Brain-Machine Interfaces: The Role of the Neurosurgeon

Aswin Chari, MRCS, Sanjay Budhdeo, MRCP, Rachel Sparks, PhD, Damiano G. Barone, PhD, MRCS, Hani J. Marcus, PhD, FRCS(SN), Erlick AC. Pereira, DM, FRCS(SN), Martin M. Tisdall, MD, FRCS(SN)

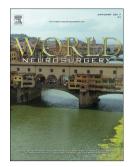
PII: S1878-8750(20)32403-7

DOI: https://doi.org/10.1016/j.wneu.2020.11.028

Reference: WNEU 16299

To appear in: World Neurosurgery

Received Date: 23 September 2020


Revised Date: 4 November 2020

Accepted Date: 5 November 2020

Please cite this article as: Chari A, Budhdeo S, Sparks R, Barone DG, Marcus HJ, Pereira EA, Tisdall MM, Brain-Machine Interfaces: The Role of the Neurosurgeon, *World Neurosurgery* (2020), doi: https://doi.org/10.1016/j.wneu.2020.11.028.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Elsevier Inc. All rights reserved.

Brain-Machine Interfaces: The Role of the Neurosurgeon

Aswin Chari, MRCS ^{1, 2} Sanjay Budhdeo, MRCP ^{3, 4, 5} Rachel Sparks PhD ⁶ Damiano G Barone, PhD, MRCS ⁷ Hani J Marcus, PhD, FRCS(SN) ^{8, 9} Erlick AC Pereira, DM, FRCS(SN) ¹⁰ Martin M Tisdall, MD, FRCS(SN) ^{1, 2}

¹ Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, UK

² Department of Neurosurgery, Great Ormond Street Hospital, London, UK

³ Department for Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK

⁴ Department of Neurology, National Hospital for Neurology and Neurosurgery, London, UK

⁵ Owkin Inc, New York, USA

⁶ School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK

⁷ Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK

⁸ Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK

⁹ Wellcome EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK

¹⁰ Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, UK

Corresponding Author

Aswin Chari Developmental Neurosciences Great Ormond Street Institute of Child Health University College London 30 Guilford Street London, WC1N 1EH United Kingdom

Tel: +44 (0)7726 780 817 E-mail: aswinchari@gmail.com Twitter: @aswinchari

Disclosure of Funding

AC is supported by a Great Ormond Street Hospital Children's Charity Surgeon Scientist Fellowship. This work was supported by the National Institute of Health Research – Great Ormond Street Hospital Biomedical Research Centre. HJM is supported by the Wellcome / EPSRC Centre for Interventional and Surgical Sciences (WEISS) and NIHR BRC Neurooncology theme.

Conflict of Interest

None

Short Title

Brain-Machine Interfaces: The Role of the Neurosurgeon

Key Words

Bioethics; brain-machine interface; brain-computer interface; microelectrode; neuroprostheses; neurotechnology

1 Abstract

2

The neurotechnology field is set to expand rapidly in the coming years as technological
innovations in hardware and software are translated to the clinical setting. Given our unique
access to patients with neurological disorders, expertise with which to guide appropriate
treatments and technical skills to implant brain-machine interfaces (BMIs), neurosurgeons have a
key role to play in the progress of this field.

9 We outline the current state and key challenges in this rapidly advancing field including implant

10 technology, implant recipients, implantation methodology, implant function, ethical, regulatory

11 and economic considerations. Our key message is to encourage the neurosurgical community to

12 proactively engage in collaborating with other healthcare professionals, engineers, scientists,

13 ethicists and regulators in tackling these issues. By doing so, we will equip ourselves with the

14 skills and expertise to drive the field forward and avoid being mere technicians in an industry

- 15 driven by those around us.
- 16

1 **1. Introduction**

2

3 Elon Musk's August 2020 press conference outlining the progress of his new brain-machine 4 interface (BMI) company, Neuralink, captured the attention of neuroscientists and technology enthusiasts around the world as he demonstrated the ability to record neurons from pig cortex in 5 6 real time. He had earlier promised to 'merge' humans with artificial intelligence (AI) when he first announced the company.^{1,2} Neuralink's novel BMI package comprises of 1024 contacts in 7 custom-built microelectrode 'threads', implanted into the brain by a robotic system and is able to 8 wirelessly transmit these signals in real time.¹ While this has received a lot of public interest, 9 many components of the proposed technology are not ground-breaking; systems with similar 10 11 capabilities have been published in the peer-reviewed literature as long as 17 years ago and other 12 simpler systems are being used clinically to treat a variety of neurological disorders.³ 13 Neuromodulation technology, including deep brain stimulation, is already a mature market worth 14 15 over US\$ 5.8 billion in 2020 and set to expand rapidly in the coming years as technological innovations are translated to the clinical setting, with one report forecasting a worldwide market 16 of \$13.3 billion by 2022.⁴⁻⁶ Neurosurgeons have a key role to play in its progression as we have 17 18 a unique relationship with patients affected by neurological disorders that may benefit from 19 BMIs, both as treating physicians and in guiding their decision making processes as to the best 20 choice of treatment. We also possess the skills and expertise to implant these new devices into 21 the nervous system. It is therefore easy to see how many neurosurgeons may be part of a 22 subspecialty of not just 'restorative and functional' but 'augmentative' neurosurgery. 23

In this article, we outline the current state and key challenges in this rapidly advancing field including implant technology, implant recipients, implantation methodology, implant function and implant regulation, ethical, regulatory and economic considerations. Our key message is to encourage the neurosurgical fraternity to proactively engage in collaborating with other healthcare professionals, engineers, scientists, ethicists and regulators in tackling these issues. By doing so, we will equip ourselves with the skills and expertise to drive the field forward responsibly and avoid being mere technicians in a field driven by those around us.

1 2. Implant Technology

2

3 Clinical indications should be considered in the context of neural interfaces that are currently in 4 use and those that are in development. Broadly, existing devices that interface with the brain can 5 be divided into ones that record or stimulate neural activity (Figure 1). Recording devices 6 include macroelectrodes such as stereoelectroencephalography (SEEG) electrodes or cortical 7 grids/strips and microelectrode arrays; there are adaptations of recording macroelectrodes with microelectrode contacts, but these devices are currently used only in research settings.^{7,8} An 8 9 endovascularly implantable 'stent electrode' that is placed in the cortical vasculature has recently 10 received breakthrough device designation from the FDA and is undergoing clinical trials. Stimulating devices are mostly in the form of deep brain stimulation (DBS) electrodes, although 11 other constructs, such as auditory brainstem implants also exist.^{9,10} Novel constructs such as 12 closed loop DBS and responsive neurostimulation (RNS) electrodes are capable of both 13 recording and stimulating, with the aim of optimizing stimulation in real-time based on the 14 activity recorded.^{11,12} The choice of device largely depends on the indication and the location of 15 16 recording/stimulation; some devices are better suited to record and stimulate cortical structures 17 whilst others are more suited to deeper brain structures.

18

19 In terms of stimulating or modulating brain activity, current DBS strategies offer an ability to 20 modulate the pulse current, duration and frequency to a small number of electrodes (usually 4-21 16) in a specific area of the brain. Targets are chosen based on the specific indication and patient 22 characteristics. Treatment is optimized by manually titrating the settings to the clinical response. 23 Novel strategies that are being employed to improve DBS include directional electrodes, closed 24 loop systems which are able to record and stimulate and connectomic strategies where individual patient structural connectivity is used to optimize target location at the time of implantation.^{12,13} 25 DBS and RNS technology have a profound impact on people with movement disorders, epilepsy 26 and, increasingly, psychiatric disorders.^{9,11,12,14,15} In addition to deep brain stimulation, emerging 27 28 stimulation techniques for auditory and visual restoration hold promise; whilst auditory brainstem implants have been in clinical use for many years, a number of research groups are 29 30 investigating broadly similar strategies for visual cortex stimulation based on information from a camera mounted on the forehead or glasses.^{10,16,17} 31

1

Current stimulating technology is limited by small numbers of electrodes that are spatially
limited to small structures. Although not demonstrated in the recent preprint, novel BMI systems
such as those proposed by Neuralink are designed to be 'precision' systems with hundreds to
thousands of electrodes that allow programmed stimulation at each contact.¹ Although currently
hypothetical, this may, in time, allow the individual to 'sense' (somatic sensation, vision, smell,
taste) using external sensors or allow the device to alter brain connectivity, affecting cognitive,
psychological and emotional responses.

9

10 Devices that record neural activity can be divided into macroelectrodes that measure local field 11 potential (LFP) activity aggregated from many neurons and microelectrodes that are capable of 12 measuring extracellular action potentials from single neurons in addition to LFP. Both are 13 immensely powerful when combined with modern data processing and machine learning 14 technologies; cortical LFP signals can decode speech and existing microelectrode arrays have been used to control a range of functions including prosthetic arm and cursor control in small 15 numbers of patients.^{18–22} Like with the stimulating electrodes, these are limited by the number of 16 17 electrodes and sampling from a small area of brain; current microelectrode arrays have in the region of 100 electrode contacts and sample a 1cm² area of cortex. Newer devices may be able to 18 19 sample from thousands or tens of thousands of neurons but the advantages of recoding from increasing numbers of neurons have yet to be realized.²³ Implanting hundreds of micro-scale 20 biocompatible wires into eloquent tissue also requires careful consideration of risks. Despite the 21 22 small scale, implanting microelectrodes into eloquent cortex has been shown to cause fine motor deficits in animal models and the long-term impact of this requires evaluation.²⁴ Electrodes may 23 24 preclude or cause artefact on subsequent imaging, potentially interfering with diagnostic 25 accuracy and subsequent medical treatment. MRI compatible neuromodulation devices are entering the market, but further work is required for specific BMI implants. 26 27 28 In addition to implants that interface with the brain, neural interface technology may also

29 interface with other elements of the nervous system such as spinal cord, peripheral nerves and

30 cranial nerves (including cochlear implants and vagal nerve stimulation).^{16,25} Although an in-

31 depth exploration of these specific technologies is beyond the scope of this review, it is

important to highlight that there is a lot of cross-fertilization of technological breakthroughs and
 mechanistic insights across these different modalities.

3

4 There are a number of key areas of research with regards to improving this technology. The first is the foreign body reaction, a classic physiological response of the body to implanted foreign 5 material.²⁶ In the context of BMIs, this affects both the short and long-term performance of the 6 7 device's recording and stimulation capabilities as the formation of fibrotic tissue around the interface eventually causes an inefficient transduction of the electrical signal. ^{27,28} Many factors 8 9 have been associated with the degree of foreign body reaction including surface properties of the 10 biomaterial (porosity, roughness, stiffness, and chemistry), shape, surface area and volume of implant, degree of implantation trauma and mechanical mismatch between the implanted 'stiff' 11 material and the 'soft' biological tissue. ^{27–30} Novel biocompatible implants have demonstrated 12 our ability to record microelectrode activity from large numbers of channels for up to 6 months 13 in animals.^{31,32} Clinically, we must approach this area with caution, warning patients that positive 14 effects may diminish over time and eventually render implants ineffective. In addition to the 15 basic science work that is being undertaken to understand the mechanisms of the foreign body 16 17 reaction and options for subverting it, we suggest establishing rigorous implant registries to determine longer-term durability in humans. Other issues that warrant study include the impact 18 19 of electrode drift on the fidelity of the captured signals and the long-term impact of neural implants on brain connectivity and function. 20

21

22 **3. Implant Recipients**

23

Given our ability to record and stimulate neural activity, it is not surprising that indications for
BMIs include a wide range of neurological and psychiatric disorders that is constantly
expanding. Currently, there are approved indications for deep brain stimulation in Parkinson's
disease, essential tremor, dystonia and obsessive–compulsive disorder and emerging indications
in epilepsy, neurocognitive disorders, pain and other neuropsychiatric disorders. ^{9,33} More
experimental indications for BMIs include controlling prostheses ^{19–21}, obesity, multiple
sclerosis, substance addiction and memory augmentation/editing. ³⁴

1 Determining which patients are eligible to receive implants is an individualized risk-benefit 2 analysis, often undertaken by a multidisciplinary team consisting of neurologists, neurosurgeons, 3 neuroradiologists, psychiatrists and allied health professionals that weigh the risks of surgery and 4 implant maintenance against the probability of clinical improvement. Factors that are taken into 5 consideration include disease severity, associated comorbidities, imaging abnormalities and, 6 significantly, a lot of importance is given to patient preference. Especially when considering 7 novel or experimental indications, careful consideration must be given to the way in which these 8 are introduced into the clinical domain; we suggest that these are undertaken solely under the 9 auspices of a clinical trial using structured frameworks for the introduction of new technology with adequate regulation and oversight.^{35,36} 10

11

12 In addition to medical indications, BMIs hold immense potential to augment function (e.g. memory, cognition, sensation, language, motor control) in otherwise 'normal' individuals.³⁷ 13 14 Although this is not be the focus of current research and may be seen as 'unethical' by some, 15 augmenting function is a natural corollary of developing technology for functional restoration in those with neurological disorders. For example, non-invasive sensors and stimulators have 16 already been used to achieve direct brain-to-brain communication³⁸ and it is possible that 17 18 invasive strategies will only increase precision of such systems. If and when such a situation 19 arises, careful consideration must be given to the risk-benefit balance in the absence of disease 20 and what level of risk is acceptable, both at an individual and societal level. As medical 21 professionals and key members of the BMI community, neurosurgeons need to think carefully 22 about the medical, ethical and societal implications of this and, importantly, whether and how we 23 should be involved in such practices, especially in the context of healthcare systems with limited 24 resources.

25

26 4. Implantation Methodology

27

28 Perhaps the most straightforward challenge in this field involves achieving accurate, safe and

29 long-lasting implantation of electrodes. This has been a key driver behind neurosurgical

30 technology for decades, that started with frame-based stereotactic localisation based on air

31 ventriculography and resulted in the modern plethora of robot-assisted neuronavigation systems

1 that incorporate high levels of sub-millimeter accuracy and integrate with advanced vascular imaging to ensure that blood vessels are avoided.³⁹ So far, these systems have all been 2 'supervisory control' systems which require human input to control; there is scope for fully 3 4 automated systems that implant autonomously, which raises further issues such as responsibility and liability that are actively being explored.⁴⁰ Microelectrode arrays and depth electrodes 5 6 require cortical penetration. Histological analyses from microelectrode arrays, implanted largely 7 in research contexts during short-term monitoring of epilepsy patients, confirm 'minimal' tissue damage associated with pneumatic implantation devices designed to minimize trauma, but 8 implantation is not without risk.^{41,42} Surgical techniques must therefore be constantly evaluated 9 and rigorously audited to ensure the highest standards are maintained. 10

11

12 A more complicated challenge in implantation is accurately identifying the appropriate region of 13 the brain to target. Traditionally, implantations have focused on anatomical structures that can be 14 visualized on MRI. For instance, DBS for the treatment of Parkinson's is targeted toward the subthalamic nucleus or globus pallidus internus. However, the true functional target is the motor 15 subset of these structures, and additional information from microelectrode recordings or 16 advanced imaging techniques is necessary for accurate placement.^{43–45} However, as more 17 18 complex disorders are treated, especially those related to mood or cognition, identifying the 19 appropriate target becomes more complex and may require a combination of advanced structural 20 and functional imaging techniques and electrophysiology to help guide pre-operative assessment. 21

Novel constructs, especially those seeking to record macro-scale signals may be implanted
through endovascular routes, with the ability to record and stimulate when implanted into
cortical vessels. This would preclude the need for a craniotomy although it would be limited by
the location of cortical vessels. One such device is currently undergoing first-in-human trials and
has received Breakthrough Device Designation from the US Federal Drug Administration.^{46,47}

It is possible that some future neurosurgeons will be *'implant neurosurgeons'* and we also need to adapt our curricula to equip future surgeons with the required technical and non-technical skills. Specialist societies must issue guidance on training requirements, and national and

1 international implant registries will aid ongoing audit and oversight of efficacy and complication 2 rates.

3

4 **5. Implant Function**

5

6 As mentioned earlier, recording electrodes can be divided into traditional macroelectrodes and 7 novel microelectrodes depending on the size of the recording contacts. Microelectrodes record at frequencies around 30kHz and capture multiscale electrophysiological data, including local field 8 9 potential (LFP, 1-100Hz), high frequency oscillations (HFOs, 80-500Hz) and extracellular action 10 potentials (>300 Hz) from neurons; these frequency bands are somewhat arbitrary and have been 11 determined by identified features of interest in each. In epilepsy monitoring, microelectrodes 12 have been shown to capture neural signals that are not captured by current clinical macroelectrodes.^{8,48} Extracellular action potentials are recorded from a minority of 13 microelectrode contacts and require 'spike sorting', a computationally intensive process that 14 ascribes particular action potential waveforms to putative neurons.⁴⁹ Whilst significant progress 15 has been made in spike sorting algorithms, the fidelity of 'on-line' (real time) spike sorting over 16 17 longer timescales that a few hours has not been established. Even if spikes cannot be sorted, much can be gleaned from unsorted multi-unit activity.³ Factors such as electrode drift and signal 18 19 decay from the foreign body reaction will need to be evaluated. Action potentials from single 20 neurons can then be analysed in a number of ways including the rate of firing, timing of firing in 21 relation to the underlying LFP phase and population firing of multiple neurons.

22

23 Historical understanding of these electrophysiological signals has been limited to pattern 24 recognition on visual inspection but progress in computational power has enabled the application of signal processing tools to better understand them, to the extent that we are developing atlases 25 of 'normal' intracranial EEG dynamics.⁵⁰ Machine learning algorithms that are being applied to 26 27 these signals will need to incorporate data from all these scales in order to optimize the output of BMIs, a field that is in its relative infancy but one that has shown immense promise.¹⁸ These 28 algorithms may benefit from incorporation of novel approaches such as network science that 29 provides a natural language to model the complex, changing system of the brain.⁵¹ Although 30 31 there is a growing wave of clinician-scientists who have the computational knowledge to be able

1 to design and deploy these algorithms themselves, dealing with such data and the code behind its

2 processing is probably best served by close collaboration with computational neuroscientists,

3 engineers and mathematicians.

- 4
- 5 6. Implant Regulation & Monitoring
- 6

7 6.1 Implant Monitoring

8

9 Two specific challenges in this area include dealing with large volumes of data, data security and 10 ownership. Microelectrode recordings generate significant volumes of data (250 channels at 11 30kHz is roughly 115GB per hour). This amount of data is difficult to store and process on many 12 of the computer systems currently in place in many hospital systems. However, development of 13 high performance computing (HPC) systems and cloud-based computing may provide a solution that can scale with ever increasing demands on data storage and computation.^{52,53} 14 15 Data security is of utmost concern as altered functioning or disabling of neuro-implants can have 16 17 devastating consequences. System vulnerabilities may be exploited, leading to malicious alterations to inbuilt algorithms, termed 'brainjacking'.⁵⁴ Furthermore, even without malicious 18 19 intent we must safe guard against inadvertent access that can be caused by the user, interactions 20 with other systems (wireless networks and hardware that create electromagnetic signals), or even 21 errors during desired software upgrades. Most devices avoid data security issues by acting as a 22 closed system, where information is not stored externally and can only be adjusted in person. 23 Although there are wireless implantable devices on the market, they are typically secured using

external relay devices, where a physical object is required to be placed near the device to gain
access to the signal.⁵⁵ However, such a system necessarily limits the ability to monitor signals in

26 real time and make simultaneous adjustments. To unlock this potential, systems must be design

27 to ensure access is limited to only trusted vendors.

28

29 Data protection is also a key consideration, both in terms of outright theft and ensuring that data

- 30 is used only for its intended purposes. Frameworks must clearly delineate who owns the data,
- 31 who is responsible for its safe storage, where it is stored and the rights of the individual, medical

1 professionals, companies and governments to access, use and monetize such data. Existing

2 regulations, such as General Data Protection Regulation, may largely cover these requirements.

3

4 6.2 Implant Regulation

5

6 New active implantable medical devices and their accompanying software require careful 7 evaluation both prior to and during human trials. Whilst an efficient approval process is crucial for clinical translation and patient benefit, this must not occur at the cost of robust evaluation of 8 9 the clinical efficacy and risks. Established approval processes for medical devices (CE marking 10 and FDA approval) will need to be adapted and expanded to increase the quality of ongoing 11 robust evaluation of new technologies, specifically to consider carefully individual and 12 population level thresholds for risk-benefit considerations, where indications for invasive 13 stimulation are for wellness or augmentation of physiologic function. Frameworks such as IDEAL-D, that seek to end the dichotomy of 'approved' versus 'not approved' must be adopted 14 and we, as the responsible clinicians, must champion these approaches.³⁵ 15 16

17 Software development is likely to play a pivotal role in the neurotechnology sphere. Whilst 18 network and artificial intelligence-based algorithms are rapidly being developed to improve 19 recording and closed loop technology, robust evaluation of these novel algorithms is crucial, as 20 are other aspects such as the data used to assess them. Existing frameworks such as the FDA's Software as a Medical Device are being adapted for artificial intelligence and machine learning 21 algorithms⁵⁶ and may require further modification specific for neurotechnology and BMIs. 22 23 Although patient data must be sufficiently protected, open science and open datasets have 24 hastened progress in recent years. Regulations must balance both sides and novel constructs such as 'data obfuscation' should be used to allow pretraining of machine learning algorithms whilst 25 preserving confidentiality⁵⁷. In circumstances where the decision-making is difficult, 'citizens' 26 27 juries' may be used to decide whether data may be shared with other parties for research and 28 commercial purposes.

- **30 7. Ethical Considerations**
- 31

The 'merging' of humans with machine interfaces (potentially with a superimposed machine
learning application layer) raises serious ethical issues. ^{59,60} Firstly, issues of consent that apply
at present to individuals without capacity and children, would continue to be relevant, with the
added burden of the psychological impact of BMIs. ⁶⁰

5

6 Devices that record from the brain may (intentionally or inadvertently) have access to 'private' 7 or intimate thoughts not meant for the public world, an issue both in terms of recording and storage of such information. There may be questions of the right and extent to which privacy 8 9 should be preserved in these situations - if thoughts can be interpreted through BMIs as 10 demonstrating risk of public danger, society must accept trade-offs between autonomy, privacy 11 and public security. However, the use of such devices to tailor marketing campaigns or other 12 commercial activities should be safeguarded against in the interest of the patient. Situations may 13 arise involving employers and insurance companies mandating such implants as has already been seen in peripherally implanted microchips.⁶¹ 14

15

Stimulating devices raise issues of autonomy – whilst they have the ability to increase the functional independence of those with progressive neurological disorders, is the individual still 'self-governing' and to what extent are they still accountable for their actions? ^{60,62} By extension, ethicists have debated whether BMIs become part of the 'body schema' and integrate into the person, both from legal and philosophical standpoints.⁶² Augmenting function in otherwise 'healthy' individuals also raises issues of risk and societal implications, with entrenched and widening social inequalities between those who can and cannot afford such implants.

24 Bioethicists have identified that current human rights principles may be insufficient for dealing with the advances in neurotechnology and have identified 4 new guiding principles (Table 1).⁶³ 25 What is particularly interesting about this framework is the aspect of *cognitive liberty* that gives 26 27 people a right to alter their mental state. If neurosurgeons are to be involved in altering the 28 mental state of otherwise 'normal' individuals, we must think carefully about the levels of 29 acceptable risk, informed consent frameworks that protect both individuals and ourselves and, in 30 the context of research evaluations, our post-trial responsibilities to the participants and the 31 public.

8. Economic Considerations 2

3

4 Economic considerations can be broken down into 3 pertinent questions. The first question is 5 who will develop BMIs. The possible archetypes of organization are universities, hospitals, non-6 university state-owned research facilities, small and large companies. At different times, 7 different organizational archetypes may be best placed to deliver on different steps such as 8 ideation, productization, adherence to regulatory standards, quality control and assurance, 9 business development and marketing. An important consideration is the incentives for each type 10 of organization, including scientific progress, betterment of health and profits. Irrespective, 11 progress must be evaluated objectively, and all organizations must be held to the same exacting 12 standards. As neurosurgeons, we hold a unique position to generate insights into product development and utility; indeed clinicians can play important roles in developing relevant 13 organizations.⁶⁴ One concern we must therefore keep in mind is potential conflicts of interest that 14 might arise due to financial interests in commercial organizations. 15 16 17 The second question is who will fund the development. Funding may be institutional 18 (governmental, non-governmental or private) or deployed capital from venture capital firms. The 19 scales of money available through these different routes is likely to be vastly different. For 20 example, Neuralink has amassed over US\$150 million of funding in its short history but such funding may come with the expectation of return on invested capital.⁶⁵ 21 22 23 The third question is who will pay for BMIs. For BMIs that are developed to enable return to 24 function for patients who have lost abilities which they previously had, or might reasonably be 25 expected to have, the starting point will be existing payor mechanisms, such as governments or

26 insurance companies depending on health economy. For augmentation of normal function, our 27 assumption is that the payment burden will be on the individual. This has the potential to

- 28 exacerbate and entrench existing inequalities within society and place neurosurgeons in a
- 29 position of ethical dilemma when considering participation in such activities.
- 30

9. Conclusion 31

1

The road ahead for the BMI community is long, both in terms of technological innovation and
ethical & moral considerations. There is no certainty that Elon Musk and Neuralink will provide
the breakthrough in this field but there is a clear direction of travel with an increasing range of
medical and non-medical uses. We have not even considered the vast range of non-invasive
stimulation strategies that will sit alongside invasive implants, some of which have been
commercialized for improving cognitive performance. ⁶⁶

8

9 Clinicians, and specifically neurosurgeons, hold a unique position in this field as our skill set 10 makes us 'gatekeepers' to the clinical application of such technology. We must therefore take 11 leadership roles in shaping the field. We need to continue working closely with the engineering 12 and computational neuroscience communities to improve implant materials, minimize the foreign body reaction, ensure surgical implant techniques minimize risk and optimize efficacy, 13 14 and optimize algorithms for understanding and stimulating the brain. Given the rapid pace of 15 technological advancement, we also need to be involved in pre-emptively shaping the legislative and policy agenda to ensure such technology is introduced with adequate regulation and used for 16 17 ethical indications. Some of the key challenges for the BMI community, highlighting areas 18 where active clinician involvement is crucial to progress are outlined in Figure 2. National and 19 international neurological and neurosurgical bodies should lead the charge in setting up task 20 forces for these purposes. We, the neurosurgical community, must engage now to avoid 21 becoming mere 'technicians' in this rapidly advancing field. 22

1 **References**

- Musk E, Neuralink. An integrated brain-machine interface platform with thousands of channels. *bioRxiv*. Published online August 2, 2019:703801. doi:10.1101/703801
- Crane L. Elon Musk demonstrated a Neuralink brain implant in a live pig. New Scientist.
 Accessed August 31, 2020. https://www.newscientist.com/article/2253274-elon-musk demonstrated-a-neuralink-brain-implant-in-a-live-pig/
- Carmena JM, Lebedev MA, Crist RE, et al. Learning to Control a Brain–Machine Interface
 for Reaching and Grasping by Primates. Idan Segev, ed. *PLoS Biology*. 2003;1(2):e42.
 doi:10.1371/journal.pbio.0000042
- Research and Markets. *The Market for Neurotechnology: 2018-2022*. Accessed January
 15, 2020. https://www.researchandmarkets.com/reports/4636680/the-market-for neurotechnology-2018-2022
- Marcus HJ, Hughes-Hallett A, Kwasnicki RM, Darzi A, Yang G-Z, Nandi D. Technological innovation in neurosurgery: a quantitative study. *J Neurosurg*. 2015;123(1):174-181. doi:10.3171/2014.12.JNS141422
- Neuromodulation Market | By Technology & Application | MarketsandMarkets. Accessed
 August 24, 2020. https://www.marketsandmarkets.com/Market-Reports/neurostimulation devices-market-921.html
- Herff C, Krusienski DJ, Kubben P. The Potential of Stereotactic-EEG for Brain-Computer
 Interfaces: Current Progress and Future Directions. *Front Neurosci.* 2020;14:123.
 doi:10.3389/fnins.2020.00123
- Chari A, Thornton RC, Tisdall MM, Scott RC. Microelectrode recordings in human epilepsy:
 A case for clinical translation? *Brain Commun.* Published online 2020.
 doi:10.1093/braincomms/fcaa082
- Budman E, Deeb W, Martinez-Ramirez D, et al. Potential indications for deep brain
 stimulation in neurological disorders: an evolving field. *Eur J Neurol.* 2018;25(3):434-e30.
 doi:10.1111/ene.13548
- Deep NL, Roland JT. Auditory Brainstem Implantation: Candidacy Evaluation, Operative
 Technique, and Outcomes. *Otolaryngol Clin North Am.* 2020;53(1):103-113.
 doi:10.1016/j.otc.2019.09.005
- Matias CM, Sharan A, Wu C. Responsive Neurostimulation for the Treatment of Epilepsy. *Neurosurg Clin N Am.* 2019;30(2):231-242. doi:10.1016/j.nec.2018.12.006
- Bouthour W, Mégevand P, Donoghue J, Lüscher C, Birbaumer N, Krack P. Biomarkers for closed-loop deep brain stimulation in Parkinson disease and beyond. *Nat Rev Neurol.* 2019;15(6):343-352. doi:10.1038/s41582-019-0166-4

- Rodrigues NB, Mithani K, Meng Y, Lipsman N, Hamani C. The Emerging Role of
 Tractography in Deep Brain Stimulation: Basic Principles and Current Applications. *Brain Sci.* 2018;8(2). doi:10.3390/brainsci8020023
- 4 14. Shanechi MM. Brain-machine interfaces from motor to mood. *Nat Neurosci.* 2019;22(10):1554-1564. doi:10.1038/s41593-019-0488-y
- Bari AA, Thum J, Babayan D, Lozano AM. Current and Expected Advances in Deep Brain
 Stimulation for Movement Disorders. *Prog Neurol Surg.* 2018;33:222-229.
 doi:10.1159/000481106
- Niketeghad S, Pouratian N. Brain Machine Interfaces for Vision Restoration: The Current
 State of Cortical Visual Prosthetics. *Neurotherapeutics*. 2019;16(1):134-143.
 doi:10.1007/s13311-018-0660-1
- Wong K, Kozin ED, Kanumuri VV, et al. Auditory Brainstem Implants: Recent Progress and Future Perspectives. *Front Neurosci.* 2019;13. doi:10.3389/fnins.2019.00010
- Anumanchipalli GK, Chartier J, Chang EF. Speech synthesis from neural decoding of spoken sentences. *Nature*. 2019;568(7753):493-498. doi:10.1038/s41586-019-1119-1
- Jarosiewicz B, Sarma AA, Bacher D, et al. Virtual typing by people with tetraplegia using a
 self-calibrating intracortical brain-computer interface. *Sci Transl Med.* 2015;7(313):313ra179. doi:10.1126/scitranslmed.aac7328
- Wodlinger B, Downey JE, Tyler-Kabara EC, Schwartz AB, Boninger ML, Collinger JL. Tendimensional anthropomorphic arm control in a human brain-machine interface: difficulties, solutions, and limitations. *J Neural Eng.* 2015;12(1):016011. doi:10.1088/1741-2560/12/1/016011
- 23 21. Gilja V, Pandarinath C, Blabe CH, et al. Clinical translation of a high-performance neural prosthesis. *Nat Med*. 2015;21(10):1142-1145. doi:10.1038/nm.3953
- 25 22. Makin JG, Moses DA, Chang EF. Machine translation of cortical activity to text with an
 26 encoder–decoder framework. *Nature Neuroscience*. 2020;23(4):575-582.
 27 doi:10.1038/s41593-020-0608-8
- 28 23. Jun JJ, Steinmetz NA, Siegle JH, et al. Fully integrated silicon probes for high-density
 29 recording of neural activity. *Nature*. 2017;551(7679):232-236. doi:10.1038/nature24636
- Goss-Varley M, Dona KR, McMahon JA, et al. Microelectrode implantation in motor cortex
 causes fine motor deficit: Implications on potential considerations to Brain Computer
 Interfacing and Human Augmentation. *Sci Rep.* 2017;7(1):1-12. doi:10.1038/s41598-017 15623-y
- Russell C, Roche AD, Chakrabarty S. Peripheral nerve bionic interface: a review of
 electrodes. *Int J Intell Robot Appl.* 2019;3(1):11-18. doi:10.1007/s41315-019-00086-3
- Anderson JM, Rodriguez A, Chang DT. FOREIGN BODY REACTION TO
 BIOMATERIALS. Semin Immunol. 2008;20(2):86-100. doi:10.1016/j.smim.2007.11.004

- Klopfleisch R, Jung F. The pathology of the foreign body reaction against biomaterials:
 Foreign Body Reaction to Biomaterials. *Journal of Biomedical Materials Research Part A*.
 2017;105(3):927-940. doi:10.1002/jbm.a.35958
- Lotti F, Ranieri F, Vadalà G, Zollo L, Di Pino G. Invasive Intraneural Interfaces: Foreign
 Body Reaction Issues. *Front Neurosci.* 2017;11:497. doi:10.3389/fnins.2017.00497
- 6 29. Di Pino G, Formica D, Lonini L, et al. ODEs model of foreign body reaction around
 7 peripheral nerve implanted electrode. *Conf Proc IEEE Eng Med Biol Soc.* 2010;2010:15438 1546. doi:10.1109/IEMBS.2010.5626825
- 9 30. Veiseh O, Doloff J, Ma M, et al. Size- and shape-dependent foreign body immune
 10 response to materials implanted in rodents and non-human primates. *Nature materials*.
 11 2015;14. doi:10.1038/nmat4290
- Chung JE, Joo HR, Smyth CN, et al. Chronic Implantation of Multiple Flexible Polymer
 Electrode Arrays. *J Vis Exp.* 2019;(152). doi:10.3791/59957

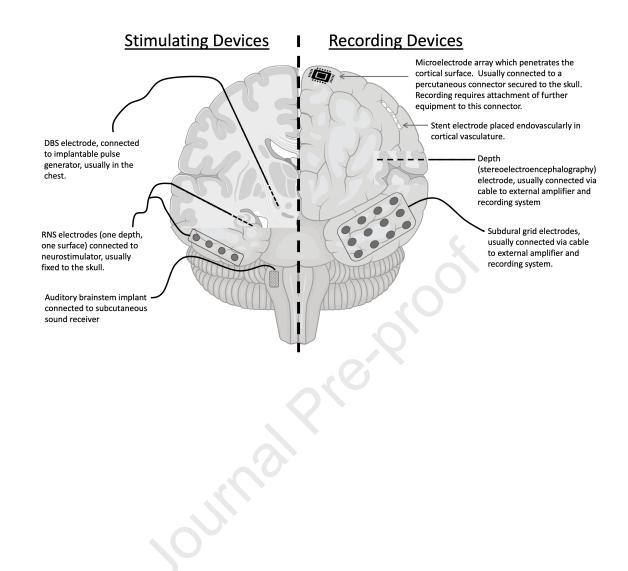
Chung JE, Joo HR, Fan JL, et al. High-Density, Long-Lasting, and Multi-region
 Electrophysiological Recordings Using Polymer Electrode Arrays. *Neuron.* 2019;101(1):21 31.e5. doi:10.1016/j.neuron.2018.11.002

- Hariz M, Blomstedt P, Zrinzo L. Future of brain stimulation: new targets, new indications, new technology. *Mov Disord*. 2013;28(13):1784-1792. doi:10.1002/mds.25665
- Youngerman BE, Chan AK, Mikell CB, McKhann GM, Sheth SA. A decade of emerging indications: deep brain stimulation in the United States. *Journal of Neurosurgery*.
 2016;125(2):461-471. doi:10.3171/2015.7.JNS142599
- Sedrakyan A, Campbell B, Merino JG, Kuntz R, Hirst A, McCulloch P. IDEAL-D: a rational framework for evaluating and regulating the use of medical devices. *BMJ*. 2016;353. doi:10.1136/bmj.i2372
- 36. McCulloch P, Altman DG, Campbell WB, et al. No surgical innovation without evaluation:
 the IDEAL recommendations. *Lancet*. 2009;374(9695):1105-1112. doi:10.1016/S0140 6736(09)61116-8
- 37. Mankin EA, Fried I. Modulation of Human Memory by Deep Brain Stimulation of the
 Entorhinal-Hippocampal Circuitry. *Neuron*. 2020;106(2):218-235.
 doi:10.1016/j.neuron.2020.02.024
- 38. Jiang L, Stocco A, Losey DM, Abernethy JA, Prat CS, Rao RPN. BrainNet: A Multi-Person
 Brain-to-Brain Interface for Direct Collaboration Between Brains. *Sci Rep.* 2019;9(1):1-11.
 doi:10.1038/s41598-019-41895-7
- 34 39. Guo Z, Leong MC-W, Su H, Kwok K-W, Chan DT-M, Poon W-S. Techniques for
 35 Stereotactic Neurosurgery: Beyond the Frame, Toward the Intraoperative Magnetic
 36 Resonance Imaging-Guided and Robot-Assisted Approaches. *World Neurosurg.*37 2018;116:77-87. doi:10.1016/j.wneu.2018.04.155

- Jamjoom AAB, Jamjoom AMA, Marcus HJ. Exploring public opinion about liability and responsibility in surgical robotics. *Nature Machine Intelligence*. Published online April 13, 2020:1-3. doi:10.1038/s42256-020-0169-2
- 4 41. Waziri A, Schevon CA, Cappell J, Emerson RG, McKhann GM, Goodman RR. Initial surgical experience with a dense cortical microarray in epileptic patients undergoing craniotomy for subdural electrode implantation. *Neurosurgery*. 2009;64(3):540-545; discussion 545. doi:10.1227/01.NEU.0000337575.63861.10
- 8 42. Bullard AJ, Hutchison BC, Lee J, Chestek CA, Patil PG. Estimating Risk for Future
 9 Intracranial, Fully Implanted, Modular Neuroprosthetic Systems: A Systematic Review of
 10 Hardware Complications in Clinical Deep Brain Stimulation and Experimental Human
 11 Intracortical Arrays. *Neuromodulation*. Published online November 20, 2019.
 12 doi:10.1111/ner.13069
- Seifried C, Weise L, Hartmann R, et al. Intraoperative microelectrode recording for the
 delineation of subthalamic nucleus topography in Parkinson's disease. *Brain Stimul.* 2012;5(3):378-387. doi:10.1016/j.brs.2011.06.002
- Lee PS, Weiner GM, Corson D, et al. Outcomes of Interventional-MRI Versus
 Microelectrode Recording-Guided Subthalamic Deep Brain Stimulation. *Front Neurol.* 2018;9. doi:10.3389/fneur.2018.00241
- da Silva NM, Ahmadi S-A, Tafula SN, et al. A diffusion-based connectivity map of the GPi
 for optimised stereotactic targeting in DBS. *Neuroimage*. 2017;144(Pt A):83-91.
 doi:10.1016/j.neuroimage.2016.06.018
- 46. Opie NL, Oxley TJ. Removing the need for invasive brain surgery: the potential of stent
 electrodes. *Bioelectronics in Medicine*. 2019;2(1):9-11. doi:10.2217/bem-2019-0013
- 47. Opie NL, John SE, Rind GS, et al. Focal stimulation of the sheep motor cortex with a
 chronically implanted minimally invasive electrode array mounted on an endovascular
 stent. *Nature Biomedical Engineering*. 2018;2(12):907-914. doi:10.1038/s41551-018-0321z
- 48. Schevon CA, Ng SK, Cappell J, et al. Microphysiology of Epileptiform Activity in Human Neocortex. *J Clin Neurophysiol*. 2008;25(6):321-330.
 doi:10.1097/WNP.0b013e31818e8010
- 49. Rey HG, Pedreira C, Quian Quiroga R. Past, present and future of spike sorting
 techniques. *Brain Research Bulletin.* 2015;119:106-117.
 doi:10.1016/j.brainresbull.2015.04.007
- Frauscher B, von Ellenrieder N, Zelmann R, et al. Atlas of the normal intracranial
 electroencephalogram: neurophysiological awake activity in different cortical areas. *Brain.* 2018;141(4):1130-1144. doi:10.1093/brain/awy035
- 51. De Vico Fallani F, Bassett DS. Network neuroscience for optimizing brain–computer
 interfaces. *Physics of Life Reviews*. 2019;31:304-309. doi:10.1016/j.plrev.2018.10.001

- 52. Bouchard KE, Aimone JB, Chun M, et al. High-Performance Computing in Neuroscience
 for Data-Driven Discovery, Integration, and Dissemination. *Neuron*. 2016;92(3):628-631.
 doi:10.1016/j.neuron.2016.10.035
- 4 53. Hosseini M-P, Soltanian-Zadeh H, Elisevich K, Pompili D. Cloud-based Deep Learning of
 5 Big EEG Data for Epileptic Seizure Prediction. In: ; 2016.
 6 doi:10.1109/GlobalSIP.2016.7906022
- Fugh J, Pycroft L, Sandberg A, Aziz T, Savulescu J. Brainjacking in deep brain stimulation
 and autonomy. *Ethics Inf Technol.* 2018;20(3):219-232. doi:10.1007/s10676-018-9466-4
- 55. Kulaç S, Sazli MH, İlk HG. External Relaying Based Security Solutions for Wireless
 Implantable Medical Devices: A Review. In: 2018 11th IFIP Wireless and Mobile
 Networking Conference (WMNC). ; 2018:1-4. doi:10.23919/WMNC.2018.8480911
- 12 56. Health C for D and R. Artificial Intelligence and Machine Learning in Software as a Medical
 13 Device. *FDA*. Published online January 28, 2020. Accessed April 7, 2020.
 14 https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence15 and-machine-learning-software-medical-device
- 57. Zhang T, He Z, Lee RB. Privacy-preserving Machine Learning through Data Obfuscation.
 arXiv:180701860 [cs]. Published online July 12, 2018. Accessed April 7, 2020.
 http://arxiv.org/abs/1807.01860
- Tully MP, Hassan L, Oswald M, Ainsworth J. Commercial use of health data-A public "trial"
 by citizens' jury. *Learn Health Syst.* 2019;3(4):e10200. doi:10.1002/lrh2.10200
- 59. Munyon CN. Neuroethics of Non-primary Brain Computer Interface: Focus on Potential
 Military Applications. *Front Neurosci.* 2018;12:696. doi:10.3389/fnins.2018.00696
- 23 60. Drew L. The ethics of brain–computer interfaces. *Nature*. 2019;571(7766):S19-S21.
 24 doi:10.1038/d41586-019-02214-2
- This tech company is becoming one of the first in the world to microchip employees. The
 Independent. Published July 24, 2017. Accessed September 26, 2019.
 http://www.independent.co.uk/news/business/news/us-tech-company-microchip employees-first-three-square-market-wisconsin-a7856971.html
- Burwell S, Sample M, Racine E. Ethical aspects of brain computer interfaces: a scoping
 review. *BMC Medical Ethics*. 2017;18(1):60. doi:10.1186/s12910-017-0220-y
- 63. Ienca M, Andorno R. Towards new human rights in the age of neuroscience and
 neurotechnology. *Life Sciences, Society and Policy*. 2017;13(1):5. doi:10.1186/s40504017-0050-1
- 34 64. Synchron: Team. Synchron. Accessed November 4, 2020.
 35 https://www.synchronmed.com/team
- 36 65. Neuralink Crunchbase Company Profile & Funding. Crunchbase. Accessed August 31,
 37 2020. https://www.crunchbase.com/organization/neuralink

1 66. Science - Humm Helps You Think Better. Humm. Accessed September 5, 2019. 2 https://thinkhumm.com/science


3 **Figures Legends**

- 4
- 5 Figure 1: Schematic illustration of the current scope of brain-machine interfaces that splits the
- 6 field into recording and stimulating devices
- 7
- 8 Figure 2: Framework outlining some of the key challenges for the BMI community, highlighting
- 9 areas where active clinician involvement is crucial to progress.

Cognitive	The right to alter one's mental state with the help of
Liberty	neurotechnology as well as to refuse to do so
Mental	The right to one's own brain data. It should not be recorded,
Privacy	shared or used without explicit consent
Mental	Organizations and governments should not alter the
Integrity	computation of the brain without consent
Psychological	Personal identity should not be compromised
Continuity	

Table 1: New human rights principles in the era of neurotechnology and neuroprostheses.⁵¹

.r neurotechnology (

Implant Technology

Identify potential applications (medical and 'augmentative') to direct novel device design

Research the mechanisms, clinical impact (via registries) and ways to mitigate the foreign body reaction

> Robust registries for postmarketing surveillance

that balance speed of

innovation with robust

Identify potential

patient and public

engagement

evaluation

applications (medical and

'augmentative') through

Novel clinical trial constructs

. Methodology

Improving targeting of specific brain structures using advanced and individualised presurgical evaluation

Adapt training to adequately train neurosurgeons for safe and accurate implantation

Novel network neuroscience tools to improve understanding of multi-scale electrophysiological recordings

Identify long-term impact of implants on brain function and connectivity

Implant Regulation

Adaptation of existing regulations to account for implant hardware and software evaluation and data protection

Citizens' juries to help guide difficult decision in terms of regulations and data sharing

Underlying ethical principles that protect patients/individuals and clinicians whilst encouraging innovation and progress

~~

AI: Artificial Intelligence BMI: Brain-Machine Interface DBS: Deep brain stimulation HFO: High frequency oscillation HPC: High performance computing LFP: Local field potential MRI: Magnetic resonance imaging RNS: Responsive neurostimulation SEEG: Stereoelectroencephalography

Journal Prevention