm) spectrum to show **Ac-Gly-Gly-Gly-Gly-Gly-Gly-Gly-OH** isolated after precipitation by ethanol from the crude mixture obtained from the reaction of *N*-acetylglycylglycylglycylglycine nitrile(**Ac-Gly₃-CN**; 100 mM), glycylglycylglycylglycine (**Gly-Gly-Gly-OH**; 100 mM) and 3-mercaptopropionic acid (**MPA**; 160 mM) in H₂O (1 mL) at pH 7 at 60 °C.

Fig. S185. ¹³C NMR 176 MHz, D₂O, 0–220 ppm) spectrum to show **Ac-Gly-Gly-Gly-Gly-Gly-Gly-OH** isolated after precipitation by ethanol from the crude mixture obtained from the reaction of *N*-acetylglycylglycylglycine nitrile(**Ac-Gly₃-CN**; 100 mM), glycylglycylglycine (**Gly-Gly-Gly-OH**; 100 mM) and 3-mercaptopropionic acid (**MPA**; 160 mM) in H₂O (1 mL) at pH 7 at 60 °C.

N-Acetylglycylglycylglycylglycylglycylglycylglycine **Ac-Gly-Gly-Gly-Gly-Gly-Gly-OH** ¹H NMR (700 MHz, D₂O) (Fig. S184) δ 3.99 (s., 2H, Gly-(C2)–H₂), 3.99 (s, 2H, Gly-(C2)–H₂), 3.99 (s, 2H, Gly-(C2)–H₂), 3.96 (s, 2H, Gly-(C2)–H₂), 3.95 (s, 2H, Gly-(C2)–H₂), 3.76 (s, 2H, Gly-(C2)–H₂), 2.05 (s, 3H, COCH₃). ¹³C NMR (176 MHz, D₂O) (Fig. S185) δ 177.0 (Gly-(C1)), 175.7 (COCH₃), 173.1 (Gly-(C1)), 172.9 (Gly-(C1)), 172.8 (Gly-(C1)), 172.6 (Gly-(C1)), 171.6 (Gly-(C1)), 43.7 (Gly-(C2)), 43.2 (Gly-(C2)), 43.1 (Gly-(C2)), 43.0 (Gly-(C2)), 43.0 (Gly-(C2)), 42.9 (Gly-(C2)), 22.3 (COCH₃).

N-Acetylglycylglycylglycylglycyl-L-alanylglycine Ac-Gly-Gly-Gly-Gly-Ala-Gly-OH

Fig. S186. ¹H NMR (700 MHz, H₂O, noesygppr1d, 1.0–5.0 ppm) spectrum to show the reaction of *N*-acetylglycylglycylglycine nitrile(**Ac-Gly₃-CN**; 100 mM), glycyl-L-alanylglycine (**Gly-Ala-Gly-OH**; 100 mM) and 3-mercaptopropionic acid (**MPA**; 160 mM) in H₂O (1 mL) at pH 7 at 60 °C. \checkmark = 2-Carboxyethyldisulfide (formed by aerial oxidation of **MPA** \blacktriangle). Top = ¹H NMR spectrum acquisition before the reaction was heated 60 °C. Bottom = ¹H NMR spectrum acquisition after the reaction was heated 60 °C for 24 h.

N-Acetylglycylglycylglycylglycyl-L-alanylglycine **Ac-Gly-Gly-Gly-Gly-Gly-Ala-Gly-OH** (•) ¹H NMR (700 MHz, H₂O, noesygppr1d) (Fig. S186b) δ 4.36 (br. q, J = 7.1 Hz, 1H, Ala-(C2)-H), 3.97 (s, 2H, Gly₁-(C2)-H₂), 3.96 (s, 2H, Gly₁-(C2)-H₂), 3.94 (s, 2H, Gly₁-(C2)-H₂), 3.93 (s, 2H, Gly₁-(C2)-H₂), 3.78 – 3.72 (m, 1H, Gly₆-(C2)-H_a), 3.72 – 3.66 (m, 1H, Gly₆-(C2)-H_b), 2.01 (s, 3H, COCH₃), 1.37 (d, J = 7.1 Hz, 3H, Ala-(C2)-H₃).

Fig. S187. ¹H NMR (700 MHz, D_2O , noesygppr1d, 1.0–5.0 ppm) spectrum to show **Ac-Gly-Gly-Gly-Gly-Gly-Ala-Gly-OH** isolated by the addition of acetone to the the crude mixture obtained from the reaction of *N*-acetylglycylglycylglycylglycone nitrile(**Ac-Gly₃-CN**; 100 mM), glycyl-L-alanylglycine (**Gly-Ala-Gly-OH**; 100 mM) and 3-mercaptopropionic acid (**MPA**; 160 mM) in H₂O (1 mL) at pH 7 at 60 °C

Fig. S188. ¹³C NMR (176 MHz, D₂O, noesygppr1d, 0–220 ppm) spectrum to show **Ac-Giy-Giy-Giy-Giy-Ala-Giy-OH** isolated by the addition of acetone to the the crude mixture obtained from the reaction of *N*-acetylglycylglycylglycylglycre nitrile(**Ac-Giy₃-CN**; 100 mM), glycyl-L-alanylglycine (**Gly-Ala-Gly-OH**; 100 mM) and 3-mercaptopropionic acid (160 mM) in H₂O (1 mL) at pH 7 at 60 °C.

N-Acetylglycylglycylglycylglycyl-L-alanylglycine **Ac-Gly-Gly-Gly-Gly-Ala-Gly-OH** ¹H NMR (700 MHz, D₂O, noesygppr1d) (Fig. S187) δ 4.35 (q, J = 7.2 Hz, 1H, Ala-(C2)–H), 3.95 (s, 2H, Gly₁-(C2)–H₂), 3.94 (s, 2H, Gly₁-(C2)–H₂), 3.93 (s, 2H, Gly₁-(C2)–H₂), 3.91 (s, 2H, Gly₁-(C2)–H₂), 3.74 (d, J = 17.2 Hz, 1H, Gly₆-(C2)–H_a), 3.68 (d, J = 17.2 Hz, 1H, Gly₆-(C2)–H_b), 2.01 (s, 3H, COCH₃), 1.35 (d, J = 7.2 Hz, 3H, Ala-(C2)–H₃). ¹³C NMR (176 MHz, D₂O, noesygppr1d) (Fig. S188) δ 176.9 (Gly₆-(C1)), 175.7 (COCH₃), 175.0 (Ala-(C1)), 173.1 (Gly₁-(C1)), 172.9 (Gly-(C1)), 172.7 (Gly-(C1)), 171.7 (Gly-(C1)), 50.1 (Ala-(C2)), 43.8 (Gly-(C2)), 43.2 (Gly-(C2)), 43.0 (Gly-(C2)), 43.0 (Gly-(C2)), 41.0 (Gly-(C2)), 22.3 (COCH₃), 17.3 (Ala-(C3)).

N-Acetylglycylglycylglycyl-DL-leucyl-L-leucyl-L-leucine Ac-Gly-Gly-Gly-Leu-Leu-OH^a

Fig. S189. ¹H NMR (700 MHz, H₂O, noesygppr1d, 0.5–5.0 ppm, pH 9.5) spectrum to show the reaction of *N*-acetylglycylglycylglycylglycine nitrile(**Ac-Gly₃-CN**; 100 mM), leucinylleucinylleucine **Leu-Leu-OH**; 100 mM) and 3-mercaptopropionic acid (**MPA**; 160 mM) in H₂O (1 mL) at pH 7 at 60 °C after 48 h. \checkmark = 2-Carboxyethyldisulfide (formed by aerial oxidation of **MPA** \checkmark).

¹H NMR (700 MHz, H₂O, noesygppr1d) *N-Acetylglycylglycylglycylglycyl-DL-leucyl-L-leucyl-L-leucine* **Ac-Gly-Gly-Gly-Leu-Leu-Leu-OH** (•): (2 diastereoisomers) δ 4.35 - 4.26 (m, 2H, Leu-(C2)-H), 4.26 - 4.20 (m, 2H, Leu-(C2)-H), 4.13 - 4.02 (m, 2H, Leu-(C2)-H), 3.92 - 3.80 (m, 12H, 3 × Gly-(C2)-H₂), 1.96 (s, 6H, 2 × COCH₃), 1.59 - 1.41 (m, 18H, 3 × Leu-(C3)-H₂, 3 × Leu-(C4)-H₂), 0.87 - 0.67 (m, 36H, 3 × Leu-(C5)-H₃, 3 × Leu-(C5)-H₃').

^a NMR analysis of the starting reaction mixture was not carried out before heating at 60 °C due to the limited solubility of **Leu-Leu-OH** at pH 7. The reaction mixture was, however, homogenous after 48 h due to the conversion of **Leu-Leu-CH** to **Ac-Gly-Gly-Gly-Leu-Leu-Leu-OH**, the latter exhibiting greater solubility at pH 7. The reaction was adjusted from pH 7.0 to 9.5 prior to final NMR analysis to ensure any residual **Leu-Leu-Leu-OH** was accounted for.

N-Acetylglycylglycylglycylglycylglycyl-L-histidine Ac-Gly-Gly-Gly-Gly-Gly-His-OH

Fig. S190. ¹H NMR (700 MHz, H₂O, noesygppr1d, 1.0-9.0 ppm) spectrum to show the reaction of *N*-acetylglycylglycylglycylglycine nitrile(**Ac-Gly₃-CN**; 100 mM), glycylglycyl-L-histidine (**Gly-Gly-His-OH**; 100 mM) and 3-mercaptopropionic acid (**MPA**; 160 mM) in H₂O (1 mL) at pH 7 at 60 °C. \checkmark = 2-Carboxyethyldisulfide (formed by aerial oxidation of **MPA**). Top = ¹H NMR spectrum acquisition before the reaction was heated 60 °C. Bottom = ¹H NMR spectrum acquisition after the reaction was heated 60 °C for 24 h.

Fig. S191. ¹³C NMR (176 MHz, H₂O, noesygppr1d, 0–220 ppm) spectrum to show the reaction of *N*-acetylglycylglycylglycylglycine nitrile(**Ac-Gly₃-CN**; 100 mM), glycylglycyl-L-histidine (**Gly-Gly-His-OH**; 100 mM) and 3-mercaptopropionic acid (**MPA**; 160 mM) in H₂O (1 mL) at pH 7 at 60 °C. \checkmark = 2-Carboxyethyldisulfide (formed by aerial oxidation of **MPA** \blacktriangle).

N-Acetylglycylglycylglycylglycylglycyl-L-histidine **Ac-Gly-Gly-Gly-Gly-Gly-Gly-His-OH** (•): ¹H NMR (700 MHz, H₂O, noesygppr1d, Fig. S190) δ 8.00 (s, 1H, His-(C2')–H), 6.90 (s, 1H, His-(C4')–H), 4.44 - 4.37 (m, 1H, His-(C2)–H), 3.95 (br. s., 4H, Gly-(C2)–H₂ × 2), 3.93 (br. s., 2H, Gly-(C2)–H₂), 3.91 (br. s., 2H, Gly-(C2)–H₂), 3.87 (AB, *J* = 17.2 Hz, 1H, Gly-(C2)–H), 3.13 (ABX, *J* = 4.5, 15.0 Hz, 1H, His-(C3)–H), 2.97 (ABX, *J* = 8.4, 15.0 Hz, 1H, His-(C3')–H), 2.02 (s, 3H, COCH₃). ¹³C NMR (176 MHz, H₂O, noesygppr1d, Fig. S191) δ 177.5 (His-(C1)), 175.6 (COCH₃), 173.1 (Gly-(C1)), 172.9 (Gly-(C1)), 172.7 (Gly-(C1)), 172.5 (Gly-(C1)), 171.1 (Gly₅-(C1)), 135.3 ((His-(C2')), 132.0 (His-(C4')), 118.0 (His-(C3')), 55.2 (His-(C2)), 43.3 (Gly-(C2)), 43.2 (Gly-(C2)), 43.16 (Gly-(C2)), 43.15 (Gly-(C2)), 43.0 (Gly-(C2)), 28.8 (His-(C3)), 22.4 (COCH₃).

N-Acetylglycylglycylglycyl-DL-methionyl-L-alanyl-L-serine Ac-Gly-Gly-Gly-Met-Ala-Ser-OH

Fig. S192. ¹H NMR (700 MHz, H₂O, noesygppr1d, 1.0–5.0 ppm) spectrum to show the reaction of *N*-acetylglycylglycine nitrile(**Ac-Gly₃-CN**; 100 mM), L-methionyl-L-alanyl-L-serine (**Met-Ala-Ser-OH**; 100 mM) and 3-mercaptopropionic acid (**MPA**; 160 mM) in H₂O (1 mL) at pH 7 at 60 °C. \checkmark = 2-Carboxyethyldisulfide (formed by aerial oxidation of **MPA** \blacktriangle). Top = ¹H NMR spectrum acquisition before the reaction was heated 60 °C. Bottom = ¹H NMR spectrum acquisition after the reaction was heated 60 °C for 24 h.

N-Acetylglycylglycylglycyl-DL-methionyl-L-alanyl-L-serine **Ac-Gly-Gly-Met-Ala-Ser-OH** (●) (2 diastereoisomers): ¹H NMR (700 MHz, H₂O, noesygppr1d, Fig. S192b) δ 4.47 (dd, *J* = 5.2, 9.0 Hz, 2H, Met-(C2)–H), 4.41 - 4.34 (m, 2H, Ala-(C2)–H), 4.26 - 4.19 (br. m, 2H, Ser-(C2)–H), 3.97 - 3.91 (m, 12H, Gly₁-(C2)–H₂, Gly₂-(C2)–H₂, Gly₃-(C2)–H₂), 3.84 -3.79 (m, 4H, Ser-(C3)–H₂), 2.62 - 2.54 (m, 2H, Met-(C3)–H), 2.54 - 2.47 (m, 2H, Met-(C3)–H'), 2.11 - 2.05 (m, 8H, Met-(C4)–H), SCH₃), 2.04 (s, 6H, COCH₃), 2.02 - 1.95 (m, 2H, Met-(C4)–H'), 1.40 - 1.36 (m 6H, Ala-(C3)–H₂).

Fig. S193. ¹H–¹³C HMBC (¹H: 700 MHz [4.40-4.50 ppm], ¹³C: 176 MHz [170-180 ppm]) spectrum showing the diagnostic ²J_{CH} and ³J_{CH} coupling of **Met**-(C2)–H in a diastereoisomeric mixture of **Ac-Gly-Gly-Gly-Met-Ala-Ser-OH** (δ_{H} = 4.47 ppm, δ_{c} = 173.8, 173.7, 172.2, 172.1 ppm). See Fig. S192b for expanded and labelled ¹H NMR spectrum.
N-Acetylglycylglycylglycyl-DL-phenylalanylglycylglycine Ac-Gly-Gly-Gly-Phe-Gly-Gly-OH

Fig. S194. ¹H NMR (700 MHz, H₂O, noesygppr1d, 1.5–8.0 ppm) spectrum to show the reaction of *N*-acetylglycylglycylglycine nitrile (Ac-Gly₃-CN; 100 mM), L-phenylalanylglycylglycine (**Phe-Gly-Gly-OH**; 100 mM) and 3-mercaptopropionic acid (**MPA**; 160 mM) in H₂O (1 mL) at pH 7 at 60 °C. \checkmark = 2-Carboxyethyldisulfide (formed by aerial oxidation of **MPA** \blacktriangle). Top = ¹H NMR spectrum acquisition before the reaction was heated 60 °C. Bottom = ¹H NMR spectrum acquisition after the reaction was heated 60 °C for 24 h. **x** = **Ac-Gly_2-Gly^N-NH₂**. \Box = **Ac-Gly-Gly-Gly-Gly-Gly-Gly-OH** (12%).

Fig. S195. ¹³C NMR (176 MHz, H₂O, noesygppr1d, 0–220 ppm) spectrum to show the reaction of *N*-acetylglycylglycylglycine nitrile (**Ac-Gly₃-CN**; 100 mM), L-phenylalanylglycylglycine (**Phe-Gly-Gly-OH**; 100 mM) and 3-mercaptopropionic acid (**MPA**; 160 mM) in H₂O (1 mL) at pH 7 at 60 °C. \checkmark = 2-Carboxyethyldisulfide (formed by aerial oxidation of **MPA** \blacktriangle).

¹H NMR (700 MHz, D₂O, noesygppr1d, Fig. S194b) *N-Acetylglycylglycylglycyl-DL-phenylalanylglycylglycine* **Ac-Gly-Gly-Gly-OH** (•) δ 7.37 - 7.32 (m, 4H, Ar), 7.31 - 7.26 (m, 2H, Ar), 7.25 (d, *J* = 7.0 Hz, 4H, Ar), 4.60 (app. t, *J* = 7.4 Hz, 2H, Phe-(C2)–H), 3.92 (br. s., 4H, Gly-(C2)–H), 3.89 - 3.84 (m, 8H, 2 × Gly-(C2)–H), 3.69 (br. s., 4H, Gly-(C2)–H), 3.14 (ABX, *J* = 6.8, 13.0 Hz, 2H, Phe-(C3)–H'), 3.01 (ABX, *J* = 8.3, 13.0 Hz, 2H, Phe-(C3)–H''), 2.02 (s, 6H, COCH₃). ¹³C NMR (176 MHz, H₂O, noesygppr1d, Fig. S195) (2 diastereoisomers) δ 176.9 (CO), 175.6 (CO), 174.2 (CO), 173.1 (CO), 172.6 (CO), 171.9 (CO), 171.5 (CO), 136.9 (Ar), 129.8 (Ar), 129.4 (Ar), 127.8 (Ar), 55.9 (Phe-(C2)), 43.9 (2 × Gly-(C2)), 43.3 (2 × Gly-(C2)), 43.2 (2 × Gly-(C2)), 42.9 (4 × Gly-(C2)), 37.4 (Phe-(C3)), 22.4 (COCH₃).

Peptide deuteration studies

Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-isoleucine Ile in D₂O

N-Acetylglycine nitrile **Ac-Gly-CN** (100 mM) and L-isoleucine **IIe** (100 mM) and 3-mercaptopropionic acid (**MPA**; 200 mM) were dissolved in D_2O (1 mL) and the solution was adjusted to pD 7.0 or 9.0 with 4 M NaOD and incubated at room temperature or 60 °C. The reaction was cooled to room temperature and analysed by NMR spectroscopy (¹H; ¹³C; ¹H– ¹H COSY; ¹H–¹³C HSQC; ¹H–¹³C HMBC). Observations are summarised in Table S9.

Entry	Time (d)	рН	Temp (°C)	∑(yield, %) Ac-Gly _{H/D} -Ile _{H/D} -OH + Ac-Gly ^N _{H/D} -Ile _{H/D} -OH	Comment
1	10	7	rt	88	<5% Ile-(C2)-deuteration 12% Gly-(C2) deuteration
2	1	7	60	80	35% Ile-(C2) deuteration >95% Gly-(C2) deuteration
3	3	9	rt	>95	<5% Ile-(C2) deuteration >95% Gly-(C2) deuteration
4	1	9	60	n.d	>90% Ile-(C2)-deuteration >90% Gly-(C2)-deuteration

Table S9. Yields and deuteration levels of the coupling product (Ac-Gly_{H/D}-Ile_{H/D}-OH and Ac-Gly^N_{H/D}-Ile_{H/D}-OH) produced by 3-mercaptopropionic acid **MPA** (200 mM) catalysed coupling of Ac-Gly-CN (100 mM) with L-isoleucine Ile (100 mM) in D₂O at pD 7 or 9, and at room temperature or 60 °C. n.d = not determined due to extensive deuteration. rt = room temperature.

N-Acetylglycine nitrile **Ac-Gly-CN** (100 mM) and L-isoleucinamide **IIe-NH**₂ (100 mM) and 3-mercaptopropionic acid (**MPA**; 200 mM) were dissolved in D₂O (1 mL) and the solution was adjusted to pD 7.0 or 9.0 with 4 M NaOD and incubated at room temperature or 60 °C. The reaction was cooled to room temperature and analysed by NMR spectroscopy (¹H; ¹³C; ¹H–¹H COSY; ¹H–¹³C HSQC; ¹H–¹³C HMBC). Observations are summarised in Table S10.

Entry	Time (d)	рН	Temp (°C)	Comment
1	8	7	rt	>90% Ile-(C2)-deuteration
				>90% Gly-(C2)-deuteration
2	1	7	60	>90% Ile-(C2)-deuteration
				>90% Gly-(C2)-deuteration
3	1	9	rt	>90% Ile-(C2)-deuteration
		-		>90% Gly-(C2)-deuteration
4	1	9	60	>90% Ile-(C2)-deuteration
				>90% Gly-(C2)-deuteration

Table S10. Deuteration levels of the coupling product (Ac-Gly_{H/D}-Ile_{H/D}-NH₂) produced by 3-mercaptopropionic acid MPA (200 mM) catalysed coupling of Ac-Gly-CN (100 mM) with L-isoleucinamide Ile-NH₂ (100 mM) in D₂O at pD 7 or 9, and at room temperature or 60 °C. Yields not determined due to extensive deuteration. rt = room temperature.

Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-serine Ser in H₂O or D₂O

N-Acetylglycine nitrile **Ac-Gly-CN** (200 mM) and L-serine **Ser** (200 mM) and 3-mercaptopropionic acid (**MPA**; 200 mM) were dissolved in H_2O or D_2O (1 mL). The solution was adjusted to pH 7.0 with 4 M NaOH, or pD 7.0 with 4 M NaOD, and incubated at 60 °C for 48 h. The reaction was cooled to room temperature and analysed by NMR spectroscopy (Fig. S196). Yield of **Ac-Gly-Ser-OH** and the amounts of deuteration are reported in Table S11.

Entry	Solvent	Ac-Gly-Ser-OH	Σ In	Deuteration	
	oolvent	(%)	t = 0	t = 48	(%)
1	H ₂ O	74	5.00	4.86	2.80
2	D ₂ O	60	5.00	4.73	5.40

Table S11. Yields of **Ac-Gly-Ser-OH** produced by 3-mercaptopropionic acid **MPA** (200 mM) catalysed coupling of **Ac-Gly-CN** (100 mM) with L-serine **Ser** (200 mM) in H₂O or D₂O at pH or pD 7 after 48 h at 60 °C. Σ **Integral** is the total sum of integration in the (C2)–H and (C3)–H region of the ¹H NMR spectrum (3.5 – 4.5 ppm), using **MPA** and 2-carboxyethyldisulfide (the aerial oxidation product of **MPA**) as the internal standard, before (**t** = **0**) and after heating at 60 °C for 48 h (**t** = **48**). This value was further verified by the total integration of the COCH₃ region between 1.7 – 2.1 ppm of the ¹H NMR spectrum. The total integral intensity of the COCH₃ region after 48 h was completely recovered (>98%) in all cases. **Deuteration (%)** is the amount of (C2)–H and/or (C3)–H deuteration that was calculated by comparing the total ¹H NMR integral analysis of the (C2)–H and (C3)–H regions (3.5–4.5 ppm) before (**t** = **0**) and after incubation of the reaction at 60 °C for 48 h (**t** = **48**).

Fig. S196. ¹H NMR (600 MHz, noesygppr1d, 1.5–5.0 ppm) spectra to show the reaction of *N*-acetylglycine nitrile **Ac-Gly-CN** (200 mM) with L-serine **Ser** (200 mM) and 3-mercaptopropionic acid **MPA** (200 mM) after heating for 48 h at 60 °C in H₂O (pH 7) or D₂O (pD 7). a) **Ac-Gly-CN**, **Ser** and **MPA** in H₂O at pH 7 before heating at 60 °C. b) **Ac-Gly-CN**, **Ser** and **MPA** in H₂O at pH 7 after heating at 60 °C. c) **Ac-Gly-CN**, **Ser** and **MPA** in D₂O at pD 7 after heating at 60 °C. d) **Ac-Gly-CN**, **Ser** and **MPA** in D₂O at pD 7 before heating at 60 °C. d) **Ac-Gly-CN**, **Ser** and **MPA** in D₂O at pD 7 before heating at 60 °C. \checkmark = 2-Carboxyethyldisulfide (formed by aerial oxidation of **MPA A**). * = *N*-(2-amino-2-iminoethyl)acetamide, **Ac-Gly-NH**₂.

Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-serinamide Ser-NH2 in H2O or D2O

N-Acetylglycine nitrile **Ac-Gly-CN** (200 mM) and L-serinamide **Ser-NH**₂ (200 mM) and 3-mercaptopropionic acid (**MPA**; 200 mM) were dissolved in H₂O or D₂O (1 mL). The solution was adjusted to pH 7.0 with 4 M NaOH, or pD 7.0 with 4 M NaOD, and incubated at 60 °C for 48 h. The reaction was cooled to room temperature and analysed by NMR spectroscopy (Fig. S197). Yield of **Ac-Gly-Ser-NH**₂ and the amounts of deuteration are reported in Table S12.

Entry	Solvent	Ac-Gly-Ser-NH ₂	Integr	al area	Deuteration
	Solvent	(%)	t = 0 h	t = 48 h	(%)
1	H ₂ O	80	5.00	4.75	5.00
2	D ₂ O	80	5.00	4.55	9.00

Table S12. Yields of Ac-Gly-Ser-NH₂ produced by 3-mercaptopropionic acid MPA (200 mM) catalysed coupling of Ac-Gly-CN (100 mM) with Lserinamide Ser-NH₂ (200 mM) in H₂O or D₂O at pH or pD 7 after 48 h at 60 °C. Σ Integral is the total sum of integration in the (C2)–H and (C3)–H region of the ¹H NMR spectrum (3.5 – 4.5 ppm), using MPA and 2-carboxyethyldisulfide (the aerial oxidation product of MPA) as the internal standard, before (t = 0) and after heating at 60 °C for 48 h (t = 48). This value was further verified by the total integration of the COCH₃ region between 1.7 – 2.1 ppm of the ¹H NMR spectrum. The total integral intensity of the COCH₃ region after 48 h was completely recovered (>98%) in all cases. Deuteration (%) is the amount of (C2)–H and/or (C3)–H deuteration that was calculated by comparing the total ¹H NMR integral analysis of the (C2)– H and (C3)–H regions (3.5–4.5 ppm) before (t = 0) and after incubation of the reaction at 60 °C for 48 h (t = 48).

Fig. S197. ¹H NMR (600 MHz, noesygppr1d, 1.5–4.5 ppm) spectra to show the reaction of *N*-acetylglycine nitrile **Ac-Gly-CN** (200 mM) with L-serinamide **Ser-NH**₂ (200 mM) and 3-mercaptopropionic acid **MPA** (200 mM) after heating for 48 h at 60 °C in H₂O (pH 7) or D₂O (pD 7). a) **Ac-Gly-CN**, **Ser-NH**₂ and **MPA** in H₂O at pH 7 before heating at 60 °C. b) **Ac-Gly-CN**, **Ser-NH**₂ and **MPA** in H₂O at pH 7 after heating at 60 °C. d) **Ac-Gly-CN**, **Ser-NH**₂ and **MPA** in D₂O at pD 7 after heating at 60 °C. d) **Ac-Gly-CN**, **Ser-NH**₂ and **MPA** in D₂O at pD 7 before heating at 60 °C. \Rightarrow *Carboxyethyldisulfide* (formed by aerial oxidation of **MPA** \triangleq). * = *N*-(2-amino-2-iminoethyl)acetamide, **Ac-Gly^N-NH**₂.

Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-threonine Thr in H₂O or D₂O

N-Acetylglycine nitrile **Ac-Gly-CN** (200 mM) and L-threonine **Thr** (200 mM) and 3-mercaptopropionic acid (**MPA**; 200 mM) were dissolved in H₂O or D₂O (1 mL). The solution was adjusted to pH 7.0 with 4 M NaOH, or pD 7.0 with 4 M NaOD, and incubated at 60 °C for 48 h. The reaction was cooled to room temperature and analysed by NMR spectroscopy (Fig. S198). Yield of **Ac-Gly-Thr-OH** and the amounts of deuteration are reported in Table S13.

Entry	Solvent	Ac-Gly-Thr-OH	r-Thr-OH Integral area		Deuteration
	oolvent	(%)	t = 0 h	t = 48 h	(%)
1	H ₂ O	75	4.00	3.89	2.75
2	D ₂ O	80	4.00	3.51	12.25

Table S13. Yields of **Ac-Gly-Thr-OH** produced by 3-mercaptopropionic acid **MPA** (200 mM) catalysed coupling of **Ac-Gly-CN** (100 mM) with Lthreonine **Thr** (200 mM) in H₂O or D₂O at pH or pD 7 after 48 h at 60 °C. Σ **Integral** is the total sum of integration in the (C2)–H and (C3)–H region of the ¹H NMR spectrum (3.5 – 4.5 ppm), using **MPA** and 2-carboxyethyldisulfide (the aerial oxidation product of **MPA**) as the internal standard, before (**t** = **0**) and after heating at 60 °C for 48 h (**t** = 48). This value was further verified by the total integration of the COCH₃ region between 1.7 – 2.1 ppm of the ¹H NMR spectrum. The total integral intensity of the COCH₃ region after 48 h was completely recovered (>98%) in all cases. **Deuteration (%)** is the amount of (C2)–H and/or (C3)–H deuteration that was calculated by comparing the total ¹H NMR integral analysis of the (C2)–H and (C3)–H regions (3.5–4.5 ppm) before (**t** = **0**) and after incubation of the reaction at 60 °C for 48 h (**t** = 48).

Fig. S198. ¹H NMR (600 MHz, noesygppr1d, 0.5–4.5 ppm) spectra to show the reaction of *N*-acetylglycine nitrile **Ac-Gly-CN** (200 mM) with L-threonine **Thr** (200 mM) and 3-mercaptopropionic acid **MPA** (200 mM) after heating for 48 h at 60 °C in H₂O (pH 7) or D₂O (pD 7). a) **Ac-Gly-CN**, **Thr** and **MPA** in H₂O at pH 7 before heating at 60 °C. b) **Ac-Gly-CN**, **Thr** and **MPA** in H₂O at pH 7 after heating at 60 °C. c) **Ac-Gly-CN**, **Thr** and **MPA** in D₂O at pD 7 after heating at 60 °C. c) **Ac-Gly-CN**, **Thr** and **MPA** in D₂O at pD 7 before heating at 60 °C. d) **Ac-Gly-CN**, **Thr** and **MPA** in D₂O at pD 7 before heating at 60 °C. et al. (formed by aerial oxidation of **MPA**). ***** = *N*-(2-amino-2-iminoethyl)acetamide, **Ac-Gly-NH**₂. ***** = *N*-acetylglycinamide, **Ac-Gly-NH**₂.

Coupling of N-acetylglycine nitrile Ac-Gly-CN with L-threoninamide Thr-NH2 in H2O or D2O

N-Acetylglycine nitrile **Ac-Gly-CN** (200 mM) and L-threoninamide **Thr-NH**₂ (200 mM) and 3-mercaptopropionic acid (**MPA**; 200 mM) were dissolved in H₂O or D₂O (1 mL). The solution was adjusted to pH 7.0 with 4 M NaOH, or pD 7.0 with 4 M NaOD, and incubated at 60 °C for 48 h. The reaction was cooled to room temperature and analysed by NMR spectroscopy (Fig. S199). Yield of **Ac-Gly-Thr-NH**₂ and the amounts of deuteration are reported in Table S14.

Entry	Solvent	Ac-Gly-Thr-NH ₂	Integra	al area	Deuteration
	Solvent	(%)	t = 0 h	t = 48 h	(%)
1	H ₂ O	85	4.00	3.92	2.00
2	D_2O	82	4.00	3.50	12.50

Table S14. Yields of **Ac-Gly-Thr-NH**₂ produced by 3-mercaptopropionic acid **MPA** (200 mM) catalysed coupling of **Ac-Gly-CN** (100 mM) with L-threoninamide **Thr-NH**₂ (200 mM) in H₂O or D₂O at pH or pD 7 after 48 h at 60 °C. Σ **Integral** is the total sum of integration in the (C2)–H and (C3)–H region of the ¹H NMR spectrum (3.5 – 4.5 ppm), using **MPA** and 2-carboxyethyldisulfide (the aerial oxidation product of **MPA**) as the internal standard, before (**t** = **0**) and after heating at 60 °C for 48 h (**t** = **48**). This value was further verified by the total integration of the COCH₃ region between 1.7 – 2.1 ppm of the ¹H NMR spectrum. The total integral intensity of the COCH₃ region after 48 h was completely recovered (>98%) in all cases. **Deuteration (%)** is the amount of (C2)–H and/or (C3)–H deuteration that was calculated by comparing the total ¹H NMR integral analysis of the (C2)–H and (C3)–H regions (3.5–4.5 ppm) before (**t** = **0**) and after incubation of the reaction at 60 °C for 48 h (**t** = **48**).

Fig. S199. ¹H NMR (600 MHz, noesygppr1d, 0.5–4.5 ppm) spectra to show the reaction of *N*-acetylglycine nitrile **Ac-Gly-CN** (200 mM) with L-threoninamide **Thr-NH**₂ (200 mM) and 3-mercaptopropionic acid **MPA** (200 mM) after heating for 48 h at 60 °C in H₂O (pH 7) or D₂O (pD 7). a) **Ac-Gly-CN**, **Thr-NH**₂ and **MPA** in H₂O at pH 7 before heating at 60 °C. b) **Ac-Gly-CN**, **Thr-NH**₂ and **MPA** in H₂O at pH 7 after heating at 60 °C. c) **Ac-Gly-CN**, **Thr-NH**₂ and **MPA** in D₂O at pD 7 after heating at 60 °C. d) **Ac-Gly-CN**, **Thr-NH**₂ and **MPA** in D₂O at pD 7 before heating at 60 °C. \checkmark = 2-Carboxyethyldisulfide (formed by aerial oxidation of **MPA** \bigstar). \ast = *N*-(2-amino-2-iminoethyl)acetamide, **Ac-Gly^N-NH**₂. \times = *N*-acetylglycinamide, **Ac-Gly-NH**₂.

Competition experiments

Competitive coupling of glycine and glycinamide with N-acetylglycine nitrile

Fig. S200. ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show the reaction of *N*-acetylglycine nitrile (**Ac-Gly-CN**, 200 mM) with glycine (**Gly-OH**, 200 mM), glycinamide (**Gly-NH**₂, 200 mM), and *N*-acetyl-L-cysteine (**Ac-Cys-OH**, 60 mM, 0.3 eq.) with MSM (50 mM) as the internal standard after 24 h at pH 7 and 60 °C. \geq = *N*,*N*-diacetyl-L-cystine (formed by aerial oxidation of **Ac-Cys-OH**).

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d) (2-acetamido-1-iminoethyl)glycine, **Ac-Gly^N-Gly-OH** (\bullet): δ_H4.26 (2H, s, AcNHCH₂), 3.91 (2H, s, Gly-αH-COOH), 2.09 (3H, s, H₃C(CO)); 2-(2-acetamidoacetimidamido)acetamide, **Ac-Gly^N-Gly-NH**₂ (\bullet): δ_H 4.28 (2H, s, AcNHCH₂), 4.17 (2H, s, Gly-αH-CONH₂), 2.03 (3H, s, H₃C(CO)); *N*-Acetylglycylglycinamide, **Ac-Gly-Gly-NH**₂ (\bullet): δ_H 3.94 (2H, br. s., AcNHCH₂), 3.92 (2H, s, Gly-αH-CONH₂), 2.06 (3H, s, H₃C(CO)); *Glycine*, **Gly-OH** (\blacksquare): δ_H 3.55 (2H, s, CH₂); *Glycinamide*, **Gly-NH**₂ (\star): δ_H 3.78 (2H, s, CH₂).

Fig. S201. ${}^{1}\text{H}{-}{}^{13}\text{C}$ HMBC (${}^{1}\text{H}$: 700 MHz [3.50-4.50 ppm], ${}^{13}\text{C}$: 176 MHz [150-185 ppm], ${}^{H_2}\text{O}/\text{D}_2\text{O}$ 9:1) spectrum showing the diagnostic ${}^{2}J_{\text{CH}}$ and ${}^{3}J_{\text{CH}}$ coupling of **Gly**- α H-COOH in **Ac-Gly**^N-**Gly-OH** at 3.91 ppm with two resonances at 174 and 165 ppm, and **Gly**- α H-NH₂ in **Ac-Gly**^N-**Gly-NH**₂ at 4.18 ppm with two resonances at 171 and 167 ppm and **Gly**- α H-NH₂ in **Ac-Gly**-**Gly-NH**₂ at 3.92 ppm with two resonances at 175 and 173 ppm which is characteristic of amidine and amide bond formation of **Gly-OH** and **Gly-NH**₂. See Fig. S200 for expanded and labelled ¹H NMR spectrum.

Catalytic synthesis of proteinogenic α -peptides in the presence of non-proteinogenic substrates

Catalytic coupling of N-acetylglycine nitrile with glycine in the presence N-acetyl-β-alanine nitrile

N-Acetylglycine nitrile **Ac-Gly-CN** (200 mM), glycine **Gly** (200 mM), *N*-acetyl- β -alanine nitrile (200 mM) and *N*-acetyl-Lcysteine **Ac-Cys-OH** (60 mM), were adjusted to pH 7 with 1 – 4M HCl/NaOH and the solution was incubated at 60 °C for 24 h. The reaction was then analysed and quantified by NMR spectroscopy (¹H, ¹³C, ¹H–¹³C HMBC, ¹H–¹H COSY, ¹H–¹³C HSQC). **Ac-Gly^N-Gly-OH** (65%) was observed, but no coupling of **Ac-\beta-Ala-CN** and **Gly** (to produce **Ac-\beta-Ala^N-Gly-OH**) could be detected (Fig. S202a). Additionally, a separate control experiment containing only **Ac-\beta-Ala-CN** (200 mM), **Gly** (200 mM) and **Ac-Cys-OH** (60 mM) at pH 7 and 60 °C gave no detectable **Ac-\beta-Ala^N-Gly-OH** after 24 h (Fig. S202b).

Fig. S202. ¹H NMR (700 MHz, H_2O/D_2O 9:1, noesygppr1d, 1.5–50 ppm) spectrum to show **a**) the reaction of *N*-acetylglycine nitrile (**Ac-Gly-CN**, 200 mM), *N*-acetyl- β -alanine nitrile (**Ac-\beta-Ala-CN**, 200 mM), glycine (**Gly**, 200 mM) and *N*-acetyl-L-cysteine (**Ac-Cys-OH**, 60 mM, 0.3 eq.) after 24 h at pH 7 and 60 °C; **b**) the corresponding control reaction of *N*-acetyl- β -alanine nitrile (**Ac-\beta-Ala-CN**, 200 mM), glycine (**Gly**, 200 mM) and *N*-acetyl-L-cysteine (**Ac-Cys-OH**, 60 mM, 0.3 eq.) after 24 h at pH 7 and 60 °C; **b**) the corresponding control reaction of *N*-acetyl- β -alanine nitrile (**Ac-\beta-Ala-CN**, 200 mM), glycine (**Gly**, 200 mM) and *N*-acetyl-L-cysteine (**Ac-Cys-OH**, 60 mM, 0.3 eq.) after 24 h at pH 7 and 60 °C, where no coupling of **Ac-\beta-Ala-CN** and **Gly** was observed. \triangleright = *N*,*N'*-diacetyl-L-cysteine (formed by aerial oxidation of **Ac-Cys-OH**), **x** = *N*-acetylglycinamide **Ac-Gly-NH**₂.

Catalytic coupling of N-acetylglycine nitrile with DL-alanine in the presence of α -aminoisobutyric acid

N-Acetylglycine nitrile **Ac-Gly-CN** (200 mM), DL-alanine **Ala** (200 mM), α-aminoisobutyric acid (200 mM) and *N*-acetyl-L-cysteine **Ac-Cys-OH** (60 mM), were adjusted to pH 7 with 1 – 4M HCl/NaOH and the solution was incubated at 60 °C for 24 h. The reaction was then analysed and quantified by NMR spectroscopy (¹H, ¹³C, ¹H–¹³C HMBC, ¹H–¹H COSY, ¹H–¹³C HSQC). **Ac-Gly^N-Ala-OH** (44%) was observed, but no coupling of **Aib** and **Ac-Gly-CN** (to produce **Ac-Gly^N-Aib-OH**) could be detected (Fig. S203a). Additionally, a separate control experiment containing only **Ac-Gly-CN** (200 mM), **Aib** (200 mM) and **Ac-Cys-OH** (60 mM) at pH 7 and 60 °C gave no detectable **Ac-Gly^N-Aib-OH** after 24 h (Fig. S203b).

Fig. S203. ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.5–5.0 ppm) spectrum to show **a**) the reaction of *N*-acetylglycine nitrile (**Ac-Gly-CN**, 200 mM), α -aminoisobutyric acid (**Aib**, 200 mM), DL-alanine (**Ala**, 200 mM) and *N*-acetyl-L-cysteine (**Ac-Cys-OH**, 60 mM, 0.3 equiv.) after 24 h at pH 7 and 60 °C; **b**) the corresponding control reaction of *N*-acetylglycine nitrile (**Ac-Gly-CN**, 200 mM), α -aminoisobutyric acid (**Aib**, 200 mM) and *N*-acetylglycine nitrile (**Ac-Gly-CN**, 200 mM), α -aminoisobutyric acid (**Aib**, 200 mM) and *N*-acetyl-L-cysteine (**Ac-Cys-OH**, 60 mM, 0.3 equiv.) after 24 h at pH 7 and 60 °C, where no coupling of **Ac-Gly-CN** and **Aib** was observed. **>** = *N*,*N'*-diacetyl-L-cysteine (formed by aerial oxidation of **Ac-Cys-OH**), **X** = *N*-acetylglycinamide **Ac-Gly-NH**₂.

N-Acetylglycine nitrile **Ac-Gly-CN** (200 mM), glycine **Gly** (200 mM), β -alanine β -Ala-OH (200 mM) and *N*-acetyl-Lcysteine **Ac-Cys-OH** (60 mM), were adjusted to pH 7 with 1 – 4M HCl/NaOH and the solution was incubated at 60 °C for 24 h. The reaction was then analysed and quantified by NMR spectroscopy (¹H, ¹³C, ¹H–¹³C HMBC, ¹H–¹H COSY, ¹H–¹³C HSQC). **Ac-Gly^N-Gly-OH** (44%) was observed alongside **Ac-Gly^N-\beta-Ala-OH** (18%) (Fig. S204b). Additionally, a separate control experiment containing only **Ac-Gly-CN** (200 mM), β -Ala-OH (200 mM) and **Ac-Cys-OH** (60 mM) at pH 7 and 60 °C gave **Ac-Gly^N-\beta-Ala-OH (56%) after 24 h (Fig. S204a)**.

Fig. S204. ¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d, 1.0-5.0 ppm) spectrum to show **a**) the competitive ligation of *N*-acetylglycine nitrile (**Ac-Gly-CN**, 200 mM) with glycine (**Gly-OH**, 200 mM), β -alanine (β -Ala-OH, 200 mM), and *N*-acetyl-L-cysteine (**Ac-Cys-OH**, 60 mM, 0.3 eq.) with MSM (50 mM) as the internal standard after 24 h at pH 7 and 60 °C; **b**) the corresponding control reaction *N*-acetylglycine nitrile (**Ac-Gly-CN**, 200 mM) with β -alanine (β -Ala-OH, 200 mM) and *N*-acetyl-L-cysteine (**Ac-Cys-OH**, 60 mM, 0.3 eq.) with MSM (50 mM) as the internal standard after 24 h at pH 7 and 60 °C; **b**) the corresponding control reaction *N*-acetylglycine nitrile (**Ac-Gly-CN**, 200 mM) with β -alanine (β -Ala-OH, 200 mM) and *N*-acetyl-L-cysteine (**Ac-Cys-OH**, 60 mM, 0.3 eq.) with MSM (50 mM) as the internal standard after 24 h at pH 7 and 60 °C; **b**) the corresponding control reaction β are internal standard after 24 h at pH 7 and 60 °C; **b**) the corresponding control reaction β are internal standard after 24 h at pH 7 and 60 °C; **b**) the corresponding control reaction β are internal standard after 24 h at pH 7 and 60 °C; **b**) the corresponding control reaction β are internal standard after 24 h at pH 7 and 60 °C; **b**) are internal standard after 24 h at pH 7 and 60 °C; **b** = N, N-diacetyl-L-cysteine (formed by aerial oxidation of **Ac-Cys-OH**).

¹H NMR (700 MHz, H₂O/D₂O 9:1, noesygppr1d) (2-acetamido-1-iminoethyl)glycine, **Ac-Gly^N-Gly-OH** (\bigcirc): δ_H 4.26 (2H, s, AcNHC*H*₂), 3.91 (2H, s, Gly-αH-COOH), 2.09 (3H, s, *H*₃C(CO)); 3-(2-acetamidoacetimidamido)propanoic acid, **Ac-Gly^N-β-Ala-OH** (\bigcirc): δ_H 4.18 (2H, s, AcNHC*H*₂), 3.51 (2H, t, *J* = 6.6 Hz, C*H*₂CH₂COOH), 2.50 (2H, t, *J* = 6.6 Hz, CH₂CH₂COOH) 2.07 (3H, s, *H*₃C(CO)); *Glycine*, **Gly-OH** (\blacksquare): δ_H 3.55 (2H, s, C*H*₂); β-Alanine, β-Ala-OH (×): δ_H 3.17 (2H, t, *J* = 6.6 Hz, CH₂CH₂COOH), 2.54 (2H, t, *J* = 6.6 Hz, CH₂COOH).

Fig. S205. ${}^{1}H{-}^{13}C$ HMBC (${}^{1}H$: 700 MHz [3.50-4.50 ppm], ${}^{13}C$: 176 MHz [150-185 ppm], H_2O/D_2O 9:1) spectrum showing the diagnostic ${}^{2}J_{CH}$ and ${}^{3}J_{CH}$ coupling of **Gly**- α H-COOH in **Ac-Gly**^N-**Gly-OH** at 3.91 ppm with two resonances at 175 and 167 ppm, and **Ac-Gly**- α H at 4.17 ppm and **\beta-Ala-\alphaH-OH** at 3.51 ppm in **Ac-Gly**^N-**\beta-Ala-OH** with a resonance at 167 ppm, which is characteristic of amidine bond formation of **Gly** and **\beta-Ala-OH**, respectively . See Fig. S204 for expanded and labelled ¹H NMR spectrum.

Miscellaneous preparative syntheses

N-Acetyl-2-aminoglutaronitrile (N-acetylglutamine dinitrile)

Ammonium hydroxide (25%; 9 mL), ammonium chloride (828 mg, 15.4 mmol) and potassium cyanide (604 mg, 9.2 mmol) were added to a mixture of 3-cyanopropionaldehyde and 4,4-dihydroxybutanenitrile. The mixture was then stirred for 72 h at room temperature. The reaction was partially concentrated *in vacuo* to remove excess ammonia. Acetic anhydride (2 mL, 21.1 mmol) was then added to the reaction mixture, the solution was adjusted to pH 9.0, and stirred for 12 h at room temperature. The reaction mixture was concentrated to dryness *in vacuo* and the crude residue was purified by flash column chromatography (SiO₂; eluting with ethyl acetate) to give *N*-acetyl-2-aminoglutaronitrile (*N*-acetylglutamine dinitrile) **Ac-Glx-CN** (702 mg, 4.6 mmol, 60%) as a yellow oil. ¹H NMR (700 MHz, H₂O, noesygppr1d): δ 4.94 (1H, dd, *J* = 8.9, 6.0 Hz, *CH*(CH₂CH₂CN)), 2.74–2.67 (2H, m, CH(CH₂CH₂CN)), 2.37–2.27 (2H, m, CH(CH₂CH₂CN)), 2.08 (3H, s, *H*₃C(CO)-). ¹³C NMR (176 MHz; H₂O): δ 174.1, 119.7, 117.9, 39.7, 27.1, 21.6, 13.2. HRMS-ESI [M+H]⁺ calculated for formula C₇H₁₀N₃O⁺, 152.0824; found 152.0826.

Fig. S206. ¹H NMR (700 MHz, H₂O, noesygppr1d, 1.00–6.00 ppm) spectrum of *N*-acetyl-2-aminoglutaronitrile Ac-GIx-CN.

Fig. S207. ¹³C NMR (176 MHz, H₂O, 0–200 ppm) spectrum of *N*-acetyl-2-aminoglutaronitrile Ac-Glx-CN.

1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (**EDC**·HCl; 1.29 g, 7.50 mmol) and *N*-acetylglycine (586 mg, 5.00 mmol) were stirred in chloroform (20 mL) for 30 min at room temperature. Cysteamine (463 mg, 6.00 mmol) was added in one portion and stirring was continued under a nitrogen atmosphere for 24 h. The solvent was then removed *in vacuo*, and the residue purified by flash column chromatography (SiO₂; 0:100 \rightarrow 15:85; MeOH:CH₂Cl₂) to give *N*-acetylglycylcysteamine as a white solid (360 mg, 41%); m.p. 149-150 °C (MeOH:CH₂Cl₂); *R_f* = 0.6 (10:90 MeOH:CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃) 6.91 (1H, s br., NH), 6.61 (1H, s br., NH), 3.94 (2H, app.d, *J* = 5.2 Hz,Gly-CH₂), 3.46 (2H, app. q, *J* = 6.5 Hz, CH₂CH₂SH), 2.67 (2H, dt, *J* = 8.5, 6.5 Hz, CH₂CH₂SH), 2.05 (3H, s, COCH₃), 1.44 (1H, t, *J* = 8.5 Hz, CH₂SH). ¹³C NMR (151 MHz, CDCl₃) 171.0 (COCH₃), 169.22 (Gly-(C1)), 43.6 (Gly-(C2)), 42.6 (CH₂CH₂SH), 24.5 (CH₂CH₂SH), 23.1 (COCH₃); HRMS (CI) found 177.061 [M]⁺⁻ mass for C₆H₁₂O₂N₂, requires 177.0692. IR (cm⁻¹) 3253, 3072, 2957, 1672, 1560.

Fig. S208. ¹H NMR (600 MHz, CDCl₃, 0.0–9.0 ppm) spectrum to show *N*-acetylglycylcysteamine.

Fig. S209. ¹H NMR (151 MHz, CDCl₃, 0–220 ppm) spectrum to show *N*-acetylglycylcysteamine.

References

- 46. A. K. Covington, M. Paabo, R. A. Robinson, R. G. Bates, Use of the glass electrode in deuterium oxide and the relation between the standardized pD (paD) scale and the operational pH in heavy water. *Anal. Chem.* **40**, 700-706 (1968).
- 47. I. Shalayel (Université Grenoble Alpes, France) https://tel.archives-ouvertes.fr/tel-02131562 (2018).
- 48. Y. Vallee *et al.*, At the very beginning of life on Earth: the thiol-rich peptide (TRP) world hypothesis. *Int. J. Dev. Biol.* **61**, 471-478 (2017).
- 49. R. C. Stephenson, S. Clarke, Succinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins. *J. Biol. Chem.* **264**, 6164-6170 (1989).
- 50. D. I. Hitchcock, The solubility of tyrosine in acid and in alkali. J. Gen. Physiol. 6, 747-757 (1924).
- 51. D. L. Kotova, D. S. Beilina, V. F. Selemenev, O. A. Shepeleva, Hydration characteristics of aromatic amino acids. *Pharm. Chem. J.* **35**, 221–222 (2001).