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Mutations in neuroligin-3 in male mice
impact behavioral flexibility but not
relational memory in a touchscreen test of
visual transitive inference
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Abstract

Cognitive dysfunction including disrupted behavioral flexibility is central to neurodevelopmental disorders such as
Autism Spectrum Disorder (ASD). A cognitive measure that assesses relational memory, and the ability to flexibly
assimilate and transfer learned information is transitive inference. Transitive inference is highly conserved across
vertebrates and disrupted in cognitive disorders. Here, we examined how mutations in the synaptic cell-adhesion
molecule neuroligin-3 (Nlgn3) that have been documented in ASD impact relational memory and behavioral
flexibility. We first refined a rodent touchscreen assay to measure visual transitive inference, then assessed two
mouse models of Nlgn3 dysfunction (Nlgn3−/y and Nlgn3R451C). Deep analysis of touchscreen behavioral data at a
trial level established we could measure trajectories in flexible responding and changes in processing speed as
cognitive load increased. We show that gene mutations in Nlgn3 do not disrupt relational memory, but significantly
impact flexible responding. Our study presents the first analysis of reaction times in a rodent transitive inference
test, highlighting response latencies from the touchscreen system are useful indicators of processing demands or
decision-making processes. These findings expand our understanding of how dysfunction of key components of
synaptic signaling complexes impact distinct cognitive processes disrupted in neurodevelopmental disorders, and
advance our approaches for dissecting rodent behavioral assays to provide greater insights into clinically relevant
cognitive symptoms.
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Introduction
Cognitive dysfunction is a core feature of neurodevelop-
mental disorders. Impairments in select cognitive compo-
nents such as behavioral flexibility or more flexible aspects
of learning and memory such as the ability to make rela-
tional links between separate memory traces that share
common elements (i.e., generalization) are central to neu-
rodevelopmental disorders such as autism spectrum dis-
order (ASD) and schizophrenia. Behavioral flexibility
refers to the capacity to modify behavior in response to

changes in environmental demands [64]. One cognitive
measure that assesses relational memory, and the ability
to flexibly assimilate and transfer learned information is
transitive inference. Transitive inference is a form of rea-
soning that is commonly assessed by training subjects on
a hierarchy of stimulus pairs, then testing the transfer of
these learned relations to novel pairs by inference from
the initial training (e.g., [29, 33]). For example, subjects
are trained on an overlapping series of premise stimulus
pairs such that the higher member of each pair is
rewarded (+) while the lower is not (−), implying a linear
hierarchy in reward contingency (e.g., A+B−, B+C−, C+D−,
D+E− implies A>B>C>D>E). At test, subjects are required
to infer the relations between novel pairings of these stim-
uli based on the training of the hierarchy (e.g., transitive
pair B>D compared to the easier non-transitive pair A>E).
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The capacity for transitive inference is highly conserved
across vertebrates, with a large body of literature showing
numerous species including humans, non-human primates,
rats, mice, corvids, pigeons, and fish display transitive infer-
ence [3, 6, 14, 29, 39, 57, 58, 71, 102]. Deficits in transitive
inference have been documented in brain disorders includ-
ing schizophrenia [21, 100], ASD [89], attention-deficit/
hyperactivity disorder [9], and Alzheimer’s disease [105].
Additionally, studies employing lesions, neuroimaging and
in vivo electrophysiology have shown that functional cir-
cuitry involving the prefrontal cortex and hippocampus is
essential for transitive inference in humans, non-human
primates and rodents [1, 10, 27, 29, 114]. Previous rodent
tests for transitive inference, predominantly in rats and
some in mice, have employed discrimination of odor stim-
uli [26, 27, 29]. Extending these odor-based paradigms, a
touchscreen test for transitive inference using visual stimuli
was developed in mice [87]. Although this study involved a
small sample size, the findings were promising and show-
cased the utility of an automated visual behavioral assay to
assess transitive inference in mice that addressed some
challenges associated with previous rodent paradigms (e.g.,
using odor as the stimulus modality, variability in hand-
testing, experimenter bias).
Modeling the complex cognitive processes impacted

in brain disorders using animal models is essential for
elucidating the biological basis of neurodevelopmental
disorders, and genetic rodent models are a predomin-
ant tool for these studies. Mutations in synapse genes
are increasingly highlighted as a hub for neurodeve-
lopmental disorders (e.g., [66]). In particular, human
mutations in the neuroligin (NLGN) family of genes
have been implicated in multiple neurodevelopmental
and psychiatric disorders, with the X-linked
neuroligin-3 (NLGN3) gene repeatedly documented in
ASD [37, 50, 56, 62, 85, 91, 95, 96, 98, 109, 111–113].
Nlgn3 is a postsynaptic cell-adhesion molecule located
at excitatory and inhibitory synapses, where it binds
the presynaptic partner neurexin to form trans-
synaptic protein complexes that govern synapse
specialization, function, and plasticity [15, 48, 95].
Two mouse models have been generated to examine
Nlgn3 dysfunction: (i) constitutive Nlgn3 knock-out
(Nlgn−/−) mice that have a complete loss of Nlgn3 pro-
tein expression, modeling loss-of-function mutations
[97]; and (ii) Nlgn3 arginine to cysteine point mutation
knock-in (Nlgn3R451C) mice recapitulating the same
mutation identified in two brothers with ASD [50].
The R451C mutation decreases Nlgn3 protein levels
by ~90% in the forebrain, results in defective traffick-
ing of Nlgn3 protein to the synaptic membrane and
impairs binding to presynaptic neurexin [19, 22, 97].
Male Nlgn3−/y and Nlgn3R451C mice display convergent
and divergent alterations in synaptic signaling and

plasticity across different brain regions and cell types,
thus the R451C mutation leads to loss- or gain-of-
function effects at different synapses [5, 30, 31, 44, 83,
97]. Both models also display behavioral abnormalities
or endophenotypes of relevance to ASD such as ab-
normal social and repetitive behaviors, although re-
sults across the two models have not always been
consistent, nor have results across different laborator-
ies studying the same model [18, 79, 83, 97].
Here, we aimed to investigate whether gene mutations

in Nlgn3 impact relational memory and behavioral flexi-
bility in a test for transitive inference. We first refined
and optimized a rodent touchscreen version of the tran-
sitive inference test for mice. Using our refined assay, we
next assessed transitive inference in Nlgn3−/y and
Nlgn3R451C mice. Deep analysis of our touchscreen be-
havioral data at a trial-by-trial level highlighted we could
measure changes in reaction time and show that mice
can transfer flexible behavioral strategies across serial
discriminations. Our data show that gene mutations in
Nlgn3 do not disrupt relational memory, but significantly
impact flexible responding and reaction time, suggesting
perturbed processing. These results enhance our under-
standing of how dysfunction of key molecular players at
postsynaptic signaling complexes selectively impact
discrete cognitive processes and contribute to elucidat-
ing the neurobiological basis of neurodevelopmental dis-
orders. These findings also advance our approaches in
refining and dissecting rodent behavioral assays to pro-
vide greater insights into complex cognitive processes.

Materials and methods
Animals
Male C57BL/6J mice were purchased from the Animal
Resources Centre (ARC) in Perth, Australia. One group
of C57BL/6J mice (n = 11, 10 weeks of age) were used
for the main optimization experiments, and a second
group (n = 6, 11 weeks of age) were used to test stimulus
bias. Cohorts of Nlgn3R451C and Nlgn3−/y mice were bred
in-house from colonies established with breeding foun-
ders. Nlgn3R451C mice (B6; 129-Nlgn3tm1Sud/J) were
originally obtained from Jackson Laboratories (Bar Har-
bor, ME, USA). Nlgn3−/y mice were obtained from Prof.
Nils Brose (Max Planck Institute for Experimental Medi-
cine, Göttingen Germany) generated by homologous re-
combination of embryonic stem cells deleting exon
sequences covering the translational start site and at
least 380 bp of 5’ coding sequence of the Nlgn3 gene
(described in [103] and backcrossed more than 10 gener-
ations to C57BL/6. Both Nlgn3R451C and Nlgn3−/y mice,
and their respective WT littermate matched controls
were generated by mating heterozygous females with
WT males. We specifically chose to not breed male
Nlgn3R451C/Nlgn3−/y mice to minimize potential
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confounds, including those associated with previous re-
ports of aggressive behavior. As Nlgn3 is an X-linked
gene, it was not possible to generate male and female
homozygous null mutant mice and littermate matched
WT offspring in the same litter. Additionally, the preva-
lence of ASD is thought to be higher in males. There-
fore, we focused our analysis on male mice for the
current study, for both the optimization and experimen-
tal aims.
To assess transitive inference, Nlgn3R451C (n = 16) and

littermate matched WT controls (n = 16), and Nlgn3−/y

(n = 15) and littermate matched WT mice (n = 15) were
tested using two smaller cohorts (~ 6–8 mice per geno-
type per cohort). Four mice were excluded due to poor
performance in training (see “Data analysis” section)
thus final numbers analyzed were Nlgn3R451C (n = 14),
Nlgn3−/y (n = 15), and WT controls (n = 29). Mice were
weaned at 3–4 weeks of age and housed in mixed geno-
type groups of 2–4 per cage with standard rodent chow
and water available ad libitum. Bedding consisted of
sawdust chips 2 cm deep and tissue paper for nesting
material. At ~10 weeks of age, mice were moved from
individually ventilated cages to open top cages into hu-
midity and temperature-controlled holding room main-
tained on a reversed 12:12-h light/dark cycle (lights off
at 07:00). Mice were acclimatized to these conditions for
a minimum of 1 week prior to handing. Pre-training
began at ~ 12 weeks of age, and all behavioral testing
was conducted during the dark active phase of the cycle,
between 07:45 and 12:00 with the experimenter blinded
to genotype during behavioral testing.

Transitive inference touchscreen testing
Apparatus
Training was carried out in standard Bussey-Saksida
mouse touchscreen chambers (Campden Instruments
Ltd., UK) (see [45, 69, 74]. The 2-hole mask (two 7 ×
7.5 cm windows separated by a 0.5 cm bar) was
placed in front of the screen to minimize uninten-
tional screen touches. Stimulus presentation and task
parameters were controlled by ABET II Touch soft-
ware driven using the Whisker Server Controller
(Campden Instruments Ltd., UK).

Pre-training
Mice were first food-restricted and pre-trained as de-
scribed previously [45, 69, 74]. In brief, mice were handled
and weighed on three consecutive days to establish a base-
line free-feeding weight, then gradually food restricted to
85–90% of free-feeding weight prior to commencing
touchscreen pre-training. Mice were maintained at this re-
stricted weight for the duration of the experiment and
weighed a minimum of 5 days/week. For 2 days prior to
commencing pre-training, mice were exposed to a small

amount of the liquid reward (strawberry milk, Devondale
3D, Australia) in their home cages.
Mice were first pre-trained through five progressive

phases for instrumental operant conditioning to learn to
correctly nose-poke stimuli displayed on the touchscreen
in order to obtain a liquid reward, as previously de-
scribed [45, 69, 74]. Mice were required to reach a set
performance criterion for each stage before advancing to
the next stage. In phase 1, mice were habituated to the
touchscreen chambers and to consuming the reward
from the reward receptacle by being placed in the cham-
ber for 30 min on 2 days and required to consume 200
μl of liquid reward freely available in the reward recep-
tacle. Animals were then exposed to phase 2 or the Pav-
lovian stage where a single visual stimulus (black and
white graphic) was displayed on the screen for 30 s, after
which, the disappearance of the stimulus coincided with
the presentation of a tone, illumination of the reward re-
ceptacle and delivery of the liquid reward (20 μl; criter-
ion = complete 30 pseudorandom first-presentation
trials (termed as a 'trial' from herein) within 60 min). If
mice nose-poked the stimulus before 30 s had elapsed,
mice were rewarded with 3 times the reward amount to
encourage responding to stimuli on the screen. For
phases 2–5, a trial did not advance until the reward was
consumed. Mice then had to nose-poke visual stimuli
that appeared on the screen to obtain a reward (phase 3,
criterion = complete 30 trials within 60 min), then to
initiate each new trial with a head entry into the reward
receptacle (phase 4, criterion = 30 trials within 60 min).
Animals then progressed onto the last pre-training phase
(phase 5) designed to discourage non-selective screen
responding where nose-poke responses at a blank part
of the screen during stimulus presentation now pro-
duced a 5 s timeout (signaled by illumination of the
house-light and no delivery of reward) (criterion = 21/30
correct responses to trials in 60 min on two consecutive
days). If another response to a blank part of the screen
during stimulus presentation was made, there was a 5 s
inter-trial interval (ITI), and then the same trial was re-
peated (the same stimulus presented in the same screen
location, termed a 'correction trial') until the mouse
made a correct response. Therefore phases 2–5 con-
sisted of 30 trials (pseudorandom first-presentation), and
phase 5 also included an unlimited number of correction
trials. Following successful pre-training, mice were
moved on to training for transitive inference.

Transitive inference training and test
To assess and measure transitive inference, which is a com-
plex cognitive process, we first employed a sequence of dif-
ferent stages of training (summarized in Table 1 and
described in detail below). During the optimization and re-
finement of the transitive inference test, we trialed several
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task schedule designs (detailed in Additional file 1: Table S1).
Here, we detail the final parameters established for the opti-
mized assay which we employed to assess Nlgn3−/y and
Nlgn3R451C mice (Table 1).
Following operant pre-training, transitive inference

training consisted of four stages. Each stage consisted of
presentations of pairs of two equiluminescent stimuli
(Fig. 2a) on the touchscreen (see [69]. Nose-poke re-
sponses to one stimulus from each pair (S+) were
rewarded, coinciding with the presentation of a tone, il-
lumination of the reward receptacle, and delivery of the
liquid reward (20 μl) followed by a 20-s ITI before the
next trial could commence. Responses to the other
stimulus (S−) were unrewarded and triggered a 5-s time-
out accompanied by illumination of the house-light, then
a 5-s ITI and a correction trial, where the same trial was
repeated until a correct response was made. The pos-
itional location of S+ presentation (left or right side of
the touchscreen) was pseudorandom. Mice were given
one daily training session (max. 60 min per session) 5–6
days a week.
Stage 1 was an introduction to the overlapping series

of stimulus pairs that were intended to facilitate flexi-
bility. It consisted of four sessions in total with one ses-
sion of each stimulus pair administered in order (one
session of A+B−, then B+C−, C+D−, and D+E−), and no
performance criterion for advancing to the next stage.
Stage 2 was stimulus pair discrimination learning that
required mice to learn the discrimination of each
stimulus pair in the series to a performance criterion of
≥ 79% correct responses within a session, as well as at
least one of the two previous (or successive) sessions at
≥ 65% correct responses, before advancing to learn the
discrimination of the next stimulus pair in the series.
The criterion of 80% performance accuracy is standard
for touchscreen visual discrimination learning in mice

(e.g., [45]). The additional ≥65% criterion on a flanking
session to ensure stable performance was employed as
this is the lowest score within the 95% confidence inter-
val (CI) for the set 80% criterion, and well outside the
95% CI for chance performance (Clopper-Pearson
“exact” method). Stimulus pairs were trained in order
(i.e., A+B− then B+C− then C+D− then D+E−). Following
successful discrimination learning of all four pairs in
stage 2, mice were advanced to two integration training
stages (stages 3 and 4). In stage 3 (serial integration),
the four stimulus pairs were presented and then re-
peated in order with 13 trials of each pair presented
within each session and performance criterion was ≥
70% correct responses within a session, or a maximum
of 15 sessions. Stage 4 (pseudorandom integration) was
the same except the four stimulus pairs were presented
in pseudorandom order with 13 trials of each pair pre-
sented within a session. In stages 1–4 correction trials
were given following each incorrect response.
Once mice completed all four stages of training, ani-

mals were given one transitive inference test session
which consisted of presentations of two novel pairs A>E
and B>D (20 trials of each pair) and the learned premise
pairs (A+B−, B+C−, C+D−, D+E−; 8 trials of each pair).
Trials of the novel and learned pairs were presented in
pseudorandom order and no correction trials were given.
No feedback (reward, lights, tone) was given for trials of
either novel pair, but correct responses to trials of previ-
ously learned premise pairs were rewarded the same way
as during training.
We were also interested to measure transitive inference

performance across 1–5 test sessions. Interestingly, we ob-
served that accuracy for the transitive novel pair B>D sig-
nificantly declined across sessions (main effect of session
p = 0.004, OR = 0.946, 95% CI = 0.911, 0.983). Therefore,
we decided to assess transitive inference performance in a

Table 1. Optimized design and schedule for our visual transitive inference touchscreen task in mice

Stage Design Trials/session Performance criterion

Training stage 1:
Stimulus exposure

Exposure to all stimulus pairs to facilitate flexibility: 1
session of each stimulus pair in order: A+B−; B+C−; C+D−;
D+E−

52 trials/
session;
Total 4
sessions

None

Training stage 2:
Premise stimulus
pair learning

Learning each pairwise discrimination to criterion in order:
A+B−; B+C−; C+D−; D+E−

52 trials/
session; until
criterion

≥ 41/52 correct (79% accuracy) in a session, plus one
of the two previous or successive sessions at ≥ 34/
52 correct (≥ 65% accuracy)

Training stage 3:
Serial integration

All stimulus pairs presented in serial order: A+ B−; B+ C−; C+

D−; D+ E− then sequence repeated with 13 trials of each
pair presented within a session

52 trials/
session; until
criterion

≥ 37/52 correct (≥ 70% accuracy) in a session or
max. 15 sessions (780 trials)

Training stage 4:
Pseudorandom
integration

All stimulus pairs (A+B−; B+C−; C+D-; D+E−) presented in
pseudorandom order with 13 trials of each pair presented
within a session

52 trials/
session; until
criterion

≥ 37/52 correct (≥ 70% accuracy) in a session or
max. 15 sessions (780 trials)

Transitive
Inference Test

20 unrewarded trials each of novel pairs AE and BD; 8 trials
each of the learned pairs (A+B−, B+C−, C+D−, D+E−); all pairs
presented in pseudorandom order within a session

72 trials/
session; 1
session

None
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single test session, in line with previous transitive infer-
ence protocols.

Data analysis
Four mice (WT n = 2; Nlgn3R451C n = 2) were excluded
as outliers from all data analyses: during stage 2, 3 mice
required more than 3 times the interquartile range above
the upper quartile (75%) of trials to reach criterion for
their genotype for any single stimulus pair, and one
mouse failed to learn all four stimulus pairs. Data were
collected using the ABET II Touch software and all stat-
istical analysis was performed using STATA v14.0 (Sta-
taCorp., TX, USA).

Analysis of summary measures
Performance on trials (pseudorandom first-presentation)
and correction trials was measured. Trials to reach cri-
terion, errors (incorrect responses) to reach criterion
and correction trials to reach criterion were collected as
summary measures for each mouse for pre-training and
stages 2–4 of transitive inference training.
Premise stimulus pair learning data in stage 2 violated

assumptions of normality and equal variance based on
visual inspection of Q-Q plots, Shapiro-WiIk tests, and
Levene’s test for homogeneity of variance. We therefore
used median regression to analyze significant effects of
genotype, stimulus pair, and session, as well as any inter-
action effects, as median regression does not assume a
normal distribution or homoscedasticity. Median regres-
sion models were bootstrapped x 500 to compute stand-
ard errors or had standard errors adjusted based on
treating each mouse as a cluster to account for repeated
measures as appropriate [67]. Median regression models
the association between a set of input variables and the
50th percentile of the outcome variable and estimates
differences in the median of the outcome variable be-
tween groups. Corresponding effect sizes are presented
as the difference in the median values of outcome vari-
able between groups (with corresponding 95% confi-
dence intervals) adjusted for the selected covariates.
Here, we use the term adjusted median difference
(aMD) to report the effect size in median regression
analyses.
Importantly, we detected no significant effects of col-

ony or cohort across any of our analyses. Data analysis
of WT littermate mice from our Nlgn3R451C and
Nlgn3−/y colonies showed no significant effects of colony
on any of our summary measures (trials, errors, or cor-
rection trials to criterion) or any of the more granular
measures (odds of correct response on first-presentation
or correction trials) across all four stimulus pairs during
training. Therefore, WT mice from both colonies were
pooled for all analyses.

Analysis of trial outcome
Binary outcome data (1 = correct, 0 = incorrect) were
collected for each trial completed by each mouse
across all training stages and the test session. Mixed-
effect logistic regression models with individual mice
treated as random effects were used to estimate effect
sizes of genotype, stimulus pair, session, and correc-
tion vs non-correction trial on trial outcome (correct
or incorrect). Logistic regression models are particu-
larly appropriate for examining touchscreen behavioral
data with binary outcomes as they allow investigation
of multiple effects across several levels of clustering,
e.g., subject, session, training stage, and genotype. In
addition, these and related models cope well with
non-normal, unbalanced (e.g., when mice reach per-
formance criterion after completing different numbers
of sessions), and heteroscedastic data. Effect sizes
from these models are expressed as the factor in-
crease/decrease in the likelihood of responding cor-
rectly (odds ratio, OR). The p value and 95%
confidence interval (CI) are reported along with the
OR to indicate the precision of the effect size esti-
mate. An OR of 1 indicates that the respective input
variable has no effect on the likelihood of a mouse
responding correctly. In comparison, ORs > 1 suggest
a numerically increased likelihood of a correct re-
sponse, while the entire 95% CI being > 1 is indicative
of a statistically significant increase in such a likeli-
hood. Similarly, ORs < 1 suggest a numerically de-
creased likelihood of correct responding, and the
entire 95% CI being below 1 is indicative of a statisti-
cally significant decrease.

Analysis of perseverative behavior
A perseveration index (PI) was calculated as per Brig-
man et al. [7] using the formula (total correction trials/
total errors). PI assesses perseverative or repetitive incor-
rect responding that occurs when a mouse continues to
make the same error following an incorrect response on
a pseudorandom first-presentation trial: it indicates the
average number of correction trials an animal requires
to correct each incorrect response [8]. The lowest pos-
sible PI score is 1 reflecting a single correction trial to
correct each incorrect response. PI was calculated for
each mouse for each session and measured across all
stages of training. PI analyses of stage 2 were restricted
to sessions of each stimulus pair when data points for at
least 70% of mice from each genotype were represented.
Due to the variable number of sessions mice required to
reach criterion on the pairs, this was 4 sessions of A+B−,
6 sessions of B+C−, 10 sessions of C+D−, and 11 sessions
of D+E−. Analyses of PI across learning in stage 2 were
conducted using median regression treating each animal
as a cluster.
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Assessment of TI performance
Accuracy across learned and novel pairs was assessed
using median regression treating each animal as a clus-
ter. In addition, trial outcome data for the TI test session
were analyzed using mixed-effect logistic regression
models as described previously. The difference from
chance level performance on the novel pairs A > E and
B > D was assessed using one-sample t tests set to a hy-
pothesized mean of 50% accuracy.

Analysis of reward history
To assess whether the raw reward histories of stimuli B
or D could explain the performance of TI in our study,
we calculated the number of rewarded selections (Nr)
and non-rewarded selections (Nn) each mouse made for
each stimulus across all trials of all training stages, in-
cluding correction trials. Based on previous studies, we
calculated the reward/non-reward ratio (Nr/Nn) for
stimuli B and D and then subtracted the ratio for B from
D to assess the difference [58, 60]. In addition, we calcu-
lated the ratio of rewarded choices for B:D across all tri-
als of training (NrB/NrD). Correlation analyses between
these measures and percentage accuracy at test were
performed using the Spearman rank correlation method.

Analysis of response and reward collection latencies
Response latencies were measured as the time taken to
make a response (correct or incorrect) to a stimulus on
the touchscreen following trial initiation. Correct and in-
correct latencies were assessed separately as per Horner
et al. [45]. For each correct response, the reward collec-
tion latency was measured as the time taken to collect
the reward following the correct screen touch. Visual in-
spection of response latency data revealed a skewed dis-
tribution with a long right tail: latencies were > 0.8 s,
mostly between 1 and 4 s, and rarely > 8 s (see Add-
itional file 1: Figure S3). Occasional instances of ex-
tremely long latencies (up to 146 s) were recorded, but
likely reflect a mouse engaging in other behaviors such
as grooming before responding. To assess response la-
tencies representing mice actively engaged in the task,
we restricted the analysis to response latencies < 15 s.
Latency analyses for stimulus pair learning (stage 2)
were performed using data from the first 7 sessions of
each stimulus pair due to some mice reaching criterion
and progressing after this. Latency analyses during the
final retention and integration stage (pseudorandom in-
tegration, stage 4) were performed using data from the
last five sessions immediately prior to the transitive in-
ference test session. Latency analyses were conducted
using median regression treating each animal as a cluster
and session as an independent variable [67].
For all our analyses at the trial level, the regression

models sufficiently account for repeated measures and

multiple comparisons. However, we note that a limita-
tion is that it was not always possible to correct for mul-
tiple statistical comparison in post hoc secondary
measures. We note that replication of these studies
would be ideal to strengthen our conclusions; however,
this is challenging given the complexity and extensive
behavioral training required by such studies. It should
be noted that for each experimental cohort (Nlgn3R451C

n = 16, WT littermate controls n = 16; Nlgn3−/y n = 15,
WT littermate controls n = 15), we independently
trained two smaller cohorts (~ 6–8 mice per genotype
per cohort) at different times, and found no significant
effects of cohort on any measures, suggesting our find-
ings are robust.

Results
Refining a touchscreen test for visual transitive inference
in mice
To assess transitive inference in mice using the rodent
touchscreen system, we designed our task based on the
method previously published by Silverman et al. [87], with
the aim to refine key parameters. Using C57BL/6J mice, we
first trialled a 5-stimulus pair (6-term: A>B>C>D>E>F,
Additional file 1: Figure S1A) version of the task that would
allow multiple transitive pairs to be tested (i.e., B>D, C>E,
B>E) to investigate symbolic distance effects previously de-
scribed in transitive inference studies in humans [2, 12], ro-
dents [102], and birds [6, 104]. In this first optimization
experiment, we also attempted a mixed-pair training proto-
col for stimulus pair learning (Additional file 1: Table S1).
We found that mice showed no learning or improvements
in performance accuracy on any of the stimulus pairs, even
after completion of 16 sessions (640 trials) of each stimulus
pair (80 sessions total) (Additional file 1: Figure S1B–F).
Importantly, however, we noted the perseverative index (PI,
measured as the number of correction trials per incorrect
response) decreased markedly after the first few sessions,
indicating the mixed-pair training method rapidly pro-
moted flexible responding even in the absence of discrimin-
ation learning (Additional file 1: Figure S1G).
We next trialed a serial stimulus pair training proto-

col consistent with Silverman et al. [87] in our second
optimization experiment, in which mice were given
sessions of a single pair until they reached the
performance criterion and then advanced to the next
pair in the series. Following successful discrimination
learning of all five stimulus pairs, we tested mice on
two integration stages (Additional file 1: Table S1).
Here, we found that although mice were able to learn
the discrimination of the five premise pairs when
trained serially (Additional file 1: Figure S1H), none of
the mice were able to complete the serial integration
stage (Additional file 1 Table S1), even after 35
sessions (1400 trials) of training, highlighting the
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complexity of a 6-term visual discrimination task in
mice. Therefore, in our third and last optimisation ex-
periment, we further modified the training protocol to
adopt a 4-stimulus pair (5-term) task using the serial
pair learning protocol established in our previous ex-
periment with modifications to performance criteria
for the serial and pseudorandom integration stages
(see “Materials and methods” section). Using this re-
fined protocol, we were successfully able to train mice
to discriminate the four premise pairs (Fig. 1a), then
complete two stages of integrated stimulus pair pre-
sentations (serial then pseudorandom) before being
tested for transitive inference. The transitive inference
test session contained trials of the novel stimulus pairs
A>E (non-transitive) and B>D (transitive), as well as
the previously learned pairs (A+B−, B+C−, C+D−, and
D+E−). We observed that C57BL/6J mice showed dis-
crimination for both the non-transitive pair A>E and
the transitive pair B>D above chance level (Fig. 1b),
consistent with previously published transitive infer-
ence performance in animal models. Moreover, dis-
crimination accuracy for A>E was greater than for
B>D as expected.
It is well understood that stimulus bias can have major

impacts on learning and flexible responding to visual
touchscreen tasks. In our first optimization experiment, we
indeed found suggestions of bias for some stimuli (perform-
ance on the first training session of each stimulus pair, Add-
itional file 1: Figure S2A). Therefore, we trialed two new
stimuli (flash and wheel) and tested discrimination learning
in a separate naive cohort of mice to confirm no differences
in stimulus preference (Additional file 1: Figure S2B). The

flash and wheel stimuli were therefore incorporated as part
of the optimized stimulus set for our final protocol (Fig. 2a).
To further validate this chosen stimulus set, analysis of WT
mice performance on the first exposure to each stimulus
pair (stage 1) in our final experiments described below
showed no bias for pairs A+B−, C+D−, or D+E− (Additional
file 1: Figure S2C). For the second pair B+C−, however, mice
were a little less likely than chance to select stimulus B. This
could be interpreted as a bias towards stimulus C or against
B, but we reasoned this was unlikely to be the case as we do
not see similar biases on pairs sharing those stimuli (A+B- or
C+D-). Therefore, this observed pattern more likely reflects
some learning within that first A+B− session which had the
least ambiguity in stimulus-reward contingencies, relative to
the exposure of subsequent pairs. Additionally, stimulus C
(diamonds) in our optimal set displayed no indication of bias
when assessed in our first optimization experiment (stimu-
lus F, Additional file 1: Figure S2A).

Normal operant and stimulus pair learning in Nlgn3R451C

and Nlgn3−/y mice
Having optimized our refined touchscreen test for transi-
tive inference, we next wanted to assess our two models,
Nlgn3R451C and Nlgn3−/y mice, on this task. All rodent
touchscreen tests involve a behavioral shaping phase to
pre-train naive mice through several operant learning
stages to accurately nose-poke stimuli displayed on the
touchscreen to obtain a reward. Both Nlgn3R451C and
Nlgn3−/y mice were able to complete the pre-training
phases at the same rate as WT littermate-matched con-
trols, indicating mutations in Nlgn3 do not impact simple
operant learning (Additional file 1: Table 2).

Fig. 1 Validation of our refined visual transitive inference task. a Trials to criterion during learning the 4 premise stimulus pairs. b Performance
accuracy (% correct responses) on transitive inference test session for A>E (non-transitive) and B>D (transitive). Correct performance above
chance on A>E (t = 3.541, p = 0.005) and B>D (t = 3.016, p = 0.013). Accuracy on A>E greater than B>D (t = 1.91, p = 0.043). Data presented as
means ± SEM. Dotted line indicates 50% accuracy (chance performance). # denotes significant difference from chance performance (#p < 0.05; ##p
< 0.01); * denotes significant difference between stimulus pairs (*p < 0.05)
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Fig. 2 Nlgn3−/y and Nlgn3R451C mice display normal premise stimulus pair learning. a Optimized visual stimuli used for premise stimulus pairs. b
Trials and c errors to criterion during discrimination learning for the 4 premise stimulus pairs (stage 2). Data presented as medians ± 95% CI. b
Mice required more trials to reach criterion on C+D− and D+E− than A+B− (C+D−: p < 0.001, aMD = 488.552, 95% CI = 370.371, 606.732; D+E−: p <
0.001, aMD = 407.035, 95% CI = 288.854, 525.215). c Mice made more errors to criterion on pairs B+C−, C+D−, and D+E− than A+B− (B+C−: p =
0.038, aMD = 51.241, 95% CI = 2.94, 99.540; C+D−: p < 0.001, aMD = 203.035, 95% CI = 154.735, 251.334; D+E−: p < 0.001, aMD = 153.379, 95% CI
= 105.080, 201.679). d Effect of genotype on the likelihood of responding correctly to trials (pseudorandom first-presentation) during premise pair
learning relative to WT (represented by dotted line; 1 = no difference to WT). A+B− (Nlgn3R451C: p < 0.001, OR = 1.69, 95% CI = 1.314, 2.165;
Nlgn3−/y: p = 0.009, OR = 1.379, 95% CI = 1.083, 1.755). B+C− (Nlgn3R451C p = 0.042, OR = 1.416, 95% CI = 1.013, 1.979). e Effect of stimulus pair on
the likelihood of responding correctly to trials during premise pair learning relative to A+B− (represented by dotted line; 1 = no difference to
A+B−). See Additional file 1: Table S3 for statistics. # denotes significant difference between stimulus pairs (#p < 0.05; ##p < 0.01). * denotes
significant difference between genotypes (*p < 0.05, **p < 0.01)
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We then trained Nlgn3R451C and Nlgn3−/y mice on our
optimized transitive inference task consisting of four
stages (Table 1), where they were first trained to dis-
criminate each stimulus pair in order (A+B−, B+C−,
C+D−, D+E−) (stages 1 and 2). We observed that both
Nlgn3 mutant mouse models required similar numbers
of trials compared to WT mice to reach the learning cri-
terion on the premise pairs (Fig. 2b). Although we found
no statistically significant differences between genotypes
in the trials taken to learn each stimulus pair, there was
a significant difference in the trials all mice required to
learn the different stimulus pairs, with pairs B+C−, C+D−,
and D+E- being harder to learn (more trials to acquire
discrimination) compared to the first pair A+B−. Add-
itionally, mice required more trials to learn the final two
pairs C+D- and D+E− compared to B+C−. A similar pat-
tern was observed for the number of incorrect responses
or errors to reach the learning criterion for the four
stimulus pairs; there were no genotype differences be-
tween Nlgn3R451C, Nlgn3−/y, and WT mice; however, all
mice made significantly more errors to learn pair B+C−

compared to pair A+B−, and more errors to learn C+D−

and D+E− than B+C− (Fig. 2c). In contrast to the trials to
reach the learning criterion, mice made fewer errors
learning the final pair D+E− compared to pair C+D−. Col-
lectively, these data indicate that mice find learning add-
itional overlapping stimulus pairs more challenging as
the number of stimulus pairs increased, suggesting a
progressive increase in cognitive load as each pair was
acquired.
We extended the data analysis of stimulus pair learn-

ing (stage 2) to more deeply examine performance at the
level of each trial (pseudorandom first-presentation)
using logistic regression to measure (i) the likelihood of
Nlgn3R451C and Nlgn3−/y mice making a correct response
compared to WT mice (effect of genotype) and (ii) the
likelihood of mice making a correct response on subse-
quent stimulus pairs relative to the first pair A+B− (effect
of stimulus pair). There was a significant pair x genotype
interaction (p < 0.001) on the likelihood of making a
correct response, so we assessed differences between ge-
notypes for each stimulus pair separately. For pair A+B−,
both Nlgn3R451C and Nlgn3−/y mice were significantly
more likely to correctly respond than WT mice, indicat-
ing enhanced accuracy during discrimination learning of
the first pair (Fig. 2d). For the second pair B+C−,
Nlgn3R451C mice were still more likely to respond accur-
ately than WT mice, but this was not observed for
Nlgn3−/y mice. In comparison, for the latter stimulus
pairs C+D− and D+E− that required more trials to learn
the discrimination, there were no differences between
genotypes on the likelihood of correct responding. The
small but significant increase in accurate responding for
Nlgn3R451C and Nlgn3−/y mice evident in this analysis

highlights the increased sensitivity gained from using a
trial level measure to detect differences in accuracy com-
pared to the summary measure of total trials required to
reach a learning criterion. In addition to the genotype ef-
fects, there were significant effects of stimulus pair on
the odds of correct responding for all genotypes: mice
were less likely to make a correct response in trials while
learning pairs B+C−, C+D−, and D+E− compared to pair
A+B− (Fig. 2E, Additional file 1: Table S3), indicating the
likelihood of making a correct response reduced as task
load increased, consistent with our findings on the trials
taken to learn stimulus pairs.

Mutations in Nlgn3 impact flexible responding
During stimulus pair learning, when mice made an incorrect
response to a trial (pseudorandom first-presentation), a cor-
rection procedure (correction trial) followed whereby the
same trial was repeated until a correct choice was made.
Correction trials are used in most touchscreen learning tests
to counteract potential stimulus position bias, ensure ani-
mals receive a consistent number of rewards per session and
facilitate learning [16, 45]. When we assessed the total num-
ber of correction trials animals made to reach the learning
criterion across stimulus pairs, we found Nlgn3R451C mice
required marginally fewer correction trials compared to WT
mice (Fig. 3A), but this was not observed in Nlgn3−/y mice.
There was also a significant difference between stimulus
pairs, with all mice making significantly more correction er-
rors learning stimulus pairs B+C−, C+D−, and D+E− com-
pared to the first stimulus pair A+B− (Fig. 3A).
To measure flexible responding, a perseveration index

(PI) (correction trials/incorrect responses) was calculated
for each mouse per session to provide a dynamic meas-
ure of perseverative incorrect responding independent of
trials taken to reach the learning criterion on each
stimulus pair. We found significant interaction effects
between genotype, stimulus pair, and session on PI
(Nlgn3R451C × pair, p < 0.001; Nlgn3−/y × pair, p = 0.026;
pair × session, p < 0.001). We therefore analyzed the ef-
fects of genotype and session on PI for each stimulus
pair separately using median regression. All mice be-
came less perseverative as training sessions progressed
on each pair (Additional file 1: Table S4) but mutations
in Nlgn3 significantly altered perseverative responding.
Strikingly, both Nlgn3R451C and Nlgn3−/y mice had sig-
nificantly lower PIs compared to WT mice for the early
stimulus pairs A+B− and B+C− (Fig. 3B, C) where sensi-
tivity for detection in PI changes is the highest. There
were no significant differences between genotypes for
C+D− (Fig. 3D) but Nlgn3−/y mice continued to show
lower PIs for D+E− (Fig. 3E).
Investigating the data more deeply, we also examined

perseveration at the level of each trial using logistic re-
gression to analyze the likelihood of making a correct
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response to correction trials, where a higher odds ratio
(OR) value indicates a greater likelihood of a correct
choice and therefore reduced perseveration. There was a

significant stimulus pair × genotype interaction (p <
0.001), so we analyzed the data by genotype and stimu-
lus pair separately. Nlgn3R451C and Nlgn3−/y mice were

Fig. 3. Nlgn3−/y and Nlgn3R451C mice show altered behavioral flexibility and perseverative behavior. a Total correction trials to criterion during
discrimination learning for the 4 premise stimulus pairs (stage 2). Nlgn3R451C: p = 0.024, aMD = − 75, 95%, CI = − 139.88, − 10.13; Nlgn3−/y: p =
0.752, aMD = − 12, 95%, CI = − 86.85, 62.85. Relative to A+B− (B+C−: p < 0.001, aMD = 257, 95%, CI = 217.025, 296.975; C+D−: p < 0.001, aMD =
368, 95% CI = 256.102, 479.899; D+E−: p < 0.001, aMD = 180, 95% CI = 125.529, 234.471. Data presented as medians ± 95% CI. Perseverative index
in stage 2 for b A+B−, c B+C−, d C+D−, and D+E−. A+B− (Nlgn3R451C: p < 0.001, aMD = − 0.425, 95% CI = − 0.605, − 0.246; Nlgn3−/y: p = 0.001, aMD
= − 0.231, 95% CI = − 0.366, − 0.096). B+C− (Nlgn3R451C: p = 0.001, aMD = − 0.708, 95% CI = − 1.112, − 0.304; Nlgn3−/y: p = 0.010, aMD = − 0.472,
95% CI = − 0.828, − 0.116. D+E− (Nlgn3−/y: p = 0.029, aMD = − 0.097, 95% CI = − 0.184, − 0.009). Data presented as median ± 95% CI. a–e Median
regression treating each animal as a cluster, and genotype and session as independent variables. f Effect of genotype on the likelihood of
responding correctly to correction trials during stimulus pair learning relative to WT mice (represented by dotted line; 1 = no difference to WT).
A+B− (Nlgn3R451C: p < 0.001, OR = 1.909, 95% CI = 1.3542, 2.364; Nlgn3−/y: p = 0.010, OR = 1.296, 95% CI = 1.064, 1.578). B+C− (Nlgn3R451C: p =
0.002, OR = 1.701, 95% CI = 1.220, 2.371; Nlgn3−/y: p = 0.014, OR = 1.500, 95% CI = 1.085, 2.074). C+D− (Nlgn3−/y: p = 0.020, OR = 1.197, 95% CI =
1.029, 1.393). D+E− (Nlgn3−/y: p = 0.004, OR = 1.298, 95% CI = 1.086, 1.551). g Representative plot of % correct response (grey points plotted on
left Y axis) and perseveration index (black dotted points plotted on right Y axis) for every session for each premise pair (stage 2). Data represent
raw values from one WT mouse. h Effect of pair on the likelihood of responding correctly to correction trials relative to A+B− during premise pair
learning (represented by dotted line, 1 = no difference to pair A+B−). See Additional file 1: Table S5 for statistics. f–h Data presented as odds ratio
± 95% CI, logistic regression with individual animals as random effects and session as independent variable. # denotes significant difference
between stimulus pairs (#p < 0.05; ##p < 0.01). * denotes significant difference between genotypes (*p < 0.05, **p < 0.01). a = Nlgn3R451C

significantly different to WT, b = Nlgn3−/y significantly different to WT
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more likely to respond correctly to correction trials on
stimulus pairs A+B− and B+C− than WT mice (Fig. 3G),
consistent with our PI results of decreased perseverative
responding. Nlgn3−/y mice remained more likely to re-
spond accurately to correction trials on stimulus pairs
C+D− and D+E−, however, this was not significant for
Nlgn3R451C mice.
One might expect that PI would be inversely linked to

accuracy; as animals learn and respond more accurately
to the rewarded stimulus (S+) across training sessions,
their PI scores would decline, reflecting reduced persev-
erative responding to the unrewarded stimulus (S−). Our
data for the first two stimulus pairs are consistent with
this idea: accurate responding increased while persevera-
tive responding decreased as animals learned the A+B−

discrimination, and there was a marked drop in accuracy
concurrent with a sharp increase in PI when animals
transitioned from A+B− to B+C− (Fig. 3G). However,
examining the subsequent transitions in learning the lat-
ter stimulus pairs revealed a dissociation between accur-
acy and PI. While performance accuracy continued to
drop to ~ 50% when animals transitioned to pairs C+D−

and D+E−, the concurrent increases in PI were modest
and continued to reduce in magnitude compared to that
observed with B+C−. This resulted in a progressive re-
duction in PI across pairs B+C− to D+E− observed across
all genotypes (Fig. 3B–E). This pattern suggests that
mice not only show greater flexible responding with in-
creased training on one stimulus pair discrimination but
that they are able to transfer this flexible behavior when
challenged with having to subsequently learn new over-
lapping discriminations.
To assess the ability to transfer flexible behavior, we mea-

sured the likelihood of making correct responses on correc-
tion trials (thus inversely representing the likelihood of
perseverative incorrect responding) on latter pairs relative
to A+B-. This analysis revealed insightful trajectories dis-
played by all mice (irrespective of genotype) which were
strongly impacted by stimulus pair order, in line with the
pattern we observed in PI. As shown in Fig. 3H (data in
Additional file 1: Table S5), the likelihood of correctly
responding to correction trials was strikingly low for pair
B+C− relative to A+B− or any other pair for all genotypes,
indicating a dramatic increase in perseverative responding
for pair B+C− relative to A+B−. This was followed by an up-
ward trajectory in the likelihood of correctly responding to
correction trials. This likelihood increased for pair C+D− to
be similar to pair A+B−, although WT and Nlgn3R451C mice
remained more perseverative on pair C+D− compared to
A+B−. Subsequently, by the time mice transitioned to learn-
ing D+E−, the likelihood of correctly responding to correc-
tion trials was greater relative to the first pair A+B− for WT
and Nlgn3−/y mice. These results indicate that (i) persevera-
tive incorrect responding decreased for each subsequent

discrimination from pairs B+C− to D+E−, and (ii) the rate of
this decline was so significant that mice showed greater
flexibility in adaptive responding when learning the final
stimulus pair D+E- than the first A+B− pair discrimination.
Importantly, a similar upward trajectory in the likelihood of
correct responding across pairs B+C− to D+E− was not evi-
dent for pseudorandom first-presentation trials (Fig. 2E),
highlighting that this effect was specific to perseveration
(correction trials). These findings in PI and correction trials
are in line with our results from the optimization experi-
ments showing increased flexible responding can occur in-
dependently of improvements in discrimination learning
performance accuracy, further supporting our approach to
incorporate presentations of all stimulus pairs early in train-
ing to promote flexibility (stage 1, see Additional file 1: Fig-
ure S4). Additionally, the progressive increase in flexible
responding with increased training likely contributes to
why differences between genotypes were most evident dur-
ing the discrimination learning of the early stimulus pairs;
these represent a more sensitive window to detect changes
in flexibility in comparison to the latter stimulus pair dis-
criminations when mice converge towards an optimal level
of correction trial performance with minimal perseveration.
Collectively, these findings support that acquiring a “rule”
or response strategy that promotes behavioral flexibility can
be generalized to benefit subsequent performance under
overlapping conditions.

Nlgn3 mutations do not impact transitive inference and
relational memory
Following discrimination learning of the four premise
pairs of stimuli (stages 1 and 2), mice were exposed to
two further integration training stages where all
stimulus pairs were presented in serial order (stage 3)
and then pseudorandom (stage 4) within a session
until a performance criterion was reached. Both
Nlgn3R451C and Nlgn3−/y mice showed no differences
in performance as measured by the trials taken to
complete these stages (Additional file 1: Table S6). To
assess retention of the learned pairs, we analyzed per-
formance accuracy on all stimulus pairs during the last
five sessions of the pseudorandom integration stage
(stage 4) prior to being tested for transitive inference.
We identified no statistically significant effect of geno-
type on performance accuracy, however, all mice were
more accurate on the end stimuli pairs (A+B− and
D+E−) compared to the middle pairs (B+C− and C+D−),
resulting in the characteristic “U-shaped” pattern of
accuracy for the premise pairs (Fig. 4A) indicative of
the serial position effect described in previous transi-
tive inference studies [26, 29]. Median regression ana-
lysis indicated accuracy on the middle stimulus pairs
(B+C− and C+D−) was significantly lower than for the
end pairs (A+B− and D+E−), accuracy on C+D− was
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significantly greater than B+C−, and performance ac-
curacy on the last stimulus pair D+E− was marginally
higher than the first stimulus pair A+B−.
We next administered the test session to assess transi-

tive inference. This contained trials of novel stimulus pairs
A>E (non-transitive) and B>D (transitive), as well as previ-
ously learned premise pairs (A+B−, B+C−, C+D−, D+E−).
Median regression analysis of performance accuracy on
the four premise pairs revealed all mice displayed a “U-
shaped” serial position curve pattern, like that observed
during the pseudorandom integration stage (Fig. 4B) with
no significant differences between genotypes or inter-
action effects identified. Like the preceding pseudorandom
integration stage, mice were less accurate on stimulus pair
B+C− compared to all other pairs. We did note the transi-
tive inference test session results were more variable, most
likely due to the smaller number of trials available for ana-
lysis from this single test session compared to the five ses-
sions used for the retention analysis on the pseudorandom
integration stage. We extended the transitive inference
test session analysis using logistic regression to measure
the likelihood of accurate responding at the trial level for
each stimulus pair. We again found no differences be-
tween genotypes nor any genotype × stimulus pair inter-
action but observed significant effects of stimulus pair. All
mice were most likely to correctly respond to trials of pair
D+E−, then A+B−, compared to the two middle pairs
(B+C− and C+D−) (see Additional file 1: Table S7 for statis-
tics). In line with performance accuracy, mice were least
likely to respond correctly to trials of pair B+C− compared
to all other stimulus pairs (Fig. 4B).
Performance analysis on the novel non-transitive pair A>E

and the novel transitive pair B>D revealed no significant
differences between genotypes, indicating Nlgn3R451C and

Fig. 4 Stimulus pair retention and transitive inference is intact in
Nlgn3−/y and Nlgn3R451C mice. Performance accuracy (% correct
responses) on the 4 premise pairs during a pseudorandom
integration (stage 4, last 5 sessions) and b transitive inference test
session. a Relative to A+B−, B+C−: p < 0.001, aMD = − 0.205, 95% CI =
− 0.254, − 0.156; C+D−: p < 0.001, aMD = − 0.082, 95% CI = − 0.121,
− 0.043). C+D− greater than B+C− (p < 0.001, aMD = 0.123, 95% CI =
0.082, 0.165. D+E− marginally higher than A+B− (p = 0.043, aMD =
0.045, 95% CI = 0.001, 0.088. B B+C− compared to all other pairs
(A+B−: p = 0.007, aMD = − 0.25, 95% CI = − 0.432, − 0.068; C+D−: p =
0.002, aMD = − 0.25, 95% CI = − 0.410, − 0.090; D+E−: p < 0.001, aMD
= − 0.375, 95% CI = − 0.582, − 0.168). Median regression with
genotype and stimulus pair as independent variables, and each
animal treated as a cluster. b See Additional file 1: Table S7 for
statistics. c Accuracy on A>E (non-transitive) and B>D (transitive)
during transitive inference test (dotted line indicates chance
performance; AE>chance t(57) = 22.44, p < 0.001; BD>chance t(57) =
3.98, p < 0.001). Data points plotted for each mouse, data represent
median ± 95% CI. # denotes significant difference between stimulus
pairs (#p < 0.05, ##p < 0.01, a = lower than A+B−, b = higher than
B+C−, c = higher than A+B-); * denotes significant difference from
chance (50% accuracy) (*p < 0.05, **p < 0.01)
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Nlgn3−/y mice display normal relational memory and are
able to perform transitive inference. All mice showed the ex-
pected pattern of greater discrimination accuracy on the
non-transitive pair A>E compared to the transitive pair B>D
(Fig. 4C, median regression p < 0.001, adjusted median
difference (aMD) = 0.25, 95% CI = 0.213, 0.287), with per-
formance accuracy on both pairs above chance level. Further
analysis using logistic regression to examine the likelihood
of accurate responding at the trial level showed the same
pattern where all mice were more likely to make a correct
response to the non-transitive pair A>E compared to the
transitive pair B>D (p < 0.001, OR = 0.271, 95% CI = 0.224,
0.329).
Several explanations of transitive inference have

been proposed in which accurate selection of B>D can
be due to stimuli B and D acquiring differing associa-
tive values over many trials of training due to the spe-
cific reinforcement history of the stimuli [33, 34, 108].
Simple reinforcement-based explanations for the
choice of B>D include that rewarded responses to B+

and D+ may be unequal, or an animal may make fewer
unrewarded responses to B− (in the context of A+ B−)
than to D− (in the context of C+D−), due to the unam-
biguous reward association of A+ [108]. Simple mea-
sures of reinforcement history alone have been shown
to be insufficient to account for transitive inference
performance across the variety of training and testing
conditions in which it occurs [58, 59, 92], although
more complex reinforcement-based models make pre-
dictions that align well with animal performance (e.g.,
[34]). An experiment involving extended training on
D+E− intended to boost positive association of D+

above B+ showed animals were still able to correctly
select B>D following this intervention, suggesting
mechanisms other than raw reinforcement history
contribute to transitive inference performance [60].
Based on the method by Lazareva and colleagues
(2012), we calculated the ratio of rewarded choices for
B:D, as well as the difference between the ratio of
rewarded to non-rewarded selections between stimuli
B and D, based on all trials across all stages of train-
ing. We found no significant correlation between ei-
ther of these and performance on pair B>D in the
transitive inference test session, suggesting differences
in reinforcement history overall do not account for
the selection of B>D by mice in our study (data not
shown).
Performance of transitive inference has also been sug-

gested to correlate with memory for the learned premise
pairs, and indeed several studies have shown this for ac-
curacy on pair B>D [12, 24, 63]. To assess whether this
was the case in our study, we examined whether per-
formance accuracy on the learned pairs could explain
performance accuracy on the novel pairs B>D or A>E in

the test session. In contrast to previous work, we found
no significant correlation between accuracy on the
learned pairs and accuracy on pair B>D for mice in our
study (data not shown). We did, however, observe a
small but significant correlation between accuracy on
the learned premise pairs and accuracy on the non-
transitive pair A>E (rs = 0.270, p = 0.040).

Processing speed is altered in Nlgn3R451C and Nlgn3−/y

mice
In addition to measuring performance accuracy (correct
vs incorrect responding), we were interested to examine
in-depth the latency measures captured during responding
in our touchscreen test. Reaction times are often assessed
in human cognitive tests and show changes with increased
processing demands of the response [41, 81]. Several la-
tency measures can be calculated in the rodent touchsc-
reen system, including latency to respond (time taken to
make a correct or incorrect response following stimulus
presentation) and reward collection latency (time taken to
collect reward following a correct response).
We first focused on analyzing correct and incorrect re-

sponse latencies to trials (pseudorandom first-presentation)
during stimulus pair learning (stage 2). We observed mul-
tiple interaction effects (p = 0.015 for pair × Nlgn3−/y geno-
type; p = 0.002 for pair × correct response); therefore,
employed median regression analysis to assess the effect of
genotype on response latencies for each stimulus pair separ-
ately. When learning to discriminate the first stimulus pair
A+B−, both Nlgn3R451C and Nlgn3−/y mice took significantly
longer to make correct (Fig. 5A) and incorrect (Fig. 5B) re-
sponses compared to WT mice (Additional file 1: Table
S8A). Nlgn3R451C mice continued to take longer to make
correct responses while learning the next stimulus pair
B+C−, but not incorrect responses. In comparison, for stimu-
lus pair B+C−, Nlgn3−/y mice showed no significant differ-
ences in response latencies to either correct or incorrect
choices. Similarly, we did not find significant differences in
response latencies between genotypes while learning stimu-
lus pairs C+D− or D+E−.
This data also revealed a convex pattern in response

latencies as mice progressed through learning the
stimulus pairs, similar to an inverted serial position
curve, suggesting that response latencies were dynamic-
ally impacted by the transitions to each new stimulus
pair, and may therefore reflect the difficulty or demands
on cognitive processing associated with learning a
series of overlapping discriminations (Fig. 5A, B). All
mice took significantly longer to make correct and in-
correct choices for pair B+C− compared to the first pair
A+B− (Additional file 1: Table S8B). This behavior per-
sisted for WT mice as they learned subsequent pairs,
where both correct and incorrect response latencies
were longer for pairs C+D− and D+E− than for A+B−.
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Fig. 5 (See legend on next page.)
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Similarly, Nlgn3R451C mice took longer to make correct
and incorrect choices on the latter pairs C+D−, and on
correct (but not incorrect) responses for pair D+E− than
for A+B−. In contrast, Nlgn3−/y mice had similar re-
sponse latencies (correct and incorrect) on stimulus
pairs C+D− and D+E− relative to pair A+B−, possibly be-
cause their initial response latencies while learning the
first pair were significantly longer than WT mice, and
thus their response latencies became similar to WT
mice as they learned successive pairs. In contrast to the
dynamic changes in response latencies, reward collec-
tion latencies during stimulus pair learning remained
relatively stable, with no significant differences between
genotypes (Fig. 5C). These data highlight the specificity
of the observed changes in response latencies in
Nlgn3R451C and Nlgn3−/y mice and strongly suggest the
changes in reaction time are not simply driven by a
general change in locomotor speed or activity.
Extending this analysis, we were interested to understand

whether there might be differences between response laten-
cies during the final pseudorandom integration stage (stage
4) compared to initial pair learning (stage 2). We were also
interested to know whether latencies during stage 4 would
correlate inversely with accuracy, which might be expected if
more difficult discriminations required greater processing.
We therefore assessed correct and incorrect response laten-
cies during the last five sessions of pseudorandom integration
training (stage 4). Regression analyses did not identify differ-
ences in response latencies between genotypes for any of the
stimulus pairs when analyzed separately, in contrast to our
findings for stimulus pair discrimination learning (stage 2).
However, similar to stage 2, all mice took longer to respond
to pair B+C− and the latter pairs (C+D−, D+E−) compared to
A+B, but the inverted “U-shaped” pattern was absent. Cor-
rect response latencies were similar for pairs B+C and C+D−

and longest for pair D+E− compared to all other pairs (Fig.
5D, Additional file 1: Table S9A) despite performance accur-
acy on D+E− being the highest during pseudorandom
integration training (Fig. 4A). A similar, but less pronounced,
pattern was observed for incorrect responses (Fig. 5e,
Additional file 1: Table S9B). These results show that the re-
quirement to integrate multiple overlapping pairs in the
same session and/or extended training impacts response

latencies in our transitive inference task. While we observed
that response reaction times during initial learning of the
stimulus pairs were inversely correlated with performance
accuracy and differentially impacted by Nlgn3mutations, this
pattern was no longer evident later on during the final ses-
sions of integration training.
Lastly, when we examined response latencies during

transitive inference testing, we observed WT and
Nlgn3R451C mice had significantly longer response laten-
cies for the more difficult transitive pair B>D compared
to the easier non-transitive pair A>E, with Nlgn3−/y mice
displaying a similar trend (p = 0.065) (Fig. 5F). These
data are consistent with a correlation between response
latencies and cognitive load or processing demands dur-
ing the transitive inference test session, which aligns
with similar findings in other tasks [94, 106].

Nlgn3R451C and Nlgn3−/y mice display hyperactivity during
habituation to the touchscreen chambers
Previous studies have reported hyperactivity in both
Nlgn3R451C and Nlgn3−/Y mice [52, 79, 83]. As motor
function can impact performance in cognitive assays, we
assessed spontaneous locomotor activity when we first
exposed mice to the touchscreen chambers during the
habituation pre-training stage. Locomotor and explora-
tory activity were measured by infrared beam breaks at
the front and back of the chambers, and nose-pokes
made inside the reward receptacle. There were no differ-
ences in the number of exploratory nose-pokes into the
reward receptacle between WT, Nlgn3R451C, and
Nlgn3−/y mice (Fig. 5G). However, both Nlgn3R451C and
Nlgn3−/y mice displayed greater numbers of beam breaks
within the chamber (front and back) compared to WT
mice (Fig. 5G), consistent with the hyperactive pheno-
type previously reported in both Nlgn3 mutant models.
These data are particularly interesting given that
Nlgn3R451C and Nlgn3−/y mice display an opposing
slower response latency phenotype during our task train-
ing. Importantly, these results further highlight the spe-
cificity of the observed changes in response latencies in
Nlgn3R451C and Nlgn3−/y mice during our task acquisi-
tion and suggest this may reflect changes associated with
cognitive load and processing speed.

(See figure on previous page.)
Fig. 5 Response and reward collection latencies in Nlgn3R451C and Nlgn3−/y mice.a Correct and b incorrect response latencies, and c reward
collection latencies discrimination learning for the 4 premise stimulus pairs (stage 2). a–b See Additional file 1: Table S8 for statistics. d Correct
and e incorrect response latencies during pseudorandom integration (stage 4, last 5 sessions). See Additional file 1: Table S9 for statistics. F
Correct response latencies for A>E (non-transitive) and B>D (transitive) during transitive inference test session (WT: p = 0.002, aMD = 0.324, 95%
CI = 0.120, 0.528; Nlgn3R451C: p < 0.001, aMD = 0.441, 95% CI = 0.253, 0.629; Nlgn3−/y: p = 0.065, aMD = 0.165, 95% CI = − 0.010, 0.340). a–f Data
presented as median ± 95% CI. g Total infrared beam breaks in the reward receptacle and chamber (front and back beams) during habituation to
the touchscreen chambers in pre-training. One-way ANOVA F(2, 60) = 16.17, p < 0.01; post hoc Bonferroni correction for multiple comparisons; WT
to Nlgn3R451C p < 0.001, WT to Nlgn3−/y p = 0.006). Data presented as mean ± SEM. * denotes significant differences between genotypes (*p <
0.05; ** p < 0.01); # denotes significant differences between pairs (##p < 0.01, #p < 0.05); a = difference from pair A+B−, b = difference from pair
D+E−. Horizontal grey bands added to aid visual comparison
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Limitations
Similar to that previously reported [87], our refined
protocol still requires lengthy training due to its com-
plexity and appears to be more difficult for mice to ac-
quire compared to odor-based transitive inference
paradigms, which might be expected given the etho-
logical priority of olfaction over vision as a sense in
mice. We were also unable to successfully develop a
more complex version of the visual transitive inference
test for mice (5-pair, 6-term) which may have allowed a
greater dissection of measures such as the symbolic dis-
tance effect commonly assessed in human and non-
human primate tests of transitive inference [2, 68]. A
general consideration facing rodent transitive inference
tasks is whether the same mechanisms underlie perform-
ance across species, and we discuss this in more detail in
the conclusion section below. Lastly, we did not assess
female Nlgn3R451C and Nlgn3−/− mice due to the differ-
ent and therefore extended breeding strategy that would
have been required to generate cohorts of both male and
female mutant mice and respective WT littermates. Al-
though ASD is currently thought to be more prevalent
in males, the importance of assessing both male and fe-
male mice in disease models is critical.

Conclusions
This study represents the most comprehensive analysis of
a visual transitive inference task in rodents, and the first
to assess transitive inference in two mouse models with
mutations in the same disease-relevant gene. We first
established a refined task to assess transitive inference in
mice using visual stimuli in the rodent touchscreen sys-
tem. We show that C57BL/6J mice can acquire our task
and accurately discriminate the transitive stimulus pair
B>D, and the non-transitive pair A>E, in line with previ-
ous literature. Employing our refined task, we found that
both Nlgn3R451C and Nlgn3−/y mice and their WT litter-
mates exhibit normal transitive inference. We were able to
show that all mice displayed the “U-shaped” serial position
curve pattern of discrimination accuracy, with greater ac-
curate responding on the end stimulus pairs (A+B− and
D+E−) compared to the middle pairs (B+C− and C+D−),
consistent with previous transitive inference work in
humans (e.g., [32]) and rodents employing odor-based
paradigms [25, 27, 29]. Nlgn3R451C and Nlgn3−/y mice took
longer to make response choices alongside more accurate
responding during discrimination learning of early prem-
ise stimulus pairs and showed consistently reduced per-
severation across learning the premise pairs. Our data is
the first to dissect response latency measurements in a ro-
dent transitive inference test, showing dynamic changes in
response latencies during transitions in overlapping pair-
wise discrimination learning and differential demands in
cognitive load between transitive and non-transitive novel

discriminations. Together, these results suggest reaction
times in rodent touchscreen tasks can be utilized to meas-
ure cognitive demands or processing speed. Our results
on this adapted version of transitive inference confirm our
task can robustly measure visual discrimination learning
of hierarchical, overlapping stimulus pairs, relational
memory, and behavioral flexibility in mice.
Relational memory was intact in both our mouse

models with gene mutations in Nlgn3. There is currently
no available cognitive data measuring transitive inference
in individuals with mutations in NLGN3. For the two
brothers with the NLGN3 R451C point mutation, clinical
notes reveal the eldest has autism with intellectual disabil-
ity and the younger brother autism with Asperger’s syn-
drome [47, 50] highlighting the importance of genetic
background on phenotypic variability. Lesion studies indi-
cate transitive inference critically depends on the hippo-
campus and the prefrontal cortex in rodents [26, 27, 101].
It is well undertood that both Nlgn3R451C and Nlgn3−/y

mice show disrupted hippocampal synaptic transmission
and plasticity [30, 31, 44]. Despite these hippocampal sig-
naling changes, the capacity for transitive inference was
not impacted in Nlgn3 mutant mice in our study. In line
with this, others have shown performance on other
hippocampal-dependent tests such as contextual fear con-
ditioning and spatial learning in the Morris water maze is
preserved or even enhanced in Nlgn3R451C and Nlgn3−/y

mice [18, 52, 79, 97]. Nlgn3 mutant mice also show diver-
gent subregion, circuit, and cell-type-specific changes in
synaptic plasticity across the brain [30, 31, 83], leading to
the proposal that the precise role of Nlgn3 (and other Nlgn
isoforms) depends on the specific molecular environment
of the synapse investigated [78]. This also highlights the
complexity in unraveling how mutations in synapse genes
essential for the development of distinct circuits can lead
to the region and cell-type-specific changes in synaptic
signaling and plasticity, thereby impacting the modulation
of distinct cognitive behaviors at the systems level.
In contrast to relational memory, both Nlgn3R451C

and Nlgn3−/y mice robustly displayed altered behav-
ioral flexibility in the form of decreased perseverative
responding, possibly indicative of greater responsive-
ness to negative feedback. This was particularly evi-
dent during the first discrimination (stimulus pair
A+B−), and the first overlapping discrimination that
required value or state/context updating (stimulus
pair B+C−). Our data allowed in-depth analysis of
responding when animals made repeated errors in
correction trials. This kind of perseverative incorrect
responding indicates lose-stay behavior, compared to
switching to make a correct response or lose-shift be-
havior. The proportion of lose-shift to lose-stay be-
havior provides an indication of how well subjects
integrate negative feedback to guide future choices.
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The lower PI scores of Nlgn3R451C and Nlgn3−/y mice
indicate they displayed greater lose-shift behavior, po-
tentially implicating Nlgn3 to be key in the
prefrontal-striatal-brainstem circuits shown to mediate
value-updating processes that drive lose-shift over
lose-stay strategies [4, 20, 40, 70]. The observed con-
vergent reductions in perseverative responding in both
Nlgn3R451C and Nlgn3−/y mice aligns with previous
work showing both models display enhanced motor
learning on a rotarod, used as a proxy for the acquisi-
tion of a repetitive motor routine [83].
Human mutations in NLGN3 have been documented

in ASD [37, 50, 56, 62, 85, 91, 95, 96, 98, 109, 111–113].
ASD is typically described as involving increased repeti-
tive behaviors and impaired flexibility. Contrary to this,
our results show that Nlgn3 mutations in mice decreased
perseveration and enhanced behavioral flexibility. Our
data may reflect a Nlgn3 model-specific effect on flexible
behavior. It is important to note symptom profiles in
ASD can be highly heterogeneous, with evidence that in-
dividuals with ASD exhibit impaired, preserved, and en-
hanced cognitive flexibility [36, 43, 55, 75, 76, 88].
Although there is conceptual overlap between cognitive
flexibility (assessed using performance-based tests) and
the repetitive and restricted behaviors reported in ASD
(from self- or carer-reports), these two measures do not
always strongly correlate [23, 61, 65, 93, 110] because
they may differentially engage the processes underlying
flexibility. Flexibility is a broad term that is used to en-
compass dissociable cognitive processes such as inhibi-
tory control, value-updating, action-outcome updating,
and task-switching which can be assessed in different
ways which may further contribute to the mixed reports
across ASD studies [64].
Our analysis also revealed insights into decision-

making strategies in mice and evidence for unlearned re-
sponse bias. We observed that upon first exposure to
stimuli pairs (stage 1), mice displayed high perseverative
responding in that although accuracy and win-stay be-
havior were at chance level for first-presentation trials,
mice were more likely than chance to repeat their previ-
ously incorrect responses (Additional file 1: Figure S4).
During serial pair-learning (stage 2), mice showed pro-
gressively smaller impacts to perseverative responding
during transitions to each new stimulus pair, resulting in
mice being less perseverative while learning the final
stimulus pair (D+E−) compared to the first pair (A+B−).
When considering our mice required more trials to learn
the latter stimulus pairs in the series, this suggests that
when learning overlapping discriminations, mice retain
and transfer a rule or response strategy that promotes
lose-shift responding, while this is not the case for win-
stay behavior. This is consistent with evidence that win-
stay probabilities do not change across multiple reversals

in stimulus-reward contingency, while lose-shift prob-
abilities increased with more reversals [51]. In serial re-
versal studies, animals require fewer trials and errors to
reach criterion across successive reversals, suggesting
they acquire a form of structural learning that reversals
(a change in context) can occur [17, 49]. In our study,
mice required more trials to learn the latter stimulus
pairs, highlighting the greater complexity of integrating
overlapping stimulus pairs relative to serial reversal
learning. Despite this, the smaller dips in accuracy with
transitions to the latter stimulus pairs (C+D− and D+E−)
compared to the first (A+B− to B+C−) suggest a similar
kind of learning might have occurred.
Another striking difference was alterations specifically

in response latencies (but not reward collection) during
early learning, where Nlgn3R451C and Nlgn3−/y mice took
longer to make correct and incorrect choices on pair
A+B−. These response-specific latency changes suggest
alterations in speed of processing or decision-making es-
pecially because the physical distance animals must
travel to complete a response or collect reward is identi-
cal; therefore, latency differences between these two ac-
tions are unlikely to be due to motoric reasons.
Additionally, Nlgn3 mutant mice were also more accur-
ate on pair A+B−, which could indicate a difference in
speed-accuracy trade-off, a concept demonstrated across
several rodent studies [11, 80, 82, 84]. Further studies
explicitly examining this would be needed to address this
[42]. Response latency measurements were also dynam-
ically impacted by transitions in learning the different
stimulus pairs and appeared to be positively correlated
with cognitive load or processing demands. Similarly,
during the transitive inference test, mice exhibited lon-
ger response times during the more difficult transitive
discrimination B>D compared to the easier non-
transitive discrimination A>E. These findings are con-
sistent with human cognitive literature where reaction
times increase when demands on information processing
are greater, including when inference is required com-
pared to a simpler comparison (e.g., [81, 106]). Our re-
sults are also consistent with human data and drift-
diffusion models which show reaction times are inversely
correlated with differences in value between items [72].
Our study presents the first detailed analysis of response
latencies in a rodent test of transitive inference and indi-
cates response latencies from the touchscreen system
are useful indicators of processing demands or decision-
making processes. Future work incorporating video ana-
lysis of trial behavior during testing will provide greater
depth and understanding of the response choice behav-
ior of animals.
Human neuroimaging studies demonstrate that transitive

inference activates the hippocampus [41, 106, 114] and
prefrontal-parietal networks [1, 38]. In vivo electrophysiology
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in non-human primates reveals dorsolateral prefrontal cortex
neurons respond selectively when transitive judgments are
performed, independent of the reward value of the stimuli
[10]. In rodents, lesion studies suggest similar brain regions,
namely, the hippocampus and prefrontal cortex are import-
ant for transitive inference [26, 27, 101]. Additionally, con-
nectivity between these two regions (involving perirhinal,
entorhinal, fornix) appears to be crucial for the expression of
transitive inference in rodents [29] and monkeys [14]. Al-
though these same brain regions have been identified to be
critical for transitive inference in rodents, non-human pri-
mates, and humans, a key point of consideration facing ro-
dent transitive inference tasks is whether the same
mechanisms underlie performance across species [73, 99]. A
related unknown is whether mice can use transitive reason-
ing to infer dimensional, explicitly transitive relationships
(e.g., size) without extended training. Humans and non-
human primates can employ similar cognitive mechanisms
in feedback-trained transitive inference tasks to those used to
evaluate explicitly transitive relationships [2, 12, 53, 99]. An
ethologically relevant example for mice is social dominance,
where mice form consistent linear dominance hierarchies
that exhibit triangle transitivity [107]. However, whether mice
can infer relative rank through observation of social interac-
tions alone (i.e., perform transitive inference in a social
dominance context), which has been shown in other species
[39, 77] is unknown.
In human transitive inference studies, reaction times

remain stable for learned end pairs but increase across
training for pairs not containing end stimuli [2], which is
thought to reflect the employment of a cognitive strategy
integrating the middle pairs into a mental schema [41].
It is currently unclear whether rodents are also able to
employ a similar “mental schema” in transitive inference
[102]. Although this question is beyond the scope of our
study, our data show response latencies were faster for
the middle pairs B+C− and C+D− during the final inte-
gration stage than during initial pair learning, which is
more consistent with an effect of extended training than
integration of pairs into a mental schema. In other ro-
dent touchscreen tests, response latencies typically de-
crease as training progresses (e.g., [28, 46, 54]). We also
note that our finding of higher accuracy on pair D+E−

than A+B− at the end of training aligns with predictions
of a reinforcement-based account of transitive inference
that does not rely on a mental schema [34]. Other alter-
native explanations for the choice of B>D in transitive
inference tasks include the acquisition of “select” vs
“avoid” rules for stimuli and the related idea of rule
“stacks” that prioritize actions based on some stimuli
over others [13, 35].
Our study extends the work by Silverman et al. [87]

who showed a touchscreen-based transitive inference
assay employed to test BTBR mice (which have been

used to model ASD-relevant phenotypes) could detect
impaired discrimination for the non-transitive pair
A>E, but intact discrimination for the transitive pair
B>D when compared to C57BL/6J mice. While this
study was promising, few animals were tested. Our
work has refined and validated this assay to show that
transitive inference can be assessed using a visual
touchscreen-based test. Our refined assay combined
with the deep data analysis approach provides a sensi-
tive tool to measure complex stimulus pair learning, in-
tegration, relational memory, perseveration, flexibility,
and reaction times in mice. Early research suggested
children with ASD perform similarly to neurotypical
controls on a transitive inference test that manipulated
the length of stimuli (an explicitly transitive property)
[86]. There are two contemporary reports assessing
transitive inference using visual stimuli in ASD led by
the same group [89, 90]. One study reported adults
with ASD exhibit impaired accuracy on the non-
transitive pair A>E [89], while the other study reported
no change in transitive inference performance in ado-
lescents with ASD [90] which is in line with our find-
ings. It is recognized that cognitive processes such as
the capacity to learn and remember elements of differ-
ent experiences, flexibly compare and reintegrate these
memories to allow generalization of learning, are im-
pacted in ASD. Therefore, future studies expanding the
assessment of transitive inference in larger cohorts with
ASD would be informative to gain more comprehensive
understandings about the profile of cognitive symptoms
in neurodevelopmental disorders.
In summary, we show that our refined touchscreen

test for transitive inference robustly measures visual dis-
crimination learning of hierarchical, overlapping stimu-
lus pairs and relational memory, behavioral flexibility,
and reaction times in mice. Our findings in two mouse
models of Nlgn3 dysfunction expand our understanding
of how specific gene mutations that disrupt synaptic sig-
naling complexes can lead to selective alterations in dis-
tinct cognitive processes, of relevance to unraveling the
neurobiological basis of neurodevelopmental disorders
including ASD.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13229-019-0292-2.
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fect of session on Perseveration Index (PI) for all genotypes across all pairs
during premise pair learning (Stage 2). Table S5. Effect of stimulus pair
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terion on the serial (Stage 3) and pseudorandom (Stage 4) integration
training stages. Table S7. Likelihood of responding correctly on the 4
learned premise pairs (relative to A+B- or D+E-) on the transitive infer-
ence test. Table S8. Correct and incorrect response latencies to trials
(pseudorandom first-presentation) during premise stimulus pair learning
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