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A B S T R A C T

This work explores the possibility to arbitrarily shape in space low-frequency magnetic fields using a recently
introduced synthesization technique (Choi et al., 2016). We investigate the ability to focus a magnetic field on
a two-dimensional region using magnetic field sources distributed on a parallel plane. In agreement with the
recent work, arbitrarily tight focusing is demonstrated possible. However, our results indicate that this comes
at the cost of exponentially large power requirements and also leads to exponentially large fields in the region
between the source and target planes. This imposes strict limitations on the application of the technique. In
addition, we also demonstrate that arbitrary steering of the magnetic field focus within the target region is
possible, without any additional cost in terms of power requirement. In exploring the potential for magnetic
field synthesis, our findings highlight limits to be considered for practical applications, as well as promising
capabilities not identified before.
1. Introduction

The low-frequency limit of electromagnetism – rigorously defined
as the magnetoquasistatic limit [1] – has been recently attracting a
growing interest, due to the wealth of related applications, such as
magnetic induction tomography (MIT) [2], contactless power trans-
fer [3,4] and underwater communication [5,6], which involve the use
of low-frequency oscillating magnetic fields, typically from a few Hz to
a few MHz. However, all these applications ideally require a source
which generates a focused low-frequency magnetic field. In fact, in
MIT a focused B-field is required to excite eddy currents in the wanted
portion of the object, so to increase the in-plane spatial resolution
and to facilitate three-dimensional image reconstruction. In contactless
power transfer and underwater communication, focused B-fields are
essential to retain a non-vanishing strength at a useful distance from the
source. The unavailability of suitable sources of focused low-frequency
magnetic fields has hampered the progress in the development of the
above mentioned applications. Indeed, the standard oscillating mag-
netic dipole is unfitting for the task, as the B-field vanishes at a short
range from the source. Furthermore, the extension of phased-array to
the low-frequency limit is unpractical, as it would lead to devices with
very large dimensions. Recently a promising approach to fill this gap
was introduced by Choi et al. [7,8]. A planar array of adjacent coils
– thus not relying on the principles underlying phased arrays – was
considered. By appropriately tailoring the currents in the individual
coils, it was shown that it is possible to synthesize a focused magnetic
field.

∗ Corresponding author.

This work aims to explore the limits of the technique for the syn-
thesization of focused magnetic fields in two dimensions, for the case
of a simple planar geometry of the magnetic sources. In particular, we
investigate the number of sources required to obtain a wanted focusing,
and the required power, which will turn out to be the most important
limiting factor for the technique.

This paper is organized as follows. In Section 2 the problem and
the notations are introduced. In Section 3 we present numerical results
for magnetic field focusing and steering in one- and two-dimensions,
discussing the power requirements in all considered cases, and the
limitations imposed on practical applications. The behavior of the field
in the direction perpendicular to the target plane is then studied, and
the related additional constraints discussed. Conclusions are finally
drawn.

2. The problem and notations

Our goal is to investigate to what extent it is possible to synthetize
a focused low-frequency magnetic field using a set of current-carrying
wires, with the current distribution across the wires controlling both
the focus size and its position in space.

A target region is introduced, which can be one-dimensional (1D)
or two-dimensional (2D). The aim is to focus the magnetic field at an
arbitrary point 𝐱 = 𝐱𝟎 within this region.
vailable online 31 October 2020
211-3797/© 2020 The Authors. Published by Elsevier B.V. This is an open access a

E-mail addresses: dcubero@us.es (D. Cubero), l.marmugi@ucl.ac.uk (L. Marmu

https://doi.org/10.1016/j.rinp.2020.103562
Received 25 August 2020; Received in revised form 27 October 2020; Accepted 27
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

gi), f.renzoni@ucl.ac.uk (F. Renzoni).

October 2020

http://www.elsevier.com/locate/rinp
http://www.elsevier.com/locate/rinp
mailto:dcubero@us.es
mailto:l.marmugi@ucl.ac.uk
mailto:f.renzoni@ucl.ac.uk
https://doi.org/10.1016/j.rinp.2020.103562
https://doi.org/10.1016/j.rinp.2020.103562
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rinp.2020.103562&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Results in Physics 19 (2020) 103562D. Cubero et al.
Fig. 1. Sketch of the planar arrangements of magnetic field sources considered in the
present work. The spot size of the magnetic field at the target region is indicated in
red. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Focusing the magnetic field within 1D and 2D target regions has dif-
ferent requirements for the magnetic field sources. Following Refs. [7,
8], we consider planar arrangements, which include straight wires and
square coils, as sketched in Fig. 1. For 1D target regions, we consider
two possible geometries. In the first one, represented in Fig. 1(a),
magnetic fields are generated by an array of 𝑁 infinitely long straight
wires carrying electric currents, all parallel to the 𝑦-axis and crossing
the XZ plane at 𝑧 = −𝑑 through equispaced points 𝑥𝑖 in the interval
between 𝑥 = −𝑑 and 𝑥 = 𝑑. In the second one, represented in Fig. 1(b),
a 1D array of square coils constitute the source of magnetic fields. The
coils, with side length 𝑎, lie on a plane parallel to the XY plane and
intercepting the 𝑧 axis at 𝑧 = −𝑑. The coils are uniformly distanced one
from the other, with their centers spaced of a distance 𝛿. For 2D target
regions, the considered magnetic field source, sketched in Fig. 1(c),
consists of a 2D array of square coils. As for the 1D case, the coils have
side length 𝑎, lie on a plane parallel to the XY plane and intercept the
𝑧 axis at 𝑧 = −𝑑. The coils are uniformly distanced one from the other,
with their centers spaced of a distance 𝛿.
2

The extension of the target region is taken to be 2𝑑 for the 1D case
and 4𝑑2 for the 2D case. The dimension of the magnetic field ‘‘spot size’’
at the target region (line or plane) will be indicated by 2𝛿𝑥 for the 1D
case and 4𝛿𝑥𝛿𝑦 for the 2D case.

3. Numerical simulations

Our numerical approach to determine the current distribution re-
quired for the desired focusing follows the line of Ref. [7]. Details of the
procedure are in Appendices A and B. A discrete 1D or 2D grid 𝐱𝑖 (with
𝑖 = 1, 2,… , 𝑁𝛿) is superimposed on the target region as applicable,
and the currents 𝐼𝑗 (with 𝑗 = 1, 2,… , 𝑁) in the magnetic field sources
(straight wires or coils) are calculated by demanding that the three
components of the synthesized field at the discretized points 𝐱𝑖 are all
zero, except at 𝐱𝑖 = 𝐱0. The solution for the currents 𝐼𝑗 can then be
found by matrix inversion, provided that the number 𝑁 of magnetic
field sources (straight wires or coils) is at least three times the number
𝑁𝛿 of grid points.

We notice that we are considering the quasi-static low-frequency
limit of electromagnetism. We thus perform all the calculations as in
the static case (dc currents and dc magnetic fields). Results for the
low-frequency magnetic fields of interest are then obtained by taking
the currents found in the static limit as amplitudes of the ac currents
required for the generation of the desired ac magnetic fields.

3.1. 1D magnetic field focusing

We first consider the case of 1D magnetic field focusing produced by
an array of equally spaced infinitely long wires, with the corresponding
set-up shown in Fig. 1(a). The target region is the segment [−𝑑, 𝑑] along
the 𝑥-axis (𝑦 = 𝑧 = 0). The currents 𝐼𝑗 in the wires are calculated
by matrix inversion. The field at 𝑥𝑖 = 𝑥0 is taken as 𝐵𝑧(𝑥0, 0, 0) =
𝐵0 = 𝜇0𝐼0∕(2𝜋𝑑), the field created by a single source at a distance 𝑑.
For this configuration, the resolution is imposed by 𝛿𝑥 = 2𝑑∕(𝑁𝛿 − 1).
Fig. 2(a, b, c) illustrates 1D magnetic field focusing for the case of
straight wires and a line of coils. Here 𝑁 = 3𝑁𝛿 to guarantee that the
three components of the magnetic field take the prescribed values at
the target points. By appropriately tailoring the current in the different
wires (coils), it is possible to synthetize a field which has a maximum
around 𝑥0 = 0. Furthermore, by increasing by about a factor 2 the
number 𝑁 of sources, it is possible to decrease by the same factor the
spot size of the magnetic field.

Magnetic field focusing for the case of a magnetic field source
consisting of a line of square coils, as sketched in Fig. 1(b), is illustrated
in Fig. 2(d, e, f). Also in this case, it is possible to reduce the magnetic
field spot size at the target region by increasing the number 𝑁 of
magnetic sources.

A central issue of the present discussion is the scaling of the current
with the focus size. For a given desired spot size, we calculated by ma-
trix inversion the required currents circulating in the different coils, and
extracted the maximum value. Fig. 3 shows such a maximum value as a
function of the inverse of the spot size, and evidences an exponentially
increasing dependence. So, while focusing of the magnetic field down
to a desired value is in principle possible, the current required makes
focusing below a certain level impractical.

3.2. 1D magnetic field steering

We consider here the possibility of steering the magnetic field focus
within the target region for a fixed configuration of the magnetic
field sources, i.e. for fixed number 𝑁 of the wires/coils and their
spatial arrangement. This is very important for magnetic induction
tomography, where it would allow to selectively address different areas
of the object of interest, thus increasing the resolution.

Steering of the magnetic field focus can be achieved by varying
the current distribution among the different wires depending on the
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Fig. 2. Synthesization of 1D focused magnetic field, for two different configurations of magnetic sources: a set of infinite straight wires along the 𝑦-axis (a–c) and a set of square
coils with length 𝑎 = 𝑑∕2 (d–f). The target region is along the 𝑥-axis (𝑦 = 0 and 𝑧 = 0), separated a distance 𝑑 from the source plane (at 𝑧 = −𝑑). For all the simulations the
number of coils 𝑁 is three times the number of target points: 𝑁 = 3×𝑁𝛿 . (a) Infinite straight wires with 𝛿𝑥∕𝑑 = 1∕3 (𝑁𝛿 = 7). (b) Infinite straight wires with 𝛿𝑥∕𝑑 = 1∕6 (𝑁𝛿 = 13).
(c) Current distribution through the different wires to achieve the wanted focusing as in (a) (black large square data set) and (b) (blue small square data set). Each data set is
normalized to the maximum current. (d) Square coils with 𝛿𝑥∕𝑑 = 1∕3. (e) Square coils with 𝛿𝑥∕𝑑 = 1∕6. The magnetic field magnitude goes beyond the considered scale in the
region approximately defined by |𝑦∕𝑑| > 0.5, and indicated in white in the figure. (f) Current distribution through the different coils to achieve the wanted focusing as in (d) (black
large square data set) and (e) (blue small square data set). Each data set is normalized to the maximum current.
Fig. 3. Maximum dimensionless current as a function of the inverse of the resolution
in 1D setups. The black crosses are the results for a system using an array of infinite
straight lines carrying electric currents, and the blue squares correspond to a linear
array of square coils with coil length 𝑎 = 𝑑∕2. The synthesized field 𝐵0 at the focusing
point 𝑥0 is chosen to coincide with the field created by a single magnetic source at the
distance 𝑑. For all the data points the number of coils 𝑁 is three times the number of
target points: 𝑁 = 3 ×𝑁𝛿 .

desired position of the magnetic field focus. This is demonstrated in
Fig. 4, where the current distribution among different wires/coils is
determined by matrix inversion for different position of the magnetic
field focus 𝑥0 within the target region. It can be seen that the focus
position can be varied, while maintaining the focus size. We notice that
there is a distortion whenever the desired focus position approaches
the target region boundaries, see Fig. 4. In this case, while the field
is forced to equal 𝐵0 at 𝑥0 by the matrix inversion procedure, it goes
above the desired value (white region in the figure) between 𝑥0 and the
nearest boundary, before decaying to a smaller value. We found that
steering with a high degree of control can be achieved in about half
of the target region. Obviously, whenever steering has to be achieve
on a larger distance, a larger extension of the magnetic field source
arrangement has to be considered.

A remarkable and important finding is that steering the magnetic
field focus away from the center of the target region does not require
3

a significant increase of the maximum current across the wires/coils
(see caption of Fig. 4), at variance with the requirements required
for decreasing the focus waist, obtained at the cost of an exponential
increase in current.

3.3. 2D magnetic field focusing and steering

Magnetic field focusing and steering can be directly generalized to a
2D target region by using the 2D magnetic field source configuration of
Fig. 1(c) consisting of an array of square coils of length 𝑎. Fig. 5 shows
numerical results for focusing and steering for the 2D configuration.

The reported results validate for the 2D case what already observed
for 1D: by varying the number of coils 𝑁 and target fixed points 𝑁𝛿 ,
here taken to be 𝑁 = 22𝑁𝛿 , it is possible to decrease the spot size,
although this is at the cost of an exponential increase in the current
required, as shown in Fig. 6 — like in the 1D case, the field at the
focusing point 𝐱0 is required to be that of a single, symmetrically placed
coil, here

𝐵0 = 𝜇0𝐼0
√

8∕(
√

75𝜋𝑑) (1)

(see Appendix A).
For a fixed number of coils, it is possible to steer the focus within

the target region without a significant increase in the current required.
As an explicit example, we consider a 2D set-up with 𝑑 = 10 cm,

and aim to focus the magnetic field to a spot size of 𝛿𝑥 = 𝑑∕2 = 5 cm
with peak amplitude 𝐵0 = 0.5 × 10−6 T. From the expression for the
field a single coil, Eq. (1), which we take as a reference, we derive that
the requirement of a field peak amplitude of 𝐵0 = 0.5 × 10−6 T implies
a reference current of 𝐼0 = 0.38 A. Our results of Fig. 6 show that for
𝑑∕𝛿𝑥 = 2 we have 𝐼max∕𝐼0 = 30, thus the maximum current required
in a single coil is 𝐼max = 11.4 A. On the other hand, if we require a
2-fold reduction in the spot size 𝛿𝑥 for the same distance 𝑑 and field
peak amplitude 𝐵0, the current required becomes extremely large, and
equal to 𝐼𝑚𝑎𝑥 = 31025 A.

3.4. Behavior outside the target plane

The discussion so far dealt uniquely with the control of the magnetic
field within the target plane. This was according to the fact that in this
work we do not address the issue of 3D field shaping. Nevertheless, it
is interesting to study the field behavior also in the region between the
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Fig. 4. Steering of the 1D magnetic field focus, for the same two configurations of magnetic field sources of Fig. 2. (a) Infinite straight wires with 𝑥0∕𝑑 = −0.75. (b) Infinite
straight wires with 𝑥0∕𝑑 = −0.5. (c) Current distribution through the different wires to achieve the wanted steering as in (a) (black large square data set) and (b) (blue small
square data set). Each data set is normalized to the maximum current. (d) Square coils with 𝑥0∕𝑑 = −0.75. (e) Square coils with 𝑥0∕𝑑 = −0.5. (f) Current distribution through the
different coils to achieve the wanted steering as in (d) (black large square data set) and (e) (blue small square data set). Each data set is normalized to the maximum current.
For all calculations 𝛿𝑥∕𝑑 = 0.25 (𝑁𝛿 = 9, 𝑁 = 27). The white region indicates regions where 𝐵 goes above the wanted peak value 𝐵0, by up to a factor 1.5. The values for 𝐼𝑚𝑎𝑥 for
the different calculations are as follows. Straight wires: 𝐼𝑚𝑎𝑥∕𝐼0 = 0.209499 × 106 for (a), 𝐼𝑚𝑎𝑥∕𝐼0 = 0.933767 × 106 for (b), and for comparison 𝐼𝑚𝑎𝑥∕𝐼0 = 0.373630 × 106 for the case
of 𝑥0 = 0. Square coils: 𝐼𝑚𝑎𝑥∕𝐼0 = 4.43414 × 106 for (d), 𝐼𝑚𝑎𝑥∕𝐼0 = 7.17498 × 106 for (e), and for comparison 𝐼𝑚𝑎𝑥∕𝐼0 = 2.17439 × 106 for the case of 𝑥0 = 0.
Fig. 5. Magnetic field focusing and steering in two dimensions. The first row reports focusing at the center of the target area 𝐱0 = (0, 0) by increasing the number of fixed points
from 𝑁𝛿 = 7 × 7 (𝛿𝑥∕𝑑 = 1∕3) in (b) to 𝑁𝛿 = 13 × 13 (𝛿𝑥∕𝑑 = 1∕6) in (c), with (a) being the field for a single coil centered at 𝐱0 = (0, 0), reported for comparison. In all cases
𝑁 = 22𝑁𝛿 and 𝑎 = 𝑑. The second row reports focusing at the point 𝐱0 = (−2𝑑∕3,−2𝑑∕3). As for the first row, increased focusing is obtained by increasing the number of fixed
points from 𝑁𝛿 = 7 × 7 (𝛿𝑥∕𝑑 = 1∕3) in (e) to 𝑁𝛿 = 13 × 13 (𝛿𝑥∕𝑑 = 1∕6) in (f), with (d) the field for a single coil centered at 𝐱0 = (−2𝑑∕3,−2𝑑∕3). Thus focusing is demonstrated
by moving from the center column to the right one, while steering from the two last panel of the top row to the corresponding ones on the bottom row.
source plane and the target plane, as this may introduce limitations
in practical uses of 2D field shaping in its present conception. To
this purpose, consider the configuration presented in the panels (b)
and (c) of Fig. 5 as case study. The corresponding behavior of the
field in the transverse direction, i.e. along 𝑧 with 𝑥0 = 𝑦0 = 0, is
represented in Fig. 7. The field turns out to be extremely large in
proximity of the sources, and decays rapidly to reach the wanted value
at the target plane. For the weaker focusing case, the variation in field
amplitude spans five orders of magnitude, while for the more focused
configuration a larger variation spanning ten orders of magnitude is
observed.

The large values required for the field amplitude between source
and target plane should be taken into account for applications which
require 2D shaping, as such large fields may not be compatible with
4

the materials between the two planes. Specifically, large fields are
compatible with remote power transfer where no conductive material
is present in the gap. Similarly, magnetic induction tomography of
the surface of nanostructures would not find large fields in the gap
region a limiting factor. On the contrary, for biomedical [9,10] and
security [11,12] applications of electromagnetic induction imaging, the
impact of such large fields would have to be taken into account in de-
signing the imaging systems. Excessively large fields may cause damage
to the tissues in between the source and the target tissue, certainly an
important limiting factor for biomedical imaging. For through-barrier
imaging of relevance to security applications, large fields would lead
to large unwanted eddy currents in the material shielding the target
object, potentially compromising the imaging approach.
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Fig. 6. Maximum dimensionless current as a function of the inverse of the resolution
in 2D setups. The empty (black) squares are the results for a system using an array
of square coils with lengths 𝑎 = 𝑑 and the filled (blue) squares correspond to squares
oils with 𝑎 just small enough to avoid overlap between the coils in the source plane.

Fig. 7. The 𝑧-component 𝐵𝑧 of the magnetic field, normalized by the field 𝐵(0)
𝑧 created

by a single source (square coil), is plotted as a function of 𝑧 for 𝐱0 = (0, 0), for the
two configurations corresponding to panels (b) and (c) of Fig. 5. The curve in black
refers to the configuration of the left panel, the one in red to the right panel. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

4. Conclusions

Following a recently introduced synthesis technique [7,8], we have
investigated the possibility of focusing and steering the magnetic field
in 1D and 2D regions by using planar arrays of wires or coils. In
agreement with previous work, we found that focusing to any desired
level on a target plane is in principle possible by appropriately tailoring
the magnetic field source. However, our results also identified impor-
tant constraints to be taken into account for practical implementations.
Firstly, an increase of the focusing level, i.e. a reduction of the magnetic
field waist, requires an exponential increase in the current amplitude,
which rapidly lead to impracticable power requirements. Secondly, a
tight focusing on the target plane produces very large fields in the
region between source and target regions – a factor whose impact has
to be carefully considered in the application at hand. In addition, we
also demonstrated that steering the magnetic focus within the target
plane is possible by changing the distribution of currents in the coils,
importantly at no additional cost in terms of power requirements.
5

Despite the limitations highlighted in our work, the synthesis tech-
nique considered here is promising for magnetic field beam shaping
so to overcome the severe limitations imposed by the standard dipole
pattern of a single coil. This paves the way for numerous applications,
from efficient transmission of power to high resolution probing and
imaging.
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Appendix A. Magnetic field created by a square coil

The magnetic flux density at the position 𝐱 = (𝑥, 𝑦, 𝑧) created by a
ire carrying an electric current 𝐼 is given by the Biot–Savart law [13]

(𝐱) =
𝜇0𝐼
4𝜋 ∫

d𝐥 × (𝐱 − 𝐥)
|𝐱 − 𝐥|3

, (A.1)

here the integral extends over all wire’s positions 𝐥. For a straight
segment that starts at 𝐥1 and ends at 𝐥2 we have

𝐥 = 𝐥1 + 𝑠𝐧, (A.2)

where 0 ≤ 𝑠 ≤ |𝐥2 − 𝐥1| and 𝐧 = (𝐥2 − 𝐥1)∕|𝐥2 − 𝐥1|, and thus,

𝐁seg(𝐱) =
𝜇0𝐼
4𝜋 ∫

|𝐥2−𝐥1|

0
d𝑠

𝐧 × (𝐱 − 𝐥1)
|𝐱 − 𝐥1 − 𝑠𝐧|3

. (A.3)

he integral (A.3) can be straightforwardly evaluated, yielding

seg(𝐱) =
𝜇0𝐼
4𝜋

(𝐱 − 𝐥1) × (𝐥2 − 𝐥1)
|(𝐱 − 𝐥1) × (𝐥2 − 𝐥1)|2

×
[ 𝐱 − 𝐥2
|𝐱 − 𝐥2|

−
𝐱 − 𝐥1
|𝐱 − 𝐥1|

]

⋅ (𝐥2 − 𝐥1). (A.4)

he magnetic flux density created by a square coil is just the sum of
he densities (A.4) created by each of the four segments, with length
𝐥𝑖 − 𝐥𝑖+1| = 𝑎, composing the coil.

For a square coil with current 𝐼0 and its symmetry axis along the
𝑧-axis and its center at the origin, the flux density among that axis is
given by

𝐁(0)(0, 0, 𝑧) =
𝜇0𝐼0

√

8

𝜋𝑎(1 + 4 𝑧2
𝑎2
)
√

1 + 2 𝑧2
𝑎2

𝐞𝑧. (A.5)

Appendix B. Calculation of the electric currents

The coils’ electric currents are determined by imposing a finite
transverse size of the magnetic field at the target region. We use here
a similar procedure than the one proposed in [7,8].

The field at the target region is the superposition of the field created
by each coil, which, according to Biot–Savart law, is proportional
to the coil current 𝐼0𝐼𝑖, where 𝐼0 is a reference current and 𝐼𝑖 is a
dimensionless variable. Thus,

𝐁(𝐱) =
𝑁
∑

𝐼𝑗𝐁(𝑗)(𝐱), (B.1)

𝑗=1
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where 𝐁(𝑗)(𝑥, 𝑦, 𝑧) is the field created by the coil 𝑗, divided by its
imensionless current parameter 𝐼𝑗 .

The 𝛼-component (𝛼 = 𝑥, 𝑦, or 𝑧) of the generated field 𝐵𝛼(𝐱) is
equired to satisfy specific values 𝐵0

𝛼(𝐱𝑖) at the nodes 𝑖 of a lattice that
aps the entire target region. Thus, from (B.1), the currents 𝐼𝑗 are

determined by the linear problem
𝑁
∑

𝑗=1
𝐵(𝑗)
𝛼 (𝐱𝑖)𝐼𝑗 = 𝐵0

𝛼(𝐱𝑖), (B.2)

where 𝑖 = 1,… , 𝑁𝛿 , where 𝐵(𝑗)
𝛼 (𝐱𝑖) is the 𝛼-component of field created

y the coil 𝑗 at the target point 𝑖.
In (B.2), the number of unknowns (𝐼𝑖) is 𝑁 , the number of coils, and

he total number of equations is given by 3𝑁𝛿 , where 𝑁𝛿 is the number
f fixing points, because the three components of the field are fixed at
ach point in the target region. Thus, we need to consider 𝑁 ≥ 3𝑁𝛿 .

For convenience, we do not restrict ourselves to 𝑁 = 3𝑁𝛿 , but
onsider the general case 𝑁 > 3𝑁𝛿 . Then, there are 𝑁 − 3𝑁𝛿 extra

solutions. These extra solutions belong to the nullspace [14] of the
corresponding matrix. If we rewrite the linear problem (B.2) as

𝐴𝜒 = 𝜂, (B.3)

where 𝜒 = (𝐼1,… , 𝐼𝑁 ) and 𝜂 are vectors of dimension 𝑁 and 3𝑁𝛿 ,
respectively, and 𝐴 is the corresponding matrix of dimensions (3𝑁𝛿) ×
𝑁 , then, we can always find a solution 𝜒0 that satisfies 𝐴𝜒0 = 𝜂, and
lso 𝑁 − 3𝑁𝛿 linearly independent solutions 𝜒𝑘 (𝑘 = 1,… , 𝑁 − 3𝑁𝛿)
hich satisfy 𝐴𝜒𝑘 = 0. Any other solution can be written as

= 𝜒0 +
𝑁−3𝑁𝛿
∑

𝑘=1
𝑎𝑘𝜒𝑘, (B.4)

here 𝑎𝑘 are real constants. In view of practical implementations, we
re interested in the minimum current solution, that is, the solution
6

hat minimizes the quantity ∑𝑁
𝑗=1 𝐼

2
𝑗 = 𝜒 ⋅ 𝜒 , which can be found by

emanding 𝜒 to be perpendicular to 𝜒𝑘, i.e.

⋅ 𝜒𝑘 =
𝑁
∑

𝑗=1
𝐼𝑗𝐼

(𝑘)
𝑗 = 0. (B.5)

nserting (B.4) into (B.5) yields the following equations for 𝑎𝑘
−3𝑁𝛿
∑

𝑘=1
(𝜒𝑘 ⋅ 𝜒𝑘′ )𝑎𝑘 = −(𝜒0 ⋅ 𝜒𝑘′ ). (B.6)

he solution 𝜒0 can be found, and (B.6) solved, using standard linear
olving algorithms [15].
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