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Abstract. Parkinson’s disease (PD) is thought to be caused by a combination of genetic and environmental factors. Bacterial
or viral infection has been proposed as a potential risk factor, and there is supporting although not entirely consistent
epidemiologic and basic science evidence to support its role. Encephalitis caused by influenza has included parkinsonian
features. Epidemiological evidence is most compelling for an association between PD and hepatitis C virus. Infection with
Helicobacter pylori may be associated not only with PD risk but also response to levodopa. Rapidly evolving knowledge
regarding the role of the microbiome also suggests a role of resident bacteria in PD risk. Biological plausibility for the role for
infectious agents is supported by the known neurotropic effects of specific viruses, particular vulnerability of the substantia
nigra and even the promotion of aggregation of alpha-synuclein. A common feature of implicated viruses appears to be
production of high levels of cytokines and chemokines that can cross the blood-brain barrier leading to microglial activation
and inflammation and ultimately neuronal cell death. Based on multiple avenues of evidence it appears likely that specific
bacterial and particularly viral infections may increase vulnerability to PD. The implications of this for PD prevention requires
attention and may be most relevant once preventive treatments for at-risk populations are developed.
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ETIOLOGY OF PARKINSON’S DISEASE:
CURRENT CONCEPTS

Numerous genetic and environmental factors have
been associated with Parkinson’s disease (PD), which
is thought to be caused by a complex interplay of
multiple factors unique to an individual. In the past
decade, the number of known genetic risk factors
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has greatly increased with 90 risk alleles now identi-
fied [1]. However, these known loci account for only
approximately 20% of PD risk [1], leaving a sub-
stantial proportion of PD unexplained on the bases
of currently known genetic associations. There is an
urgent need to identify the missing etiologic fraction,
to develop preventive and therapeutic strategies.

There is consistent or mostly consistent evidence
for several environmental associations with risk of
PD (e.g., inverse associations with cigarette smoking,
caffeine intake, physical activity, plasma urate and
positive associations with pesticide exposure) [2] and
a large number of associations with less consistent
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evidence spanning multiple categories, including
dietary factors, chemical exposures, physical and
emotional trauma [3]. One of the more controver-
sial categories of risk factors is infection, bacterial or
viral.

INFECTION AND PD: AN
EPIDEMIOLOGIC PERSPECTIVE

The possibility of an infectious trigger or contrib-
utor to PD has gained support from several different
avenues. Early observations of clusters of individ-
uals affected by parkinsonism following infectious
outbreaks provide an example of presumed viral in-
fections followed by and thus assumed to be leading
to chronic neurological disease causing parkinson-
ism. On example of this, recognizing that the disease
is pathologically distinct from PD, is encephalitis
lethargica and subsequent post-encephalitic parkin-
sonism that has been associated with the influenza
pandemic of 1918 [4]. In addition there have been
other case reports of postencephalitic parkinsonism
following non-influenza infections, although these
have been rare [5, 6]. More recently, the role for infec-
tion gained plausibility through the Braak hypothesis
of pathological spread starting in the olfactory bulb
and peripheral nerves of the gastrointestinal tract [7].
Both of these locations could be portals of entry for
an environmental trigger whether toxic or infectious.
Constipation and olfactory impairment are two of the
most common and earliest features of the prodro-
mal phase of PD, further supporting the importance
of the olfactory pathway and gastrointestinal tract
in its pathogenesis [8]. Pathologically, inflammation
appears to be an early feature [9] which may be con-
sistent with a role for an infectious agent. However,
there are alternative explanations for inflammation as
a component of PD pathology, and whether or not this
is a cause or a consequence of the neurodegenerative
process is debated.

Additional evidence for a role of an infectious trig-
ger or risk factor for PD is found in studies showing
a relationship between specific occupational expo-
sures and PD. In some studies, occupations where
there is higher interpersonal exposures (e.g., teach-
ing, clergy) show an increased risk of developing
PD [10]. There is also a significant body of litera-
ture on specific infections and subsequent risk of PD,
which will be discussed later in this paper. However,
there are significant challenges interpreting epidemi-
ological evidence for etiology in PD. The very long

prodromal period, spanning decades, makes measure-
ment of initiating factors difficult due to inadequate
availability of records or poor recall. In addition, there
is undoubtedly a complex interplay of genetic and
environmental factors influenced by the neurodegen-
erative process during the prodromal period that make
interpretation difficult. These general challenges are
amplified by the complexity of considering the tim-
ing and relative impact of multiple short infectious
exposures over a lifetime, the widely varying types of
infectious agents, variable severity of infections and
the inevitable presence of unrecognized infections.
For example, a recent epidemiological study tested
the “multiple microbe” hypothesis and reported that
PD risk was increased compared to healthy controls
in individuals who were seropositive for five or six
of the pathogens studied (CMV, EBV, HSV-1, B.
burgdorferi, C. pneumoniae, and H. pylori) but not
less [11].

The role of infections in PD may extend beyond
being a triggering event. PD is ultimately a disease
of aging and the aging nervous system is vulnerable
to the direct and indirect effects of infections which
can influence the manifestations of PD. Age-related
increases in oxidative stress and impaired energy pro-
duction can render neurons vulnerable to the toxicity
of infectious agents [12]. It is well-described that the
symptoms of PD and other neurodegenerative dis-
eases worsen in the context of infection and indeed
any metabolic stress [13]. As often observed in clin-
ical practice this worsening can last months and may
never return to baseline.

Viral infections and PD risk

The notion of a viral etiology to PD has been
mooted for many years. One early example, and poi-
gnant today in light of the recent SARS-CoV-2 pan-
demic, was the emergence of a parkinsonian disorder,
encephalitis lethargica [14], that has been linked
(although not definitively causally linked) to the 1918
influenza pandemic. Viruses, particularly those that
are neurotropic, are plausible causal agents of PD
but have been relatively understudied compared to
genetic risk factors and other environmental risk fac-
tors for PD. In this section we will consider the viruses
that have been linked to PD in observational studies
and evaluate the strength of evidence to support a
causal link.

The most common virus associated with parkin-
sonism is influenza. Each strain of the influenza virus,
varies in its ability to directly infect the CNS. Those
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that can directly infect cells in the nervous system
are considered neurotropic whereas those than can-
not are thought to be non-neurotropic. Most of the
influenza viruses that have circulated among humans
are non-neurotropic; including the 1918 H1N1 virus
(Spanish flu) [15], the 1957-1958 H2N2 (Asian flu)
[16], the 1968 H3N2 (Hong Kong flu) [17] and the
2009 H1N1 (Mexican or Swine flu) [18]. Despite
the lack of direct infection of the CNS, each of
these pandemic outbreaks has been associated with
encephalitis with parkinsonian features. The com-
mon feature of each of these influenzas was their
ability to induce a significant systemic infection char-
acterized by production of significantly high levels of
cytokines and chemokines [4]. The sheer volume of
this cytokine/chemokine production overwhelms the
body’s ability to regulate them leading to the induc-
tion of what is known as a “cytokine storm” [19]. A
body of literature has demonstrated that these periph-
eral cytokines can pass through the blood brain barrier
and communicate with the brain. In fact, inflamma-
tory cytokines, such as TGFalpha, IFNg, and IL6,
which are upregulated by influenza infection can
induce activation of microglia setting off an inflam-
matory cascade in the brain that can lead to neuronal
dysfunction and even cell death [20].

One hypothesis that has been proffered based on
these findings is that the viral-based inflammation
primes the CNS; thus making it more susceptible for
a later insult that otherwise would have been innocu-
ous [21]. This is often the explanation used to link
the 1918 Spanish flu to development of the post-
encephalitic parkinsonism [14]. In addition to signs
of parkinsonism, Von Economo’s encephalopathy (or
encephalitis lethargica) also included other neurolog-
ical symptoms such as hypersomnolence and cranial
neuropathies [22]. The appearance of this influenza-
associated syndrome seems to be fairly specific to
the 1918 H1N1 strain of influenza, based on the
lack of a significant association between influenza
infection and PD in a meta-analysis combining data
from 4 small, case control studies (combined OR
1.95, 95%CI 0.77–4.94 for the risk of PD following
influenza infection) [23]. This suggests that not all
viruses have the same potential for CNS damage and
for those non-neurotropic viruses it will be critical
to understand the profile of inflammatory response
induced by each individual virus. This is of particu-
lar concern due to the recent outbreak of COVID-19,
whose causative agent is the SARS-CoV2 coron-
avirus. Preliminary studies are equivocal as to the
neurotropic potential of this virus. However, what is

clear is that it induces a significant “cytokine storm,”
with the potential to induce an inflammatory reac-
tion in the brain [24] and sensitize it to later insult;
including in regions known to be affected in PD.

Hepatitis B and C viruses have also been inves-
tigated for their associations with PD in recent
epidemiological studies. Understanding such associ-
ations are important given the prevalence of these
infections. Hepatitis C virus (HCV) is an RNA virus
of the Flavivirus family and is estimated to infect
143 million people worldwide. It primarily involves
the liver with chronic infection resulting in cirrho-
sis and hepatocellular carcinoma [25]. Extrahepatic
manifestations include a myriad of inflammatory and
immune-mediated disorders [26–28].

An observational study from Taiwan, in a commu-
nity setting, showed that prior diagnosis of HCV was
associated with an increased risk of subsequent PD
(adjusted odds ratio (OR) 1.39, 95%CI 1.07–1.80),
but no similar association was observed with HBV
[28]. A larger, prospective study followed in ∼0.25
million people from the Taiwan national health insur-
ance research database which appeared to confirm
these observations. It showed that prior diagnosis
with HCV was associated with an increased risk of
PD (adjusted hazard HR 1.29, 95%CI 1.06–1.56).
Again, prior hepatitis B (HBV) infection was not
associated with a similar increased risk [29]. Despite
the consistency of these results, one limitation is
that they had overlapping study periods, may have
included some of the same participants, and that the
clinical definition of PD was based only on diagnostic
codes without any clinical confirmation. In a sepa-
rate UK-based study, Pakpoor and colleagues used
the Hospital Episode Statistics (HES) database to
further assess this association. They reported associa-
tions for both HCV (RR 1.51 (95%CI, 1.18–1.9)) and
HBV (RR 1.76 (95%CI 1.28–2.37) using standard-
ised rate ratios [30], but there was no clear association
with other causes of hepatitis. A systematic review
and meta-analysis calculated a combined OR of 1.35
(95%CI 1.18–1.93) for HCV infection [31], and a
later meta-analysis which included a further two stud-
ies gave an OR of 1.19 (95%CI 1.01–1.41) [23].
Finally, the most recent observational study (from
Israel) further explored the relationship, reported an
OR of 1.18 (95%CI 1.04–1.35) for HCV and OR 1.08
(95%CI 1.00–1.16) for HBV [32]. Thus, the currently
available epidemiologic evidence would suggest a
positive, although small, association between HCV
and future development of PD. Direct evidence in
support of an association between hepatitis and PD
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arises from studies showing that HCV is neurotropic;
and once in the brain, the predominant cell type
harboring HCV infection is macrophages/microglia
[27]. Additionally, in vitro studies examining the
effects of HCV infection in cultured rat brain have
shown that this agent can induce loss of dopaminergic
neurons [26, 28].

If there is a causal relationship between HCV and
PD, it would be expected that successful treatment
of HCV infection may mitigate the risk. Two recent
studies, again using the Taiwanese national health
insurance database, explored the role of interferon
therapy for chronic HCV infection to see whether
this was associated with a lower risk of PD [33, 34].
Given the probability of considerable overlap in these
studies due to near-identical study periods and poten-
tially the same patients being included, the results
were perhaps unsurprisingly similar. In the first study,
the investigators selected ∼0.25 million patients with
recorded HCV infection and divided them into those
that were treated with interferon (plus ribavirin) and
those that were not treated. In the treated group, the
risk of PD was lower than the untreated group
(adjusted HR 0.75, 95%CI 0.59–0.96 after 5 years
of follow-up), suggesting that the increased risk ass-
ociated with HCV infection may be mitigated by
antiviral treatment. In the second study, HCV inf-
ection was again associated with parkinsonism; treat-
ment with antivirals was associated with a 38%
reduced risk (adjusted HR 0.62; 95%CI 0.50–0.77)
[34]. The authors proposed that antiviral treatment
reduces neuroinflammation, thereby reducing risk.

The human immunodeficiency virus (HIV) is acq-
uired in similar ways to HCV and infections with the
two frequently co-occur. HIV infection affects ∼37
million people worldwide and is associated with a
wide spectrum of neurological disorders, either from
immunodeficiency leading to opportunistic infecti-
ons, malignancy, or inflammatory conditions, or di-
rect neurological consequences of HIV, including
HIV-associated neurocognitive disorders (HAND).
Despite the prevalence of both HIV and PD, there
are limited examples of high-quality observational
studies exploring a link between them. This is
despite parkinsonism (and other movement disor-
ders) being well recognised in patients with chronic
HIV infection and HAND [35, 36]. Manifestation of
parkinsonism alongside cognitive impairment can be
seen in the context of HIV encephalopathy or HIV-
associated dementia, but there are reports of HIV
patients with isolated parkinsonism and up to 5–10%
of HIV patients may have PD-like motor deficits [37,

38]. Some of the early cases/series suggested that
parkinsonism could be unmasked in HIV patients
treated with antipsychotics or even with highly active
antiretroviral therapy (HAART) [36, 37]. However,
in general the prevalence of HAND has decreased
in the HAART era [39]. A recent large-scale, obser-
vational study suggested relative protection against
incident PD in HIV patients treated with antiretrovi-
ral drugs compared to those who were not (HR for
neurocognitive impairment 0.41, 0.37–0.45) [40]. In
the aforementioned study by Pakpoor and colleagues
[30] using UK HES data, HIV was not associated
with incident PD (RR 0.98; 95%CI 0.50–1.70). An
uncontrolled, small, retrospective review of health-
care records of HIV patients in Brazil suggested that
incident PD was no more frequent than in the gen-
eral population [41]. HIV did not appear in a recent
systematic review and meta-analysis of infections
and risk of PD [23], and we are not aware of any
other case-control or cohort studies evaluating the
link. Thus, the evidence to date is mixed and further
research is needed to understand the relationship.

Beyond the associations already described, there
exist other examples of parkinsonism manifesting
during acute viral infections including Coxsakie virus
infection (a picornavirus), and more classically in
patients suffering with Flaviviruses such as Japanese
encephalitis, St Louis encephalitis, Western Equine
Encephalitic virus (WEEV) and West Nile virus [22].
For these later examples, the predilection for basal
ganglia involvement is evident, but parkinsonism
often manifests alongside a wider spectrum of neuro-
logical signs and symptoms, rather than in isolation
and it is unclear how the parkinsonism described in
these reports may relate to PD with Lewy pathology.

One of the biggest impediments to drawing con-
clusions about the link between viral infections and
PD is a severe lack of high-quality epidemiologi-
cal studies. Most data come from small case-control
studies, with the biases inherent in design and in
likelihood of being published. High quality cohort
studies are lacking and there are difficulties around
exposure ascertainment, latency, duration, as well as
confounding factors such as vaccination, treatment,
and co-infection for several of the chronic viral infec-
tions.

Bacterial infections and PD risk

The ample spectrum of bacteria that may acutely
or permanently infect the tissues of humans has
been associated with the development and, to a
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lesser extent, with the progression of PD. Bacte-
rial production of pro-inflammatory and neurotoxic
factors might play a major role in the development
and/or in the cascade of neurotoxic events leading
to degeneration. One key player in such events is
the bacterial endotoxin lipopolysaccharide (LPS).
LPS stimulates production of several inflammatory
factors that may contribute to neurodegeneration.
Tumor necrosis factor-� (TNF-�) is released from
microglia; nitric oxide (NO) is released by microglia
and astrocytes in and there is hyperproduction of
prostagladins. All of these phenomena may lead to
neurodegeneration and gliosis [42]. Given that LPS
is the endotoxin of Gram-negative bacteria, theoret-
ically, every Gram-negative infection can induce a
cascade that could trigger PD; however, the evidence
on bacteria is limited to a number of specific organ-
isms.

Borrelia Budgdoferi is a Gram-negative spirochete
that is the only known cause of Lyme disease in
North America. Borrelia Budgdoferi infection can
affect the central nervous system and, when active,
can cause a syndrome that may resemble PD [43].
Indeed, there is some initial evidence that Lyme dis-
ease can affect dopaminergic activity, especially the
dopaminergic component of the frontal reward mech-
anism [44]. Anecdotally, it has been reported that B.
burgdorferi infection can damage of the substantia
nigra [45]. However, epidemiological evidence is not
supportive of a link between Lyme disease and PD;
when geographic locations of Lyme disease and death
due to PD were compared, no correlation was found.
Given the focal distribution of Lyme disease in the
United States (Midwest, Northeast and mid-Atlantic)
an increase of PD was expected in those regions if
there was a positive correlation, but no association
was suggested [46]. In addition, a study using the
Danish National registry from 1986-2016 identifying
2,607 cases of Lyme neuroborreliosis did not find a
significantly increased long term risk of PD and other
neurodegenerative diseases [47].

Helicobacter pylori is a Gram-negative bacterium
that infects a large number of the world’s popula-
tion causing mostly gastrointestinal symptoms. The
association with PD has been heavily explored [48].
Increased gastric and duodenal ulcers in patients
with PD have been described as early as the 1960s
[49]. Before the advent of antibiotic treatment of H.
pylori infection the classical treatment of H. pylori
was vagotomy that interestingly has been associated
with a reduction of the risk of PD [50]. A large
meta-analysis reported a 1.5-2-fold increased risk of

developing PD after H. pylori infection; [51] and
large case-control studies reported 2-3 times increase
of PD in patients with H. pylori [52]. Therefore, the
association between PD and H. pylori is confirmed
although a causal relationship has not been proven.
Being a gastrointestinal pathogen, a causal role is bio-
logically plausible through a gastrointestinal “portal
of entry” according to the “dual hit hypothesis” [7].
On the other hand, eradicating H. pylori does not
seem to alter the risk of PD. [52] In addition, H.
pylori has a critical role in the absorption of L-Dopa
and therefore, in symptomatic treatments. Eradica-
tion of the infection can be important to improve the
response to L-Dopa [53] and, conversely, a reduction
of the response to L-Dopa requires consideration of
H. pylori presence [54].

The potential association between PD and bacterial
infection is not restricted to Gram negative organ-
isms. Nocardia asteroides, a weak Gram-positive ba-
cterium, has been reported to potentially induce PD-
like pathology in mice [55]. Another study reported
the possible induction of apoptosis in the substantia
nigra [56] suggesting a vulnerability of dopamin-
ergic neurons to the effects of Nocardia infection.
On the other hand, a case-control study on serum of
patients with PD did not report a significant associa-
tion between Nocardia asteroides and PD [57].

It is important to consider the possible role of
multiple pathogens together; in fact, when multiple
bacteria are colonizing and/or are acting synergis-
tically there could be an increased, and cumulative
risk of diseases, as demonstrated in stroke [58] and
Alzheimer’s disease [59]. One study explored the role
of the infectious burden in PD, exploring the presence
of antibodies against cytomegalovirus, Epstein Barr
virus, herpes simplex virus type-1, Borrelia burgdor-
feri, Chlamydophila pneumoniae, and Helicobacter
pylori in serum of patients with PD and controls [11].
The study observed that the combination of the pre-
vious bacteria and viruses was associated with PD
compared to controls; however, a causative role was
not clarified and further studies are needed.

Notably, there is minimal evidence for associa-
tions between more severe infection such as sepsis
and the future risk of PD. A recently published case-
control study reported that there was no association
between severe infections that required hospitaliza-
tion and sepsis and the risk of PD later in life [60].
However, it is not yet clear whether an infectious con-
dition proximate to the onset of PD or before the
onset of PD can trigger or lower the threshold for
the upcoming neurodegenerative process.
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Understanding the gut microbiome and its role
in PD in particular is an area of active study. The
interest in the role of gut bacteria has been greatly
promoted by pathological evidence for the involve-
ment of the gut early in PD. Indeed, an increasing
body of evidence suggests that PD may start in the
gut or, at least that the gut may constitute a portal
of entry into the nervous system that subsequently
spreads to the brain [7]. In fact, the gastrointestinal
tract may have a role in the development of synu-
cleinopathies mediated by the bacterial activity of
the gut microbiome. Endotoxins (LPS) produced by
some gut bacteria (e.g., E. coli) have been reported
to have a role in aggregating synuclein and gener-
ate toxic synuclein products that can participate in
the cascade of events of PD [61–63]. The gastroin-
testinal tract contains about 1,000 different bacterial
species, and a number of studies have shown dif-
ferences in the gut microbiome between individuals
with and without PD [64]. Potential mechanisms are
beginning to be elucidated; an early study in mice
overexpressing synuclein highlighted that microbiota
extracted from PD patients caused motor symptoms
and a neuro-inflammatory cascade [65]. Although the
studies performed in humans have provided cont-
roversial results [66], there is increasing evidence
that microbiota in patients with PD may have a sig-
nificant role in the development of the disease. A
recent study reported that there was a dysbiotic alter-
ation of the microbiotic bacteria in PD in the families
of Bifidobacteriaceae, Christensenellaceae, Lachno-
spiraceae, Lactobacillaceae, Pasteurellaceae and
Verrucomicrobiaceae [67]. The study provides a pos-
sible mechanism for an indirect effect of changes in
microbiota, given that this modification would cause
an increase of accumulation of pesticides and other
xenobiotics that are not metabolized by the modi-
fied PD microbiome; therefore, the accumulation of
such molecules may lead to an increase of the risk
of PD. Further studies understanding the relationship
of the gut microbiome with PD are needed because
the microbiome represents a potentially modifiable
risk factor not only for incident disease but also dis-
ease progression.

Importantly, several studies have reported a pos-
sible reduction of risk of PD in patients with
appendicectomy [68–70]. In addition, regulating and
maintaining the gut flora seems to be mediated by
the vermiform appendix, that is no longer consid-
ered a vestigial remnant [60]. It is indeed possible to
speculate that the appendix can be not only a reser-
voir of synuclein but also that the lack of regulation

of the appendix-mediated gut flora could be another
component to increase the risk of PD.

Overall, despite the mounting evidence for a bacte-
ria role in the development of PD (especially H. pylori
and the gut microbiome) more studies are needed to
understand their causative role and potential treat-
ment opportunities.

MOLECULAR MECHANISMS AND BASIC
SCIENCE EVIDENCE FOR THE ROLE OF
INFECTION IN PD

Much of the evidence associating PD with infec-
tions, whether viral or bacterial, is based on obser-
vational studies demonstrating increased risk to
develop the disease, rather than direct evidence of
infection as a singular cause. In fact, due to the com-
plexity and multifactorial etiology of PD, identifying
a single point of initiation in human PD (even in cases
of known genetic mutations) is often impossible. For
this reason, and the impossibility of interventional
studies in humans involving infectious agents, the use
of preclinical animal models of PD may provide the
clearest evidence for or against a role of infectious
agents in the etiology of PD.

As discussed earlier in this review, a number of
viral agents have been linked to PD, including in-
fluenza, Coxsackie, Japanese encephalitis B, WE
EV, Herpesviruses, HCV, and HIV [22, 71]. Preclin-
ical work examining effects of these viruses have
shown significant support for their role in the etiol-
ogy of PD, although in many cases, it is not known
if the effects of these viral infections are direct or
indirect. When viruses invade the nervous system,
they are said to be neurotropic. What is interesting
about these neurotropic viruses is that rather than
cause a generalized infection, they often target spe-
cific regions of the nervous system. Due to this speci-
ficity, specific syndromes can often be ascribed to
specific viral infections. In the case of PD, WEEV
and certain strains of neurotropic influenza (e.g.,
H5N1) have been shown to directly infect regions
affected in PD including the enteric nervous sys-
tem as well as CNS regions including the substantia
nigra and the olfactory bulb [72–74]. In addition to
direct infection of neurons, these viruses are also
gliotropic, leading to an induction of both astroglio-
sis and microgliosis [72, 74, 75]. What makes both
influenza viruses and WEEV particularly interest-
ing is they also induce a number of changes in the
brain that are prominent in PD including induction of
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an increase in expression of phosphorylated alpha-
synuclein, down-regulation of dopamine production
and dopaminergic neuron death in the substantia nigra
pars compacta [72–74]. The induction of these spe-
cific parkinsonian pathologies appears to be specific
to the viral infection. For example, using Lund human
mesencephalic dopaminergic cells, H1N1 infection
was found to lead to a build-up of alpha-synucle-
in secondary to blockade of autophagosome func-
tion and impaired cellular proteostasis [76]. What was
even more interesting is that this process did not affect
other proteins (tau, TDP-43) known to aggregate in
neurodegenerative disease showing that each virus
has the potential to produce specific proteinopathies,
as well as acting as a general inflammagen.

As described above, many non-neurotropic infec-
tions (both viral and bacterial) induce a significant
inflammatory response throughout the body, often
referred to as the innate response. During this innate
response, circulating immune cells secrete a number
of different proteins including interferons, inter-
leukins, chemokines, colony stimulating factors and
TNFs [77]. What is important to recognize is that
within these classes of inflammatory molecules, some
are considered to be pro-inflammatory and some are
anti-inflammatory. It is the balance of each, as well
as the way they interact with their cognate soluble
receptors that determines the ultimate outcomes of
the process [78]. If the pro- inflammatory response
overwhelms the anti-inflammatory response one can
set off a cascade that has been commonly called a
“cytokine storm” [19]. The result of this overwhelm-
ing inflammatory response is often cellular toxicity.
In addition to inducing this toxicity in the periphery,
many of the circulating cytokines, although large in
size, appear to be able to cross the blood-brain barrier
using one of several mechanisms. These mechanisms
include 1) a saturable transport system [79], 2) enter-
ing through regions of decreased blood-brain barrier
called circumventricular organs, and 3) increasing
capillary permeability [80–82]. The latter opens up
the tight junctions of the blood-brain barrier, and
allowing these large proteins to bypass the protections
traditionally offered by this barrier.

Once in the brain, these cytokines/chemokines/
Interferons/TNFs can bind to microglial cells, which
induces their “activation” [83]. In addition to this
indirect effect of circulating cytokines, a number of
studies have provided support for PD neurodegener-
ation that occurs as a direct invasion of circulating
lymphocytes (including T- and B-cells) that subse-
quently interact with the innate inflammatory cells

of the brain. A number of observational studies have
found increased numbers of circulating lymphocytes
and monocytes in the brains of PD patients [84, 85].
Additionally, preclinical studies have directly demon-
strated the critical nature of circulating immune
cells in PD pathogenesis. Early studies showed that
dopaminergic toxins, such as 6-OHDA or MPTP,
induced T-cell infiltration into the brain; and the
importance of these cells in the induction of pathol-
ogy was demonstrated by the lack of pathology in
Rag-1-KO mice [84, 86, 87]. Another study exam-
ined athymic mice that were deficient in mature
T-cells and were injected with AAV-alpha-synuclein.
These animals showed less behavioral and anatomical
pathologies compared to T-cell competent mice [88].
In aggregate, these results demonstrated that mature
T-cells were necessary to induce both behavioral as
well as the anatomic pathologies.

Mechanistically, what might be the link between
the cells of the peripheral immune system and the
innate immune system in the brain? One critical com-
ponent functions through recognition of MHCII; a
key antigen presenting protein [89]. MHCII is critical
for the presentation of antigen to both T-cells (both
inside and outside the brain) as well as microglial
cells situated in the CNS [90, 91]. In regard to
microglia, it is interesting to note that the SNpc con-
tains the highest microglia:neuron ratio in the brain
[92]; perhaps leading to its particular sensitivity to
inflammation [93].

Antigen presentation has been shown to elicit
secretion of cytokines and chemokines, both in per-
ipheral immune cells as well as in microglia [90].
What is important in PD pathogenesis is that once
chronically elevated, these proteins can both initiate
and maintain glial activation [94–96]. Once microglia
and astrocytes are actively expressing their inflam-
matory programs they themselves secrete similar
cytokines and chemokines as are produced by the
peripheral immune system. Again, like in the periph-
ery, when the proinflammatory proteins are in greater
quantity than anti-inflammatory cytokines the envi-
ronmental milieu of neurons becomes toxic [97].
Additionally, microglia [98, 99] as well as astrocytes
[100] when activated also express MHC antigens and
become phagocytic.

The susceptibility of the basal ganglia to such re-
actions may relate to the density of microglia and
astrocytes relative to neurons, which is highest in the
substantia nigra of all other brain regions [92, 93,
101]. This is of particular concern as the mechanism
of microglial activation can cause a feed-forward
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Fig. 1. Based on available evidence, hypothesized process by which infectious agents increase susceptibility to PD.

loop of clustering of microglia around dopaminer-
gic neurons and a subsequent increase in activation
[102]. Additionally, the overproduction of alpha-
synuclein induced by viral infection can, in and of
itself, induce activation of microglia [72]. which then
sets up a feed forward cascade that perpetuates the
effects of the infection. Related to alpha-synuclein,
the finding of virally-increased levels of misfolded
alpha-synuclein, to the detriment of native synuclein
expression, may also provide a mechanism for the
sensitivity of the dopaminergic neurons. Beatman et
al. [103] showed that cells expressing native alpha-
synuclein were resistant to West Nile Virus or Ven-
ezuelan equine encephalitis viral infection, but when
this protein was removed by gene deletion the brain
was much more susceptible to infection. Another
study correlated expression of alpha-synuclein to
viral infection and found that patients who had under-
gone intestinal allografts and subsequently were
infected with norovirus exhibited significantly higher
expression of misfolded alpha-synuclein [104] in
the gut; which has been implicated as a starting
site for PD pathogenesis [105, 106] Based on these
finding, one could imagine a general mechanism by

which the viral-induced (or PD) increased load of
misfolded oligomeric alpha-synuclein could skew the
overall protein pool of native synuclein downward.
The lowered levels of native synuclein would make
these neurons more prone to oxidative stress and sub-
sequent death.

These observations provide plausible mechanisms
to explain infection as either a susceptibility or cau-
sative factor for PD. The hypothesized process by
which infectious agents increase susceptibility to PD
is summarized in Fig. 1.

CONCLUSIONS

Infections are a plausible risk factor for parkin-
sonism and PD from both epidemiologic and basic
science evidence. The magnitude of the risk is
unknown for most agents but from the available epi-
demiologic studies appears to be overall small, with
a less than doubling of risk observed in most studies.
In addition, the latency from infection to PD appears
to be highly variable and often long. From these data
it is difficult to justify recommendations for specific
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monitoring for PD in individuals with previous or
ongoing infection.

On the other hand, the pathophysiological insights
provided by infection and its apparent relationship to
dopaminergic neuron loss and thus PD susceptibility
provide important leads for treatment strategies that
could be effective in the prodromal period. As sug-
gested by epidemiologic evidence related to hepatitis
C, treatment does appear to mitigate the risk. Fur-
thermore, the mechanisms discussed above by which
infection may contribute to PD are not unique to
infection but share features with other environmental
insults such as chemical exposures or head trauma,
as each appear to induce pathology by a mechanism
that has neuroinflammation as a key part of the pro-
cess [42, 107–110]. Heretofore, treatments have not
been routinely applied to exposed individuals with
a view to managing risk of future neurodegenerative
disease, but this could be a useful and feasible strategy
if used in a targeted way.
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