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Abstract  

Purpose: Conventional motion correction techniques for diffusion MRI can introduce motion level–

dependent bias in derived metrics. To address this challenge, a deep learning-based technique is developed 

to minimize such residual motion effects. 

Methods: The data-rejection approach is adopted in which motion-corrupted data are discarded before 

model fitting. A deep learning-based parameter estimation algorithm, using hierarchical convolutional 

neural network (H-CNN), is combined with a procedure of motion assessment and corrupted volume 

rejection. The method has been designed to overcome limitations of existing methods of this kind that 

produce parameter estimation whose quality depends strongly on the proportion of the data discarded. 

Evaluation experiments are conducted for estimation of diffusion kurtosis and diffusion tensor derived 

measures at both individual and group levels. The performance is compared to robust approach of iteratively 

reweighted linear least squares (IRLLS) after motion correction with and without outlier replacement. 

Results: Compared to IRLLS, the H-CNN-based technique is minimally sensitive to motion effects, as 

tested at severe motion levels when 70%-90% of the data are rejected, and when random motion is present, 

showing stable performance independent of the numbers and schemes of data rejection. A further test on 

dataset from children with attention deficit hyperactivity disorder demonstrates the technique can 

potentially ameliorate spurious group-level difference due to head motion. 

Conclusion: This method shows great potential for reducing residual motion effects in motion-corrupted 

DWI data, bringing benefits that include reduced bias in derived metrics in individual scans and reduced 

motion-level dependent bias in population studies employing diffusion MRI.  
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1. Introduction 



 

 

Recent years have seen a growth in diffusion models that can derive unique measures of local 

microstructural tissue properties from diffusion-weighted MRI (DWI) data. Beyond the most widely used 

diffusion tensor imaging (DTI) model (1), more advanced models, including diffusion kurtosis imaging 

(DKI) (2,3), and a variety of microstructural models (4–6), have been developed. These advanced models 

in general require substantially larger number of DWI volumes and the application of stronger diffusion 

gradients, with consequently longer acquisition times and more stringent demands on image quality.  

However, the imaging principle of DWI makes it vulnerable to various image artefacts (7), especially those 

due to subject motion, with longer acquisition more prone to such artefacts. Motion introduces broadly two 

types of artefacts: spatial misalignment and intensity corruption. Spatial misalignment can be caused by 

subject movements either between acquisition of consecutive DWI volumes, resulting in misalignment 

between them, or between acquisition of consecutive slices within a single volume, resulting in 

misalignment within it. Signal dropouts can be caused by motion during diffusion encoding. The number 

of affected volumes in a scan depends on the level of motion, which if uncorrected, can increase uncertainty 

in model fitting and introduce bias in derived measures (7–9).  

Retrospective methods are commonly used to correct for motion artefacts. While these techniques have 

proved valuable for mitigating the effect of motion, the correction is never perfect, inevitably retaining 

some residual artefacts. The extent of such residual motion effects similarly depends on the level of motion 

in a scan. For example, spatial misalignment is corrected with the common strategy of image registration-

based realignment, for which many tools have been developed (10–14). However, the correction procedure 

requires accurate estimation of motion, which can be more difficult in the presence of large motion, and 

image interpolation, a step that will blur the corrected volumes. The number of volumes affected, as well 

as the extent to which the quality of the volumes will be impacted, will depend on the level of motion in a 

scan. Signal dropouts are even more challenging to correct; the common strategy is to detect them as outliers 

and to replace them with data-driven predictions (15). The accuracy of the predictions however, will be 

affected by the number of measurements without outliers. This again can lead to residual motion effects 

that is motion-level dependent.  

These residual effects of head motion can compromise model fitting, introducing bias to model-derived 

measures. This can negatively impact downstream group-level studies if the level of motion is different 

between groups. At individual level, residual motion effects have been shown to lead to systematic errors 

in estimation of DTI-derived measures in white matter (WM) (12,16). At group level, such effects following 

registration-based motion correction have been demonstrated to introduce spurious group differences in 

DTI-derived measures (17). Similar effects could also result from correction techniques based on outlier 

replacement (15), which has been shown to introduce bias to diffusion-derived structural connectivity (18).  



 

 

The growing recognition of residual motion effects associated with conventional motion correction methods 

motivates research into alternative motion-mitigating strategies. One such approach is to detect and reject 

part of the data that is motion corrupted before model fitting for each individual. This has been adopted by 

a number of techniques, ranging from discarding each affected DWI volume entirely (19,20), to advanced 

robust estimators based on voxel-wise or slice-wise rejection (12,21–24). However, rejecting data also has 

detrimental impact on model fitting (25,26). For example, it can result in parameter estimates of greater 

variations in accuracy and precision if the number of unrejected data points at each voxel varies greatly. In 

the extreme case, some voxels may not have enough data points to support fitting at all, rendering these 

voxels unusable in downstream analyses. These effects are especially detrimental to studies of motion-

prone populations, such as young children. Moreover, when applied at group level, if more data points are 

rejected in one group compared to the other, these effects can introduce group-level bias. Hence, the success 

of such data-rejection approaches requires the development of parameter estimation methods that are 

extremely robust to the number of input data points. 

In this study, we propose to utilize deep learning (DL)-based parameter estimation method to address 

residual motion effects. This is motivated by the fact that DL-based methods have recently demonstrated 

excellent performance in estimating diffusion-derived measures from highly under-sampled data (27–31). 

Here, we demonstrate this new approach by combining a DL-based method utilising a hierarchical 

convolutional neural network (H-CNN) (29) with a motion assessment and data rejection procedure (Figure 

1(C)). The proposed technique is evaluated for recovering DKI and DTI derived measures from motion 

contaminated data. Its performance is compared to fitting-based methods after motion correction (Figure 

1(A), (B)). 

2. Methods 

This section details the proposed motion-correction pipeline and the evaluation experiments. 

2.1 The DL-based technique 

Similar to conventional techniques, for each study subject, the proposed technique takes their DWIs, many 

of which may be motion corrupted, as an input. It aims to estimate the subject’s derived diffusion metrics 

with accuracy and precision comparable to those that would have been derived from the corresponding 

motion-free DWIs had they been available. 

Unlike conventional techniques, the proposed method requires an additional input – a few training subjects.  

This is because at the heart of the technique is a patch-based H-CNN model (29), trained with supervised 



 

 

learning, to map any given subset of the full data to the metrics derived from the full data. To train the 

model, the technique will require minimally motion-contaminated data from 1 to 2 subjects who are able to 

lie still over the entire diffusion acquisition; these subjects will be referred to as the training subjects 

henceforth.  

The pipeline of the technique, shown in comparison to fitting-based methods in Figure 1, consists of four 

steps: (1) pre-processing, (2) motion assessment and data rejection, (3) H-CNN model training, and (4) 

diffusion metric estimation. Briefly, for each subject, its original DWIs are first pre-processed to correct for 

distortion and motion, with conventional techniques. The motion parameters derived as part of the pre-

processing are subsequently used to assess the level of motion of each DWI and to reject the volumes 

deemed to have moved excessively. Next, the b-values and the diffusion gradient vectors associated with 

the remaining DWIs are used to select the desired subset from the separate training data to train the H-CNN 

model for this subject. Finally, the trained model is used to estimate diffusion metrics from the remaining 

DWIs. The detailed description of each step is given below. 

2.1.1 Data Pre-processing  

The original DWI data are corrected for geometric distortion, volumetric motion and signal dropouts using 

TOPUP and EDDY from the FMRIB Software Library. Motion-correcting transformations estimated with 

EDDY are used at the next step for motion assessment. In more detail, the pre-processing begins with 

estimating the field map with TOPUP (32), using a pair of b=0 images with reversed phase-encoding 

directions (See Data Acquisition). Next, the estimated field map is fed into EDDY, allowing an integrated 

correction of volumetric motion and both eddy-current and B0 field inhomogeneity-induced distortion for 

the acquired DWIs (13), with the first b=0 volume treated as the reference. When applying EDDY, its 

outlier detection and replacement feature (15) is used along with its distortion and motion correction 

functionalities: image slices detected with signal dropouts in each DWI volume are taken as outliers and 

replaced with predictions made by a Gaussian process using angularly neighbouring measurements. The 

number of outlier slices is also used for motion assessment. After pre-processing, all DWI volumes are 

realigned to the first b=0 image and the corresponding gradient vectors are reoriented accordingly (33).The 

data is only resampled once in the whole procedure. 

2.1.2 Motion assessment and data rejection 

Exploiting the estimated rigid transforms and slice outliers identified by EDDY, volume-based motion 

assessment measures are calculated to monitor both between- and within-volume motion (17,26). By setting 

stringent thresholds of these measures, only the volumes with minimal motion, defined as having all 

measures smaller than or equal to the thresholds, are retained for subsequent parameter estimation.  



 

 

We define two types of motion assessment measures. The first type of measures characterises the aggregate 

movement of a volume relative to the first b=0 image, the reference. Specifically, its absolute translation 

and rotation (AT, AR) relative to the reference are computed. Large values of these tend to reduce image 

quality when the corresponding volumes are realigned to the reference. The second type of measures assess 

the more transient movement that tends to cause signal dropouts. As this may be reflected by the relative 

movement between consecutive volumes, the relative translation and rotation (RT, RR) of a volume with 

respect to the adjacent volume in front are computed. Furthermore, the fraction of slices with signal 

dropouts (FSD) in a volume, based on the number of slice outliers identified, is also computed to more 

directly quantify the extent of signal dropouts due to within-volume motion. Slices with too few brain 

voxels (< 250) to ascertain signal dropouts are excluded. The motion measures for the 𝑖-th volume in a scan 

are calculated as follows: 

𝐴𝑇𝑖 = √𝑥𝑖
2 + 𝑦𝑖

2 + 𝑧𝑖
2 

𝐴𝑅𝑖 = |𝜃𝑖| + |𝜙𝑖| + |𝜓𝑖| 

𝑅𝑇𝑖 = √(𝑥𝑖 − 𝑥𝑖−1)2 + (𝑦𝑖 − 𝑦𝑖−1)2 + (𝑧𝑖 − 𝑧𝑖−1)2 

𝑅𝑅𝑖 = |𝜃𝑖 − 𝜃𝑖−1| + |𝜙𝑖 − 𝜙𝑖−1| + |𝜓𝑖 − 𝜓𝑖−1| 

𝐹𝑆𝐷𝑖 =
𝑁𝑂𝑖

𝑁𝑡𝑜𝑡𝑎𝑙
× 100% 

where 𝑥𝑖  , 𝑦𝑖, 𝑧𝑖 are its translation components; 𝜃𝑖, 𝜙𝑖, 𝜓𝑖 its rotation components around the X, Y, Z axes; 

𝑁𝑂𝑖 the number of slices detected with signal dropouts; Ntotal the total number of slices in a volume. Because 

the first b=0 volume is used as the reference for the remaining ones, all its components 

(𝑥1, 𝑦1, 𝑧1, 𝜃1,𝜙1,𝜓1, 𝑁𝑂1), and the corresponding measures (𝑅𝑇1, 𝑅𝑅1, 𝐴𝑇1, 𝐴𝑅1, 𝑅𝑆𝐷1) are set to zero.  

2.1.3 H-CNN model and training 

A subject-specific H-CNN model is trained with a separate set of training subjects. The network architecture 

of H-CNN is fully described in (29), but for completeness it is included here as Supporting Information 

Figure S1..  Two aspects of the model are relevant here. First, it is a patch-based technique. The training 

samples are small 3x3x3 patches; as hundreds of thousands of these patches can be drawn from a single 

subject, training requires only a few subjects. Second, the model is tailored for any desired subset of the 

full data. For any given subset, its corresponding model is trained to map this subset to the target diffusion 

metrics derived from the full data with model fitting. In the present context, for any given study subject, 

the desired subset of the training data is precisely the measurements that have the b-values and the diffusion 

gradient vectors in common with those associated with the remaining volumes of the study subject after 



 

 

data rejection. The training time for H-CNN model is 5 to 10 minutes (depending on the number of 

remaining volumes) with a Tesla k20 graphics card for GPU acceleration, which is comparable to the time 

of conventional model-fitting methods with 8 CPUs. 

2.1.4 Parameter estimation   

Once the subject-specific model is trained, the desired motion-free diffusion metrics are estimated by 

applying the trained model to the remaining volumes of the study subject. This parameter estimation process 

is nearly instantaneous. 

2.2 Evaluation  

To assess the proposed DL-based technique in comparison with conventional fitting-based methods, two 

primary experiments are conducted for (1) quantitative evaluation with ground truth acquired from 

individuals and (2) quantitative evaluation of robustness to random motion rejection. In addition, a 

secondary, supporting, group-level demonstration is conducted in experiment (3).  

For comparison to conventional fitting-based methods, the weighted linear least squares (WLLS) estimator 

(34) is chosen to represent method in Figure 1(A) and an advanced approach of iteratively reweighted linear 

least squares (IRLLS) (23) is chosen to represent method in Figure 1(B). The advanced IRLLS approach 

fits the model with WLLS after a voxel-wise outlier detection and rejection. The IRLLS approach is chosen 

because it offers comparable estimation accuracy and precision to more advanced nonlinear estimators, 

such as RESTORE (21) and iRESTORE (22), but is substantially faster in estimation speed (23). 

DKI and DTI derived measures are estimated jointly, including fractional anisotropy (FA), radial kurtosis 

(RK), mean diffusivity (MD), mean kurtosis (MK), radial diffusivity (RD), axial diffusivity (AD), axial 

kurtosis (AK), and kurtosis fractional anisotropy (KFA) (35,36). WLLS and IRLLS use the MATLAB 

codes available at https://github.com/NYU-DiffusionMRI/DESIGNER/tree/master/parameter_estimation. 

The H-CNN model is implemented in-house using Keras (37) with TensorFlow (38) backend.  

2.2.1 Experiment 1: Quantitative evaluation  

To allow quantitative evaluation with known ground truth, we collect both motion-corrupted and motion-

free dataset from same individuals. 

Dataset   

Data were collected from 2 healthy subjects (S1, S2) who were scanned twice in the same session. In the 

first scan they were asked to lie still; these motion-free data serve as the ground truth. In the second scan 

they were asked to perform deliberate head motion to produce motion-contaminated data. Another two 

https://github.com/NYU-DiffusionMRI/DESIGNER/tree/master/parameter_estimation


 

 

subjects (S3, S4) were scanned once, lying still, constituting the training dataset for H-CNN. All data were 

collected on a MAGNETOM Prisma 3T scanner (Siemens Healthineers, Erlangen, Germany) using a 64-

channel head-neck coil. The local ethical committee approved this study and written informed consent was 

obtained from each participant. 

The diffusion imaging parameters for each scan were as follows: single-shot echo-planar imaging (EPI) 

sequence; TR/TE = 7000/67 ms; FOV = 210 × 210 mm2; slice number = 50; resolution = 2.5 × 2.5 × 2.5 

mm3; slice acceleration factor = none; phase acceleration factor = 2; phase partial Fourier = none; bandwidth 

= 2126 Hz/pixel; diffusion weightings of b = 1000, 2000, and 3000 s/mm2 were applied in 30 distinct 

directions, respectively, with six b = 0 volumes acquired, resulting in a total of 96 volumes. The diffusion 

weightings and directions were designed using a uniform coverage across multiple shells and an 

incremental scheme by a generalization of electrostatic repulsion (39), making diffusion vectors from 

different b-values different and interspersed temporally. A b = 0 volume with an opposite phase-encoding 

direction was also acquired. The total diffusion acquisition time was 12 mins for each scan. T1-weighted 

images were additionally acquired using an MPRAGE sequence for anatomical reference. 

Analysis  

Parameter maps from motion-contaminated data are estimated with H-CNN and IRLLS, respectively. They 

are quantitatively compared to the ground truth, taken as the parameter maps from the data in the still 

condition estimated with IRLLS. Stringent thresholds of AT < 3 mm, AR < 3°, RT < 2 mm, RR < 2°, and 

FSD < 5% are applied for DL-based method. The values have been chosen to broadly correspond to the 

upper limit of these measures seen for the still scans. The target diffusion metrics for the training data (S3 

and S4) are estimated from IRLLS. 

To assess the effect of motion thresholds on H-CNN, a range of less stringent alternatives are tested. With 

less stringent thresholds, the number of data points available for parameter estimation is higher, but at the 

same time, the number of motion-contaminated data points is also higher. This analysis investigates this 

trade-off for H-CNN. For comparison, WLLS and IRLLS are also tested, including additionally data 

without outlier replacement. For quantitative evaluation, the root-mean-squared errors (RMSEs) from WM 

voxels are computed and compared for each measure. WM voxels are determined by a five-tissue 

segmentation method using T1-weighted images (40).  

2.2.2 Experiment 2: Robustness to random motion rejection  

To test the robustness of each technique to the number and scheme of the remaining data, random rejection 

tests are conducted using data from S1 in the still condition from experiment 1.  



 

 

This experiment controls for data rejection, allowing parameter estimation to be assessed specifically, i.e. 

comparing WLLS to H-CNN estimation directly. For each tested number of retained volumes N, 100 sub-

sampled schemes are drawn randomly from the full scheme (with the first b=0 volume and at least two 

different b-values always included). Each sub-sampled scheme is used to evaluate both techniques. 

Additionally, several underdetermined schemes for WLLS are included to assess H-CNN further; they are 

N = 20, 16, and 12.  

WM RMSEs are calculated for each random rejection case. To allow for a higher-quality reference standard 

for assessment, two more data repetitions from S1 in the still condition are acquired and combined with the 

original repetition. Additionally, WM RMSEs calculated with respect to the IRLLS-estimated maps from a 

single repetition as in experiment 1 are given in Supporting Information Figure S3 for comparison. To 

statistically test the robustness of both methods over different number of DWIs remained and different 

rejection schemes, the Levene’s test for equal variance (41) on the RMSEs are conducted.  Finally, a 

simulation study is also conducted on the estimated measures to evaluate the influence of these methods on 

the power of detecting differences. Details can be found in Supporting Information Figure S4. 

2.2.3 Experiment 3: Group-level evaluation 

To demonstrate the method at group level, data with varying motion levels are employed and divided into 

a control group with small motion, and a test group with large motion. Voxel-wise statistical analysis is 

then carried out with tract-based spatial statistics (TBSS) (42) using parameters estimated from IRLLS and 

proposed technique.  

Dataset 

Data from 19 children diagnosed with attention deficit hyperactivity disorder (ADHD) (5 females and 14 

males; age: 10.45 ± 2.81 yr) are employed from the Healthy Brain Network biobank (43). The diffusion 

data were collected on a Siemens Prisma 3T scanner with the following parameters: simultaneous multi-

slice EPI sequence; resolution = 1.7 × 1.7 × 1.7 mm3; slice acceleration factor = 3; one b=0 s/mm image, 

and diffusion weightings of b=1500, and 3000 s/mm2 applied in the same 64 directions in each shell 

sequentially. One b=0 image pair in the reversed phase-encoding direction was acquired.  

Grouping and estimation 

To divide subjects into two groups, a total motion index (TMI) is calculated that summarizes head motion 

for each subject from all motion measures (17). We divide subjects with TMI<0 into the control group and 

subjects with TMI>0 into the motion group. The TMI for the i-th subject is calculated as follows: 



 

 

TMIi = ∑
xij − Mj

Qj − qj

5

j=1

 

where j = 1,…, 5 indexes the five average motion measures across all DWIs (AT̅̅ ̅̅ , AR̅̅ ̅̅ , RT̅̅ ̅̅ , RR̅̅ ̅̅ , FSD̅̅ ̅̅ ̅); xij is 

the value of the j-th average motion measure for the i-th subject; and Mj, Qj, and qj are, respectively, the 

median, upper quartile, and lower quartile of the j-th average motion measure over all subjects included in 

the group comparison.  

 

To ensure training and testing do not perform on the same subject for the DL-based method, data from 3 of 

the 19 subjects with small TMI constitute the training dataset, in which data from 2 of the 3 subjects are 

employed as training data for the other 16 subjects. Meanwhile, for each subject in the 3 training subjects, 

data from the other 2 subjects are employed for training. During parameter estimation, stringent thresholds 

of AT < 3 mm, AR < 3°, RT < 1 mm, RR<1°, and FSD < 5% are applied for H-CNN estimation; more 

stringent thresholds of relative motion measures are employed here to account for the higher image 

resolution of this dataset. 

Analysis 

To evaluate whether residual motion or data rejection introduce bias into analysis for the IRLLS and H-

CNN methods, two-sample t-tests are conducted with the derived FA, MD, and RK measures between the 

control and motion groups. For each test, 5000 permutations of the data are generated (44). To further 

investigate whether IRLLS and H-CNN estimations are different from each other, one sample t-tests are 

performed using the difference maps estimated from the two methods for the two groups. Exhaustive sign-

flip permutations are run for each test. The false discovery rate is used to correct for multiple comparisons 

with P = 0.05 as the threshold for significance. To further test the effects of method used, motion level and 

their interaction to estimated diffusion metrics, a two-factor mixed measures statistical test is conducted on 

the mean of diffusion metrics on the major WM skeleton. Voxel wise interaction is additionally tested by 

two-sample t-tests between two group of subjects on both the arithmetic differences and the absolute 

differences of IRLLS and H-CNN estimations. Details about the interaction tests can be found in Supporting 

Information S5 and S6. 

3. Results 

3.1 Experiment 1 



 

 

 The motion measures of each DWI from S1 and S2 are depicted in Figure 2. Evidently these measures are 

considerably higher for the data acquired in the moving condition than for those in the still condition. The 

motion-contaminated scan from S2 has suffered more severe motion than that from S1. The number of 

DWIs retained for different motion thresholds are listed in Table 1.  

Figure 3 demonstrates two representative volumes with large relative motion measures after correction 

without and with outlier replacement from these subjects. Signal dropouts are evident before outlier 

replacement, suggesting the relative motion measures are effective for assessing within-volume motion. 

Outlier replacement appears to improve S1 substantially more than S2 for whom the motion is more severe. 

 The estimated MD, FA, and RK maps are shown in Figure 4. The H-CNN derived maps are minimally 

sensitive to residual motion effects, with good image contrast and small difference compared to their still 

references for these subjects. In contrast, IRLLS performs better for S1 than for S2. The maps for S1 are 

noisier than its references but they otherwise are almost identical. However, the maps for S2 are severely 

blurred compared to its ground truth, losing important anatomical details. 

 Figure 5 and Supporting Information Figure S2 show the quantitative evaluation of the estimation accuracy 

of diffusion derived measures using WM RMSEs for each data-rejection motion thresholds listed in Table 

1. Under the stringent thresholds, H-CNN outperforms both WLLS and IRLLS, despite the number of its 

retained DWIs being considerably smaller than that of the full data. Moreover, its RMSEs for these subjects 

are similar, despite the levels of motion and the numbers of retained DWIs are different between them, 

demonstrating its robustness to different levels of motion. In contrast, IRLLS-derived measures from the 

full data suffer from evident motion-level dependent residual effects, with higher RMSEs for S2. In 

addition, the challenge facing fitting-based methods is clearly illustrated with WLLS without outlier 

replacement: while its RMSEs decrease at first, when the volumes with severe motion are rejected, they 

later increase when the number of data points decreases. Finally, note that our results replicate the existing 

findings that IRLLS outperforms WLLS and outlier replacement generally reduces the effects of residual 

motion with full data.  

3.2 Experiment 2 

 The boxplots of RMSEs from IRLLS and H-CNN to random motion rejections are shown in Figure 6; the 

mean and standard deviation for each case are given as Supporting Information Table S1; the statistics of 

equal variance test are given in Table 2. In general, H-CNN method provides more accurate and robust 

estimates for different rejection number and random rejection schemes than IRLLS. Specifically, for all 

measures, the median and interquartile range (IQR) of RMSEs for IRLLS increase quickly when the 

retained volumes decrease from 60 to 30. In contrast, the RMSEs for H-CNN remain comparatively stable 



 

 

 

from 60 to 12 volumes for all measures. The statistics from Table 2 further suggest that H-CNN provides 

parameter estimates more robust to random rejection with much more stable and smaller variances. Finally, 

the power analysis demonstrates that the effect sizes from IRLLS and H-

CNN show improvement over WLLS, with H-CNN producing values closest to the ground truth; see 

Supporting Information Figure S4 for detail. 

3.3 Experiment 3 

The motion assessment results of each subject ranked by TMI are depicted in Figure 7. The control group 

includes 8 subjects (average RT̅̅ ̅̅  / RR̅̅ ̅̅  / FSD̅̅ ̅̅ ̅ / number of rejected volume: 0.25 mm / 0.19° / 1.39% /  15) and 

the motion group includes the other 11 subjects (average RT̅̅ ̅̅  / RR̅̅ ̅̅  / FSD̅̅ ̅̅ ̅ / number of rejected volume: 0.53 

mm / 0.61° / 2.89% / 63). 

The voxel-wise TBSS results in Figure 8 suggest that while the IRLLS alleviates the negative impact of 

motion on FA measures, some other measures, such as MD and RK, still suffer from the deterioration of 

model fitting with data of different levels of motion. Specifically, for IRLLS, motion tends to increase MD 

and decrease RK, demonstrated by over 50% and 80% of the WM skeleton showing significantly lower 

MD and significantly higher RK respectively in the control group than the motion group. The one-sample 

t-tests of difference between estimations of the two methods further demonstrate the ability of H-CNN to 

reduce the residual motion effects: there is no significant difference between IRLLS and H-CNN for MD, 

FA and RK in the control group. In contrast, in the motion group, Estimated MD and RK are significantly 

different between H-CNN and IRLLS for over 60% of the WM skeleton. Statistics from the two-factor 

mixed measures design provided in the Supporting Information Figure S5 and Supporting Information 

Table S2 further show that (1) for FA measure, there is no significant impact from the method used, the 

motion level, and their interaction; (2) but for RK and MD measure there is significant impact from both 

factors and their interaction, with the presence of large motion and the use of IRLLS inducing the strongest 

deviation in these metrics from the control group. This finding agrees with the voxel-wise TBSS results in 

Figure 8 and Supporting Information Figure S6. 

4. Discussion 

In this study, a DL-based technique is proposed to reduce the effects of residual motion in diffusion 

parameter estimation. Such a technique is needed because motion-level dependent residual effects are 

increasingly recognised as being commonly present following standard motion correction. While the 

existing data rejection approaches provide an improvement, their reliance on conventional model fitting 

renders their performance dependent on the number of remaining data points. Our approach takes advantage 



 

 

 

of recent advances in diffusion parameter estimation with DL models. Results suggest that the proposed 

technique provides robust estimations of DKI- and DTI-derived measures with minimum effects of residual 

motion at both individual and group levels. Overall, the technique provides great potential to make full use 

of motion-corrupted data. 

Compared to fitting-based methods for reducing residual motion effects, the advantage of the DL-based 

technique is its robustness to large rejection number and different rejection schemes. For a fitting-based 

method such as IRLLS, data redundancy is required. It has been shown that the minimum number of distinct 

gradient directions necessary for robust estimation of FA values is approximately 30 (45). For higher-order 

DKI measures such as RK and MK, the estimation quality is closely related to the number of DWIs as well 

as multiple b-values. Hence, a different rejection number in different voxels or subjects could introduce a 

bias to the estimation performance. Moreover, as suggested by the random rejection experiment, the 

accuracy of fitting varies across the random rejection scheme even with the same rejection number. Some 

studies have also pointed out that the angular distribution of estimation precision is inhomogeneous (46). 

The robustness of DL-based technique enables the use of data that would otherwise be abandoned.  

The robustness of the DL-based method is gained from its supervised learning process with large-scale 

training samples. Voxel-wise model fitting may be compromised by an inadequate number of 

measurements or an orientation-unbalanced sampling scheme. The DL-based method, on the other hand, 

benefits from the joint optimization of large number of training voxels containing ample and varying tissue 

properties and orientation information from the whole brain. Combining large and rich training samples 

with a strong inference ability, the DL-based method could reduce the number of needed DWIs with very 

steady estimation performance. This lays the foundation for rejecting outlier volumes without deteriorating 

the estimation performance.  

Utilization of motion-contaminated data can be maximised with suitable acquisition design. First, it is 

advisable to acquire dataset using an incremental scheme for b-value arrangement like the one in experiment 

1. Interspersing diffusion vectors of different b-values temporally maximises the probability that the 

remaining data contain multiple b-values, even in the event of an early-terminated scan. This is especially 

important for DKI and other microstructural models where data of multiple b-values are crucial. Second, it 

is recommended to sample different diffusion vectors for different b-values. With this strategy, any subset 

data would be more likely to result in a denser coverage of the angular space. These considerations are 

important for conventional model fitting and could similarly benefit the proposed approach, by maximising 

the richness of information available to train DL-based models.  

The current study has several potential limitations. First, the proposed method requires at least one high-

quality DWI training dataset with the same imaging parameters. This, however, should not be a major 



 

 

 

burden, since typical studies include enough subjects from which a few with minimal motion can be 

identified as the training dataset, as in experiment 3. As long as one training dataset is available, the network 

can be trained and applied to any possible motion-affected patterns. This limitation could additionally be 

addressed by performing diffusion data simulations (47), which is an ongoing area of our current research. 

The second potential limitation is the possibility of not rejecting the volumes with intra-volume motion but 

no signal dropouts. This can be remedied using more computationally expensive slice-to-volume 

registration tools (48) to identify and reject such volumes, which could improve the proposed technique 

further.  

Another limitation is that experiment 3 for group level demonstration lacks ground truth to draw firm 

conclusions, as one could not exclude the existence of true differences between the control and motion 

groups. Nevertheless, this proof-of-concept demonstration has shown that the proposed method is able to 

reduce false positives due to residual motion compared to conventional techniques. 

One possible improvement for our method is to extend our work to more diffusion models. The current 

study has evaluated the DKI- and DTI-derived measures, which, thus far, are the most widely used diffusion 

metrics in diffusion MRI. Other models benefitting from the combination of multi-shell protocols with high 

angular resolution (4,49) will likely face the same challenge. Future studies taking these models into 

considerations will further test the utility of the method. Another important avenue for improvement is to 

include uncertainty quantification (50,51) , which could be beneficial for quantifying reliability. 

5. Conclusion 

With quantitative and statistical benefits demonstrated in this study, the proposed DL-based technique could 

be a powerful new tool for reducing residual motion effects in motion-contaminated data, providing 

increased utilization of diffusion data for quantitative studies. 
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Table 1. The number of volumes retained (N) with different motion measure thresholds for S1 and S2 in 

motion condition. The first b = 0 volume is always retained. There are multiple b-values included in all 

motion thresholding conditions. 

Thresholds N 

AT/mm AR/° RT/mm RR/° RSD S1 S2 

3 3 2 2 5% 29 10 

5 5 2.5 2.5 8% 46 12 

6 6 3 3 10% 64 22 

8 8 4 4 15% 87 50 

10 10 5 5 20% 93 64 

 

Table 2. Statistics (F statistics and p value) for the Levene’s test of equal variance of RMSEs among 

different remaining volumes N for IRLLS and H-CNN.   

 IRLLS  H-CNN  

 

Levene’s statistic 

(N=60~30) 

Levene’s statistic 

(N=60~30) 

Levene’s statistic 

(N=60~12) 

F p F p F p 

AD 7.699 <0.001 3.204 0.041 4.528 <0.001 

MD 24.62 <0.001 1.969 0.141 1.459 0.201 

RD 13.232 <0.001 6.57 0.001 3.875 0.001 

FA 12.639 <0.001 0.32 0.725 1.534 0.177 

AK 15.342 <0.001 1.93 0.146 1.713 0.129 

MK 19.193 <0.001 1.557 0.212 3.449 0.004 

RK 24.032 <0.001 5.198 0.006 4.594 <0.001 

KFA 39.607 <0.001 0.691 0.501 1.12 0.348 



 

 

 

 

Figure 1. The pipeline of the proposed DL-based technique (C) in comparison to fitting-based methods (A-

B). The DL-based method first corrects distortion and motion as fitting-based methods. The motion 

parameters estimated during pre-processing are used to calculate volume-based motion assessment 

measures. Stringent thresholds of motion measures are applied to reject the volumes deemed to have moved 

excessively. The b-values and the diffusion gradient vectors associated with the rejection scheme are used 

to extract desired subset from the separate training dataset, and a subject-specific network model is then 

trained using the selected subset data and derived metrics from the full data with model fitting. Finally, the 

trained model is applied to the remaining data of the study subject to compute its diffusion metrics.  



 

 

 

 

Figure 2. Demonstration of the motion measures (AT, RT, AR, RR and FSD) of the 96 volumes from two 

test subjects in still (A)(B) and motion scans (C) (D), respectively. The mean measures across all volumes 

are also depicted in the figure. 



 

 

 

 

Figure 3. Typical volumes with large relative motion measures after pre-processing without (top) and with 

(bottom) outlier replacement. (A)(C) the 80th volume from S1, and (B)(D) the 13th volume from S2 are 

shown. The motion measures are shown in (A) and (B) in the order of AT/RT in mm, AR/RR in degrees, 

and FSD in percentage. 



 

 

 

 

Figure 4. Estimated MD, FA, and RK maps from S1 (A) and S2 (B). In (A) and (B), three planes are shown 

for the IRLLS estimated reference maps from data in the still condition (first column), IRLLS (second 

column) and H-CNN (third column) estimated maps from data in the motion condition; their differences to 

reference maps are shown below the maps. For the proposed DL-based pipeline, there are only 29 volumes 

and 10 volumes left from a total of 96 volumes respectively for S1 and S2 for parameter estimation after 

motion rejection. 



 

 

 

 

Figure 5. The WM RMSEs as a function of the remaining number of volumes selected by different motion 

thresholds as listed in Table 1 from S1 (A) and S2 (B) (measures of MD, FA and RK are shown). As 

demonstrated by the correlation of all eight measures from the two subjects (C), RMSEs from H-CNN for 

S1 (N=29) and S2 (N=10) were similar with different level of motion for most measures, while RMSEs 

from IRLLS and WLLS with full data (N=96) show motion-level dependency (S2>S1). 

  

 

Figure 6. Boxplots of WM RMSEs from random rejection tests. Each red box represents the RMSE of the 

interquartile range (IQR) from 100 random sub-sampled schemes for each retained volume number N, and 



 

 

 

the whiskers indicate the highest and lowest values within 1.5 IQR of the nearer quartile. The detailed 

RMSEs are plotted as black dots with their median values shown by green lines. 

 

Figure 7. Motion assessment results for each subject. (A) – (C) The averaged five motion measures across 

all volumes. (D) Number of rejected volumes for H-CNN estimation (E) The TMI calculated taking the five 

motion measures into consideration. The 8 subjects with TMI < 0 are divided into a small motion control 

group and the other 11 subjects are divided into a large motion group. 



 

 

 

 

Figure 8. Voxel-wise group statistics of MD, FA, and RK measures on the FA skeleton. (Green: FA 

skeleton; Red-Yellow: significantly higher; Blue-Light Blue: significantly lower) (A) Two-sample t-tests 

between subjects from the small motion control group and large motion group using IRLLS estimation 

(left) and H-CNN estimation (right). (B) One-sample t-tests of the difference maps between IRLLS and H-

CNN estimations from the small motion control group (left) and large motion group (right). 

 


