
Research Article Vol. 28, No. 24 / 23 November 2020 / Optics Express 35438

Structure-dependent amplification for denoising
and background correction in Fourier
ptychographic microscopy

RÉMY CLAVEAU,1 PETRU MANESCU,1 DELMIRO
FERNANDEZ-REYES,1,2,4 AND MICHAEL SHAW1,3,5

1Department of Computer Science, Faculty of Engineering Sciences, University College London, London
WC1E 6BT, United Kingdom
2Departement of Paediatrics, College of Medicine of University of Ibadan, Ibadan, Nigeria
3Biometrology Group, National Physical Laboratory, Teddington TW11 OLW, United Kingdom
4delmiro.fernandez-reyes@ucl.ac.uk
5mike.shaw@ucl.ac.uk

Abstract: Fourier Ptychographic Microscopy (FPM) allows high resolution imaging using
iterative phase retrieval to recover an estimate of the complex object from a series of images
captured under oblique illumination. FPM is particularly sensitive to noise and uncorrected
background signals as it relies on combining information from brightfield and noisy darkfield
(DF) images. In this article we consider the impact of different noise sources in FPM and show
that inadequate removal of the DF background signal and associated noise are the predominant
cause of artefacts in reconstructed images. We propose a simple solution to FPM background
correction and denoising that outperforms existing methods in terms of image quality, speed and
simplicity, whilst maintaining high spatial resolution and sharpness of the reconstructed image.
Our method takes advantage of the data redundancy in real space within the acquired dataset to
boost the signal-to-background ratio in the captured DF images, before optimally suppressing
background signal. By incorporating differentially denoised images within the classic FPM
iterative phase retrieval algorithm, we show that it is possible to achieve efficient removal of
background artefacts without suppression of high frequency information. The method is tested
using simulated data and experimental images of thin blood films, bone marrow and liver tissue
sections. Our approach is non-parametric, requires no prior knowledge of the noise distribution
and can be directly applied to other hardware platforms and reconstruction algorithms making it
widely applicable in FPM.
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1. Introduction

Fourier Ptychographic Microscopy (FPM) is a recently developed computational imaging
technique that significantly increases the information gathering power of a light microscope. It is
based on the fusion of a set of low-resolution (LR) brightfield (BF) and darkfield (DF) images,
captured under inclined, spatially coherent illumination. Iterative phase retrieval, whereby
the real space amplitude corresponding to the associated coherent passband of an estimate of
the extended object spectrum is updated using a recorded image, allows reconstruction of a
high-resolution (HR) complex image with an extended field of view [1]. Although originally
restricted to the examination of relatively thin samples, recent algorithmic improvements have
extended the application of FPM to thicker samples [2–4]. This flexibility, and the low cost
of the required hardware [5], make FPM an easy-to-access and readily deployable imaging
tool which is particularly attractive for the study and diagnosis of biomedical specimens [6].
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However, the performance of all FPM modalities remains fundamentally dependent on the quality
of the raw image data; in particular the level of background and associated noise in the DF
images. Depending on the numerical aperture (NA) of the objective lens and the required spatial
resolution, a typical FPM dataset is comprised of up to 200–300 images of which between 80 and
95% correspond to DF illumination. To minimise image capture time the camera exposure time
is usually kept below a few hundred milliseconds which, despite the development of multiplexed
illumination strategies [7,8], results in many DF images with a low signal to noise ratio (SNR).
A critical step in the image reconstruction process is the subtraction of the background in

captured DF images. Non-zero background signal in DF images arises from camera dark current
and stray light (ambient light and photons multiply scattered within the sample). Adding the
information from a DF image with a non-zero background into the estimated HR object spectrum
results in spurious signal at a location corresponding to the wavevector of the illumination. In
real space this signal appears as bright and dark fringes superimposed on the reconstructed
image (Fig. 1(b1)). As this is repeated for different dark field images, these fringes sum together
coherently to create a high frequency ‘orange peel’ artefact which masks the true structure of the
object (Fig. 1(b2−3)). In practice, estimation of the background is complicated by the presence of
noise, arising primarily from (Gaussian distributed) camera read noise and (Poisson distributed)
shot noise. Dark current is also present but negligible for short exposure times, while quantization
noise (from the camera’s analogue to digital converter) is typically insignificant compared to
read and shot noise [9]. Shot noise increases with the square root of the detected signal (with the
SNR similarly dependent) and as a result BF images are generally read noise limited whereas DF
images are typically shot noise limited.

Conventionally in FPMDF images are background corrected by subtracting a global background
value estimated by averaging the signal within a structure-free region of each DF image [8]. By
suitably scaling this background estimate it is possible to effectively remove the noisy background
as long as the signal-to-noise ratio (SNR) is large enough. However, as the SNR decreases,
fully supressing the background with this approach increasingly results in the removal of signal
associated with the structure of the sample. Due to a combination of the angular dependence of
the radiant intensity of LEDs typically used in FPM systems [10] and the directional scattering
properties of the sample, the SNR decreases with increasing inclination angle. As a result, this
simple method tends to be unsuited to removing the background in DF captured with off axis
illumination angles, which leads to an inevitable trade-off between image artefacts resulting from
insufficient background removal and the loss of the high spatial frequency information associated
with these displaced passbands.

To illustrate the effect of inadequate background correction and the presence of noise we
simulated a set of 225 FPM LR images from a ground truth HR object corresponding to part of a
USAF 1951 resolution test chart shown in Fig. 1(a). The phase of the object was set equal to
the object amplitude scaled between 0 and π. A constant offset was added to each simulated
LR DF image to account for the average background (image set I1). This image set was then
further degraded by addition of Poisson and additive white Gaussian noise to approximate real
raw image data captured by an FPM system (I2). Complex HR images were then reconstructed
using the sequential Gauss-Newton algorithm described by Yeh et al. [11]. Figure 1(b) shows
images reconstructed from the image set I1, with a non zero background offset added to one (b1),
four (b2) or all (b3) DF images. The results illustrate an incremental degradation in the HR image
as the number of DF images with non-zero background signal increases. In the absence of noise
an accurate estimation of background can be easily obtained and subtracting this estimate leads
to an artefact-free reconstruction without loss of high frequency details (Fig. 1(b4)). However, in
the presence of noise this is no longer possible and Fig. 1(c) highlights how simply subtracting
a global offset leads to poor quality reconstructed images. If the background threshold is set
too low (mean signal within object-free parts of the DF images) the structure in the HR image
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even at relatively low signal levels [12], this higher threshold level removes 99.7% of the 
background. In the following we will refer to these background estimates as ‘mean’ and 
‘mean + 3σ’. Further simulations showed that picking intermediate background values 
between these two thresholds slightly improved the reconstructed image quality but invariably 
resulted in a trade-off between the level of orange peel artefact and the effective spatial 
resolution. We also used the same simulated FPM image data to investigate the suitability of 
adaptive methods for removing background in raw DF images, finding that, as with global 
methods, we were unable to obtain good quality reconstructed images. An example of this is 
shown in Fig. 1(c4) in which the background in each DF image was removed using the rolling 
ball algorithm [13] prior to reconstruction, where the rolling ball radius was set to a value 
which gave the best result. 

 

Fig. 1. (a) Amplitude of object from which raw LR FPM images were simulated. (b) Amplitude 
of HR images reconstructed using raw image series I1 where a constant non-zero background 
value has been added to one (b1), four (b2) and all DF images (b3). (b4) Amplitude of HR 
images reconstructed from raw LR (background and noise free) images for comparison. (c) 
Amplitude of HR images reconstructed from image series I2 (degraded with background offset 
and noise) after subtraction of a background offset of zero (c1), the mean pixel value in a 
structure-free part of the image (c2), the mean pixel value plus three times the standard 
deviation in a structure-free part of the image (c3) and with background corrected using the 
rolling ball method (c4). 

2. Previous background subtraction and denoising approaches 

To tackle the problems of background correction and noise suppression in FPM, several 
approaches have been suggested in recent years. Most methods [14–17] are based on 
modification of the iterative phase retrieval algorithm used in FPM, however this comes at the 
cost of a significant increase in computational load and complexity. Other methods rely on 

Fig. 1. (a) Amplitude of object from which raw LR FPM images were simulated. (b)
Amplitude of HR images reconstructed using raw image series I1 where a constant non-zero
background value has been added to one (b1), four (b2) and all DF images (b3). (b4)
Amplitude of HR images reconstructed from raw LR (background and noise free) images for
comparison. (c) Amplitude of HR images reconstructed from image series I2 (degraded
with background offset and noise) after subtraction of a background offset of zero (c1), the
mean pixel value in a structure-free part of the image (c2), the mean pixel value plus three
times the standard deviation in a structure-free part of the image (c3) and with background
corrected using the rolling ball method (c4).

is obscured by artefacts (c2). Setting too high a threshold (mean plus 3 times the standard
deviation) removes useful information from the DF images and degrades the spatial resolution of
the reconstructed image (c3). Assuming the total image noise follows a Gaussian distribution,
a reasonable approximation for Poisson noise even at relatively low signal levels [12], this
higher threshold level removes 99.7% of the background. In the following we will refer to these
background estimates as ‘mean’ and ‘mean+ 3σ’. Further simulations showed that picking
intermediate background values between these two thresholds slightly improved the reconstructed
image quality but invariably resulted in a trade-off between the level of orange peel artefact and
the effective spatial resolution. We also used the same simulated FPM image data to investigate
the suitability of adaptive methods for removing background in raw DF images, finding that, as
with global methods, we were unable to obtain good quality reconstructed images. An example
of this is shown in Fig. 1(c4) in which the background in each DF image was removed using the



Research Article Vol. 28, No. 24 / 23 November 2020 / Optics Express 35441

rolling ball algorithm [13] prior to reconstruction, where the rolling ball radius was set to a value
which gave the best result.

2. Previous background subtraction and denoising approaches

To tackle the problems of background correction and noise suppression in FPM, several approaches
have been suggested in recent years. Most methods [14–17] are based on modification of the
iterative phase retrieval algorithm used in FPM, however this comes at the cost of a significant
increase in computational load and complexity. Other methods rely on direct denoising of raw
captured images. Fan et al. developed a method [18], in which object signals are separated
from noise during the recovery process by iteratively updating a matrix Cm defined as the
difference between the amplitude of the acquired noisy image and the amplitude of the target
image generated from the updated spectrum. Based on the assumption that a pixel of Cm whose
value is far from 0 is more likely to be noise, the approach consists in setting all the pixel of Cm
higher than a given threshold to 0 and subsequently modifying the corresponding amplitude
image used in the next spectrum update. However, classifying a pixel as object signal or noise
is still governed by the subjective choice of a threshold whose value can strongly modify the
reconstruction quality. A similar approach was suggested by Hou et al. [19]. It uses an improved
thresholding method using a weighting factor, however this leads to balancing the background
correction performance and the spatial resolution achieved. Zhang et al. [20] proposed a data
pre-processing scheme in which noise reduction is achieved through three successive steps: the
removal of stray light in DF images; the correction of uneven background; and the application of
a background noise threshold. The choice of this threshold is critical and must be set according
to a sensible loss of spatial resolution. Just as with conventional background removal, these
approaches lead to an inherent trade-off between spatial resolution and background / noise related
artefacts.
The above methods are based on correction of the DF background through application of a

constant threshold across the images, leading to an obvious question: is complete removal of
the background, including associated noise, sufficient to reconstruct a high-quality HR image,
or is it necessary to suppress noise present in parts of the image corresponding to real object
structures? To investigate this, we computationally generated a set of 225 LR images from a
complex HR object defined as the standard cameraman test image, where the phase was set equal
to the amplitude scaled between 0 and π. We then added an offset to account for background due
to stray light and dark current, before adding Poisson noise and different levels of additive white
Gaussian noise (Fig. 2). In each case, a background offset was estimated from the mean pixel
value in structure-free parts of the DF images and removed. Images were then reconstructed in
four different ways. In the first case (Fig. 2(a)) no further background subtraction or denoising
was performed. In the second case (Fig. 2 (b)), the residual background signal due to noise was
entirely removed by applying a binary object mask to each DF image, where the masks were
generated from the noise-free LR DF images in which the background was necessarily zero. In
Fig. 2 (c)-(d) DF images were denoised using two state-of-the-art methods, one based on machine
learning (Denoising Convolutional Neural Network, DnCNN) [21] and the other an advanced
noise correction scheme (Automatic Correction of sCMOS-related Noise, ACsN) [9] developed
for fluorescence microscopy, prior to background removal as in Fig. 2(b). Given the similar
noise distribution and visual resemblance of fluorescence and DF images, we expect the same
denoising method to be applicable in both cases. Each reconstruction (amplitude and phase) was
quantitatively compared to the reconstructed ground truth image (obtained without adding any
noise) using the structural similarity index measure (SSIM) and the mean square error (MSE).
The results in Fig. 2 clearly demonstrate that artefacts in reconstructed FPM images arise

primarily from uncorrected DF background. Figure 2 (e)-(h) show that the reconstructed complex
image is of similar quality whether or not denoising of object signals is carried out. We further
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DF background without modifying parts of the image corresponding to the underlying object 
structure. However, as shown in Fig. 1 and also noted by Zhang et al. [20], estimating the DF 
background is complicated by the presence of noise, resulting in an inherent trade-off between 
artefact minimisation and attenuation of real DF image information. 

 

Fig. 2. The effect of DF background correction and denoising on reconstructed HR images. (a) 
Amplitude of reconstructed HR image obtained without denoising, where simulated LR images 
were degraded with Poisson noise and Gaussian noise with a standard deviation of 500. (b)-(d) 
Amplitude of reconstructed HR images obtained using different LR pre-processing strategies. 
(b) The DF background is corrected without further denoising. (c)-(d) LR images are filtered 
using (c) DnCNN and (d) ACsN algorithms prior to DF background removal to supress noise in 
parts of the image containing object structures. (e)-(f) SSIM and (g)-(h) MSE metrics for the 
reconstructed amplitude (top tow) and phase (bottom row) as a function of the Gaussian noise 
standard deviation. The reference image was obtained from a reconstruction of background and 
noise-free simulated LR images. 

3. Description of the SdA algorithm 

To solve the problem of effective background removal in FPM we developed a new approach 
based on Structure-dependent Amplification (SdA). The method consists of classifying image 
pixels as belonging to ‘object’ or ‘background’ classes according to whether or not they 
correspond to regions of the underlying object containing structures (i.e. scatterers which give 
rise to contrast in DF images). The pixel values within these two classes are modified 
differentially in the raw FPM images, which has the effect of relaxing the critical estimation 
of a background threshold. In this way the background (and associated noise) is removed 
without attenuating the information contained in the DF images. The method comprises three 
steps as shown diagrammatically in Fig. 3. First (Fig. 3(a)), the entire dataset (S1) is processed 
to remove the mean background pixel value, which is estimated from structure-free areas in 
the DF images. Next (Fig. 3(b)), we take advantage of the data redundancy in real space in 
both the BF and DF subsets to create two intermediate images, IBF and IDF, which serve to 
map and amplify the useful information contained in the DF images. Finally (Fig. 3(c)) IBF 
and IDF are used to modify the intensity of the DF images, leaving the background pixels at 
their original value so that they can be easily filtered out. In this final step the filtering of 
noisy pixels is performed in two slightly different ways producing two new sets of 
differentially denoised DF images (S3 and S4 in Fig. 3) which are both incorporated into the 
final reconstructed image through the iterative phase retrieval algorithm. Overall, the method 
classifies pixels as ‘background’ or ‘object’, boosts the value of ‘object’ pixels, suppresses the 
influence of pixels identified as ‘background’ and finally rescales ‘object’ pixels to their 
original value. 

 

 

Fig. 2. The effect of DF background correction and denoising on reconstructed HR images.
(a) Amplitude of reconstructed HR image obtained without denoising, where simulated LR
images were degraded with Poisson noise and Gaussian noise with a standard deviation of 500.
(b)-(d) Amplitude of reconstructed HR images obtained using different LR pre-processing
strategies. (b) The DF background is corrected without further denoising. (c)-(d) LR
images are filtered using (c) DnCNN and (d) ACsN algorithms prior to DF background
removal to supress noise in parts of the image containing object structures. (e)-(f) SSIM and
(g)-(h) MSE metrics for the reconstructed amplitude (top tow) and phase (bottom row) as a
function of the Gaussian noise standard deviation. The reference image was obtained from a
reconstruction of background and noise-free simulated LR images.

tested these denoising approaches on real experimental image data and, similarly, found that
they did not provide significant additional improvements in image quality. Further, whilst not
particularly computationally expensive when processing a single image, denoising an entire set
of DF images adds significantly to the overall image reconstruction time. For the data shown in
Fig. 2, DnCNN and ACsN denoising added ∼ 5 and 15 seconds to the reconstruction of a 64× 64
pixel image patch on a standard computer (Intel Xeon CPU E5-1650 processor at 3.20 GHz 16
GB RAM). In contrast, as we will show (section 4), effective DF background correction can be
performed in a few ms. Our results suggest that a high quality, artefact-free reconstruction can
be simply obtained by effectively removing the DF background without modifying parts of the
image corresponding to the underlying object structure. However, as shown in Fig. 1 and also
noted by Zhang et al. [20], estimating the DF background is complicated by the presence of
noise, resulting in an inherent trade-off between artefact minimisation and attenuation of real DF
image information.

3. Description of the SdA algorithm

To solve the problem of effective background removal in FPMwe developed a new approach based
on Structure-dependent Amplification (SdA). The method consists of classifying image pixels as
belonging to ‘object’ or ‘background’ classes according to whether or not they correspond to
regions of the underlying object containing structures (i.e. scatterers which give rise to contrast
in DF images). The pixel values within these two classes are modified differentially in the raw
FPM images, which has the effect of relaxing the critical estimation of a background threshold.
In this way the background (and associated noise) is removed without attenuating the information
contained in the DF images. The method comprises three steps as shown diagrammatically in
Fig. 3. First (Fig. 3(a)), the entire dataset (S1) is processed to remove the mean background
pixel value, which is estimated from structure-free areas in the DF images. Next (Fig. 3(b)), we
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take advantage of the data redundancy in real space in both the BF and DF subsets to create
two intermediate images, IBF and IDF, which serve to map and amplify the useful information
contained in the DF images. Finally (Fig. 3(c)) IBF and IDF are used to modify the intensity of
the DF images, leaving the background pixels at their original value so that they can be easily
filtered out. In this final step the filtering of noisy pixels is performed in two slightly different
ways producing two new sets of differentially denoised DF images (S3 and S4 in Fig. 3) which
are both incorporated into the final reconstructed image through the iterative phase retrieval
algorithm. Overall, the method classifies pixels as ‘background’ or ‘object’, boosts the value of
‘object’ pixels, suppresses the influence of pixels identified as ‘background’ and finally rescales
‘object’ pixels to their original value.

 

 

3.1. Initial background correction (a) 

Step 1: Image pixels are coarsely classified as ‘object’ or ‘background’ based on Otsu 
binarization of the normal incidence BF image, I0,0. A mask M is then generated by 
morphological dilatation (⨁) of the ‘0’ regions in the resulting binary image using a disc 
shaped structuring element s1 to reclassify object pixels originally included in the background: 

  1 0,0 .M s thresh I   (1) 

Within reasonable limits (10 – 40 pixels) the quality of the reconstructed image is not 
especially sensitive to the size of the structuring element, however we found a radius of 20 
pixels gave optimal results. 

Step 2: A new set of images, S2, is created by subtracting the mean background in each DF 
image in S1 using the binary mask M calculated in step 1. Negative values are set to 0. 

   2 1 1max , 0 .S S mean S M      (2) 

 

Fig. 3. Flow-chart illustrating the principal steps in the SdA correction method. (a) A binary 
image mask (M), created by OTSU binarization of the on-axis BF image, is used to perform 
initial background subtraction of DF images and leading to a new set of images (S2). (b) BF and 
DF images in S2 are used to generate two intermediate images, IBF and IDF. (c) IBF and IDF are 
combined in a scaling term used to amplify object pixels in DF images within S2. After further 
background correction (step 5) the images are rescaled to create two further image sets, S3 and 
S4. A final reconstructed FPM image is computed by combining images in S3 and S4 within the 
FPM iterative phase retrieval algorithm. 

 

Fig. 3. Flow-chart illustrating the principal steps in the SdA correction method. (a) A
binary image mask (M), created by OTSU binarization of the on-axis BF image, is used to
perform initial background subtraction of DF images and leading to a new set of images
(S2). (b) BF and DF images in S2 are used to generate two intermediate images, IBF and
IDF. (c) IBF and IDF are combined in a scaling term used to amplify object pixels in DF
images within S2. After further background correction (step 5) the images are rescaled to
create two further image sets, S3 and S4. A final reconstructed FPM image is computed by
combining images in S3 and S4 within the FPM iterative phase retrieval algorithm.

3.1. Initial background correction (a)

Step 1: Image pixels are coarsely classified as ‘object’ or ‘background’ based on Otsu binarization
of the normal incidence BF image, I0,0. A mask M is then generated by morphological dilatation
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(⊕) of the ‘0’ regions in the resulting binary image using a disc shaped structuring element s1 to
reclassify object pixels originally included in the background:

M = s1 ⊕ thresh(I0,0) . (1)

Within reasonable limits (10–40 pixels) the quality of the reconstructed image is not especially
sensitive to the size of the structuring element, however we found a radius of 20 pixels gave
optimal results.

Step 2: A new set of images, S2, is created by subtracting the mean background in each DF
image in S1 using the binary mask M calculated in step 1. Negative values are set to 0.

S2 = max{S1 − mean[S1(M)] , 0} . (2)

3.2. Mapping of the ‘object’ and ‘background’ regions (b)

Step 3: The image IBF is obtained by taking the reciprocal of the sum of all BF images. Residual
noise is entirely suppressed by subtracting the maximal value within the background area M and
the positive and negative pixels are respectively set to 1 and 0. Fine morphological dilatation
using a disc shaped structuring element s2 (∼ 8 pixels radius) is applied to fill holes and weak
edges missed in the binarization operation (Eq. (3)). Whilst IBF provides a more accurate
classification of image pixels into object and background classes than M, the morphological
dilatation, necessary to prevent misclassification of object pixels, means that background pixels
around the edges of foreground objects remain

IBF =

( ∑
i∈BF

Si
2

)−1
−max

[( ∑
i∈BF

Si
2

)−1
·M

]
IBF(x, y) =


1 for IBF(x, y)>0

0 otherwise

IBF = s2 ⊕ IBF .

(3)

Step 4: A further intermediate image IDF is computed as the sum over all DF images minus the
mean pixel value in IDF× M:

IDF = max

{ ∑
i∈DF

Si
2 − mean

[ ∑
i∈DF

Si
2(M)

]
, 0

}
. (4)

3.3. Amplification and final background correction (c)

Step 5: After amplification of the ‘object’ pixels by multiplication by (IDFIBF + IBF
C), where IBF

C

is the complement of IBF (Eq. (5)), DF images are further background corrected by subtraction
of the mean value of the background pixels plus three times the standard deviation. Including the
IBF

C term in the multiplication factor ensures that this operation only scales the image intensity
without removing the background and potentially low value object pixels. This then allows
removal of the background whilst minimising the suppression of object information:

S2 = S2 · (IDFIBF + IC
BF), (5)

S′2 = max{S2 · IBF − (mean[S2(M)] + 3 × std[S2(M)]) , 0} . (6)
Step 6: S3 is obtained by reassigning the non-zero pixels to their original intensity values,
meaning that any positive pixels will still be present in the image with the same intensity:

S3 =


S2, if S′2>0

0, otherwise
. (7)
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This direct reassignment retains all the information in the ‘object’ pixels, however it can be
problematic for DF images with a very low signal to background ratio (SBR, defined as the ratio
of the mean pixel value for object pixels to background pixels). For such images, the signal
contained within the object pixels is very small and often one (even several) order of magnitude
smaller than the background noise. Commonly only a few object pixels have sufficient intensity to
be distinguishable from the background. As a result, the multiplication by (IDFIBF + IBF

C) often
leads to amplifying regions in the image where the ‘object’ information is completely buried
within the background noise, resulting in a reconstructed image that includes strong artefacts
around the edges of foreground objects (second column in Fig. 4(a)).

 

 

image that includes strong artefacts around the edges of foreground objects (second column in 
Fig. 4(a)). 

Step 7: To correct this problem, a second series S4 of processed images is generated. Instead 
of restoring the original intensity for all non-zero pixels, each DF image with a low (SBR), 
less than 1, is normalised with respect to its maximal value (intensity of an object pixel) and 
then multiplied by the maximal value of the same image in S2: 

    
2 2

2
4 2 2

2

,                           if 0 and 1

max   if 0 and 1.
max

0,                             otherwise

S S SBR

S
S S S SBR

S

   


     


 (8) 

In this way the influence of residual background pixels is strongly reduced, however the 
resulting reconstructed image suffers from decreased spatial resolution (third column in 
Fig. 4(a)). 

To yield an optimal reconstruction, SdA uses both S3 and S4, incorporating images from S4 for 
the first N-1 iterations of the phase retrieval algorithm and S3 for the final iteration. This 
enables an efficient removal of pattern artefacts introduced by the DF background while 
retaining high frequency information contained within DF images (Fig. 4(c)). 

 

Fig. 4. Intermediate and final reconstructed images generated using the SdA method. (a) 
Comparison of LR DF images in the series S2, S3 and S4 and the corresponding HR 
reconstructed images. (b) Image IDF used to amplify ‘object’ pixels in S3 and S4. (c) 
Reconstructed image using SdA, which incorporates a combination of S3 and S4 in the iterative 
phase retrieval algorithm. The HR images correspond to the red square highlighted in (b). 

3.4. Further post-processing 

For very occasional cases where the raw images are extremely noisy, slight residual artefacts 
may still be observed around object edges. These can be very easily corrected using a local 
median filter directly applied on the reconstructed image. Specifically, we use IBF and the 
binarization of the reconstructed image amplitude to precisely locate the area to filter. 

Fig. 4. Intermediate and final reconstructed images generated using the SdA method.
(a) Comparison of LR DF images in the series S2, S3 and S4 and the corresponding HR
reconstructed images. (b) Image IDF used to amplify ‘object’ pixels in S3 and S4. (c)
Reconstructed image using SdA, which incorporates a combination of S3 and S4 in the
iterative phase retrieval algorithm. The HR images correspond to the red square highlighted
in (b).

Step 7: To correct this problem, a second series S4 of processed images is generated. Instead
of restoring the original intensity for all non-zero pixels, each DF image with a low (SBR), less
than 1, is normalised with respect to its maximal value (intensity of an object pixel) and then
multiplied by the maximal value of the same image in S2:

S4 =


S2, if S′2>0 and SBR>1

S′2
max(S′2) ·max(S2) if S′2>0 and SBR<1

0, otherwise

. (8)

In this way the influence of residual background pixels is strongly reduced, however the resulting
reconstructed image suffers from decreased spatial resolution (third column in Fig. 4(a)).
To yield an optimal reconstruction, SdA uses both S3 and S4, incorporating images from S4

for the first N-1 iterations of the phase retrieval algorithm and S3 for the final iteration. This
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enables an efficient removal of pattern artefacts introduced by the DF background while retaining
high frequency information contained within DF images (Fig. 4(c)).

3.4. Further post-processing

For very occasional cases where the raw images are extremely noisy, slight residual artefacts may
still be observed around object edges. These can be very easily corrected using a local median
filter directly applied on the reconstructed image. Specifically, we use IBF and the binarization of
the reconstructed image amplitude to precisely locate the area to filter.

R = IBF − s3 ⊕ thresh(I)C

Icorr = I × RC + medianFilter(I) × R ,
(9)

with R the region to filter, s3 a 3 pixels radius structuring element and I the reconstructed image
amplitude. The dilatation operation makes sure that the filtering does not introduce unnecessary
blurring of object edges.

4. Results

4.1. Simulations

To test the performance of the SdA method we computed a set of LR FPM images from a complex
object based on an HR image of part of a USAF resolution test target (Fig. 5(a)), where the phase
of the object was set to the amplitude scaled between 0 and π. As previously, after adding an
offset to account for mean background signal caused by stray light and dark current, Poisson
noise and different amounts of additive white Gaussian noise were added to simulate real raw
data. To assess the performance of our method, we quantitatively compared the HR reconstructed
images to those obtained using the ‘mean’ and ‘mean+ 3σ’ background correction approaches.
Visually, we observe from Fig. 5(a-d) that SdA leads to a reconstruction of better quality

compared to the conventional approaches. The mean background subtraction method fails to
remove theDF background resulting in the characteristic speckle structure in Fig. 5(b). Subtracting
a mean+ 3σ background value from the raw DF images removes real image information reducing
effective spatial resolution which leads to a blurry image in Fig. 5(c). These observations are
consistent with the SNR and contrast measurements shown in Figs. 5(e) and (f). The SNR was
assessed in a homogeneous region of the reconstructed image (blue rectangle in Fig. 5 (a)) and
defined as the logarithmic ratio of the average pixel value to the standard deviation. We observe
a similar and almost constant SNR for the ‘mean+ 3σ’ and SdA approaches even in the presence
of significant noise in LR raw images. On the other hand, because the background denoising
threshold used in the ‘mean’ approach is too low, the reconstructions become severely degraded
as the noise level in the LR raw images increases. Figure 5(f) shows that the image contrast,
measured across the red line profiles in Fig. 5(a), is significantly lower for the ‘mean+ 3σ’
background subtraction method, whilst images reconstructed using the ‘mean’ and SdA methods
maintain high contrast because the high spatial frequency information contained in the raw DF
images is not removed during the background subtraction process. By retaining high frequency
information contained within noisy DF images, whilst still effectively removing background
signal, SdA leads to high quality, high resolution reconstructed images. Figure 5(g) shows the
MSE between each reconstruction and the reference HR object within the green cropping window
shown in Fig. 5(a). Again, by effectively removing the noisy background without attenuating real
signal SdA outperforms conventional global background subtraction at all level of noise.
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Fig. 5. Comparison of reconstructed HR images obtained using different background correction 
methods. (a) Amplitude of ground truth HR object. (b)-(d) Reconstructed HR amplitude images 
obtained by pre-processing the LR images by subtraction of ‘mean’ (b) ‘mean + 3σ’ (c) 
background estimates and the SdA method (d). For (b)-(d) the simulated LR images were 
degraded with Poisson noise and additive Gaussian noise with a standard deviation of 1000. 
(e)-(g) Quality metrics for images reconstructed using the three methods for different levels of 
Gaussian noise. (e) SNR assessed within the blue rectangle in (a). (f) Average contrast 
measured along the red lines in (a). (g) MSE in the green rectangle cropped region of each 
reconstruction compared to the ground truth in (a). 

Visually, we observe from Fig. 5(a-d) that SdA leads to a reconstruction of better quality 
compared to the conventional approaches. The mean background subtraction method fails to 
remove the DF background resulting in the characteristic speckle structure in Fig. 5(b). 
Subtracting a mean + 3σ background value from the raw DF images removes real image 

Fig. 5. Comparison of reconstructed HR images obtained using different background
correction methods. (a) Amplitude of ground truth HR object. (b)-(d) Reconstructed HR
amplitude images obtained by pre-processing the LR images by subtraction of ‘mean’ (b)
‘mean+ 3σ’ (c) background estimates and the SdA method (d). For (b)-(d) the simulated
LR images were degraded with Poisson noise and additive Gaussian noise with a standard
deviation of 1000. (e)-(g) Quality metrics for images reconstructed using the three methods
for different levels of Gaussian noise. (e) SNR assessed within the blue rectangle in (a). (f)
Average contrast measured along the red lines in (a). (g) MSE in the green rectangle cropped
region of each reconstruction compared to the ground truth in (a).

4.2. Experimental results

To further test the performance of the SdAmethod, raw image sets were captured using an in-house
built FPM system composed of an array of 22× 22 addressable RGB LEDs (BTF-lighting),
an air immersion objective lens (4x/0.16, 10x/0.3 or 20x/0.45 – UPLSAPO4x, MPLFLN10x,
MPLFLN20x Olympus), a tube lens with a focal length of 200 mm (TTL200-A, Thorlabs Inc.)
and a digital camera (Iris 15, Photometrics) with 5056× 2960 4.25 µm pixels [22] (Fig. 6). All
images were acquired using µ-manager software with the switching of LEDs synchronized to the
global exposure period of the camera’s rolling shutter using a microcontroller (Arduino Uno).
Each image set contained 225 images captured under sequential illumination of the sample with
the LEDs arranged inside a filled circle of diameter 11.2 cm. With an exposure time of 100 ms,
the total acquisition time was slightly less than 30 seconds per image set.

After reconstruction an extended depth of field image was computed to optimally display 3D
information within a single 2D image, by numerical propagation of the recovered complex field
[22]. Due to wavefront curvature, a subset of raw images contained both BF and DF regions
within the same image. These images are particularly problematic from a background correction
/ denoising perspective and, as a result, were automatically detected and excluded from the image
set prior to reconstruction. With a sufficient spectral overlap between adjacent captured images
(as in our case) removing these images does not result in gaps in the recovered object spectrum.
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Fig. 6. Experimental FPM system used to generate image data to test background correction
methods. (left) schematic diagrams showing illumination from two different LEDs to
illustrate the displacement of the passband centre in the Fourier (pupil) plane of the objective
lens. (Right) photograph of the microscope.

Where the overlap between adjacent passband is not sufficient these hybrid BF/DF images can
be treated using approach described by Zhang et al. [20], in which the BF area in the captured
image is replaced by the corresponding DF area of the target image obtained from the updated
spectrum.

We tested the performance of SdA background correction on Giemsa stained peripheral blood
thin film samples taken from a patient infected with P. falciparum malaria parasites. Images
were captured using a 10x/0.3 objective lens at two different illumination wavelengths, 530 nm
and 632 nm. Figure 7 shows the results obtained using ‘mean’ (first row), ‘mean+ 3σ’ (second
row) and SdA (third row) background correction methods. Figure 7(a1)-(c1) shows raw DF
images at 632 nm captured at the maximum off axis illumination angle demonstrating how only
SdA (a3) is able to retain object information (yellow boxes) while effectively suppressing the
background in noisy images. Figure 7(a2)-(c2) and (a3)-(c3) show the reconstructions of the red
and green channels respectively, illustrating the differences in reconstruction quality for different
level of noise. The SNR is significantly higher in the green channel due to a combination of the
higher brightness of the green LEDs and the higher quantum efficiency of the camera at 530 nm.
Visually, SdA reconstructed images are free from the background associated artefacts apparent in
images reconstructed using ‘mean’ background subtraction. By retaining high spatial frequency
information, image sharpness is much improved compared to the ‘mean+ 3σ’ method. The figure
insets (red boxes in (a2)-(c3)) show how reconstruction artefacts prevent clear visualization of the
(spiculated) cell morphology. The fine projections from the cell are clearly visible in images
reconstructed using SdA (Fig. 7(c3)). Furthermore, the malaria parasites (dark dots in the blue
insets) are barely visible in images reconstructed using the ‘mean+ 3σ’ method, but are clearly
visible in SdA reconstructed images. Figure 7(a4)-(c4) show the corresponding logarithmic power
spectra of Fig. 7(a3)-(c3). For the ‘mean’ method (a4) a lot of energy is concentrated around the
edges of the nominal passband due to high-frequency noise artefacts in the reconstructed image.
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This signal is not present for the ‘mean+ 3σ’ method due to the aggressive background removal,
however almost all of the energy is concentrated at low frequencies due to loss of high frequency
information from the DF images. By contrast, images reconstructed using SdA (Fig. 7(c4))
display a gradual monotonic reduction in spectral power with increasing frequency as expected
for a natural HR image. To quantitatively assess the reconstruction quality, we estimated the
SNR and the spatial resolution for the three methods. The SNR (Fig. 7(d)) was measured for
the red and green channels in the background area, with results indicating an improvement of ∼
11dB and 7dB respectively using SdA compared to the ‘mean’ method. Figure 7(f) shows the
azimuthally averaged power spectra shown in Fig. 7(a4)-(c4). SdA maintains the spatial frequency
cut-off at 2 µm−1 and increases the contrast at intermediate to high spatial frequencies compared
to ‘mean+ 3σ’ background subtraction, whilst removing the spurious high frequency signals due
to noise in images reconstructed using ‘mean’ background subtraction (bump from 1 to 1.75
µm−1 in the blue curve). In terms of additional processing time, running the SdA algorithm on a
standard lab workstation added an average of 70 ms to the total reconstruction time for a series of
225 images, 200× 200 pixels in size.

Finally, we also applied SdA to reconstruct colour FPM images of different biomedical samples
acquired by sequential capture of raw image sets under illumination at 475 nm, 530 nm and 632
nm (Fig. 8). Lateral and axial chromatic offsets were corrected using lateral image registration
and post reconstruction refocusing [22] before the three colour channels were merged and
white balanced to yield an RGB colour image. Images were captured using different objective
lenses (depending on required field of view and spatial resolution). A 4x/0.16 lens was used
to acquire images of 5 µm thick haematoxylin and eosin stained liver tissue and ∼7 µm thick
May-Grűnwald-Giemsa stained bone marrow sections and 10x/0.3 and 20x/0.45 lenses were used
to image Giemsa stained peripheral blood films.
In all cases applying SdA significantly improves the quality of the reconstructed image.

Close-up views in Fig. 8 clearly show the characteristic high frequency speckle / orange peel
pattern superimposed on the image (top insets), which is completely absent when SdA is applied
(bottom insets). This enables a clearer visualisation of tissue morphology (Fig. 8(a1)). It also
improves visualisation of cellular morphology, as observed in Fig. 8(b2), where the spiculated
projections from the cell membrane are more clearly visible after denoising. Whilst less striking,
the edges of the cell highlighted in Fig. 8(c) are more clearly defined facilitating further analysis
such as segmentation. Close inspection of the denoised image in Fig. 8(a2) also reveals several
distinct spot-like structures which are masked by high frequency speckle in the noisy HR image.
Similarly in Fig. 8(b1) the cytoplasmic ring of the malarial parasite in the upper part of the cell is
only visible in the SdA reconstructed image. Such fine morphological features are of critical
importance for diagnostic applications [23].
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Fig. 7. Experimental comparison between results obtained using ‘mean’ (a), ‘mean + 3σ’ (b) 
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corresponding to the largest off axis illumination angle. Yellow boxes indicate the locations of 
pixels containing useful signals. HR reconstructions of the red (a2)-(c2) and green (a3)-(c3) 
channels. (a4)-(c4) Power spectra of reconstructed green channel amplitude images. (d) SNR of 
each reconstructed image. (e) Azimuthally averaged power spectrum of (a4)-(c4) illustrating the 
extent of the frequency support for images reconstructed using the different methods. 
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4x/0.16 lens was used to acquire images of 5 µm thick haematoxylin and eosin stained liver 
tissue and ~7 µm thick May-Grűnwald-Giemsa stained bone marrow sections and 10x/0.3 and 
20x/0.45 lenses were used to image Giemsa stained peripheral blood films. 

In all cases applying SdA significantly improves the quality of the reconstructed image. 
Close-up views in Fig. 8 clearly show the characteristic high frequency speckle / orange peel 
pattern superimposed on the image (top insets), which is completely absent when SdA is 
applied (bottom insets). This enables a clearer visualisation of tissue morphology (Fig. 8(a1)). 
It also improves visualisation of cellular morphology, as observed in Fig. 8(b2), where the 

Fig. 7. Experimental comparison between results obtained using ‘mean’ (a), ‘mean+ 3σ’
(b) and SdA (image series S4) (c) background correction approaches. (a1)-(c1) DF images
corresponding to the largest off axis illumination angle. Yellow boxes indicate the locations
of pixels containing useful signals. HR reconstructions of the red (a2)-(c2) and green
(a3)-(c3) channels. (a4)-(c4) Power spectra of reconstructed green channel amplitude images.
(d) SNR of each reconstructed image. (e) Azimuthally averaged power spectrum of (a4)-(c4)
illustrating the extent of the frequency support for images reconstructed using the different
methods.
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(synthetic) NA of 0.7. (b1) and (b2) were captured using 10x/0.3 and 20x/0.45 objective lenses 
with synthetic NAs of 0.9 and 1.15 respectively. (d) Raw brightfield images captured at normal 
incidence corresponding to each close-up view for comparison. 
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subtraction in raw FPM datasets and substantially improves the quality of reconstructed high-
resolution images. By removing the need for selection of a background noise threshold, which 
is required in many conventional background correction and denoising approaches, our (SdA) 
method obviates the traditional spatial resolution / artefact suppression trade-off in FPM that 
results from the low SNR of DF images captured at large illumination angles. We have shown 
through both simulated and experimental data that SdA removes background and noise-related 
image artefacts and increases the SNR of reconstructed images without the sacrifice of high 
frequency information, which results from overcorrection of the DF background; essential for 
the reconstruction of fine sample details such as cell morphology and the visualisation of 
small objects (such as malarial parasites). Implementation of SdA relies on a set of simple 
image processing operations and does not involve any modification to the classic FPM phase 
retrieval algorithm. As a result, the computational effort required is negligible and the method 
adds only a few tens of milliseconds to the overall image reconstruction time (which is 

Fig. 8. Comparison of colour reconstructions using SdA (right hand-side) and the global
‘mean’ (left hand-side) background removal. (a1−2) Liver tissue section. (b1−2) Thin blood
film. (c) Bone marrow section. (a1−2) and (c) were captured using a 4x/0.16 objective
lens with a reconstructed (synthetic) NA of 0.7. (b1) and (b2) were captured using 10x/0.3
and 20x/0.45 objective lenses with synthetic NAs of 0.9 and 1.15 respectively. (d) Raw
brightfield images captured at normal incidence corresponding to each close-up view for
comparison.

5. Conclusion

We have developed a conceptually simple method that efficiently performs background subtraction
in raw FPM datasets and substantially improves the quality of reconstructed high-resolution
images. By removing the need for selection of a background noise threshold, which is required in
many conventional background correction and denoising approaches, our (SdA) method obviates
the traditional spatial resolution / artefact suppression trade-off in FPM that results from the low
SNR of DF images captured at large illumination angles. We have shown through both simulated
and experimental data that SdA removes background and noise-related image artefacts and
increases the SNR of reconstructed images without the sacrifice of high frequency information,
which results from overcorrection of the DF background; essential for the reconstruction of fine
sample details such as cell morphology and the visualisation of small objects (such as malarial
parasites). Implementation of SdA relies on a set of simple image processing operations and
does not involve any modification to the classic FPM phase retrieval algorithm. As a result, the
computational effort required is negligible and the method adds only a few tens of milliseconds
to the overall image reconstruction time (which is typically around one minute). SdA relies only
on the data redundancy in the raw image set and requires no assumptions about the background
level or noise distribution, making it easily adaptable to any FPM platform. While demonstrated
for sequential capture, SdA can just as easily be applied to FPM data acquired using a spectral
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or spatial multiplexing illumination strategy. Most artefacts in reconstructed FPM images arise
from under or over estimation of the DF background (and associated noise). As a result we found
that further denoising of object pixels yielded no significant improvement in reconstructed image
quality and at far greater computational expense and execution time. By rapidly and effectively
removing artefacts whilst retaining real image information SdA enables fast, high resolution,
artefact free FPM imaging for a wide range of applications.
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