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a b s t r a c t

Active inference is a normative principle underwriting perception, action, planning, decision-making
and learning in biological or artificial agents. From its inception, its associated process theory has
grown to incorporate complex generative models, enabling simulation of a wide range of complex
behaviours. Due to successive developments in active inference, it is often difficult to see how its
underlying principle relates to process theories and practical implementation. In this paper, we try to
bridge this gap by providing a complete mathematical synthesis of active inference on discrete state-
space models. This technical summary provides an overview of the theory, derives neuronal dynamics
from first principles and relates this dynamics to biological processes. Furthermore, this paper provides
a fundamental building block needed to understand active inference for mixed generative models;
allowing continuous sensations to inform discrete representations. This paper may be used as follows:
to guide research towards outstanding challenges, a practical guide on how to implement active
inference to simulate experimental behaviour, or a pointer towards various in-silico neurophysiological
responses that may be used to make empirical predictions.

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Active inference is a normative principle underlying percep-
ion, action, planning, decision-making and learning in biological
r artificial agents, that inherits from the free energy principle,
theory of self-organisation in the neurosciences (Buckley et al.,
017; Friston, 2019; Friston et al., 2006). Active inference pos-
ulates that these processes may all be seen as optimising two
omplementary objective functions; namely, a variational free en-
rgy, which measures the fit between an internal model and past
ensory observations, and an expected free energy, which scores
ossible future courses of action in relation to prior preferences.
Active inference has been employed to simulate a wide range

f complex behaviours in neuropsychology and machine learning,
ncluding planning and navigation (Kaplan & Friston, 2018a),
eading (Friston et al., 2018b), curiosity and abstract rule learn-
ng (Friston, Lin et al., 2017), substance use disorder (Smith,
chwartenbeck et al., 2020), approach avoidance conflict (Smith,
irlic et al., 2020), saccadic eye movements (Parr & Friston,
018a), visual foraging (Mirza et al., 2016; Parr & Friston, 2017a),
isual neglect (Parr & Friston, 2018c), hallucinations (Adams
t al., 2013), niche construction (Bruineberg et al., 2018; Constant
t al., 2018), social conformity (Constant et al., 2019), impulsiv-
ty (Mirza et al., 2019), image recognition (Millidge, 2019), and
he mountain car problem (Çatal et al., 2019; Friston, Adams et al.,
012; Friston et al., 2009). The key idea that underwrites these
imulations is that creatures use an internal forward (generative)
odel to predict their sensory input, which they use to infer

he causes of these data. In addition to simulate behaviour,
ctive inference allows to answer questions about an individual’s
sychological processes, by comparing the evidence of different
echanistic hypotheses in relation to behavioural data.
Active inference is very generic and allows to view different

odels of behaviour in the same light. For example, a drift dif-
usion model can now be seen in relation to predictive coding as
hey can both be interpreted as minimising free energy through
process of evidence accumulation (Bogacz, 2017; Buckley et al.,
017; Friston & Kiebel, 2009). Similarly, a dynamic program-
ing model of choice behaviour corresponds to minimising ex-
ected free energy under the prior preference of maximising
eward (Da Costa et al., 2020). In being generic active inference is
ot meant to replace any of the existing models, rather it should
e used as a tool to uncover the commitments and assumptions
f more specific models.
Early formulations of active inference employed generative

odels expressed in continuous space and time (for an introduc-
ion see Bogacz, 2017, for a review see Buckley et al., 2017), with
ehaviour modelled as a continuously evolving random dynami-

al system. However, we know that some processes in the brain

2

conform better to discrete, hierarchical, representations, com-
pared to continuous representations (e.g., visual working mem-
ory (Luck & Vogel, 1997; Zhang & Luck, 2008), state estimation via
place cells (Eichenbaum et al., 1999; O’Keefe & Dostrovsky, 1971),
language, etc.). Reflecting this, many of the paradigms studied in
neuroscience are naturally framed as discrete state-space prob-
lems. Decision-making tasks are a prime candidate for this, as
they often entail a series of discrete alternatives that an agent
needs to choose among (e.g., multi-arm bandit tasks (Daw et al.,
2006; Reverdy et al., 2013; Wu et al., 2018), multi-step decision
tasks (Daw et al., 2011)). This explains why – in active inference
– agent behaviour is often modelled using a discrete state-space
formulation, the particular applications of which are summarised
in Table 1. More recently, mixed generative models (Friston, Parr
et al., 2017) – combining discrete and continuous states – have
been used to model behaviour involving discrete and continu-
ous representations (e.g., decision-making and movement (Parr
& Friston, 2018d), speech production and recognition (Friston,
Sajid et al., 2020), pharmacologically induced changes in eye-
movement control (Parr & Friston, 2019) or reading; involving
continuous visual sampling informing inferences about discrete
semantics (Friston, Parr et al., 2017)).

Due to the pace of recent theoretical advances in active in-
ference, it is often difficult to retain a comprehensive overview
of its process theory and practical implementation. In this paper,
we hope to provide a comprehensive (mathematical) synthesis
of active inference on discrete state-space models. This techni-
cal summary provides an overview of the theory, derives the
associated (neuronal) dynamics from first principles and relates
these to known biological processes. Furthermore, this paper
and Buckley et al. (2017) provide the building blocks neces-
sary to understand active inference on mixed generative models.
This paper can be read as a practical guide on how to imple-
ment active inference for simulating experimental behaviour, or a
pointer towards various in-silico neuro- and electro-physiological
responses that can be tested empirically.

This paper is structured as follows. Section 2 is a high-level
overview of active inference. The following sections elucidate the
formulation by deriving the entire process theory from first prin-
ciples; incorporating perception, planning and decision-making.
This formalises the action–perception cycle: (1) an agent is pre-
sented with a stimulus, (2) it infers its latent causes, (3) plans
into the future and (4) realises its preferred course of action; and
repeat. This enactive cycle allows us to explore the dynamics of
synaptic plasticity, which mediate learning of the contingencies
of the world at slower timescales. We conclude in Section 9 with

an overview of structure learning in active inference.
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pplications of active inference (discrete state-space).
Application Description References

Decision-making under uncertainty Initial formulation of active inference on partially observable
Markov decision processes.

Friston, Samothrakis et al. (2012)

Optimal control Application of KL or risk sensitive control in an engineering
benchmark—the mountain car problem.

Çatal et al. (2019) and Friston, Adams et al. (2012)

Evidence accumulation Illustrating the role of evidence accumulation in
decision-making through an urns task.

FitzGerald, Moran et al. (2015) and FitzGerald,
Schwartenbeck et al. (2015)

Psychopathology Simulation of addictive choice behaviour. Schwartenbeck, FitzGerald, Mathys, Dolan, Wurst
et al. (2015)

Dopamine The precision of beliefs about policies provides a plausible
description of dopaminergic discharges.

Friston et al. (2014) and FitzGerald, Dolan et al.
(2015)

Functional magnetic resonance imaging Empirical prediction and validation of dopaminergic
discharges.

Schwartenbeck, FitzGerald, Mathys, Dolan and
Friston (2015)

Maximal utility theory Evidence in favour of surprise minimisation as opposed to
utility maximisation in human decision-making.

Schwartenbeck, FitzGerald, Mathys, Dolan,
Kronbichler et al. (2015)

Social cognition Examining the effect of prior preferences on interpersonal
inference.

Moutoussis et al. (2014)

Exploration–exploitation dilemma Casting behaviour as expected free energy minimising
accounts for epistemic and pragmatic choices.

Friston et al. (2015)

Habit learning and action selection Formulating learning as an inferential process and action
selection as Bayesian model averaging.

Friston et al. (2016) and FitzGerald et al. (2014)

Scene construction and anatomy of time Mean-field approximation for multi-factorial hidden states,
enabling high dimensional representations of the environment.

Friston and Buzsáki (2016) and Mirza et al. (2016)

Electrophysiological responses Synthesising various in-silico neurophysiological responses via
a gradient descent on free energy. E.g., place-cell activity,
mismatch negativity, phase-precession, theta sequences,
theta–gamma coupling and dopaminergic discharges.

Friston, FitzGerald et al. (2017)

Structure learning, curiosity and insight Simulation of artificial curiosity and abstract rule learning.
Structure learning via Bayesian model reduction.

Friston, Lin et al. (2017)

Hierarchical temporal representations Generalisation to hierarchical generative models with deep
temporal structure and simulation of reading.

Friston et al. (2018b) and Parr and Friston (2017b)

Computational neuropsychology Simulation of visual neglect, hallucinations, and prefrontal
syndromes under alternative pathological priors.

Benrimoh et al. (2018), Parr, Benrimoh et al.
(2018), Parr and Friston (2018c), Parr, Rees et al.
(2018) and Parr, Rikhye et al. (2019)

Neuromodulation Use of precision parameters to manipulate exploration during
saccadic searches; associating uncertainty with cholinergic and
noradrenergic systems.

Parr and Friston (2017a, 2019), Sales et al. (2018)
and Vincent et al. (2019)

Decisions to movements Mixed generative models combining discrete and continuous
states to implement decisions through movement.

Friston, Parr et al. (2017) and Parr and Friston
(2018d)

Planning, navigation and niche construction Agent induced changes in environment (generative process);
decomposition of goals into subgoals.

Bruineberg et al. (2018), Constant et al. (2018)
and Kaplan and Friston (2018a)

Atari games Active inference compares favourably to reinforcement
learning in the game of Doom.

Cullen et al. (2018)

Machine learning Scaling active inference to more complex machine learning
problems.

Tschantz et al. (2019)
2. Active inference

To survive in a changing environment, biological (and arti-
icial) agents must maintain their sensations within a certain
ospitable range (i.e., maintaining homeostasis through allosta-
is). In brief, active inference proposes that agents achieve this by
ptimising two complementary objective functions, a variational
ree energy and an expected free energy. In short, the former
easures the fit between an internal (generative) model of its
ensations and sensory observations, while the latter scores each
ossible course of action in terms of its ability to reach the range
f ‘‘preferred’’ states of being.
Our first premise is that agents represent the world through

n internal model. Through minimisation of variational free en-
rgy, this model becomes a good model of the environment.
n other words, this probabilistic model and the probabilistic
eliefs1 that it encodes are continuously updated to mirror the

environment and its dynamics. Such a world model is considered
to be generative; in that it is able to generate predictions about
sensations (e.g., during planning or dreaming), given beliefs about

1 By beliefs we mean Bayesian beliefs, i.e., probability distributions over a
ariable of interest (e.g., current position). Beliefs are therefore used in the sense
f Bayesian belief updating or belief propagation—as opposed to propositional
r folk psychology beliefs.
3

future states of being. If an agent senses a heat source (e.g., an-
other agent) via some temperature receptors, the sensation of
warmth represents an observed outcome and the temperature
of the heat source a hidden state; minimisation of variational
free energy then ensures that beliefs about hidden states closely
match the true temperature. Formally, the generative model is
a joint probability distribution over possible hidden states and
sensory consequences – that specifies how the former cause
the latter – and minimisation of variational free energy enables
to ‘‘invert’’ the model; i.e., determine the most likely hidden
states given sensations. The variational free energy is the negative
evidence lower bound that is optimised in variational Bayes in
machine learning (Bishop, 2006; Xitong, 2017). Technically – by
minimising variational free energy – agents perform approximate
Bayesian inference (Sengupta & Friston, 2016; Sengupta et al.,
2016), which enables them to infer the causes of their sensations
(e.g., perception). This is the point of contact between active infer-
ence and the Bayesian brain (Aitchison & Lengyel, 2017; Friston,
2012; Knill & Pouget, 2004). Crucially, agents may incorporate an
optimism bias (McKay & Dennett, 2009; Sharot, 2011) in their
model; thereby scoring certain ‘‘preferred’’ sensations as more
likely. This lends a higher plausibility to those courses of action
that realise these sensations. In other words, a preference is
simply something an agent (believes it) is likely to work towards.
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Fig. 1. Markov blankets in active inference. This figure illustrates the Markov blanket assumption of active inference. A Markov blanket is a set of variables through
which states internal and external to the system interact. Specifically, the system must be such that we can partition it into a Bayesian network of internal states µ,
external states η, sensory states o and active states u, (µ, o and u are often referred together as particular states) with probabilistic (causal) links in the directions
specified by the arrows. All interactions between internal and external states are therefore mediated by the blanket states b. The sensory states represent the sensory
information that the body receives from the environment and the active states express how the body influences the environment. This blanket assumption is quite
generic, in that it can be reasonably assumed for a brain as well as elementary organisms. For example, when considering a bacillus, the sensory states become the
cell membrane and the active states comprise the actin filaments of the cytoskeleton. Under the Markov blanket assumption – together with the assumption that
the system persists over time (i.e., possesses a non-equilibrium steady state) – a generalised synchrony appears, such that the dynamics of the internal states can be
cast as performing inference over the external states (and vice versa) via a minimisation of variational free energy (Friston, 2019; Parr et al., 2020). This coincides
with existing approaches to inference; i.e., variational Bayes (Beal, 2003; Bishop, 2006; Blei et al., 2017; Jordan et al., 1998). This can be viewed as the internal states
mirroring external states, via sensory states (e.g., perception), and external states mirroring internal states via active states (e.g., a generalised form of self-assembly,
autopoiesis or niche construction). Furthermore, under these assumptions the most likely courses of actions can be shown to minimise expected free energy. Note
that external states beyond the system should not be confused with the hidden states of the agent’s generative model (which model external states). In fact, the
internal states are exactly the parameters (i.e., sufficient statistics) encoding beliefs about hidden states and other latent variables, which model external states in
a process of variational free energy minimisation. Hidden and external states may or may not be isomorphic. In other words, an agent uses its internal states to
represent hidden states that may or may not exist in the external world.
To maintain homeostasis, and ensure survival, agents must
minimise surprise.2 Since the generative model scores preferred
outcomes as more likely, minimising surprise corresponds to
maximising model evidence.3 In active inference, this is assured
by the aforementioned processes; indeed, the variational free en-
ergy turns out to be an upper bound on surprise and minimising
expected free energy ensures preferred outcomes are realised,
thereby avoiding surprise on average.

Active inference can thus be framed as the minimisation of
surprise (Friston, 2009, 2010; Friston et al., 2006; Friston &
Stephan, 2007) by perception and action. In discrete state models
– of the sort discussed here – this means agents select from dif-
ferent possible courses of action (i.e., policies) in order to realise
their preferences and thus minimise the surprise that they expect
to encounter in the future. This enables a Bayesian formulation
of the perception–action cycle (Fuster, 1990): agents perceive
the world by minimising variational free energy, ensuring their

2 In information theory, the surprise (a.k.a., surprisal) associated with an
utcome under a generative model is given by − log p(o). This specifies the
xtent to which an observation is unusual and surprises the agent—but this
oes not mean that the agent consciously experiences surprise. In information
heory this kind of surprise is known as self-information.
3 In Bayesian statistics, the model evidence (often referred to as marginal

ikelihood) associated with a generative model is p(o)—the probability of ob-
served outcomes according to the model (sometimes this is written as p(o|m),
explicitly conditioning upon a model). The model evidence scores the goodness
of the model as an explanation of data that are sampled, by rewarding accuracy
and penalising complexity, which avoids overfitting.
4

model is consistent with past observations, and act by minimising
expected free energy, to make future sensations consistent with
their model. This account of behaviour can be concisely framed
as self-evidencing (Hohwy, 2016).

In contrast to other normative models of behaviour, active
inference is a ‘first principle’ account, which is grounded in sta-
tistical physics (Friston, 2019; Parr et al., 2020). Active inference
describes the dynamics of systems that persist (i.e., do not dis-
sipate) during some timescale of interest, and that can be statis-
tically segregated from their environment—conditions which are
satisfied by biological systems. Mathematically, the first condition
means that the system is at non-equilibrium steady-state (NESS).
This implies the existence of a steady-state probability density to
which the system self-organises and returns to after perturbation
(i.e., the agent’s preferences). The statistical segregation condi-
tion is the presence of a Markov blanket (c.f., Fig. 1) (Kirchhoff
et al., 2018; Pearl, 1998): a set of variables through which states
internal and external to the system interact (e.g., the skin is
a Markov blanket for the human body). Under these assump-
tions it can be shown that the states internal to the system
parameterise Bayesian beliefs about external states and can be
cast a process of variational free energy minimisation (Friston,
2019; Parr et al., 2020). This coincides with existing approaches
to approximate inference (Beal, 2003; Bishop, 2006; Blei et al.,
2017; Jordan et al., 1998). Furthermore, it can be shown that the
most likely courses of action taken by those systems are those

which minimise expected free energy (or a variant thereof, see
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ppendix C)—a quantity that subsumes many existing constructs
n science and engineering (see Section 7).

By subscribing to the above assumptions, it is possible to
escribe the behaviour of viable living systems as performing
ctive inference—the remaining challenge is to determine the
omputational and physiological processes that they implement
o do so. This paper aims to summarise possible answers to this
uestion, by reviewing the technical details of a process theory
or active inference on discrete state-space generative models,
irst presented in Friston, FitzGerald et al. (2017). Note that it is
mportant to distinguish between active inference as a principle
presented above) from active inference as a process theory.
he former is a consequence of fundamental assumptions about
iving systems, while the latter is a hypothesis concerning the
omputational and biological processes in the brain that might
mplement active inference. The ensuing process theories theory
an then be used to predict plausible neuronal dynamics and
lectrophysiological responses that are elicited experimentally.

. Discrete state-space generative models

The generative model (Bishop, 2006) expresses how the agent
epresents the world. This is a joint probability distribution over
ensory data and the hidden (or latent) causes of these data.
he sorts of discrete state-space generative models used in active
nference are specifically suited to represent discrete time series
nd decision-making tasks. These can be expressed as variants
f partially observable Markov decision processes (POMDPs; As-
röm, 1965): from simple Markov decision processes (Barto &
utton, 1992; Stone, 2019; White, 2001) to generalisations in the
orm of deep probabilistic (hierarchical) models (Allenby et al.,
005; Box & Tiao, 1965; Friston et al., 2018b). For clarity, the
rocess theory is derived for the simplest model that facilitates
nderstanding of subsequent generalisations; namely, a POMDP
here the agent holds beliefs about the probability of the initial
tate (specified as D), the transition probabilities from one state
o the next (defined as matrix B) and the probability of outcomes
iven states (i.e., the likelihood matrix A); see Fig. 2.
As mentioned above, a substantial body of work justifies

escribing certain neuronal representations with discrete state-
pace generative models (e.g., Luck & Vogel, 1997; Tee & Taylor,
018; Zhang & Luck, 2008). Furthermore, it has been long known
hat – at the level of neuronal populations – computations occur
eriodically (i.e., in distinct and sometimes nested oscillatory
ands). Similarly, there is evidence for sequential computation
n a number of processes (e.g., attention Buschman & Miller,
010; Duncan et al., 1994; Landau & Fries, 2012, visual per-
eption Hanslmayr et al., 2013; Rolls & Tovee, 1994) and at
ifferent levels of the neuronal hierarchy (Friston, 2008; Friston
t al., 2018b), in line with ideas from hierarchical predictive
rocessing (Chao et al., 2018; Iglesias et al., 2013). This accom-
odates the fact that visual saccadic sampling of observations
ccurs at a frequency of approximately 4 Hz (Parr & Friston,
018d). The relatively slow presentation of a discrete sequence of
bservations enables inferences to be performed in peristimulus
ime by (much) faster neuronal dynamics.

Active inference, implicitly, accounts for fast and slow neu-
onal dynamics. At each time-step the agent observes an out-
ome, from which it infers the past, present and future (hidden)
tates through perception. This underwrites a plan into the future,
y evaluating (the expected free energy of) possible policies. The
nferred (best) policies specify the most likely action, which is
xecuted. At a slower timescale, parameters encoding the con-
ingencies of the world (e.g., A), are inferred. This is referred to as
earning. Even more slowly, the structure of the generative model
s updated to better account for available observations—this is
5

called structure learning. The following sections elucidate these
aspects of the active inference process theory.

This paper will be largely concerned with deriving and in-
terpreting the inferential dynamics that agents might implement
using the generative model in Fig. 2. We leave the discussion of
more complex models to Appendix A, since the derivations are
analogous in those cases.

4. Variational Bayesian inference

4.1. Free energy and model evidence

Variational Bayesian inference rests upon minimisation of a
quantity called (variational) free energy, which bounds the im-
probability (i.e., the surprise) of sensory observations, under a
generative model. Simultaneously, free energy minimisation is
a statistical inference technique that enables the approximation
of the posterior distribution in Bayes rule. In machine learning,
this is known as variational Bayes (Beal, 2003; Bishop, 2006; Blei
et al., 2017; Jordan et al., 1998). Active inference agents minimise
variational free energy, enabling concomitant maximisation of
their model evidence and inference of the latent variables of their
generative model. In the following, we consider a particular time
point to be given t ∈ {1, . . . , T }, whence the agent has observed a
sequence of outcomes o1:t . The posterior about the latent causes
of sensory data is given by Bayes rule:

P(s1:T , A, π |o1:t ) =
P(o1:t |s1:T , A, π )P(s1:T , A, π )

P(o1:t )
(1)

Note the policy π is a random variable. This entails planning
as inferring the best action sequence from observations (Attias,
2003; Botvinick & Toussaint, 2012). Computing the posterior
distribution requires computing the model evidence P(o1:t ) =

π∈Π

∑
s1:T∈ST

∫
P(o1:t , s1:T , A, π ) dA, which is intractable for

omplex generative models embodied by biological and artifi-
ial systems (Friston, 2008)—a well-known problem in Bayesian
tatistics. An alternative to computing the exact posterior distri-
ution is to optimise an approximate posterior distribution over
atent causes Q (s1:T , A, π ), by minimising the Kullback–Leibler
KL) divergence (Kullback & Leibler, 1951) DKL—a non-negative
easure of discrepancy between probability distributions. We
an use the definition of the KL divergence and Bayes rule to
rrive at the variational free energy F , which is a functional of
pproximate posterior beliefs:

0 ≤ DKL[Q (s1:T , A, π )∥P(s1:T , A, π |o1:t )]
= EQ (s1:T ,A,π )[logQ (s1:T , A, π ) − log P(s1:T , A, π |o1:t )]
= EQ (s1:T ,A,π )[logQ (s1:T , A, π ) − log P(o1:t , s1:T , A, π )

+ log P(o1:t )]
= EQ (s1:T ,A,π )[logQ (s1:T , A, π ) − log P(o1:t , s1:T , A, π )]  

=:F [Q (s1:T ,A,π )]

+ log P(o1:t )
⇒ − log P(o1:t ) ≤ F [Q (s1:T , A, π )]

(2)

From (2), one can see that by varying Q to minimise the vari-
ational free energy enables us to approximate the true posterior,
while simultaneously ensuring that surprise remains low. The
former offers the intuitive interpretation of the free energy as
a generalised prediction error, as minimising free energy cor-
responds to suppressing the discrepancy between predictions,
i.e., Q , and the actual state of affairs, i.e., the posterior; and indeed
for a particular class of generative models, we recover the predic-
tion error given by predictive coding schemes (see Bogacz, 2017;
Buckley et al., 2017; Friston et al., 2007). Altogether, this means
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Fig. 2. Example of a discrete state-space generative model. Panel 2a, specifies the form of the generative model, which is how the agent represents the world. The
generative model is a joint probability distribution over (hidden) states, outcomes and other variables that cause outcomes. In this representation, states unfold
in time causing an observation at each time-step. The likelihood matrix A encodes the probabilities of state–outcome pairs. The policy π specifies which action
to perform at each time-step. Note that the agent’s preferences may be specified either in terms of states or outcomes. It is important to distinguish between
states (resp. outcomes) that are random variables, and the possible values that they can take in S (resp. in O), which we refer to as possible states (resp. possible
outcomes). Note that this type of representation comprises a finite number of timesteps, actions, policies, states, outcomes, possible states and possible outcomes.
In Panel 2b, the generative model is displayed as a probabilistic graphical model (Bishop, 2006; Jordan et al., 1998; Pearl, 1988, 1998) expressed in factor graph
form (Loeliger, 2004). The variables in circles are random variables, while squares represent factors, whose specific form are given in Panel 2a. The arrows represent
causal relationships (i.e., conditional probability distributions). The variables highlighted in grey can be observed by the agent, while the remaining variables are
inferred through approximate Bayesian inference (see Section 4) and called hidden or latent variables. Active inference agents perform inference by optimising
the parameters of an approximate posterior distribution (see Section 4). Panel 2c specifies how this approximate posterior factorises under a particular mean-field
approximation (Tanaka, 1999), although other factorisations may be used (Parr, Markovic et al., 2019; Schwöbel et al., 2018). A glossary of terms used in this figure is
available in Table 2. The mathematical yoga of generative models is heavily dependent on Markov blankets. The Markov blanket of a random variable in a probabilistic
graphical model are those variables that share a common factor. Crucially, a variable conditioned upon its Markov blanket is conditionally independent of all other
variables. We will use this property extensively (and implicitly) in the text.
that variational free energy minimising agents, simultaneously,
infer the latent causes of their observations and maximise the
evidence for their generative model. One should note that the
free energy equals the surprise − log P(o1:t ) only at the global free
energy minimum, when the approximate posterior Q (s1:T , A, π )
equals the true posterior P(s1:T , A, π |o1:t ). Outside of the global
free energy minimum, the free energy upper bounds the surprise,
in which case, since the true posterior is generally intractable, the
tightness of the bound is generally unknowable.

To aid intuition, the variational free energy can be rearranged
into complexity and accuracy:

F [Q (s1:T , A, π )] = DKL[Q (s1:T , A, π )∥P(s1:T , A, π )]  
Complexity

− EQ (s1:T ,A,π )[log P(o1:t |s1:T , A, π )]  
Accuracy

(3)

The first term of (3) can be regarded as complexity: a simple
explanation for observable data Q , which makes few assumptions
over and above the prior (i.e., with KL divergence close to zero),
is a good explanation. In other words, a good explanation is an
accurate account of some data that requires minimal movement
for updating of prior to posterior beliefs (c.f., Occam’s principle).
The second term is accuracy; namely, the probability of the data
given posterior beliefs about model parameters Q . In other words,
how well the generative model fits the observed data. The idea
that neural representations weigh complexity against accuracy
underwrites the imperative to find the most accurate explanation
for sensory observations that is minimally complex, which has
6

been leveraged by things like Horace Barlow’s principle of min-
imum redundancy (Barlow, 2001) and subsequently supported
empirically (Dan et al., 1996; Lewicki, 2002; Olshausen & Field,
2004; Olshausen & O’Connor, 2002). Fig. 3 illustrates the various
implications of minimising free energy.

4.2. On the family of approximate posteriors

The goal is now to minimise variational free energy with
respect to Q . To obtain a tractable expression for the variational
free energy, we need to assume a certain simplifying factori-
sation of the approximate posterior. There are many possible
forms (e.g., mean-field, marginal, Bethe, see Heskes, 2006; Parr,
Markovic et al., 2019; Yedidia et al., 2005), each of which trades
off the quality of the inferences with the complexity of the
computations involved. For the purpose of this paper we use
a particular structured mean-field approximation (see Table 2
for an explanation of the different distributions and variables in
play):

Q (s1:T , A, π ) = Q (A)Q (π )
T∏
τ=1

Q (sτ |π ) (4)

Q (sτ |π ) = Cat(sπτ ), sπτ ∈ {x ∈ Rm
| xi > 0,

∑
i

xi = 1}

Q (π ) = Cat(πππ ), {x ∈ R|Π |
| xi > 0,

∑
i

xi = 1}

Q (A) =

m∏
i=1

Q (A•i), Q (A•i) = Dir(a•i), a•i ∈ (R>0)n
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lossary of terms and notation.
Notation Meaning Type

S Set of all possible (hidden) states. Finite set of cardinality m > 0.
sτ (Hidden) state at time τ . In computations, if sτ evaluates to the ith possible

state, then interpret it as the ith unit vector in Rm .
Random variable over S.

s1:t Sequence of hidden states s1, . . . , st . Random variable over S × · · · × S  
t times

= St .

O Set of all possible outcomes. Finite set of cardinality n > 0.
oτ Outcome at time τ . In computations, if oτ evaluates to the jth possible

outcome, then interpret it as the jth unit vector in Rn .
Random variable over O.

o1:t Sequence of outcomes o1, . . . , ot Random variable over O × · · · × O  
t times

= Ot .

T Number of timesteps in a trial of observation epochs under the generative
model.

Positive integer.

U Set of all possible actions. Finite set.
Π Set of all allowable policies; i.e., action sequences indexed in time. Finite subset of U × · · · × U  

T times

= UT .

π Policy or actions sequence indexed in time. Random variable over Π , or element of Π
depending on context.

Q Approximate posterior distribution over the latent variables of the generative
model s1:T , A, π .

Scalar valued probability distribution over
S × {x ∈ Rn

|xi > 0,
∑

i xi = 1}m ×Π .
F , Fπ Variational free energy and variational free energy conditioned upon a policy. Functionals of Q that evaluate to a scalar

quantity.
G Expected free energy. Function defined on Π that evaluates to a

scalar quantity.
Cat Categorical distribution; probability distribution over a finite set assigning

strictly positive probabilities.
Probability distribution over a finite set of
cardinality k parameterised by a real valued
vector of probabilities in
{x ∈ Rk

|xi > 0,
∑

i xi = 1}
Dir Dirichlet distribution (conjugate prior of the categorical distribution).

Probability distribution over the parameter space of the categorical
distribution, parameterised by a vector of positive reals.

Probability distribution over
{x ∈ Rk

|xi > 0,
∑

i xi = 1}, itself parameterised
by an element of (R>0)k .

X•i, Xki ith column and (k,i)th element of matrix X . Matrix indexing convention.
·,⊗,⊙,⊙ Respectively inner product, Kronecker product, element-wise product and

element-wise power. Following existing active inference literature, we adopt
the convention X · Y := XTY for matrices.

Operation on vectors and matrices.

A Likelihood matrix. The probability of the state–outcome pair oτ , sτ , namely
P(oτ |sτ , A) is given by oτ · Asτ .

Random variable over the subset of Mn×m(R)
with columns in {x ∈ Rn

|xi > 0,
∑

i xi = 1}.
Bπτ−1 Matrix of transition probabilities from one state to the next state given action

πτ−1 . The probability of possible state sτ , given sτ−1 and action πτ−1 is
sτ · Bπτ−1 sτ−1 .

Matrix in Mm×m(R) with columns in
{x ∈ Rm

|xi > 0,
∑

i xi = 1}.

D Vector of probabilities of initial state. The probability of the ith possible state
occurring at time 1 is Di .

Vector of probabilities in
{x ∈ Rm

|xi > 0,
∑

i xi = 1}.
a, a Parameters of prior and approximate posterior beliefs about A. Matrices in Mn×m(R>0).
a0, a0 Matrices of the same size as a, a, with homogeneous columns; any of its ith

column elements are denoted by ai0, ai0 and defined by
ai0 =

∑n
j=1 aji, ai0 =

∑n
j=1 aji .

Matrices in Mn×m(R>0).

log,Γ , ψ Natural logarithm, gamma function and digamma function. By convention
these functions are taken component-wise on vectors and matrices.

Functions.

EP(X)[f (X)] Expectation of a random variable f (X) under a probability density P(X), taken
component-wise if f (X) is a matrix. EP(X)[f (X)] :=

∫
f (X)P(X) dX

Real-valued operator on random variables.

A A := EQ (A)[A] = a ⊙ a⊙(−1)
0 Matrix in Mn×m(R>0).

logA logA := EQ (A)[log A] = ψ(a) − ψ(a0). Note that logA ̸= logA! Matrix in Mn×m(R).
σ Softmax function or normalised exponential. σ (x)k =

exk∑
i e

xi Function Rk
→ {x ∈ Rk

|xi > 0,
∑

i xi = 1}
H[P] Shannon entropy of a probability distribution P . Explicitly,

H[P] = EP(x)[− log P(x)]
Functional over probability distributions.
This choice is driven by didactic purposes and since this fac-
orisation has been used extensively in the active inference liter-
ture (Friston, FitzGerald et al., 2017; Friston, Parr et al., 2017;
riston et al., 2018b). However, the most recent software im-
lementation of active inference (available in spm_MDP_VB_X.m)

employs a marginal approximation (Parr, 2019; Parr, Markovic
et al., 2019), which retains the simplicity and biological inter-
pretation of the neuronal dynamics afforded by the mean-field
approximation, while approximating the more accurate infer-
ences of the Bethe approximation. For these reasons, the marginal
free energy currently stands as the most biologically plausible.

4.3. Computing the variational free energy

The next sections focus on producing biologically plausible

neuronal dynamics that perform perception and learning based

7

on variational free energy minimisation. To enable this, we first
compute variational the free energy, using the factorisations of
the generative model and approximate posterior (c.f., Fig. 2):

F [Q (s1:T , A, π )] = EQ (s1:T ,A,π )[logQ (s1:T , A, π )

− log P(o1:t , s1:T , A, π )]

= EQ (s1:T ,A,π )[logQ (A)

+ logQ (π ) +

T∑
τ=1

logQ (sτ |π )

− log P(A) − log P(π ) − log P(s1)

−

T∑
log P(sτ |sτ−1, π )
τ=2
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Fig. 3. Markov blankets and self-evidencing. This schematic illustrates the various interpretations of minimising variational free energy. Recall that the existence of
a Markov blanket implies a certain lack of influences among internal, blanket and external states. These independencies have an important consequence; internal
and active states are the only states that are not influenced by external states, which means their dynamics (i.e., perception and action) are a function of, and
only of, particular states (i.e., internal, sensory and active states); here, the variational (free energy) bound on surprise. This surprise has a number of interesting
interpretations. Given it is the negative log probability of finding a particle or creature in a particular state, minimising surprise corresponds to maximising the
value of a particle’s state. This interpretation is licensed by the fact that the states with a high probability are, by definition, attracting states. On this view, one
can then spin-off an interpretation in terms of reinforcement learning (Barto & Sutton, 1992), optimal control theory (Todorov & Jordan, 2002) and, in economics,
expected utility theory (Bossaerts & Murawski, 2015). Indeed, any scheme predicated on the optimisation of some objective function can now be cast in terms of
minimising surprise – in terms of perception and action (i.e., the dynamics of internal and active states) – by specifying these optimal values to be the agent’s
preferences. The minimisation of surprise (i.e., self-information) leads to a series of influential accounts of neuronal dynamics; including the principle of maximum
mutual information (Linsker, 1990; Optican & Richmond, 1987), the principles of minimum redundancy and maximum efficiency (Barlow, 1961) and the free energy
principle (Friston et al., 2006). Crucially, the average or expected surprise (over time or particular states of being) corresponds to entropy. This means that action and
perception look as if they are minimising entropy. This leads us to theories of self-organisation, such as synergetics in physics (Haken, 1978; Kauffman, 1993; Nicolis
& Prigogine, 1977) or homeostasis in physiology (Ashby, 1947; Bernard, 1974; Conant & Ashby, 1970). Finally, the probability of any blanket states given a Markov
blanket (m) is, on a statistical view, model evidence (MacKay, 1995, 2003). This means that all the above formulations are internally consistent with things like the
ayesian brain hypothesis, evidence accumulation and predictive coding; most of which inherit from Helmholtz motion of unconscious inference (von Helmholtz &
outhall, 1962), later unpacked in terms of perception as hypothesis testing in 20th century psychology (Gregory, 1980) and machine learning (Dayan et al., 1995).
a
s
a
c

−

t∑
τ=1

log P(oτ |sτ , A)]

= DKL[Q (A)∥P(A)] + DKL[Q (π )∥P(π )]

+ EQ (π )[Fπ [Q (s1:T |π )]]

(5)

here

Fπ [Q (s1:T |π )] :=

T∑
τ=1

EQ (sτ |π )[logQ (sτ |π )]

−

t∑
τ=1

EQ (sτ |π )Q (A)[log P(oτ |sτ , A)]

− EQ (s1|π )[log P(s1)] −

T∑
τ=2

EQ (sτ |π )Q (sτ−1|π )

× [log P(sτ |sτ−1, π )]

(6)

is the variational free energy conditioned upon pursuing a par-
ticular policy. This is the same quantity that we would have
obtained by omitting A and conditioning all probability distribu-
tions in the numerators of (1) by π . In the next section, we will
8

see how perception can be framed in terms of variational free
energy minimisation.

5. Perception

In active inference, perception is equated with state estima-
tion (Friston, FitzGerald et al., 2017) (e.g., inferring the tempera-
ture from the sensation of warmth), consistent with the idea that
perceptions are hypotheses (Gregory, 1980). To infer the (past,
present and future) states of the environment, an agent must
minimise the variational free energy with respect to Q (s1:T |π ) for
each policy π . This provides the agent’s inference over hidden
states, contingent upon pursuing a given policy. Since the only
part of the free energy that depends on Q (s1:T |π ) is Fπ , the
gent must simply minimise Fπ . Substituting Q (sτ |π ) by their
ufficient statistics (i.e., the vector of parameters sπτ ), Fπ becomes
function of those parameters. This enables us to rewrite (6),

onveniently in matrix form (see Appendix B for details):

Fπ (sπ1, . . . , sπT ) =

T∑
τ=1

sπτ · log sπτ −

t∑
τ=1

oτ · logAsπτ

− sπ1 logD −

T∑
sπτ · log(Bπτ−1 )sπτ−1

(7)
τ=2
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e

This enables to compute the variational free energy gradi-

nts (Petersen & Pedersen, 2012):

∇sπτ Fπ (sπ1, . . . , sπT ) = 1⃗ + log sπτ

−

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

oτ · logA + sπτ+1 · log(Bπτ )
+ logD if τ = 1

oτ · logA + sπτ+1 · log(Bπτ )
+ log(Bπτ−1 )sπτ−1 if 1 < τ ≤ t

sπτ+1 · log(Bπτ ) + log(Bπτ−1 )sπτ−1

if τ > t

(8)

The neuronal dynamics are given by a gradient descent on
free energy (Friston, FitzGerald et al., 2017), with state-estimation
expressed as a softmax function of accumulated (negative) free
energy gradients, that we denote by vπτ (see Section 5.1 for an
interpretation). The constant term 1⃗ is generally omitted since the
softmax function removes it anyway.

v̇πτ (sπ1, . . . , sπT ) = −∇sπτ Fπ (sπ1, . . . , sπT )
sπτ = σ (vπτ )

(9)

The softmax function σ – a generalisation of the sigmoid to
vector inputs – is a natural choice as the variational free energy
gradient is a logarithm and the components of sπτ must sum
to one. Note the continuous time gradient descent on the free
energy (9); although we focus on active inference with discrete
generative models, this does not preclude the belief updating
from occurring in continuous time (this is particularly important
when relating these dynamics to neurobiological processes, see
below). Yet, any numerical implementation of active inference
would implement a discretised version of (9) until convergence,
for example

v(k)πτ = v(k−1)
πτ − κ∇s(k−1)

πτ
Fπ (s

(k−1)
π1 , . . . , s(k−1)

πT ) for small κ > 0

s(k)πτ = σ (v(k)πτ ).

5.1. Plausibility of neuronal dynamics

The temporal dynamics expressed in (9) unfold at a much
faster timescale than the sampling of new observations (i.e.,
within timesteps) and correspond to fast neuronal processing
in peristimulus time. This is consistent with behaviour-relevant
computations at frequencies that are higher than the rate of
visual sampling (e.g., working memory (Lundqvist et al., 2016),
visual stimulus perception in humans (Hanslmayr et al., 2013)
and macaques (Rolls & Tovee, 1994)).

Furthermore, these dynamics (9) are consistent with predic-
tive processing (Bastos et al., 2012; Rao & Ballard, 1999) – since
active inference prescribes dynamics that minimise prediction
error – although they generalise it to a wide range of generative
models. Note that, while also a variational free energy, this sort
of prediction error (7) is not the same as that given by predictive
coding schemes (which rely upon a certain kind of continuous
state-space generative model, see Bogacz, 2017; Buckley et al.,
2017; Friston et al., 2007).

Just as neuronal dynamics involve translation from post-
synaptic potentials to firing rates, (9) involves translating from
a vector of real numbers (v), to a vector whose elements are
bounded between zero and one (sπτ ); via the softmax function. As
a result, it is natural to interpret the components of v as the av-
erage membrane potential of distinct neural populations, and sπτ
as the average firing rate of those populations, which is bounded
thanks to neuronal refractory periods. This is consistent with

mean-field formulations of neural population dynamics, in that

9

the average firing rate of a neuronal population follows a sigmoid
function of the average membrane potential (Deco et al., 2008;
Marreiros et al., 2008; Moran et al., 2013). Using the fact that a
softmax function is a generalisation of the sigmoid to vector in-
puts – here the average membrane potentials of coupled neuronal
populations – it follows that their average firing follows a softmax
function of their average potential. In this context, the softmax
function may be interpreted as performing lateral inhibition,
which can be thought of as leading to narrower tuning curves of
individual neurons and thereby sharper inferences (Von Békésy,
1967). Importantly, this tells us that state-estimation can be
performed in parallel by different neuronal populations, and a
simple neuronal architecture is sufficient to implement these
dynamics (see Parr, Markovic et al. (2019, Figure 6)).

Lastly, interpreting the dynamics in this way has a
degree of face validity, as it enables us to synthesise a wide-
range of biologically plausible electrophysiological responses;
including repetition suppression, mismatch negativity, violation
responses, place-cell activity, phase precession, theta sequences,
theta–gamma coupling, evidence accumulation, race-to-bound
dynamics and transfer of dopamine responses (Friston, FitzGer-
ald et al., 2017; Schwartenbeck, FitzGerald, Mathys, Dolan and
Friston, 2015).

The neuronal dynamics for state estimation coincide with vari-
ational message passing (Dauwels, 2007; Winn & Bishop, 2005),
a popular algorithm for approximate Bayesian inference. This
follows, as we have seen, from free energy minimisation under
a particular mean-field approximation (4). If one were to use the
Bethe approximation, the corresponding dynamics coincide with
belief propagation (Bishop, 2006; Loeliger, 2004; Parr, Markovic
et al., 2019; Schwöbel et al., 2018; Yedidia et al., 2005), another
widely used algorithm for approximate inference. This offers a
formal connection between active inference and message pass-
ing interpretations of neuronal dynamics (Dauwels et al., 2007;
Friston, Parr et al., 2017; George, 2005). In the next section, we
examine planning, decision-making and action selection.

6. Planning, decision-making and action selection

So far, we have focused on optimising beliefs about hidden
states under a particular policy by minimising a variational free
energy functional of an approximate posterior over hidden states,
under each policy.

In this section, we explain how planning and decision-making
arise as a minimisation of expected free energy—a function scor-
ing the goodness of each possible future course of action. We
briefly motivate how the expected free energy arises from first-
principles. This allows us to frame decision-making and action-
selection in terms of expected free energy minimisation. Finally,
we conclude by discussing the computational cost of planning
into the future.

6.1. Planning and decision-making

At the heart of active inference, is a description of agents
that strive to attain a target distribution specifying the range of
preferred states of being, given a sufficient amount of time. To
work towards reaching these preferences, agents select policies
Q (π ), such that their predicted states Q (sτ , A) at some future time
point τ > t (usually, the time horizon of a policy T ) reach the
preferred states P(sτ , A), which are specified by the generative
model. These considerations allow us to show in Appendix C
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hat the requisite approximate posterior over policies Q (π ) is a
oftmax function of the negative expected free energy G4:

Q (π ) = σ (−G(π ))

G(π ) = DKL[Q (sτ , A|π )∥P(sτ , A)]  
Risk

− EQ (sτ ,A|π )P(oτ |sτ ,A)[log P(oτ |sτ , A)]  
Ambiguity

(10)

By risk we mean the difference between predicted and a
riori predictions in the future (e.g., the quantification of losses
s in financial risk) and ambiguity is the uncertainty associated
o future observations, given states. This means that the most
ikely (i.e., best) policies minimise expected free energy. This
nsures that future courses of action are exploitative (i.e., risk
inimising) and explorative (i.e., ambiguity minimising). In par-

icular, the expected free energy balances goal-seeking and itin-
rant novelty-seeking behaviour, given some prior preferences
r goals. Note that the ambiguity term rests on an expecta-
ion over fictive (i.e., predicted) outcomes under beliefs about
uture states. This means that optimising beliefs about future
tates during perception is crucial to accurately predict future
utcomes during planning. In summary, planning and decision-
aking respectively correspond to evaluating the expected free
nergy of different policies, which scores their goodness in re-
ation to prior preferences and forming approximate posterior
eliefs about policies.

.2. Action selection, policy-independent state-estimation

Approximate posterior beliefs about policies allows to obtain
he most plausible action as the most likely under all policies—
his can be expressed as a Bayesian model average

t = argmax
u∈U

( ∑
π∈Π,πt=u

Q (π )

)
. (11)

In addition, we obtain a policy independent state-estimation
t any time point Q (sτ ), τ ∈ {1, . . . , T }, as a Bayesian model av-
rage of approximate posterior beliefs about hidden states under
olicies, which may be expressed in terms of the distribution’s
arameters (Q (sτ ) = Cat(sτ ),Q (sτ |π ) = Cat(sπτ )):

Q (sτ ) =

∑
π∈Π

Q (sτ |π )Q (π )

⇐⇒ sτ =

∑
π∈Π

sπτQ (π )
(12)

Note that these Bayesian model averages may be implemented
y neuromodulatory mechanisms (FitzGerald et al., 2014).

.3. Biological plausibility

Winner take-all architectures of decision-making are already
ommonplace in computational neuroscience (e.g., models of se-
ective attention and recognition (Carpenter & Grossberg, 1987;
tti et al., 1998), hierarchical models of vision (Riesenhuber &
oggio, 1999)). This is nice, since the softmax function in (10)
an be seen as providing a biologically plausible (Deco et al.,

4 A more complete treatment may include priors over policies – usually
enoted by E – and the evidence for a policy afforded by observed outcomes
usually denoted by F). These additional terms supplement the expected free
nergy, leading to an approximate posterior of the form σ (− log E−F−G) (Friston

et al., 2018b).
10
2008; Marreiros et al., 2008; Moran et al., 2013), smooth ap-
proximation to the maximum operation, which is known as soft
winner take-all (Maass, 2000). In fact, the generative model,
presented in Fig. 2, can be naturally extended such that the
approximate posterior contains an (inverse) temperature param-
eter γ multiplying the expected free energy inside the softmax
function (see Appendix A.2). This temperature parameter reg-
ulates how precisely the softmax approximates the maximum
function, thus recovering winner take-all architectures for high
parameter values (technically, this converts Bayesian model av-
eraging into Bayesian model selection, where the policy corre-
sponds to a model of what the agent is doing). This parameter,
regulating precision of policy selection, has a clear biological
interpretation in terms of confidence encoded in dopaminergic
firing (FitzGerald, Dolan et al., 2015; Friston, FitzGerald et al.,
2017; Friston et al., 2014; Schwartenbeck, FitzGerald, Mathys,
Dolan and Friston, 2015). Interestingly, Daw and colleagues (Daw
et al., 2006) uncovered evidence in favour of a similar model
employing a softmax function and temperature parameter in
human decision-making.

6.4. Pruning of policy trees

From a computational perspective, planning (i.e., computing
the expected free energy) for each possible policy can be cost-
prohibitive, due do the combinatorial explosion in the number of
sequences of actions when looking deep into the future. There
has been work in understanding how the brain finesses this
problem (Huys et al., 2012), which suggests a simple answer:
during mental planning, humans stop evaluating a policy as soon
as they encounter a large loss (i.e., a high value of the expected
free energy that renders the policy highly implausible). In ac-
tive inference this corresponds to using an Occam window; that
is, we stop evaluating the expected free energy of a policy if
it becomes much higher than the best (smallest expected free
energy) policy—and set its approximate posterior probability to
an arbitrarily low value accordingly. This biologically plausible
pruning strategy drastically reduces the number of policies one
has to evaluate exhaustively.

Although effective and biologically plausible, the Occam win-
dow for pruning policy trees cannot deal with large policy spaces
that ensue with deep policy trees and long temporal horizons.
This means that pruning can only partially explain how biologi-
cal organisms perform deep policy searches. Further research is
needed to characterise the processes in which biological agents
reduce large policy spaces to tractable subspaces. One explana-
tion – for the remarkable capacity of biological agents to evaluate
deep policy trees – rests on deep (hierarchical) generative mod-
els, in which policies operate at each level. These deep models
enable long-term policies, modelling slow transitions among hid-
den states at higher levels in the hierarchy, to contextualise
faster state transitions at subordinate levels (see Appendix A).
The resulting (semi Markovian) process can then be specified in
terms of a hierarchy of limited horizon policies that are nested
over temporal scales; c.f., motor chunking (Dehaene et al., 2015;
Fonollosa et al., 2015; Haruno et al., 2003).

6.5. Discussion of the action–perception cycle

Minimising variational and expected free energy are com-
plementary and mutually beneficial processes. Minimisation of
variational free energy ensures that the generative model is a
good predictor of its environment; this allows the agent to ac-
curately plan into the future by evaluating expected free energy,
which in turn enables it to realise its preferences. In other words,

minimisation of variational free energy is a vehicle for effective
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lanning and reaching preferences via the expected free energy;
n turn, reaching preferences minimises the expected surprise of
uture states of being.

In conclusion, we have seen how agents plan into the future
nd make decisions about the best possible course of action. This
oncludes our discussion of the action–perception cycle. In the
ext section, we examine expected free energy in greater detail.
hen, we will see how active agents can learn the contingencies
f the environment and the structure of their generative model
t slower timescales.

. Properties of the expected free energy

The expected free energy is a fundamental construct of inter-
st. In this section, we unpack its main features and highlight its
mportance in relation to many existing theories in neurosciences
nd engineering.
The expected free energy of a policy can be unpacked in a

umber of ways. Perhaps the most intuitive is in terms of risk
nd ambiguity:

(π ) = DKL[Q (sτ , A|π )∥P(sτ , A)]  
Risk

+EQ (sτ ,A|π )[H[P(oτ |sτ , A)]]  
Ambiguity

(13)

This means that policy selection minimises risk and ambiguity.
isk, in this setting, is simply the difference between predicted
nd prior beliefs about final states. In other words, policies will
e deemed more likely if they bring about states that conform
o prior preferences. In the optimal control literature, this part of
xpected free energy underwrites KL control (Todorov, 2008; van
en Broek et al., 2010). In economics, it leads to risk sensitive
olicies (Fleming & Sheu, 2002). Ambiguity reflects the uncer-
ainty about future outcomes, given hidden states. Minimising
mbiguity therefore corresponds to choosing future states that
enerate unambiguous and informative outcomes (e.g., switching
n a light in the dark).
We can express the expected free energy of a policy as a bound

n information gain and expected log (model) evidence (a.k.a.,
ayesian risk):

G(π ) = EQ [DKL[Q (sτ , A|oτ , π )∥P(sτ , A|oτ )]]  
Expected evidence bound

− EQ [log P(oτ )]  
Expected log evidence

− EQ [DKL[Q (sτ , A|oτ , π )Q (sτ , A|π )]]  
Expected information gain

≥ − EQ [log P(oτ )]  
Expected log evidence

−EQ [DKL[Q (sτ , A|oτ , π )∥Q (sτ , A|π )]]  
Expected information gain

(14)

The first term in (14) is the expectation of log evidence under
beliefs about future outcomes, while the second ensures that this
expectation is maximally informed, when outcomes are encoun-
tered. Collectively, these two terms underwrite the resolution
of uncertainty about hidden states (i.e., information gain) and
outcomes (i.e., expected surprise) in relation to prior beliefs.

When the agent’s preferences are expressed in terms of out-
comes (c.f., Fig. 2), it is useful to express risk in terms of outcomes,
as opposed to hidden states. This is most useful when the gen-
erative model is not known or during structure learning, when
the state-space evolves over time. In these cases, the risk over
hidden states can be replaced risk over outcomes by assuming the
KL divergence between the predicted and true posterior (under
11
expected outcomes) is small:

DKL[Q (sτ , A|π )∥P(sτ , A)]  
Risk (states)

= DKL[Q (oτ |π )∥P(oτ )]  
Risk (outcomes)

+ EQ (oτ |π )[DKL[Q (sτ , A|oτ , π )∥P(sτ , A|oτ )]]  
≈0

≈ DKL[Q (oτ |π )∥P(oτ )]  
Risk (outcomes)

(15)

This divergence constitutes an expected evidence bound that
lso appears if we express expected free energy in terms of
ntrinsic and extrinsic value:

G(π ) = −EQ (oτ |π )[log P(oτ )]  
Extrinsic value

+EQ (oτ |π )[DKL[Q (sτ , A|oτ , π )∥P(sτ , A|oτ )]]  
Expected evidence bound

− EQ (oτ |π )[DKL[Q (sτ |oτ , π )∥Q (sτ |π )]]  
Intrinsic value (states) or salience

− EQ (oτ ,sτ |π )[DKL[Q (A|oτ , sτ , π )∥Q (A)]]  
Intrinsic value (parameters) or novelty

(16)

Extrinsic value is just the expected value of log evidence,
hich can be associated with reward and utility in
ehavioural psychology and economics, respectively (Barto et al.,
013; Kauder, 1953; Schmidhuber, 2010). In this setting, ex-
rinsic value is the negative of Bayesian risk (Berger, 1985),
hen reward is log evidence. The intrinsic value of a policy

s its epistemic value or affordance (Friston et al., 2015). This
s just the expected information gain afforded by a particular
olicy, which can be about hidden states (i.e., salience) or model
arameters (i.e., novelty). It is this term that underwrites artificial
uriosity (Schmidhuber, 2006).
Intrinsic value corresponds to the expected information gain

bout model parameters. It is also known as intrinsic motivation
n neurorobotics (Barto et al., 2013; Deci & Ryan, 1985; Oudeyer
Kaplan, 2009), the value of information in economics (Howard,
966), salience in the visual neurosciences and (rather confus-
ngly) Bayesian surprise in the visual search literature (Itti & Baldi,
009; Schwartenbeck et al., 2013; Sun et al., 2011). In terms of
nformation theory, intrinsic value is mathematically equivalent
o the expected mutual information between hidden states in
he future and their consequences—consistent with the princi-
les of minimum redundancy or maximum efficiency (Barlow,
961, 1974; Linsker, 1990). Finally, from a statistical perspective,
aximising intrinsic value (i.e., salience and novelty) corresponds

o optimal Bayesian design (Lindley, 1956) and machine learning
erivatives, such as active learning (MacKay, 1992). On this view,
ctive learning is driven by novelty; namely, the information
ain afforded model parameters, given future states and their
utcomes. Heuristically, this curiosity resolves uncertainty about
‘what would happen if I did that’’ (Schmidhuber, 2010). Fig. 4
llustrates the compass of expected free energy, in terms of its
pecial cases; ranging from optimal Bayesian design through to
ayesian decision theory.

. Learning

In active inference, learning concerns the dynamics of synaptic
lasticity, which are thought to encode beliefs about the con-
ingencies of the environment (Friston, FitzGerald et al., 2017)
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Fig. 4. Expected free energy. This figure illustrates the various ways in which minimising expected free energy can be unpacked (omitting model parameters for
clarity). The upper panel casts action and perception as the minimisation of variational and expected free energy, respectively. Crucially, active inference introduces
beliefs over policies that enable a formal description of planning as inference (Attias, 2003; Botvinick & Toussaint, 2012; Kaplan & Friston, 2018a). In brief, posterior
beliefs about hidden states of the world, under plausible policies, are optimised by minimising a variational (free energy) bound on log evidence. These beliefs are
then used to evaluate the expected free energy of allowable policies, from which actions can be selected (Friston, FitzGerald et al., 2017). Crucially, expected free
energy subsumes several special cases that predominate in the psychological, machine learning and economics literature. These special cases are disclosed when one
removes particular sources of uncertainty from the implicit optimisation problem. For example, if we ignore prior preferences, then the expected free energy reduces
to information gain (Lindley, 1956; MacKay, 2003) or intrinsic motivation (Barto et al., 2013; Deci & Ryan, 1985; Oudeyer & Kaplan, 2009). This is mathematically
the same as expected Bayesian surprise and mutual information that underwrite salience in visual search (Itti & Baldi, 2009; Sun et al., 2011) and the organisation
of our visual apparatus (Barlow, 1961, 1974; Linsker, 1990; Optican & Richmond, 1987). If we now remove risk but reinstate prior preferences, one can effectively
treat hidden and observed (sensory) states as isomorphic. This leads to risk sensitive policies in economics (Fleming & Sheu, 2002; Kahneman & Tversky, 1988) or
KL control in engineering (van den Broek et al., 2010). Here, minimising risk corresponds to aligning predicted outcomes to preferred outcomes. If we then remove
ambiguity and relative risk of action (i.e., intrinsic value), we are left with extrinsic value or expected utility in economics (Von Neumann & Morgenstern, 1944) that
underwrites reinforcement learning and behavioural psychology (Barto & Sutton, 1992). Bayesian formulations of maximising expected utility under uncertainty is
also known as Bayesian decision theory (Berger, 1985). Finally, if we just consider a completely unambiguous world with uninformative priors, expected free energy
reduces to the negative entropy of posterior beliefs about the causes of data; in accord with the maximum entropy principle (Jaynes, 1957). The expressions for
variational and expected free energy correspond to those described in the main text (omitting model parameters for clarity). They are arranged to illustrate the
relationship between complexity and accuracy, which become risk and ambiguity, when considering the consequences of action. This means that risk-sensitive policy
selection minimises expected complexity or computational cost. The coloured dots above the terms in the equations correspond to the terms that constitute the
special cases in the lower panels.
t

(e.g., beliefs about B, in some settings, are thought to be encoded
in recurrent excitatory connections in the prefrontal cortex (Parr,
Rikhye et al., 2019)). The fact that beliefs about matrices (e.g., A,
B) may be encoded in synaptic weights conforms to connectionist
models of brain function, as it offers a convenient way to compute
probabilities, in the sense that the synaptic weights could be
interpreted as performing matrix multiplication as in artificial
neural networks, to predict; e.g., outcomes from beliefs about
states, using the likelihood matrix A.

These synaptic dynamics (e.g., long-term potentiation and de-
pression) evolve at a slower timescale than action and percep-
tion, which is consistent with the fact that such inferences need
evidence accumulation over multiple state–outcome pairs. For
simplicity, we will assume the only variable that is learned is A,
but what follows generalises to more complex generative models
12
(c.f., Appendix A.1. Learning A means that approximate posterior
beliefs about A follow a gradient descent on variational free
energy. Seeing the variational free energy (5) as a function of a
(the sufficient statistic of Q (A)) we can write:

F (a) = DKL[Q (A)∥P(A)] −

t∑
τ=1

EQ (π )Q (sτ |π )Q (A)[oτ · log(A)sτ ] + · · ·

= DKL[Q (A)∥P(A)] −

t∑
τ=1

oτ · logAsτ + · · ·

(17)

Here, we ignore the terms in (5) that do not depend on Q (A), as
hese will vanish when we take the gradient. The KL-divergence
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etween Dirichlet distributions is (Kurt, 2013; Penny, 2001):

DKL[Q (A)∥P(A)] =

m∑
i=1

DKL[Q (A·i)∥P(A·i)]

=

m∑
i=1

(
logΓ (a0i) −

n∑
k=1

logΓ (aki) − logΓ (a0i)

+

n∑
k=1

logΓ (aki) + (a•i − a•i) · (logA)•i

)

=

m∑
i=1

(
logΓ (a0i) −

n∑
k=1

logΓ (aki) − logΓ (a0i)

+

n∑
k=1

logΓ (aki)

)
+ (a − a) · logA

(18)

Incorporating (18) in (17), we can take the gradient of the
ariational free energy with respect to logA:

logAF (a) = a − a −

t∑
τ=1

oτ ⊗ sτ (19)

here ⊗ is the Kronecker (i.e., outer) product. This means that
he dynamics of synaptic plasticity follow a descent on (19):

ρ̇(a) = −∇logAF (a)

= −a + a +

t∑
τ=1

oτ ⊗ sτ
(20)

In computational terms, these are the dynamics for evidence
ccumulation of Dirichlet parameters at time t . Since synaptic
lasticity dynamics occur at a much slower pace than perceptual
nference, it is computationally much cheaper in numerical sim-
lations to do a one-step belief update at the end of each trial of
bservation epochs. Explicitly, setting the free energy gradient to
ero at the end of the trial gives the following update for Dirichlet
arameters:

= a +

T∑
τ=1

oτ ⊗ sτ (21)

After which, the prior beliefs P(A) are updated to the approx-
mate posterior beliefs Q (A) for the subsequent trial. Note that
n particular, the update counts the number of times a specific
apping between states and observations has been observed.

nterestingly, this is formally identical to associative or Hebbian
lasticity.
As one can see, the learning rule concerning accumulation

f Dirichlet parameters (21) means that the agent becomes in-
reasingly confident about its likelihood matrix by receiving new
bservations, since the matrix which is added onto a at each
imestep is always positive. This is fine as long as the structure of
he environment remains relatively constant. In the next section,
e will see how Bayesian model reduction can revert this process,
o enable the agent to adapt quickly to a changing environment.
able 3 summarises the belief updating entailed by active infer-
nce, and Fig. 5 indicates where particular computations might
e implemented in the brain.
13
. Structure learning

In the previous sections, we have addressed how an agent
erforms inference over different variables at different timescales
n a biologically plausible fashion, which we equated to percep-
ion, planning and decision-making. In this section, we consider
he problem of learning the form or structure of the generative
odel.
The idea here is that agents are equipped (e.g., born) with

n innate generative model that entails fundamental preferences
e.g., essential to survival), which are not updated. For instance,
umans are born with prior preferences about their body tem-
erature around 37 ◦C and O2, CO2, glucose etc. concentrations
ithin a certain range. Mathematically, this means that the pa-
ameters of these innate prior distributions – encoding the agent’s
xpectations as part of its generative model – have hyperpriors
hat are infinitely precise (e.g., a Dirac delta distribution) and
hus cannot be updated in an experience dependent fashion.
he agent’s generative model then naturally evolves by min-
mising variational free energy to become a good model of the
gent’s environment but is still constrained by the survival prefer-
nces hardcoded within it. This process of learning the generative
odel (i.e., the variables and their functional dependencies) is
alled structure learning.
Structure learning in active inference is an active area of

esearch. Active inference proposes that the agent’s generative
odel evolves over time to maximise the evidence for its obser-
ations. However, a complete set of mechanisms that biological
gents use to do so has not yet been laid out. Nevertheless, we
se this section to summarise two complementary approaches;
amely, Bayesian model reduction and Bayesian model expan-
ion (Friston, Lin et al., 2017; Friston et al., 2018a; Friston &
enny, 2011; Smith et al., 2019) – that enable to simplify and
omplexify the model, respectively.

.1. Bayesian model reduction

To explain the causes of their sensations, agents must compare
ifferent hypotheses about how their sensory data are generated—
nd retain the hypothesis or model that is the most valid in
elation to their observations (i.e., has the greatest model evi-
ence). In Bayesian statistics, these processes are called Bayesian
odel comparison and Bayesian model selection—these corre-
pond to scoring the evidence for various generative models in
elation to available data and selecting the one with the highest
vidence (Claeskens & Hjort, 2006; Stephan et al., 2009). Bayesian
odel reduction (BMR) is a particular instance of structure learn-

ng, which formalises post-hoc hypothesis testing to simplify
he generative model. This precludes redundant explanations of
ensory data—and ensures the model generalises to new data.
echnically, it involves estimating the evidence for simpler (re-
uced) priors over the latent causes and selecting the model with
he highest evidence. This process of simplifying the generative
odel – by removing certain states or parameters – has a clear
iological interpretation in terms of synaptic decay and switching
ff certain synaptic connections, which is reminiscent of the
ynaptic mechanisms of sleep (e.g., REM sleep (Hobson & Friston,
012; Hobson et al., 2014)), reflection and associated machine
earning algorithms (e.g., the wake–sleep algorithm (Hinton et al.,
995)).
In the following, we show BMR for learning the likelihood

atrix A. Note that BMR is generic and could be used on any
ther variable that may be optimised during learning (e.g., see
ppendix A.1), just by replacing A in the following lines. To keep
hings concise, we denote by o = o1:t the sequence of available
bservations. The current model has a prior P(A) and we would
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Table 3
Summary of belief updating.
Process Computation Equations

Perception sπτ = σ (v), v̇ = −∇sπτ Fπ (8)
Planning G(π ) (D.2), (D.3)
Decision-making Q (π ) = σ (−G(π )) (10)
Action selection ut = argmaxu∈U

(∑
π∈Π δu,πt Q (π )

)
(11)

Policy-independent state-estimation sτ =
∑

π∈Π sπτQ (π ) (12)
Learning (end of trial) a = a +

∑T
τ=1 oτ ⊗ sτ (21)
Fig. 5. Possible functional anatomy. This figure summarises a possible (coarse-grained) functional anatomy that could implement belief updating in active inference.
he arrows correspond to message passing between different neuronal populations. Here, a visual observation is sampled by the retina, aggregated in first-order
ensory thalamic nuclei and processed in the occipital (visual) cortex. The green arrows correspond to message passing of sensory information. This signal is then
ropagated (via the ventral visual pathway) to inferior and medial temporal lobe structures such as the hippocampus; this allows the agent to go from observed
utcomes to beliefs about their most likely causes in state-estimation (perception), which is performed locally. The variational free energy is computed in the striatum.
he orange arrows encode message passing of beliefs. Preferences C are attributed to the dorsolateral prefrontal cortex – which is thought to encode representations
ver prolonged temporal scales (Parr & Friston, 2017b) – consistent with the fact that these are likely to be encoded within higher cortical areas (Friston, Lin et al.,
017). The expected free energy is computed in the medial prefrontal cortex (Friston, FitzGerald et al., 2017) during planning, which leads to inferences about most
lausible policies (decision-making) in the basal ganglia, consistent with the fact that the basal ganglia is thought to underwrite planning and decision-making (Berns
Sejnowski, 1996; Ding & Gold, 2013; Haber, 2003; Jahanshahi et al., 2015; Parr & Friston, 2018b; Thibaut, 2016). The message concerning policy selection is sent

o the motor cortex via thalamocortical loops. The most plausible action, which is selected in the motor cortex is passed on through the spinal cord to trigger a
imb movement. Simultaneously, policy independent state-estimation is performed in the ventrolateral prefrontal cortex, which leads to synaptic plasticity dynamics
n the prefrontal cortex, where the synaptic weights encode beliefs about A.
like to test whether a reduced (i.e., less complex) prior P̃(A)
can provide a more parsimonious explanation for the observed
outcomes. Using Bayes rule, we have the following identities:

P(A)P(o|A) = P(A|o)P(o) (22)

P̃(A)P(o|A) = P̃(A|o)P̃(o) (23)

Where P(o) =
∫
P(o|A)P(A) dA and P̃(o) =

∫
P(o|A)P̃(A).

Dividing (22) by (23) yields

P(A)

P̃(A)
=

P(A|o)P(o)

P̃(A|o)P̃(o)
(24)

We can then use (24) in order to obtain the following rela-
ions:

1 =

∫
P̃(A|o) dA =

P(o)

P̃(o)

∫
P̃(A)P(A|o)

P(A)
dA =

P(o)

P̃(o)
EP(A|o)

[
P̃(A)
P(A)

]
(25)

log P̃(o) − log P(o) = logEP(A|o)

[
P̃(A)
P(A)

]
(26)
14
We can approximate the posterior term in the expectation of
(26) with the corresponding approximate posterior Q (A), which
simplifies the computation. This allows us to compare the evi-
dence of the two models (reduced and full). If the reduced model
has more evidence, it implies the current model is too complex—
and redundant parameters can be removed by adopting the new
priors.

In conclusion, BMR allows for computationally efficient and
biologically plausible hypothesis testing, to find simpler expla-
nations for the data at hand. It has been used to emulate sleep
and reflection in abstract rule learning (Friston, Lin et al., 2017),
by simplifying the prior over A at the end of each trial—this has
the additional benefit of preventing the agent from becoming
overconfident.

9.2. Bayesian model expansion

Bayesian model expansion is complementary to Bayesian
model reduction. It entails adopting a more complex generative
model – for example, by adding more states – if and only if
the gain in accuracy in (3) is sufficient enough to outweigh the
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ncrease in complexity. This model expansion allows for gener-
lisation and concept learning in active inference (Smith et al.,
019). Note that additional states need not always lead to a more
omplex model. It is in principle possible to expand a model in
uch a way that complexity decreases, as many state estimates
ight be able to remain close to their priors in place of a small
umber of estimates moving a lot. This ‘shared work’ by many
arameters could lead to a simpler model.
From a computational perspective, concept acquisition can be

een as a type of structure learning (Gershman & Niv, 2010; Tervo
t al., 2016) – that can be emulated through Bayesian model
omparison. Recent work on concept learning in active infer-
nce (Smith et al., 2019), shows that a generative model equipped
ith extra hidden states can engage these ‘unused’ hidden states,
hen an agent is presented with novel stimuli during the learning
rocess. Initially the corresponding likelihood mappings (i.e., the
orresponding columns of A) are uninformative, but these are up-
ated when the agent encounters new observations that cannot
e accounted by its current knowledge (e.g., observing a cat when
t has only been exposed to birds). This happens naturally, during
he learning process, in an unsupervised way through free energy
inimisation. To allow for effective generalisation, this approach
an be combined with BMR; in which any new concept can be
ggregated with similar concepts, and the associated likelihood
appings can be reset for further concept acquisition, in favour
f a simpler model with higher model evidence. This approach
an be further extended by updating the number of extra hidden
tates through a process of Bayesian model comparison.

0. Discussion

Due to the various recent theoretical advances in active infer-
nce, it is easy to lose sight of its underlying principle, process
heory and practical implementation. We have tried to address
his by rehearsing – in a clear and concise way – the assumptions
nderlying active inference as a principle, the technical details of
he process theory for discrete state-space generative models and
he biological interpretation of the accompanying neuronal dy-
amics. It is useful to clarify these results; as a first step to guide
owards outstanding theoretical research challenges, a practical
uide to implement active inference to simulate experimental
ehaviour and a pointer towards various predictions that may be
ested empirically.

Active inference offers a degree of plausibility as a process
heory of brain function. From a theoretical perspective its req-
isite neuronal dynamics correspond to known empirical phe-
omena and extend earlier theories like predictive coding (Bastos
t al., 2012; Friston, 2010; Rao & Ballard, 1999). Furthermore,
he process theory is consistent with the underlying free energy
rinciple, which biological systems are thought to abide by—
amely, the avoidance of surprising states: this can be articulated
ormally based on fundamental assumptions about biological sys-
ems (Friston, 2019; Parr et al., 2020). Lastly, the process theory
as a degree of face validity as its predicted electrophysiological
esponses closely resemble empirical measurements.

However, for a full endorsement of the process theory pre-
ented in this paper, rigorous empirical validation of the syn-
hetic electrophysiological responses is needed. To pursue this,
ne would have to specify the generative model that a bio-
ogical agent employs for a particular task. This can be done
hrough Bayesian model comparison of alternative generative
odels with respect to empirical (choice) behaviour being mea-
ured (e.g., Mirza et al., 2018). Once the appropriate generative
odel is formulated, evidence for a plausible but distinct im-
lementations of active inference would need to be compared,
hich come from various possible approximations to the free
15
energy (Parr, Markovic et al., 2019; Schwöbel et al., 2018; Yedidia
et al., 2005), each of which yields different belief updates and
simulated electrophysiological responses. Note that the marginal
approximation to the free energy currently stands as the most
biologically plausible (Parr, Markovic et al., 2019). From this, the
explanatory power of active inference can be assessed in relation
to empirical measurements and contrasted with other existing
theories.

This means that the key challenge for active inference – and
arguably data analysis in general – is finding the generative model
that best explains observable data (i.e., evidence maximising).
A solution to this problem would enable to find the genera-
tive model – entailed by an agent – by observing its behaviour.
In turn, this would enable one to simulate its belief updating
and behaviour accurately in-silico. It should be noted that these
generative models can be specified manually for the purposes
of reproducing simple behaviour (e.g., agents performing simple
tasks needed for empirical validation discussed above). However,
a generic solution to this problem is necessary to account for
complex datasets; in particular, complex behavioural data from
agents in a real environment. Moreover, a biologically plausible
solution to this problem could correspond to a complete structure
learning roadmap; accounting for how biological agents evolve
their generative model to account for new observations. Evo-
lution has solved this problem by selecting phenotypes with a
good model of their sensory data, therefore, understanding the
processes that have selected generative models that are fit for
purpose for our environment might lead to important advances
in structure learning and data analysis.

Discovering new generative models corresponding to complex
behavioural data will demand to extend the current process the-
ory to these models, in order to provide testable predictions and
reproduce the observed behaviour in-silico. Examples of genera-
tive models that are used in learning and decision-making, yet
are not accommodated by the current process theory, include
Markov decision trees (Jordan et al., 1998, 1997) and Boltzmann
machines (Ackley et al., 1985; Salakhutdinov & Hinton, 2012;
Stone, 2019).

One challenge that may arise, when scaling active inference
to complex models with many degrees of freedom, will be the
size of the policy trees in consideration. Although effective and
biologically plausible, the current pruning strategy is unlikely to
reduce the search space sufficiently to enable tractable inference
in such cases. As noted above, the issue of scaling active inference
may yield to the first principles of the variational free energy for-
mulation. Specifically, generative models with a high evidence are
minimally complex. This suggests that ‘scaling up’, in and of itself,
is not the right strategy for reproducing more sophisticated or
deep behaviour. A more principled approach would be to explore
the right kind of factorisations necessary to explain structured
behaviour. A key candidate here are deep temporal or diachronic
generative models that have a separation of timescales. This form
of factorisation (c.f., mean field approximation) replaces deep
decision trees with shallow decision trees that are hierarchically
composed.

To summarise, we argue that some important challenges for
theoretical neuroscience include finding process theories of brain
function that comply with active inference as a principle (Fris-
ton, 2019; Parr et al., 2020); namely, the avoidance of surpris-
ing events. The outstanding challenge is then to explore and
fine grain such process theories, via Bayesian model comparison
(e.g., using dynamic causal modelling (Friston, 2012; Friston et al.,
2003)) in relation to experimental data. From a structure learning
and data analysis perspective, the main challenge is finding the
generative model with the greatest evidence in relation to avail-
able data. This may be achieved by understanding the processes
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volution has selected for creatures with a good model of their
nvironment. Finally, to scale active inference to behaviour with
any degrees of freedom, one needs to understand how biologi-
al agents effectively search deep policy trees when planning into
he future, when many possible policies may be entertained at
eparable timescales.

1. Conclusion

In conclusion, this paper aimed to summarise: the assump-
ions underlying active inference, the technical details underwrit-
ng its process theory, and how the associated neuronal dynamics
elate to known biological processes. These processes underwrite
ction, perception, planning, decision-making, learning and struc-
ure learning; which we have illustrated under discrete state-
pace generative models. We have discussed some important out-
tanding challenges: from a broad perspective, the challenge for
heoretical neuroscience is to develop increasingly fine-grained
echanistic models of brain function that comply with the core

enets of active inference (Friston, 2019; Parr et al., 2020). In re-
ards to the process theory, key challenges relate to experimental
alidation, understanding how biological organisms evolve their
enerative model to account for new sensory observations and
ow they effectively search large policy spaces when planning
nto the future.
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ppendix A. More complex generative models

In this Appendix, we briefly present cases of more complex
iscrete state-space generative models and explain how the belief
pdating can be extended to those cases.

.1. Learning B and D

In this paper, we have only considered the case where A is
learned, while beliefs about B (i.e., transition probabilities from
one state to the next) and D (i.e., beliefs about the initial state)

remained fixed. In general, B and D can also be learnt over time.

16
This calls upon a new (extended) expression for the generative
model with priors over B and D:

P(o1:T , s1:T , A, B,D, π ) = P(π )P(A)P(B)P(D)P(s1|D)

×

T∏
τ=2

P(sτ |sτ−1, B, π )
T∏
τ=1

P(oτ |sτ , A)

P(B) =

∏
u∈U

m∏
i=1

P((Bu)•i) P((Bu)•i) = Dir((bu)•i)

P(D) = Dir(d)

(A.1)

Here, (Bu)•i and (bu)•i denote the ith columns of the matrix Bu
encoding the transition probabilities from one state to the next
state and its corresponding Dirichlet parameter bu. Furthermore,
one needs to define the corresponding approximate posteriors
that will be used for learning:

Q (B) =

∏
u∈U

m∏
i=1

Q ((Bu)•i) Q ((Bu)•i) = Dir((bu)•i)

Q (D) = Dir(d)

(A.2)

The variational free energy, after having observed o1:t , is com-
puted analogously as in Eq. (5). The process of finding the belief
dynamics is then akin to Section 8—we rehearse it in the fol-
lowing: selecting only those terms in the variational free energy,
which depend on B and D yields:

F [Q (B,D)] = DKL[Q (B)∥P(B)] + DKL[Q (D)∥P(D)]
− EQ (π )Q (s1|π )Q (D)[s1 · logD]

−

t∑
τ=2

EQ (π )Q (sτ ,sτ−1|π )Q (B)[sτ · log Bπτ sτ−1] + · · ·

= DKL[Q (B)∥P(B)] + DKL[Q (D)∥P(D)]

− s1 · logD −

t∑
τ=2

EQ (π )[sπτ · logBπτ sπτ−1 ] + · · ·

(A.3)

Using the form of the KL divergence for Dirichlet distributions
(18) and taking the gradients yields

∇logBuF (bu) = bu − bu −

t∑
τ=2

∑
π∈Π

δu,πtQ (π )(sπτ ⊗ sπτ−1) (A.4)

∇logDF (d) = d − d − s1 (A.5)

where ⊗ denotes the Kronecker product. Finally, it is possible
to specify neuronal plasticity dynamics following a descent on
(A.4), (A.5), which correspond to biological dynamics. Alterna-
tively, we have belief update rules implemented once after each
trial of observation epochs in in-silico agents:

bu = bu +

t∑
τ=2

∑
π∈Π

δu,πτQ (π )(sπτ ⊗ sπτ−1) (A.6)

d = d + s1 (A.7)

A.2. Complexifying the prior over policies

In this paper, we have considered a simple prior approx-
imate posterior over policies; namely, σ (−G(π )). This can be
extended to σ (−γG(π )), where γ is an (inverse) temperature
parameter that denotes the confidence in selecting a particu-
lar policy. This extension is quite natural in the sense that γ

can be interpreted as the postsynaptic response to dopaminergic

http://www.fil.ion.ucl.ac.uk/spm/
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nput (FitzGerald, Dolan et al., 2015; Friston et al., 2014). This cor-
espondence is supported by empirical evidence (Schwartenbeck,
itzGerald, Mathys, Dolan and Friston, 2015) and enables one
o simulate biologically plausible dopaminergic discharges (c.f.,
ppendix E (Friston, FitzGerald et al., 2017)). Anatomically, this
arameter may be encoded within the substantia nigra, in nigros-
riatal dopamine projection neurons (Schwartenbeck, FitzGerald,
athys, Dolan and Friston, 2015), which maps well with our pro-
osed functional anatomy (c.f., Fig. 5), since the substantia nigra
s connected with the striatum. We refer the reader to (Friston,
itzGerald et al., 2017) for a discussion of the associated belief
pdating scheme.

.3. Multiple state and outcome modalities

In general, one does not only need one hidden state and
utcome factor to represent the environment, but many. Intu-
tively, this happens in the human brain as we integrate sensory
timuli from our five (or more) distinct senses. Mathematically,
e can express this via different streams of hidden states (usually
eferred to as hidden factors) that evolve independently of one
nother that interact to generate outcomes at each time step;
.g., see Jordan et al. (1998, Figure 9) for a graphical representa-
ion of a multi-factorial hidden Markov model. This means that A
becomes a multi-dimensional tensor that integrates information
about the different hidden factors to cause outcomes. The belief
updating is analogous in this case, contingent upon the fact
that one assumes a mean-field factorisation of the approximate
posterior on the different hidden state factors (see, e.g., Friston
& Buzsáki, 2016; Mirza et al., 2016). This means that the beliefs
about states may be processed in a manner analogous to Fig. 5,
invoking a greater number of neural populations.

A.4. Deep temporal models

A deep temporal model is a generative model with many lay-
ers that are nested hierarchically and act at different timescales.
These were first introduced within active inference in Friston, Lin
et al. (2017). One can picture them graphically as a POMDP (c.f.,
Fig. 2) at the higher level where each outcome is replaced by a
POMDP at the lower level, and so forth.

There is a useful metaphor for understanding the concept
underlying deep temporal models: each layer of the model corre-
sponds to the hand of a clock. In a two-layer hierarchical model,
a ticking (resp. rotation) of the faster hand corresponds to a time
step (resp. trial of observation epochs) at the lower level. At
the end of each trial at the lower level, the slower hand ticks
once, which corresponds to a time-step at the higher level, and
the process unfolds again. One can concisely summarise this by
saying that a state at the higher level corresponds to a trial of
observation epochs at the lower level. Of course, there is no limit
to the number of layers one can stack in a hierarchical model.

To obtain the associated belief updating, one computes free
energy at the lower level by conditioning the probability distri-
butions from Bayes rule by the variables from the higher levels.
This means that one performs belief updating at the lower levels
independently of the higher levels. Then, one computes the varia-
tional free energy at the higher levels by treating the lower levels
as outcomes. For more details on the specificities of the scheme
see Friston, Lin et al. (2017).

Appendix B. Computation of dynamics underlying perception

Here, we detail the computation of perceptual dynamics in the
main text, specifically how to obtain (7), (8) from (6). In what
follows, we denote the state-space by S = {σ , . . . , σ }.
1 m

17
B.1. Free energy conditioned upon a policy

Recall the variational free energy conditioned upon a policy
(6):

Fπ [Q (s1:T |π )] =

T∑
τ=1

EQ (sτ |π )[logQ (sτ |π )]

−

t∑
τ=1

EQ (sτ |π )Q (A)[log P(oτ |sτ , A)]

− EQ (s1|π )[log P(s1)]

−

T∑
τ=2

EQ (sτ |π )Q (sτ−1|π )[log P(sτ |sτ−1, π )]

(B.1)

In virtue of the mean field approximation (4) the approximate
posterior over states Q (s1:T |π ) factorises as Q (s1:T |π ) =

T
τ=1 Q (sτ |π ), each of the factors being a categorical distribu-

ion over state-space S with parameter sπτ , a vector in {x ∈

R>0)m|
∑

i xi = 1}. Then, the free energy conditioned upon π is
quivalently a function of each of those parameters

π [Q (s1:T |π )] = Fπ (sπ1, . . . , sπT ).

ow we compute each of the expectations in (B.1).

• EQ (sτ |π )[logQ (sτ |π )]. We use the definition of conditional
expectation

EQ (sτ |π )[logQ (sτ |π )] =

m∑
i=1

Q (sτ = σi|π ) logQ (sτ = σi|π )

Since sπτ is the parameter of Q (sτ |π ), we have by definition
Q (sτ = σi|π ) = sπτ i, the ith component of sπτ . Hence,

m∑
i=1

Q (sτ = σi|π ) logQ (sτ = σi|π )

=

m∑
i=1

sπτ i log sπτ i = sπτ · log sπτ

where the last equality follows by definition of the dot
product of vectors.

• EQ (sτ |π )Q (A)[log P(oτ |sτ , A)]. By definition of the likelihood
matrix, log P(oτ |sτ , A) = log(oτ · Asτ ) where A is a matrix
and oτ (resp. sτ ) are seen as a vector of zeros with a one
at the outcome (resp. state) that occurs (see Table 2). Since
oτ , sτ are only ones and zeros, log(oτ · Asτ ) = oτ · log(A)sτ .
Using this and the linearity of the expectation we obtain

EQ (sτ |π )Q (A)[log P(oτ |sτ , A)] = EQ (sτ |π )EQ (A)[log(oτ · Asτ )]
= oτ · EQ (sτ |π )

[
EQ (A)[log A]sτ

]
= oτ · EQ (A)[log A]EQ (sτ |π ) [sτ ]

By definition (see Table 2), we write EQ (A)[log A] = logA.
Also, denoting by e⃗i the ith unit vector in Rm

EQ (sτ |π ) [sτ ] =

m∑
i=1

Q (sτ = σi|π )e⃗i =

m∑
i=1

sπτ ie⃗i = sπτ

Finally,

EQ (s |π )[logQ (sτ |π )] = oτ · logAsπτ .
τ
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• EQ (s1|π )[log P(s1)]. By definition of the expectation, and of
the vector D (see Table 2)

EQ (s1|π )[log P(s1)] =

m∑
i=1

Q (s1 = σi|π ) logDi

=

m∑
i=1

sπτ i logDi = sπτ · logD. (B.2)

• EQ (sτ |π )Q (sτ−1|π )[log P(sτ |sτ−1, π )]. By definition log P(sτ |sτ−1,

π ) = log
(
sτ · Bπτ−1sτ−1

)
(see Table 2). Then a calculation

analogous as for EQ (sτ |π )Q (A)[log P(oτ |sτ , A)] yields

EQ (sτ |π )Q (sτ−1|π )[log P(sτ |sτ−1, π )] = sπτ · log(Bπτ−1 )sπτ−1.

(B.3)

Inserting these results into (B.1) gives us (7):

Fπ (sπ1, . . . , sπT ) =

T∑
τ=1

sπτ · log sπτ −

t∑
τ=1

oτ · logAsπτ

− sπ1 logD −

T∑
τ=2

sπτ · log(Bπτ−1 )sπτ−1

(B.4)

B.2. Free energy gradients

Now we may compute the gradients of Fπ with respect to any
of its arguments sπ1, . . . , sπT . We do this for sπ t , t > 1, the others
are analogous. When taking the gradient ∇sπ t Fπ , the only terms
that do not vanish in (B.4) are those that depend on sπ t . Using
the rules of differentiation of matrices and vectors (Petersen &
Pedersen, 2012) we obtain (8).

∇sπ t Fπ (sπ1, . . . , sπT ) = ∇sπ t [sπ t · log sπ t − ot · logAsπ t
− sπ t+1 · log(Bπt )sπ t ]

= −sπ t+1 · log(Bπt ) − log(Bπt−1 )sπ t−1

= 1⃗ + log sπτ − ot · logA − sπ t+1 · log(Bπt )
− log(Bπt−1 )sπ t−1

(B.5)

Appendix C. Expected free energy as reaching steady-state

At the heart of active inference is a description of a certain
class of systems that self-organise at non-equilibrium steady-
state (Friston, 2019; Parr et al., 2020). This implies the existence
of a steady-state probability distribution P(sτ , A) that the agent
is guaranteed to reach given a sufficient amount of time. Intu-
itively, this distribution corresponds to the agent’s preferences
over states and model parameters. Practically, this means that
the agent selects policies, such that its predicted states Q (sτ , A)
at some future time point τ > t – usually, the time horizon of a
policy T – match its preferences P(sτ , A), which are specified by
the generative model.

The purpose of this Appendix is to motivate the definition of
expected free energy from the perspective of reaching steady-
state. Specifically, we will show how a family of distributions
Q (π ), which comprises the (negative softmax) expected free en-
ergy, guarantee reaching steady-state.

Objective: we seek distributions over policies that imply
steady-state solutions; i.e., when the final distribution does not
depend upon initial observations. Such solutions ensure that,
on average, stochastic policies lead to a steady-state or target
distribution specified by the generative model. These solutions
exist in virtue of conditional independencies, where the hidden
18
states provide a Markov blanket that separates policies from
outcomes. In other words, policies cause final states that cause
outcomes.

In what follows, τ > t is a future time and Q := Q (oτ , sτ , A, π )
≈ P(oτ , sτ , A, π |o1:t ) is the corresponding approximate posterior
distribution, given observations o1:t .

Lemma 1 (Steady-state). Suppose that DKL[Q (sτ , A)∥P(sτ , A)] is
finite. Then, the system reaches steady-state

Q (sτ , A) = P(sτ , A),

if and only if, the surprisal over policies − logQ (π ) and the Gibbs
energy G(π;β), are equal when averaged under Q

EQ [− logQ (π )] = EQ [G(π;β)], (C.1)

where,

G(π;β) = DKL[Q (sτ , A|π )∥P(sτ , A)]

− EQ (oτ ,sτ ,A|π )[β log P(oτ |sτ , A)] (C.2)

β :=
EQ [logQ (π |sτ , A)]
EQ [log P(oτ |sτ , A)]

≥ 0.

Here, β ≥ 0 characterises the steady-state with the relative
precision (i.e., negative entropy) of policies and final outcomes,
given final states. The generative model stipulates steady-state,
in the sense that distribution over final states (and outcomes)
does not depend upon initial observations. Here, the generative
and predictive distributions simply express the conditional inde-
pendence between policies and final outcomes, given final states.
Note that when β = 1, Gibbs energy becomes expected free
nergy.
An important consequence of Lemma 1 is that when (C.1)

olds, we either have DKL[Q (sτ , A)∥P(sτ , A)] = +∞ or DKL[Q (sτ ,
A)∥P(sτ , A)] = 0 (steady-state). Intuitively, DKL[Q (sτ , A)∥P(sτ , A)]
eing infinite means that Q (sτ , A) is singular with respect to
(sτ , A). This is the case, for example, when the steady-state den-
ity sits on the other side of an impassable gulf, or when Q (sτ , A)
nd P(sτ , A) do not overlap. Conversely, the requirement that
KL[Q (sτ , A)∥P(sτ , A)] is finite implies that Q (sτ , A) is absolutely
ontinuous with respect to P(sτ , A), that is P(sτ , A) > 0 whenever
(sτ , A) > 0.

roof of Lemma 1. Let us unpack the Gibbs energy expected
nder Q :

EQ [G(π;β)] = EQ [DKL[Q (sτ , A|π )∥P(sτ , A)]
− EQ (oτ ,sτ ,A|π )[β log P(oτ |sτ , A)]]
= EQ [DKL[Q (sτ , A|π )∥P(sτ , A)]]

−
EQ [logQ (π |sτ , A)]
EQ [log P(oτ |sτ , A)]

EQ [EQ (oτ ,sτ ,A|π )[log P(oτ |sτ , A)]]

= EQ [logQ (sτ , A|π ) − log P(sτ , A) − logQ (π |sτ , A)]
= EQ [− logQ (π ) − log P(sτ , A) + logQ (sτ , A)]
= EQ [− logQ (π )] + DKL[Q (sτ , A)∥P(sτ , A)].

herefore,

Q [G(π;β)] = EQ [− logQ (π )] ⇐⇒ DKL[Q (sτ , A)∥P(sτ , A)] = 0
⇐⇒ Q (sτ , A) = P(sτ , A). □

A straightforward consequence of Lemma 1, is that

orollary 2. Under the assumption that DKL[Q (sτ , A)∥P(sτ , A)] is
inite, each distribution

(π ) = σ (−G(π;β)), β ≥ 0, (C.3)
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escribes a certain kind of system that reaches some steady-state
istribution. In particular, the case β = 1 corresponds to the
pproximate posterior over policies that is used in the main text (10).

We defer the proof of Corollary 2 to the end of this appendix.
The family of distributions Q (π;β) has interesting interpre-

tations. For example, the case β = 0 corresponds to standard
tochastic control, variously known as KL control or risk-sensitive
ontrol (van den Broek et al., 2010):

(π; 0) = DKL[Q (sτ , A|π )∥P(sτ , A)] ≥ DKL[Q (sτ |π )∥P(sτ )]

In other words, the most likely policies minimise the KL di-
ergence between the predictive and target distribution. More
enerally, when β > 0, policies are more likely when they
imultaneously minimise the entropy of outcomes, given states.
n other words, β > 0 ensures that the system exhibits itinerant
ehaviour. One can see that KL control may arise in this case if the
ntropy of the likelihood mapping remains constant with respect
o policies. In active inference, we currently assume β = 1 for
implicity, however, the implications of different values of β on
ehaviour are interesting and will be examined in future work.
One perspective – on the distinction between simple and

eneral steady-states – is in terms of uncertainty about policies,
here policies may be thought as trajectories taken by the sys-
em. For example, in simple steady-states there is no uncertainty
bout which policy led to a final state. This, for example, cor-
esponds to describing classical systems (that follow a unique
ath of least action), where it would be possible to infer which
olicy had been pursued, given the initial and final outcomes.
onversely, in general steady-state systems (e.g., mice, Homo
apiens), simply knowing that ‘you are here’ does not tell me ‘how
ou got here’, even if I knew where you were this morning. Put
nother way, there are lots of paths or policies open to systems
hat attain a general steady state.

In active inference, we are interested in a certain class of
ystems that self-organise to general steady-states; namely, those
hat move through a large number of probabilistic configurations
rom their initial state to their final steady-state. The treatments
n Parr et al. (2020) and Friston (2019) effectively turn the steady-
tate lemma on its head by assuming steady-state is stipulatively
rue – and then characterise the ensuing self-organisation in
erms of Bayes optimal policies: if a system attains a general
teady-state, it will appear to behave in a Bayes optimal fashion
both in terms of optimal Bayesian design (i.e., exploration)

nd Bayesian decision theory (i.e., exploitation) (Friston, Da Costa
t al., 2020). Crucially, the loss function defining Bayesian risk
s the negative log evidence for the generative model entailed
y an agent. In short, systems (i.e., agents) that attain general
teady-states will look as if they are responding to epistemic
ffordances (Parr & Friston, 2017b).

emark 3. It is straightforward to extend this appendix by
onsidering systems that reach their preferences at a collection
f time-steps into the future, say τ1, . . . , τn > t . In this case, one
an adapt the proof of Lemma 1 to obtain:

Q

[
n∑

i=1

G(π, τi;β)

]
= EQ [−n logQ (π )]

+

n∑
i=1

DKL[Q (sτi , A)∥P(sτi , A)]

where G(π, τi;β) is the Gibbs free energy, replacing τ by τi in
(C.2). In this case, the canonical choice of approximate posterior
19
over policies would be:

Q (π ) = σ

(
1
n

n∑
i=1

G(π, τi;β)

)
(C.4)

We conclude this appendix with the proof of Corollary 2.

Proof of Corollary 2. Let β ≥ 0 and Q̃ (oτ , sτ , A, π ) be the
unnormalised measure defined as Q̃ (π ) := exp(−G(π;β)) and
Q̃ (oτ , sτ , A|π ) := Q (oτ , sτ , A|π ). Trivially, − log Q̃ (π ) = G(π;β)
and we can check that the proof of Lemma 1 still holds with an
unnormalised measure Q̃ . Therefore, systems that have Q̃ as an
pproximate posterior reach a steady-state distribution.
To make sense of an unnormalised distribution over policies

˜ as a posterior we only need to verify that our current update
ules are still valid, or can be extended to this setting. All update
ules for active inference agents hold – see Table 3 – if we extend
olicy independent state-estimation (12) as

τ =
1∑

π∈Π Q̃ (π )

∑
π∈Π

sπτ Q̃ (π ). (C.5)

Since agents that have Q̃ as an approximate posterior reach
teady-state, it suffices to show that replacing Q̃ by Q has no
ffect on the agent’s dynamics. Since Q̃ and Q only differ by
heir π-marginals, we must look at the consequence of changing
˜ (π ) by Q (π ). The normalisation of Q̃ (π ) has no consequences
n the action selection, see (11), and policy independent state-
stimation remains the same, as (C.5) shows. Changing Q̃ (π ) by
(π ) does not change any of the remaining dynamics. □

ppendix D. Computing expected free energy

In this appendix, we present the derivations underlying the
nalytical expression of the expected free energy that is used in
pm_MDP_VB_X.m. Following Parr (2019), we can reexpress the
xpected free energy in the following form:

(π ) = EQ (sτ |π )[H[P(oτ |sτ )]]  
Ambiguity

+DKL[Q (sτ |π )∥P(sτ )]  
Risk (states)

−EP(oτ |sτ )Q (sτ |π )[DKL[Q (A|oτ , sτ )∥Q (A)]]  
Novelty

(D.1)

Here, Q (A|oτ , sτ ) denotes approximate posterior beliefs about
if we knew occurrence of the state–outcome pair (oτ , sτ ). In

he following, we show that we can compute the expected free
nergy in the following way

G(π ) ≈ H · sπτ  
Ambiguity

+ sπτ · (log sπτ − log C)  
Risk (states)

−Asπτ · Wsπτ  
Novelty

H := −diag[A · logA]

W :=
1
2

(
a⊙(−1)

− a⊙(−1)
0

) (D.2)

when the agent’s preferences C are expressed in terms of pref-
erences over states. When preferences are expressed in terms of
outcomes (as is currently implemented in spm_MDP_VB_X.m), the
risk term instead becomes

(Asπτ ) · (log(Asπτ ) − log C)  
Risk (outcomes)

(D.3)
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.1. Ambiguity

The ambiguity term of (D.1) is EQ (sτ |π )[H[P(oτ |sτ )]]. By defini-
tion, the entropy inside the expectation is:

H[P(oτ |sτ )] = −

∑
oτ∈O

P(oτ |sτ ) log P(oτ |sτ ) (D.4)

The first factor inside the sum corresponds to:

P(oτ |sτ ) =

∫
P(oτ , A|sτ ) dA

=

∫
P(oτ |sτ , A)P(A) dA

=

∫
oτ · AsτP(A) dA

≈

∫
oτ · AsτQ (A) dA

= oτ · EQ (A)[A]sτ
= oτ · Asτ

(D.5)

Here we have replaced the prior over model parameters P(A)
y the approximate posterior Q (A). This is not necessary, but in
umerical simulations since learning occurs once at the end of
he trial the two can be interchanged—furthermore, this allows
s to reuse previously introduced notation. In any case, this tells
s that the entropy can be re-expressed as:

H[P(oτ |sτ )] = −

∑
oτ∈O

(oτ · Asτ )(oτ · log(A)sτ )

= −

n∑
i=1

(A•isτ )(log(A•i)sτ )

= −

n∑
i=1

(A•i ⊙ log(A•i))sτ

= −(A ⊙ logA)sτ
= −diag[A · logA] · sτ

(D.6)

Finally,

EQ (sτ |π )[H[P(oτ |sτ )]]  
Ambiguity

= H · sπτ

H := −diag[A· logA]

(D.7)

D.2. Risk

The risk term of (D.1) is the KL divergence between predicted
states following a particular policy and preferred states. This can
be expressed as:

DKL[Q (sτ |π )∥P(sτ )]  
Risk (states)

= sπτ · (sπτ − log C) (D.8)

Where the vector C ∈ Rm encodes preference over states
(sτ ) = Cat(C). However, it is also possible to approximate this
isk term over states by a risk term over outcomes (c.f., (15)),
s is currently implemented in spm_MDP_VB_X.m. In this case,
f C ∈ Rn denotes the preferences over outcomes P(oτ ) = Cat(C):

KL[Q (oτ |π )∥P(oτ )] 
Risk (outcomes)

= (Asπτ ) · (log(Asπτ ) − log C) (D.9)
20
D.3. Novelty

The novelty term of (D.1) is EP(oτ |sτ )Q (sτ |π )[DKL[Q (A|oτ , sτ )∥
Q (A)]] where

Q (A) =

m∏
i=1

Q (A•i), Q (A•i) = Dir(a•i) (D.10)

Q (A|oτ , sτ ) =

m∏
i=1

Q (A•i|oτ , sτ ), Q (A•i|oτ , sτ ) := Dir(a′

•i) (D.11)

The KL divergence between both distributions (c.f., (18)) can
be expressed as:

DKL[Q (A|oτ , sτ )∥Q (A)] =

m∑
i=1

[logΓ (a′

0i) −

n∑
k=1

logΓ (a′

ki)

− logΓ (a0i)

+

n∑
k=1

logΓ (aki)] + (a′
− a) · (ψ(a′)

−ψ(a′

0))
(D.12)

here ψ is the digamma function. We now want to make sense of
′. Suppose that at time τ the agents know the possible outcome j
nd possible state k as in Q (A|oτ , sτ ) (c.f., Table 2 for terminology).
his means that in this case, beliefs about hidden states corre-
pond to the true state; in other words, sτ = sτ . We can then
se the rule of accumulation of Dirichlet parameters to deduce
′
= a + oτ ⊗ sτ . In other words, a′

jk = ajk + 1 and the remaining
omponents are identical. Using the well-known identity:

(x + 1) = xΓ (x) ⇒ logΓ (x + 1) = log x + logΓ (x) (D.13)

we can compute (D.12):

DKL[Q (A|oτ , sτ )∥Q (A)] = logΓ (a0k + 1) − logΓ (a0k)

− logΓ (ajk + 1)

+ logΓ (ajk) + ψ(ajk + 1) − ψ(a0k)

= log a0k − log ajk + ψ(ajk + 1)

− ψ(a0k + 1)

(D.14)

Using the definition of the digamma function ψ(x) =
d
dx logΓ (x) we obtain:

DKL[Q (A|oτ , sτ )∥Q (A)] = log a0k − log ajk +
d

dajk
(logΓ (ajk + 1))

−
d

da0k
(logΓ (a0k + 1))

= log a0k − log ajk +
d

dajk
(logΓ (ajk + 1))

−
d

da0k
(log a0k + logΓ (a0k))

= log a0k − log ajk +
1
ajk

−
1
a0k

+ ψ(ajk)

− ψ(a0k)

(D.15)
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We can use an asymptotic expansion of the digamma function
o simplify the expression:

ψ(x) ≈ log x −
1
2x

+ · · ·

⇒ DKL[Q (A|oτ , sτ )∥Q (A)] ≈
1

2ajk
−

1
2a0k

(D.16)

Finally, the analytical expression of the novelty term:

EP(oτ |sτ )Q (sτ |π )[DKL[Q (A|oτ , sτ )∥Q (A)]] ≈ Asπτ · Wsπτ

W :=
1
2

(
a⊙−1

− a⊙−1
0

) (D.17)
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