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Abstract 
This technical report addresses a pressing issue in the trajectory of 
the coronavirus outbreak; namely, the rate at which effective 
immunity is lost following the first wave of the pandemic. This is a 
crucial epidemiological parameter that speaks to both the 
consequences of relaxing lockdown and the propensity for a second 
wave of infections. Using a dynamic causal model of reported cases 
and deaths from multiple countries, we evaluated the evidence 
models of progressively longer periods of immunity. The results speak 
to an effective population immunity of about three months that, 
under the model, defers any second wave for approximately six 
months in most countries. This may have implications for the window 
of opportunity for tracking and tracing, as well as for developing 
vaccination programmes, and other therapeutic interventions.
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Background
Over the past months, an alternative to standard epidemio-
logical modelling has been considered in the form of dynamic 
causal modelling (Friston et al., 2020a). This approach inherits  
from statistical physics and variational procedures in Bayesian 
modelling and machine learning (Dauwels, 2007; Feynman,  
1972; Friston et al., 2007; MacKay, 1995; MacKay, 2003; Winn 
& Bishop, 2005). The validity of this approach has been partly 
established in a series of reports looking at the role of popula-
tion immunity within an outbreak in a single region (Friston  
et al., 2020a), the effect of population fluxes between multiple 
regions (in the United States of America) (Friston et al., 2020b) 
and the genesis of rebounds following lockdown, in relation to 
a second wave of infections (Friston et al., 2020c). In brief, the 
conclusions of this kind of modelling are: (i) population immu-
nity—inherited from the initial phases of the pandemic—plays  
a key role in nuancing its subsequent progression (ii) in the 
context of population exchange between regional outbreaks,  
social distancing and lockdown strategies based upon the local 
prevalence of infection reduce morbidity and mortality. Finally 
(iii), the mechanism that underwrites a second wave depends sen-
sitively on the rate at which population immunity is lost follow-
ing the first wave. This affords a window of opportunity within  
which track and trace protocols may delay or defer any  
second wave until it can be rendered innocuous through vac-
cination or clinical advances (Aleta et al., 2020; Chinazzi  
et al., 2020; Hellewell et al., 2020; Keeling et al., 2020; Kissler 
et al., 2020; Kucharski et al., 2020; Simonsen et al., 2018;  
Streeck et al., 2020; Wu et al., 2020). In this report, we con-
sider a key question: how long is this window—or, equiva-
lently, what is the period of effective immunity inherited at the  
population level from the first wave (Kissler et al., 2020).

Dynamic causal modelling1 can be characterised as a gener-
alisation of state-space modelling based upon differential equa-
tions. This contrasts with advanced descriptive approaches 
that fit curves to timeseries data, without any explicit reference 
to the underlying dynamics: e.g., (Tsallis & Tirnakli, 2020).  
Dynamic causal modelling differs from conventional epide-
miological modelling in that it uses mean field approximations 
and variational procedures to model the evolution of probabil-
ity densities—in a way that is similar to quantum mechanics and  
 statistical physics (Greenland, 2006). This contrasts with epide-
miological modelling that uses stochastic realisations of epide-
miological dynamics to approximate probability densities with 
sample densities (Kermack & McKendrick, 1997; Rhodes & 
Hollingsworth, 2009; Vineis & Kriebel, 2006; White et al., 2007). 
One advantage of variational procedures is that they are orders 
of magnitude more efficient; enabling model inversion or fit-
ting within minutes (on a laptop) as opposed to hours or days on 
a supercomputer (Rhodes & Hollingsworth, 2009). More impor-
tantly, variational procedures provide an efficient way of assess-
ing the quality of one model relative to another, in terms of model  
evidence (a.k.a., marginal likelihood) (Penny, 2012). This ena-
bles one to compare different models using Bayesian model 

comparison (a.k.a. structure learning) and use the best model for  
nowcasting, forecasting or, indeed, test competing hypotheses  
about viral transmission.

We have used this technology to build epidemiological mod-
els of how data are generated—in terms of latent causes like the 
prevalence of infection—that embed conventional epidemio-
logical models (e.g., susceptible, exposed, infected, recovered  
(SEIR) models) in an extended state space. For example, dynamic 
causal modelling allows certain probability densities to be factor-
ized. A key example of this is to model a joint distribution over 
states of infection and clinical manifestation. In other words, 
instead of assuming that there is a difference between being 
infected (I) and having recovered (R), one can accommodate 
the fact that it is possible to express symptoms without being 
infected: e.g., a secondary bacterial infection following interstitial  
pneumonia (Huang et al., 2020). Conversely, one can be infected 
without showing symptoms. Crucially, dynamic causal mod-
els can be extended to generate any kind of data at hand: for  
example, the number of positive tests. This requires careful con-
sideration of how positive tests are generated, by modelling 
latent variables such as the bias towards testing people with or 
without infection or, indeed, the capacity for testing, which may 
itself be time-dependent. In short, everything that might mat-
ter—in terms of the latent (hidden) causes of the data—can be 
installed in the model, including social distancing, self-isolation  
and other processes that underwrite transmission. When all 
such latent causes are included, model comparison can then 
be performed to assess whether they are needed to explain  
the data. Here, we leverage the efficiency of dynamic causal 
modelling to evaluate the evidence for a series of models that 
are distinguished by the rate at which effective immunity to  
SARS-CoV-2 is lost. This provides a probability distribution  
over the rate of loss that determines when, or if, a second wave 
will ensue (Friston et al., 2020c; Kissler et al., 2020). In what 
follows, effective population immunity refers to the proportion  
of people who cannot contract or transmit the virus. This means 
that the loss of effective immunity can be mediated in several  
ways, e.g., through viral mutation or increasing the size of  
the susceptible population, through population fluxes or spread  
of the virus into new regions.

Details about the dynamic causal model can be found in the above 
technical reports (Friston et al., 2020a; Friston et al., 2020b;  
Friston et al., 2020c). Please see Figure 1 and Table 1 for a sum-
mary of its form and parameters. The model was fitted to new 
cases and deaths using data available from Johns Hopkins Uni-
versity2. The inversion and subsequent model comparison used 
standard variational (Laplace) procedures (Friston et al., 2007; 
Marreiros et al., 2009), as implemented in academic (open 
source) software3. The particular model used here has a degree 
of face validity. Formal Bayesian model comparison—with the  
closest conventional epidemiological models—speak to a higher 
model evidence (Moran et al., 2020), i.e., it provides a more 

1 http://www.scholarpedia.org/article/Dynamic_causal_modeling

2 https://github.com/CSSEGISandData/COVID-19.

3 https://www.fil.ion.ucl.ac.uk/spm/covid-19/
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accurate and parsimonious account of the data via optimising 
a (variational) bound on model evidence. Its predictive valid-
ity has been partly established. For example, it predicted death 
rates would peak on 10 April in the United Kingdom, with an  
initial relaxation of lockdown on 8 May 2020. In what fol-
lows, we use dynamic causal modelling to ask a simple but  
crucial question: how quickly will immunity to SARS-CoV-2  
be lost at a population level?

Before addressing this question, we reiterate that this paper is a 
technical report illustrating how questions of this sort can be 
answered using variational Bayes and dynamic causal model-
ling. It explicitly does not purport to provide definitive answers. 
In other words, as the models are improved through Bayesian  
model comparison—or as more data become available—the  
inferences and posterior predictions below will change. Although 
these inferences are described definitively, they are entirely 

Figure 1. The LIST model. This schematic summarises the LIST (location, infection, symptom, and testing) generative model used for the 
following analyses. This model is formally identical to that described in (Friston et al., 2020c). It includes a state (isolation) to model people 
who are self-isolating because they think they may be infectious (within their home or elsewhere). It also includes another (resistant) state 
to model individuals who are shielded or have pre-existing immunity, e.g., via cross-reactivity (Grifoni et al., 2020; Ng et al., 2020) or other 
protective host factors (Bunyavanich et al., 2020; Zheng et al., 2020). This absorbing state also plays the role of the recovered or removed 
states of SEIR models, namely, once entered, people stay in the state for the duration of the outbreak. One can leave any of the remaining 
states. For example, one only occupies the deceased state for a day and then moves to healthy (or untested) on the following day. Similarly, 
one only occupies the state of testing positive or negative for a day, and then moves to the untested state the following day. This ensures 
that the total population is conserved; e.g., deaths are offset by births into the susceptible state. Furthermore, it enables the occupancy 
of various states to be interpreted in terms of the rate of daily expression. The blue discs represent the four factors of the model, and the 
segments of these discs correspond to their states (i.e., compartments). The states within any factor are mutually exclusive, whereas the 
factors embody the factorial form of the compartmental model. In other words, every individual has to be in one of the states associated 
with the four factors or attributes. The orange boxes represent the observable outputs that are generated by this dynamic causal model, in 
this instance, daily reports of positive tests and deaths. The rate of transition between states—or the dwell time within any state—rests upon 
the model parameters that, in many instances, can be specified with fairly precise prior densities. These are listed in Table 1.
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Table 1. Parameters of the epidemic (LIST) model and priors, N(η,C). NB: prior means are for 
scale parameters θ = exp(ϑ).

Number Parameter Mean Variance Description

1 θn 4 1 Number of initial cases

2 θr 1/2 1/256 Proportion of non-susceptible cases

3 θN 8 1 Effective population size (millions)

Location

4 θout 1/3 1/256 Probability of going out

5 θsde 1/32 1/256 Social distancing threshold

6 θcap 16/100000 1/256 CCU capacity threshold (per capita)

Infection

7 θres 1/2 1/256 Proportion of non-contagious cases

8 θRin 4 1/16 Effective number of contacts: home

9 θRou 48 1/16 Effective number of contacts: work

10 θtrn 1/3 1/16 Transmission strength

11 1exp( )
infinf τθ = − τinf = 4 1/256 Infected period (days)

12 1exp( )
concon τθ = − τcon = 4 1/256 Infectious period (days)

13 1exp( )
immimm τθ = − τimm = 1:32 1/512 Period of immunity (months)

Symptoms

14 11 exp( )
incdev τθ− = − τinc = 16 1/256 Incubation period (days)

15 θsev 1/32 1/256 Probability of ARDS

16 1exp( )
symsym τθ = − τsym = 8 1/256 Symptomatic period (days)

17 1exp( )
rdsrds τθ = − τrds = 10 1/256 ARDS period (days)

18 θfat 1/2 1/256 ARDS fatality rate: CCU

19 θsur 1/8 1/256 ARDS fatality rate: home

Testing

20 θttt 1/10000 1 Efficacy of tracking and tracing

21 θlat 2 1 Latency of sustained testing (months)

22 θsus 4/10000 1/256 Sustained testing

23 θbas 4/10000 1/256 Baseline testing

24 θtes 8 1/16 Selectivity of testing infected people

25 1exp( )
deldel τθ = − τdel = 2 1/256 Delay in reporting test results (days)

Secondary sources (Huang et al., 2020; Kissler et al., 2020; Mizumoto & Chowell, 2020; Russell et al., 2020; Verity 
et al., 2020; Wang et al., 2020). These prior expectations should be read as the effective rates and time constants 
as they manifest in a real-world setting. For example, a six-day period of contagion is shorter than the period 
that someone might be infectious (Wölfel et al., 2020)4, on the (prior) assumption that they will self-isolate, when 
they realise they could be contagious. The priors for the non-susceptible and non-contagious proportion of the 
population are based upon clinical and serological studies reported over the past few weeks; e.g., (Ing et al., 
2020;  Stringhini et al., 2020). Please see the code base for a detailed explanation of the role of these parameters 
in transition probabilities among states. Although the (scale) parameters are implemented as probabilities or 
rates, they are estimated as log parameters, denoted by ϑ=In θ.

4 Shedding of COVID-19 viral RNA from sputum can outlast the end of symptoms. Seroconversion occurs after 6-12 days but is not necessarily followed by a rapid 
decline of viral load. However, RNA shedding usually lasts longer than the shedding of infectious virus: many viruses produced are defective in some way, but still 
present RNA. As a rule of thumb 1/100 to 1/1000 virions produced are infective: van Kampen et al., 2020. Shedding of infectious virus in hospitalized patients with 
coronavirus disease-2019 (COVID-19): duration and key determinants. medRxiv, 2020.2006.2008.20125310.
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conditional upon the model used in this analysis, and the data  
available at the time of writing (8 June 2020).

Results
The dynamic causal model above was fitted (i.e., inverted) 
using timeseries data from Johns Hopkins University5 covering  
reported new cases and deaths from countries showing the high-
est cumulative number of deaths. The priors over the (25) model 
parameters can be found in Table 1. Crucially, this model inver-
sion was repeated with different rates at which effective immu-
nity is lost (i.e., the expected period of immunity following  
infection). These ranged from one month through to 32 months.  
This range was chosen to cover worst to best case scenarios. The 
worst-case scenario would correspond to a short-term period of 
immunity, less than that associated with the betacoronaviruses 
that cause the common cold: SARS-CoV-2 belongs to the beta-
coronavirus genus, which includes the SARS, MERS, and two 
other human coronaviruses, HCoV-OC43 and HCoV-HKU1  
that cause the common cold (Kissler et al., 2020; Su et al., 2016). 
Immunity to HCoV-OC43 and HCoV-HKU1 appears to be lost 
over a few months. However, betacoronaviruses might induce 

immune responses against each another. For example, SARS  
can generate neutralizing antibodies against HCoV-OC43 that 
can endure for years, while HCoV-OC43 infection can gener-
ate cross-reactive antibodies against SARS (Chan et al., 2013). A 
period of 32 months corresponds to a level of effective immunity  
for close to three years, comparable to SARS-CoV-1.

The dynamic causal model used in this analysis accommodates 
heterogeneity of susceptibility and transmission at three lev-
els, including a non-contagious proportion of the population that 
stands in for people who cannot transmit the virus. This inclusion  
speaks to the increasing appreciation of how heterogeneity in  
the population can have a fundamental effect on the epidemio-
logical dynamics. This is variously described in terms of over-
dispersion, super spreaders, and amplification events (Endo  
et al., 2020; Lloyd-Smith et al., 2005; Paynter, 2016). In the cur-
rent model, such heterogeneity was modelled in terms of three  
successive bipartitions (see Figure 2):

Heterogeneity in exposure: This was implicitly modelled in 
terms of an effective population size that is a subset of the total 
(census) population. The effective population is constituted  
by individuals who are in contact with contagious individuals. 
The remainder of the population are assumed to be geographi-
cally sequestered from a regional outbreak or are shielded from 

Figure 2. Heterogeneity of exposure, susceptibility, and transmission. Schematic illustrating the composition of a population in terms 
of people who are not exposed to contagious contact, not susceptible to contagion, susceptible but not contagious and, finally susceptible 
and contagious.

5 Available from https://github.com/CSSEGISandData/COVID-19. These 
timeseries were smoothed with a Gaussian kernel to suppress spurious fluctuations 
at the weekends.
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it. For example, if the population of the UK was 68 million,  
and the effective population was 39 million, then only 57% 
are considered to participate in the outbreak6. Of this effective  
population, a certain proportion are susceptible to infection:

Heterogeneity in susceptibility: This was modelled in terms 
of a portion of the effective population that are not susceptible 
to infection. For example, they may have pre-existing immunity, 
e.g., via cross-reactivity (Grifoni et al., 2020; Ng et al., 2020)  
or particular host factors (Bunyavanich et al., 2020; Zheng et al., 
2020) such as mucosal immunity (Seo et al., 2020). This non-
susceptible proportion is assigned to the state of resistance at  
the start of the outbreak. Of the susceptible proportion of the 
effective population, a certain proportion can transmit the virus to  
others:

Heterogeneity in transmission: We modelled heterogeneity in 
transmission with a free parameter (with a prior of one half and 
a prior standard deviation of 1/16). This parameter corresponds 
to the proportion of susceptible people that cannot transmit  
the virus, i.e., those who move directly from a state of being 
exposed to a state of resistance, as opposed to moving from a  
state of being infectious to subsequent immunity. We associ-
ated this with a potentially mild illness—e.g., (Chau et al., 2020) 
—that does not entail seroconversion, e.g., recovery in terms of  
T-cell mediated responses (Grifoni et al., 2020; Zheng et al., 
2020). Note that this construction conflates transmission with 
the probability of developing symptoms, in that being infectious  
means you can transmit the virus but also increases the 
period during which you could move from a healthy state to a  
symptomatic state.

The resistant state therefore plays the role of an immune state 
for people who never become contagious, either because they 
are not susceptible to infection or become resistant after a  
mild illness. This model reconciles the apparent disparity between 
the relatively high morbidity/mortality rates and the relatively  
low seroprevalence observed empirically e.g., (Stringhini et al., 
2020)7. Bayesian model comparison confirmed that there was 
very strong evidence (Kass & Raftery, 1995) for all three types 
of heterogeneity (portrayed as ‘immunological dark matter’ in  
the media); namely, an effective population that is a subset of 
the census population, a susceptible population that is a subset 
of the effective population and a contagious population that is  
a subset of the susceptible population (c.f., a super spreaders). 
In this model, only susceptible individuals who become conta-
gious develop antibodies to SARS-CoV-2, typically around 8%  
of the total population.

Table 2. List of countries and the dates 
of predicted fatality peaks of first and 
second waves.

Country First wave Second wave

US 24-Apr-2020 02-Nov-2020

Brazil 12-Jun-2020 27-Aug-2021

UK 18-Apr-2020 09-Jan-2021

France 16-Apr-2020 28-Sep-2020

Spain 10-Apr-2020 03-Oct-2020

Italy 06-Apr-2020 13-Jan-2021

Mexico 12-Jun-2020 29-Aug-2021

Belgium 19-Apr-2020 26-Oct-2020

Germany 24-Apr-2020 14-Sep-2020

Canada 14-May-2020 14-Feb-2021

6 And of those 57%, some will be more exposed than others, conferring a 
further degree of heterogeneity, e.g., people working in care homes and 
hospitals, whose staff show a high seroprevalence: Houlihan et al., 2020. 
SARS-CoV-2 virus and antibodies in front-line Health Care Workers in an acute 
hospital in London: preliminary results from a longitudinal study. medRxiv, 
2020.2006.2008.20120584.

7 See also: https://www.gov.uk/government/publications/national-covid-19-
surveillance-reports/sero-surveillance-of-covid-19

Crucially, we did not impose any prior constraints on the effec-
tive population size8. In other words, we treated the data from 
each country as reflecting an outbreak in a population of unknown 
size that comprised a mixture of susceptible and non-susceptible  
individuals, where susceptible individuals comprised a mix-
ture contagious and non-contagious individuals. In this way, 
we were able to model the self-evident dissociation between the  
total size of a population and the number of people affected in  
each country.

We specified a total of 32 models, each differing in their assump-
tion about how long immunity would last, from 1 month to 
32 months, in monthly increments. The log evidence for each 
of these 32 models was pooled over the 10 countries with the  
highest reported deaths (listed in Table 2). This evidence accu-
mulation furnishes the marginal likelihood of each period of 
immunity (i.e., model) that—under uninformative priors over the  
period of immunity—corresponds to a posterior distribution, 
having marginalised out conditional uncertainty about all other 
parameters. Model inversion itself maximises the marginal  
likelihood that implicitly penalises overfitting, with respect to 
model complexity9. The resulting accuracy of the data fits are 
shown in Figure 3, in terms of cumulative death rates and new cases  
for the countries considered.

The accompanying distribution over the period of immunity 
is shown in Figure 4, suggesting that the expected period of 
immunity is about three months, with fairly precise 90% Baye-
sian credible intervals (less than the one month resolution of the 

8 The susceptible population can be defined operationally as that proportion of the 
population that will eventually succumb to infection, with consequent immunity 
or resistance that may or may not be lost over time.

9 Technically, the Kullback-Leibler divergence between posterior and the prior.
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Figure 3. Model accuracy. This figure illustrates the accuracy of model inversion by plotting the empirical data for cumulative deaths (left 
panel) and cumulative new cases (right panel). The empirical data are shown as black dots overlaid on country specific predictions (coloured 
lines) based upon the latent states summarised in the subsequent figure. The trajectories have been shifted in time such that zero weeks 
corresponds to the time point at which the prevalence of the infection was estimated to be 0.1%.

Figure 4. Loss of immunity. The left-hand panel reports the posterior distribution over the period of immunity based upon the marginal 
likelihood of a series of models that assume a particular prior expectation (with a precise prior covariance of 1/512). Here, the log posterior 
has been plotted on log scale. The form of the posterior over this key parameter reflects the fact that the trajectory of new cases and deaths 
contains sufficient information to make fairly precise inferences about the rate at which immunity is lost. The right-hand panel shows the 
same results in terms of a cumulative distribution. The broken lines correspond to 90% Bayesian credible intervals.

model search). This does not mean that individuals will suddenly  
lose immunity after three months, rather that the effective popu-
lation immunity will decline exponentially with a time constant 
of about three months. The ‘effective’ immunity refers to the 
fact that this characterisation of resilience is conditioned upon 
the model of aggregated or population dynamics. In other words,  
the effective population is behaving ‘as if’ its immunity is lost 
at this rate. There are many mechanisms that could contribute to 
this loss; for example, population fluxes could slowly increase 
the proportion of susceptible individuals (e.g., by relaxing  
lockdown); thereby diluting immunity acquired by the contagious 
proportion. Other viral and host factors (Beutler et al., 2007; 
Su et al., 2016) may clearly play a role (e.g., viral mutation or  
loss of antibodies)

The rate at which immunity is lost is important because it con-
strains the onset of any putative second wave. Figure 5 illustrates 
this in terms of three scenarios for the effective population in 
the United Kingdom: first, a worst-case scenario with rapid loss  
of immunity (over a period of one month), a most likely sce-
nario based upon the posterior expectation from Figure 4 (left 
panel) and, finally, a best-case scenario with a period of immu-
nity lasting for years (32 months)10. We see that a very short 
period of immunity effectively merges the second wave into the  

10 Note that the best and worst scenarios are not determined by the credible 
intervals of the posterior distribution, but are the limits of the scenarios considered 
a priori.
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Figure 5. Second waves. This figure reports the expected death rates as a function of time for the effective United Kingdom population. 
The three trajectories (blue lines) and accompanying 90% Bayesian credible intervals (shaded areas) correspond to posterior predictions 
with a loss of immunity over 1, 3 and 32 months. These represent the smallest, most likely and longest period of immunity considered in 
the Bayesian model comparison (summarised in the previous figure). The black dots correspond to empirical data, after smoothing with a 
four-day Gaussian kernel. The right panel reproduces the data in the left panel with a focus on the second wave peaking in January of next 
year.

first to produce a protracted time course of fatality rates. In  
effect, (a quasi) endemic equilibrium is obtained quickly as peo-
ple lose immunity and become re-infected. With an immune 
period of three months, a second wave can be anticipated shortly  
after Christmas, in the New Year. With enduring immunity  
(here of 32 months) any second wave will be deferred for a year 
or more.

Interestingly, cumulative death rates appear to be higher with 
a three-month period of immunity, relative to a one-month 
period. This is because the predictions are posterior predictive  
densities, which are the most likely outcomes under the two 
periods of immunity. In other words, the best explanation for  
the data—under a one-month period of immunity—rests upon 
other model parameters that attenuate fatality rates, relative to 
a three-month period. Anecdotally, this kind of result suggests 
that we should be fairly confident about the loss of effective 
immunity in a month when the predictions under short (one and  
three months) and long term (32 months) scenarios diverge. One 
would be hoping to see death rates fall to negligible levels by  
October. If they persist at 20 deaths per day, then one might  
anticipate a second wave in January.

A common metric of viral spread is the effective reproduc-
tion ratio (R

t
). This can be evaluated directly from the posterior 

expectations of latent states as a function of time. Figure 6 uses 
the same format as the previous figure to show the effective 
reproduction ratio for the United Kingdom. The initial fall in the 
effective reproduction ratio is subtended by lockdown in the first  
instance, followed by an acquisition of population immunity 
in the effective population. After reaching a minimum of about 
0.7, the effective reproduction ratio slowly increases with loss 
of population immunity to peak in the late autumn, portending  

a second wave infections in January. Following this, the repro-
duction ratio remains largely below one and slowly drifts back  
to one after a year.

Figure 7 illustrates the underlying or latent causes of the predicted 
fatality rates over 18 months for the most likely (three-month)  
loss of immunity. These are the hidden states that we can infer 
from the modelling. In this model, the latent states are factorized  
into various locations, different states of infection, symptom 
expression and the states that underwrite the generation of test  
results. Please see figure legend for details. It is evident from 
these posterior predictions that the UK might expect a sec-
ond wave in about eight months (around January 2021). This is  
important because there is a window of opportunity in the 
next few months during which nonpharmacological interven-
tions—especially, tracking and tracing—will, in principle, be in a  
position to defer or delay the second wave indefinitely (or until 
an effective treatment or vaccination programme is in place). 
Please see (Friston et al., 2020c) for a more detailed treatment.  
Note that this model includes a latent state of immunity that  
peaks around 11% and then falls gently as immunity is lost  
(yellow line in the infection panel). In contrast, the resistant  
proportion (purple line) slowly accumulates people who recover 
from a mild illness and are removed from the susceptible  
proportion of the effective population.

The predictions above are generated from the parameters of a sin-
gle country. However, these predictions conceal a large amount 
of between-country variability due to the non-linear relation-
ship between the model parameters and trajectories of latent 
causes and states. Figure 8 shows the equivalent predictions of 
fatality rates for all 10 countries, under the most likely period 
of immunity (three months). Note that there is considerable  
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variation in the onset of the second wave due to country-specific  
differences in the underlying epidemiological parameters.  
Table 2 summarises these differences in terms of the predicted 
dates of the first and second waves, respectively. For countries 
like the United Kingdom, this analysis suggests that one can 
anticipate a second wave in early 2021, which is later than the  
prediction for Germany, which might experience a second  
wave in October of this year (2020).

This variation from country to country reflects differences in 
their epidemiological parameters. Table 3 summarises a few of 
these parameters and their variation. The first column lists the 
proportion of the effective population that are immune at the  
peak of population immunity. These range from 7 to 17% (4.5% 
to 5% of the total population), in line with current serological  
data11. The subsequent two columns make the point that the peak 
fatality rates at the second wave (based upon posterior predic-
tions) are considerably smaller than the corresponding peak fatal-
ity rates at the first wave. For most countries, this second peak  
is in the order of tens of deaths per day, as opposed to hundreds.

The proportion of the susceptible population who cannot trans-
mit the virus ranges from 47% to 61% (non-contagious column). 
This reflects heterogeneity in transmission. The corresponding  
heterogeneity of susceptibility is reflected in the proportion of 
the effective population that are not susceptible to infection  
(non-susceptible column). Finally, the difference between the 

Figure 6. Reproduction ratios. This figure uses the same format as the previous figure; here, showing the predictions of the effective 
reproduction ratio for the United Kingdom. The initial fall in the reproduction rate is subtended by lockdown in the first instance, followed 
by an acquisition of population immunity in the effective population.

effective and total population size reflects heterogeneity of expo-
sure. In most instances, the effective population constitutes  
a large proportion of the total population (largest in Brazil, Spain, 
and Italy), with the exception of Canada, where the effective popu-
lation is only four out of 38 million.

Conclusions
There are clearly many limitations to the modelling here. These 
include modelling each outbreak as a point process and ignor-
ing geospatial aspects and waves of infection (Chinazzi et al., 
2020). Furthermore, we have assumed idealised dynamics  
that do not consider interactions with seasonal influenza or 
any other annual fluctuations (Kissler et al., 2020). As with 
all dynamic causal modelling studies, the conclusions based 
upon Bayesian model comparison and posterior inferences are  
limited to the models considered. Finally, the posterior predic-
tions will change as more data becomes available. Having said  
this, it is interesting to note, irrespective of the modelling, that 
there is sufficient information—in the current epidemiological  
trajectories—to support fairly precise posterior beliefs about  
how quickly we will lose immunity.

Death rates in the United Kingdom over the next few weeks will 
be telling: if they can be suppressed to zero, then it is possible  
that the effective (population) immunity will be enduring, and 
we may elude a second wave. If, on the other hand, fatality  
rates continue above 20 a day, then according to the model pre-
sented here, it is likely we will see a slow increase in the repro-
duction rate and a second wave after Christmas. Note that  
the analyses in this report are predicated on a track and trace  
process whose efficacy is estimated based upon the data to  

11 See also: https://www.gov.uk/government/publications/national-covid-19-
surveillance-reports/sero-surveillance-of-covid-19
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Figure 7. Latent causes. This figure reproduces the predictions of the second wave for the United Kingdom in Figure 4. Here, these 
outcomes are supplemented with the underlying latent causes or expected states in the lower four panels (the first state in each factor has 
been omitted for clarity: i.e., home, susceptible, healthy, and untested). These latent or expected states generate the observable outcomes 
in the upper two panels. The solid lines are colour-coded and correspond to the states of the four factors in Figure 1. For example, under 
the location factor, the probability of being found at work declines steeply from about 25% to 3% at the onset of the outbreak. At this time, 
the probability of isolating oneself rises to about 3% during the peak of the pandemic. After about six weeks, the implicit lockdown starts to 
relax and slowly tails off, with accompanying falls in morbidity (in terms of symptoms) and mortality (in terms of death rate). As population 
immunity (yellow line in the infection panel) declines, the prevalence of infection accelerates to generate a second wave that peaks at about 
50 weeks. Note that the amplitude of the second wave is much smaller than the first.
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Figure 8. Second waves over countries. This figure illustrates the posterior predictive expectations of daily death rates for the countries 
considered at the time of writing (8 June 2020).

Table 3. List of countries and posterior estimates and population size. The non-contagious proportion 
is a percentage of the susceptible population, while the non-susceptible proportion is a percentage of the 
effective population. The numbers in brackets express the effective population as a percentage of the total 
(census) population.

Country Population 
immunity 
(percent)

First 
peak 

deaths 
(per day)

Second 
peak 

deaths 
(per day)

Non-
contagious 
(percent)

Non-
susceptible 

(percent)

Effective 
population 
(millions)

Total 
population 
(millions)

US 15% 2254 244 48% 53% 127 (38%) 331

Brazil 7% 1136 6 54% 61% 138 (65%) 213

UK 11% 988 60 57% 58% 33 (49%) 68

France 17% 964 74 49% 53% 19 (29%) 65

Spain 11% 863 73 54% 66% 33 (70%) 47

Italy 10% 819 44 61% 59% 37 (62%) 60

Mexico 8% 648 5 53% 57% 27 (21%) 129

Belgium 16% 331 20 52% 52% 5 (42%) 12

Germany 15% 266 24 47% 59% 13 (15%) 84

Canada 13% 174 8 60% 47% 4 (11%) 38

date. As discussed in (Friston et al., 2020c) and elsewhere, any 
second wave could be deferred by introducing a more effica-
cious tracking and tracing protocol, even in the context of a  
relatively rapid loss of population immunity, such as the three 
month period estimated here. This deferment rests upon finding  
a substantial proportion of infected individuals before they 
can transmit the virus by identifying local outbreaks and clus-
ters. On one view, this takes us out of the arena of ensemble  
dynamics and epidemiological modelling into the pragmatic  

considerations of an effective local surveillance and public  
health response.

Methods
Software note
The annotated (MATLAB/Octave) code is available as part of 
the free and open source academic software SPM (https://www.
fil.ion.ucl.ac.uk/spm/), released under the terms of the GNU  
General Public License version 2 or later. The routines are 
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called by a demonstration script that can be invoked by typ-
ing DEM_COVID_I at the MATLAB prompt. For this technical 
report, we used MATLAB R2019b and SPM12 r7872 (archived at  
https://doi.org/10.6084/m9.figshare.12174006.v5; Friston et al., 
2020d).

We recommend anyone interested in applying this model should 
use the latest version of the software available. Details about  
future developments of the software will be available from  
https://www.fil.ion.ucl.ac.uk/spm/covid-19/.

Data availability
Source data
The data used in this technical report are available for aca-
demic research purposes from the COVID-19 Data Repository  
by the Center for Systems Science and Engineering (CSSE)  

at Johns Hopkins University, hosted on GitHub at https://github.
com/CSSEGISandData/COVID-19.

Software availability
Software is available from: https://www.fil.ion.ucl.ac.uk/spm/
covid-19/.

Archived source code at time of publication: https://doi.org/ 
10.6084/m9.figshare.12174006.v5 (Friston et al., 2020d).

License: GPL 2.0+.
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The authors present a dynamic causal model to study the quantify the effects and impact of the 
rate at which effective immunity to COVID-19 is lost. The study follows several works by the 
authors where some of the details involving the model and the code are described. I found the 
study lacking key aspects associated with rigorous scientific validation of the model output and its 
predictions.

The dynamical causal model is not fully described but that the reader is referred to previous 
work by the authors. This is a crucial part of this study, instead the model in its full glory 
should have been included as supplementary material to aid readability of the work. 
 

1. 

The study fails to convince the reviewer that a rigorous mathematical/statistical validation 
has been carried out to understand predictive power of the dynamical causal model. 
 

2. 

The study also does not present sensitivity of the parameters to understand which 
parameters are more sensitive to small changes in data. 
 

3. 

Given that the authors employ the Bayesian approach with detailed datasets, the 25 
parameters driving the model should be inferred based on how best the model fits to data. 
This is not apparent in the study. 
 

4. 

To really demonstrate the predicting and forecasting power of the methodology, the 
authors should have taken a subset of the data sets, say, in Figure 3 for example, take data 
for 20, 40, 60 and 80 days to infer model parameters and use these in the model to 
demonstrate how accurate they can predict data-points which are known but are in the 
future. At the moment, predictions are made where it is impossible to compare with data 
since there is no such data (after say, 100 days). This is a major weakness of the forecasting 
approach adopted in this work. 
 

5. 

The authors state that there are many mechanisms that could contribute to the loss 6. 

 
Page 15 of 24

Wellcome Open Research 2020, 5:204 Last updated: 30 SEP 2020

https://doi.org/10.21956/wellcomeopenres.17854.r40237
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-9511-8903


immunity and give some examples. However, they are not able to differentiate which ones 
are key mechanisms. Given the use of Bayesian approach, they should be able to use data 
to select the best mechanism such the model with such a mechanism best-fits data. 
 
In Figure 5, it is extremely difficult to differentiate between model solutions given that the 
same color is used throughout. 
 

7. 

The timescale for loss of immunity is prescribed a priori, the authors really could have 
exploited the inverse approach associated with Bayes theorem to infer this timescale. 
 

8. 

It is not clear how the effective reproduction number Rt is computed under this proposed 
approach. 
 

9. 

It is also not clear if the same graphs are obtained for all the countries included in the study. 
Does it mean that country-specific characteristics are not important in determining the rate 
at which immunity is lost? 
 

10. 

Is Rt the same for all countries? 
 

11. 

The comparison between the UK and Germany does not seem to make much sense since 
Germany has had some of the fewest infections due to COVID. 
 

12. 

 In this study, the authors ignore patient specifics, such as age, ethnicity, location, etc. How 
important are these factors?

13. 

 
Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Partly

Are sufficient details provided to allow replication of the method development and its use 
by others?
Partly

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Partly

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Partly
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Inverse problems, Bayesian Approach.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to state that I do not consider it to be of an acceptable scientific standard, for 
reasons outlined above.

Author Response 21 Sep 2020
Adeel Razi, University College London, London, UK 

Dear Prof. Madzvamuse, 
  
We would like to thank you for the time and effort you have spent reviewing our 
manuscript. Below are the replies to the comments. We hope these revisions are what you 
had in mind. 
  
The authors present a dynamic causal model to study the quantify the effects and impact of the 
rate at which effective immunity to COVID-19 is lost. The study follows several works by the 
authors where some of the details involving the model and the code are described. I found the 
study lacking key aspects associated with rigorous scientific validation of the model output and 
its predictions. 
  
1.           The dynamical causal model is not fully described but that the reader is referred to 
previous work by the authors. This is a crucial part of this study, instead the model in its full glory 
should have been included as supplementary material to aid readability of the work. 
  
2.           The study fails to convince the reviewer that a rigorous mathematical/statistical 
validation has been carried out to understand predictive power of the dynamical causal model. 
  
3.           The study also does not present sensitivity of the parameters to understand which 
parameters are more sensitive to small changes in data. 
  
4.           Given that the authors employ the Bayesian approach with detailed datasets, the 25 
parameters driving the model should be inferred based on how best the model fits to data. This is 
not apparent in the study. 
  
5.           To really demonstrate the predicting and forecasting power of the methodology, the 
authors should have taken a subset of the data sets, say, in Figure 3 for example, take data for 
20, 40, 60 and 80 days to infer model parameters and use these in the model to demonstrate how 
accurate they can predict data-points which are known but are in the future. At the moment, 
predictions are made where it is impossible to compare with data since there is no such data 
(after say, 100 days). This is a major weakness of the forecasting approach adopted in this work. 
  
Many thanks for these comments and critiques. These are understandable points that we 
hope to have addressed by delimiting the scope and target of this report. For example, this 
is not an example of forecasting – it was meant as a worked example of Bayesian model 
comparison to get at a key model parameter. We have included the following qualifications 
in the new Discussion section and also updated the Background section in the revised 

 
Page 17 of 24

Wellcome Open Research 2020, 5:204 Last updated: 30 SEP 2020



manuscript – but would be happy to revisit or extend this discussion if the reviewer thought 
appropriate.

"As noted in the introduction, this technical report should be read as part of a series 
demonstrating the application of variational Bayesian inference to quantitative 
epidemiological modelling. The first, foundational report (Friston et al., 2020d) 
established the nature of the model and attending inversion scheme. The second 
dealt with coupling models of a single region or population to illustrate how 
exchange between populations can be handled (Friston et al., 2020b). The third report 
(Friston et al., 2020c) focused on posterior predictions and projections under different 
scenarios (e.g., testing and tracing). This report illustrates a particular application of 
Bayesian model comparison (strictly speaking, Bayesian model reduction) known in 
some fields as structure learning (Friston et al., 2016). As such, the estimates and 
inferences reported here should not be taken as definitive. Rather, we have described 
the procedures that could be used to furnish these kinds of estimates during the 
course of the current epidemic or in the future."

○

"One may ask why we chose to use Bayesian model comparison to form posterior 
beliefs about a particular parameter of the model, as opposed to simply evaluating its 
posterior under the Laplace (i.e., Gaussian form) assumption? Our motivation was 
twofold. First, it shows how one can eschew the Laplace assumption and use 
Bayesian model reduction to build a non-Gaussian posterior belief over a parameter 
of interest. For example, the posterior could have been bimodal. This application of 
Bayesian model comparison shows how it is possible to leverage the computational 
efficiency of variational Bayes, without committing to a fixed-form posterior over one 
or a small number of interesting parameters. The second reason—for illustrating 
Bayesian model comparison in this way—was to show how to accumulate evidence 
from multiple datasets (here, different countries). This pooling reduces to adding the 
(logarithms of) evidence for the same model from independent data. Note that a 
model is defined here in terms of prior beliefs. This means that one can use Bayesian 
model reduction to score the quality of any prior beliefs empirically. In one sense, this 
is an example of empirical Bayes (Efron and Morris, 1973; Kass and Steffey, 1989; 
Friston et al., 2016)."

○

"Although our focus is on Bayesian model comparison, it may be useful to rehearse 
the distinction between the variational approaches used in dynamic causal modelling 
and the usual approaches found in the epidemiological literature. Perhaps the most 
important difference is the way that model evidence or marginal likelihood is handled 
or evaluated. In variational Bayes, this is computed explicitly in terms of an evidence 
bound afforded by the variational free energy (Beal, 2003; Winn and Bishop, 2005; 
Fox and Roberts, 2011). This uses the entire time series and a computationally 
efficient scheme afforded by assumptions about the shape and factorisation of an 
approximate posterior. The alternative would be to eschew any assumptions about 
the form of the posterior and approximate the marginal likelihood of a model in 
terms of its crossvalidation accuracy. Technically, the log of model evidence is 
accuracy minus complexity. In the setting of crossvalidation, one can ignore the 
complexity term and approximate model evidence with the accuracy with which some 
new (i.e. test) data are explained (MacKay, 2003). On this view, crossvalidation 
accuracy becomes another approximation to log evidence. Models with a greater 
evidence are those that, on average, generalise to new data and therefore have the 

○
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greatest predictive validity. This means that variational approaches evaluate model 
evidence or marginal likelihood explicitly, while other approaches (e.g. stochastic or 
sampling approaches) use crossvalidation or predictive validity. Although it is possible 
to demonstrate the predictive validity of dynamic causal models by withholding test 
data—see Figure 13 in (Friston et al., 2020d)—this is not necessary because we 
already know that model selected has a greater evidence than another model."
"In a similar vein, the conventional epidemiological modelling literature often 
features sensitivity analyses of the parameters. For a sensitivity analysis of the 
dynamic causal model used above, please see Figure 9 in (Friston et al., 2020d). These 
kinds of analyses allow one to eyeball which parameters make a difference or, from 
the point of view of model inversion, which parameters are informed by the data. 
Although a useful adjunct to dynamic causal modelling, sensitivity analyses of this 
sort are not necessary to understand the relationship between model parameters 
and data. This is because the sensitivity (i.e., the derivative of the data with respect to 
model parameters) is an integral part of the posterior uncertainty under the Laplace 
assumption: see Equation 23 in (Friston et al., 2007). In other words, the sensitivity is 
handled implicitly in terms of uncertainty quantification or the posterior credible 
intervals ascribed to various parameters. In brief, a parameter that has tight credible 
interval implies that small changes in this parameter produce large changes in data 
space. The ensuing estimates of posterior uncertainty are, effectively, then used to 
marginalise out uncertainty about the parameters to furnish the marginal likelihood 
required for model comparison."

○

"Note that the posterior maximises model evidence, which is the same as maximising 
accuracy while minimising complexity. Complexity in variational inference 
corresponds to the Kullback-Leibler divergence between the prior and posterior 
(Penny et al., 2004). Heuristically, this can be regarded as the degrees of freedom 
used up to explain the data. Crucially, this means that the data fit or accuracy is only 
half the story. One has to provide an accurate account of the data as simply as 
possible. Procedures based upon the Akaike and Bayesian information criteria do not 
evaluate the complexity explicitly and can be dangerously misleading when used for 
model comparison (Cornish and Littenberg, 2007; Penny, 2012). This speaks again to 
the potential utility of variational procedures in epidemiological modelling."

○

It was useful to have your perspective on what constitutes a rigorous statistical validation 
and we hope to have addressed your concerns above. Highlighting what variational (Bayes) 
procedures bring to the table (including a much simpler and easier way of doing things) is 
the raison d'être of these reports.  
  
6.           The authors state that there are many mechanisms that could contribute to the loss 
immunity and give some examples. However, they are not able to differentiate which ones are key 
mechanisms. Given the use of Bayesian approach, they should be able to use data to select the 
best mechanism such the model with such a mechanism best-fits data. 
  
This is a very good point. We have included the following in the Background section to 
address it:

"In talking about a loss of effective immunity, we assume that there could be many 
contributions to this loss. For example, a decline in antibody levels, viral mutation, or 
a dilution of population immunity due to population fluxes. These are all important 

○
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mechanistic hypotheses that can, in principle, be addressed using Bayesian model 
comparison. To do this, it would be necessary to parameterise the model in a way 
that allowed one to withdraw one or other mechanism and evaluate whether the 
model evidence increased or decreased. An example of this can be found in (Friston 
et al., 2020a), where the relative contribution of lockdown and population immunity 
to prevalence and mortality was evaluated. Interestingly, both lockdown and herd 
immunity were necessary to explain the data: in the sense that removing either 
mechanism substantially reduced model evidence. Please see (Friston et al., 2020a) 
for details." 

7.           In Figure 5, it is extremely difficult to differentiate between model solutions given that the 
same color is used throughout. 
  
Thank you – we have adjusted the colour scheme. 
  
8.           The timescale for loss of immunity is prescribed a priori, the authors really could have 
exploited the inverse approach associated with Bayes theorem to infer this timescale. 
  
It would certainly have been possible to report the Gaussian posterior following a model 
inversion under uninformative priors. However, as noted above, this would commit to a 
Gaussian form for the posterior. Furthermore, this would involve a slightly more 
complicated approach to assimilating the data from multiple countries (using Bayesian 
parameter averaging). We could go into this in more detail if you thought it necessary. 
  
9.           It is not clear how the effective reproduction number Rt is computed under this proposed 
approach. 
  
The effective reproduction number is computed as described in (Friston et al., 2020c). We 
have now included this in the revised manuscript (in the Results section) as follows: 
 

"The effective reproduction rate provides a useful statistic that reflects the 
exponential growth of the prevalence of infection. There are several ways in which it 
can be estimated. For our purposes, we can evaluate an instantaneous reproduction 
rate directly from the time varying prevalence of infection as follows: (Mathematical 
typesetting feature is not available in this Editor. Please refer to the Results section in 
the revised draft.) These expressions show that the reproduction rate reflects the 
growth of the (logarithm of the) proportion of people infected—and the period of 
being infectious. This is related to the doubling time Td. Note that the reproduction 
rate is not a parameter of the model: it is an outcome that is generated by the latent 
states inferred by inverting (i.e., fitting) the model to empirical timeseries."

○

  
10.         It is also not clear if the same graphs are obtained for all the countries included in the 
study. Does it mean that country-specific characteristics are not important in determining the 
rate at which immunity is lost? 
  
This is a very good question. We have tried to answer it – as a footnote 1 in the revised draft 
– with the following:

"By pooling the evidence over countries in this way, we have allowed for country-○
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specific differences in the parameters shaping their epidemics. However, we then 
assume that all countries share the same loss of immunity. A consideration of 
between country variations and conditional dependencies between parameters 
would require a different approach. Usually, this would be addressed using 
hierarchical Bayesian models (a.k.a., parametric empirical Bayes). An example of this 
can be found in the first report examining within and between country differences: 
see Figure 6 in (Friston et al., 2020d)." 

11.         Is Rt the same for all countries? 
  
No. It is evaluated at each point in time on the basis of latent states that are generated from 
the model parameters (please see above). These parameters were estimated independently 
for each country. The model evidence under different priors about the immunity parameter 
is then pooled over countries. This can be regarded as a form of empirical Bayes (please see 
above). 
  
12.         The comparison between the UK and Germany does not seem to make much sense since 
Germany has had some of the fewest infections due to COVID. 
  
This question reflects prior assumptions about the relationship between the prevalence of 
infection at the onset of the outbreak and the occurrence of a second wave. It is precisely 
these prior assumptions that the current modelling allows one to address. The nonlinearity 
in these models can sometimes confound prior assumptions of the sort. 
  
13.         In this study, the authors ignore patient specifics, such as age, ethnicity, location, etc. 
How important are these factors? 
  
It is likely that they are very important. Again, questions of this sort can only be answered 
definitively by including models with the patient specifics in them. We have added the 
following in the new Discussion section where we discussed limitations and future work:

"In our treatment of heterogeneity, we have not explicitly modelled things like age, 
ethnicity, population density etc. Instead, we have simply modelled the implicit 
heterogeneity—at a coarse-grained level—by using a series of bipartitions of the 
latent states. More refined models could consider stratification by age or ethnicity, 
with appropriate contact matrices. Whether this fine graining of heterogeneity is 
justified by the data can be cast as a question of model comparison. If the model is 
too expressive or complex for the data at hand, including age stratification will 
reduce model evidence. However, with disaggregated and sufficiently long time 
series, Bayesian model comparison could, in principle, identify whether the attributes 
above play an important role. And, if they do, one could assess their quantitative 
contribution in terms of the posterior parameter estimates."

○
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This article uses a version of the established LIST model to attempt to estimate the rate of decay of 
immunity of COVID-19 from published mortality data from a number of countries. It finds that the 
most probable immunity lifetime is 3 months. While perfectly consistent with present evidence 
about other coronaviruses, this is an alarming finding. Several topics require discussion, 
particularly possible limitations that might allow escape from this dire prophecy.

This was done by a novel method, running multiple models for a range prior values of the 
immune lifetime, and comparing pooled model evidence among models. Why was this 
done? If the signal for early decay of immunity is as strong as indicated, I would have 
thought it would come out by simply floating the decay rate as one of the many parameters 
and estimating its posterior in the fit. 
 

1. 

Obviously, any signal about the decay of immunity must derive from the slope of the 
decaying phase of the infection wave. There are a variety of ways this could be 
misleading. While a simple form of heterogeneity is included in the form of sub-populations 
that are resistant, unable to transmit or effectively isolated, events and antibody data since 
this paper was submitted have shown, at least in the US which unfortunately dominates 
mortality data, that there is extreme heterogeneity of the infection on almost every spatial 
scale, down to the single neighborhood in New York City. These local waves of infection are 
no longer synchronous, if they ever were, and would be expected to put a "tail" on the first 
wave that might be hard to distinguish from the decay of immunity. Experience in nursing 
homes and prisons has shown that it is extremely difficult to have any subgroup that is truly 
isolated from the epidemic, and those areas again may respond late but still make a major 
contribution (e.g. ~45% of US mortality). In the absence of age stratification, mortality data 
from this virus is likely to be highly biased towards groups whose connection to the rest of 
society may be weaker (and therefore slower) than average. 
 

2. 

The model uses an internal feedback loop to effectively estimate how social distancing 
interventions respond to epidemic numbers. This may be applicable in some societies, but 
the libertarian ethos (and then politicization) in the US has resulting in "re-opening" that is 
both chaotic in time and heterogeneous geographically. As the authors acknowledge, 
premature relaxation of mitigations can be conflated with loss of immunity. Experience 
since the end of the authors' data sets has shown new waves of infection related to 
relaxation of controls well in advance of the predicted time of the "second wave" estimated 
using the simple, exponential decay of effective immunity. Indeed, in many areas, the 
(apparent) number of infections has formed plateaus that are hard to account for by any 
homogeneous, compartmental model. 
 

3. 

A naive, technical question for my own understanding about the underlying model 
structure: From the earlier papers, I gather that the likelihood of outcome variables is 
computed as a product of independent binomials (approximated by gaussians) over time, 
i.e. the only uncertainty is from sampling error in determining the individual counts at each 
time point. Direct stochastic simulation would predict that outcome points would be 
correlated, e.g. more cases now predicts more deaths after a lag. Granted that this 
likelihood is supposed to be marginal over the (unknown) distributions of parameters and 
latent compartments, is that sufficient to justify the independence assumption? The 
structure of the transition matrix itself would seem to imply temporal correlations. 

4. 

 
Is the rationale for developing the new method (or application) clearly explained?
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Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use 
by others?
Yes

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Yes
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