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Abstract

This thesis describes the construction of an atomic matter-wave interferometer,
combined with a spin-state interferometer, used to weakly measure the average
transverse momentum of the atoms.

A velocity-tuneable cold atomic beam was constructed and characterised.
By applying radiation pressure to a magneto-optical trap, the beam’s velocity
was selected between 1− 52 ms−1. The beam was used to produce interference
fringes in a matter-wave interferometer which consisted of a mutli-slit Si3Ni4
grating and a planar atom detector placed below the grating. The interference
pattern was used to measure the average beam velocity and the Van der Waals
coefficient between the atoms and the grating. This was the first instance of
such a measurement.

Below the grating a longitudinal Stern-Gerlach interferometer was con-
structed. The phase shift of the atom’s spin, due to the Zeeman effect from
the interferometer’s magnetic field, was measured. The phase shift provided a
measurement of the interferometer’s magnetic field in the µT range.

An experiment combining the two interferometers to weakly measure the
atom’s transverse momentum is described and modelled.



Impact Statement

The experiment developed in this thesis is a necessary progression of the pho-
tonic experiment carried out by Kocsis et al., an experiment which was con-
sidered the breakthrough of the year by IOP’s Physics World magazine. The
experiment challenged widely held notions about what information we are
allowed to know about a quantum particle, in their case a photon. Our ex-
periment takes this idea further by re-designing the experiment to work with
atoms. Making such a measurement with atoms will add weight to alternative
interpretations of quantum mechanics, inflating a discussion which is usually
lost outside of the inner research circles. During the project, a biographical
film about David Bohm was filmed and released. Members of our research
group, including myself, were interviewed and the experiment described in
this thesis was filmed. Other interviewees included the Dalai Lama and Sir
Roger Penrose.
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Chapter 1

Introduction

The interference fringes in the matter-wave double slit experiment have long

been one of the prime examples of the strange implications of quantum theory.

Different explanations of the experiment’s results point to different interpre-

tations of the theory, including wavefunction collapse, determinism and the

principle of locality. The mathematics, regardless of the interpretation, has

been successful in consistently predicting the outcomes of this and many other

experiments. The most widely accepted interpretation of the mathematics is

the Copenhagen interpretation. However, the interpretation states that ‘gener-

ally, quantum systems do not have definite properties prior to being measured’

and so offers no clear way of proving how the ensemble of individual particles

produce the results. Consequently there is no agreement on the nature of any

underlying reality of quantum theory [1]. One approach, from Bohm [2], takes

the wavefunction as ψ = R exp{iS/h̄} (where R is the amplitude and S is the

phase, both are real) and applies it to the Schrödinger equation, splitting it

into real and imaginary parts. The real part of the equation gives the local

momentum of the particle as p = ∇S. This allows individual particle trajecto-

ries or momentum flow lines to be drawn [3], a feature denied as meaningful by

the Copenhagen interpretation. This idea was largely ignored, partly for po-

litical reasons, but also because there appeared to be no way of measuring this

momentum. Interestingly, a recent experiment using a ‘weak measurement’
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technique has drawn attention to a method for measuring an atom’s trans-

verse momentum in the double slit experiment, leading to the construction of

the ‘momentum flow lines’

This thesis does not attempt to speculate about the physical origins of these

effects, but demonstrates how the momentum flow lines could be reconstructed

by experiment. We develop a method to perform the measurement which aims

to reconstruct the momentum flow lines for metastable argon in a multi-slit

grating matter-wave interferometer.

1.1 Matter-wave interferometry

The wave like behaviour of matter was proposed by de Broglie in 1924 and

was supported by empirical evidence with the observation of interference from

diffracted electrons in 1927 [4] and neutrons in 1936 [5] that had been scattered

by a crystal. The range of different particles with which to observe matter-

wave behaviour was, for some time, limited to just electrons and neutrons.

Electrons were used in a Mach-Zender interferometer in 1950 [6] and in 1954

Möllenstedt diffracted electrons with a bi-prism [7], which gave a electrons

the choice of two spatially separated paths. In order to observe matter-wave

interference with heavier or neutral particles, a more a direct particle analogy

of Young’s double slit experiment was required. The double or multi-slit ex-

periment was still just out of reach for experimentalists at the time due to the

nano meter scale that the double slits would need to be in order to resolve the

interference fringes. Eventually Möllenstedt’s student, Claus Jönsson, demon-

strated electron interference using a multi-slit grating in 1961. They built

a 1µm period grating using early electron beam lithography techniques and

electrolytically deposited copper [8]. The experiment used electrons with ve-

locities of 1 x 108 ms-1 to show the diffraction, giving a de Broglie wavelength

of 5× 10-12 m. Fabricating such gratings created the opportunity to undertake

interferometry with more massive particles. Since a physical grating can be
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simple to implement in an experiment and it does not rely on the electric or

magnetic properties of the particle, the primary challenge was then to create

a coherent beam of particles.

In 1991, atomic interference was demonstrated after transmission through

a double slit [9]. This experiment used metastable helium atoms in an atomic

beam. The small atomic mass gave a long de Broglie wavelength which co-

herently illuminated the 8µm separated slits. In 1999, Ardnt et al. used

C60 buckyballs to demonstrate wave behaviour of large molecules [10] and has

since achieved results with ever increasing sizes and complexities of molecule.

Most recently diffraction of molecules consisting of 810 atoms was demon-

strated [11]. To achieve this superposition, the team used two nano fab-

ricated gratings either side of a standing light wave, which is known as a

Kapitza–Dirac–Talbot–Lau configuration. The Talbot-Lau configuration, re-

ferring to using multiple gratings to exploit the Talbot effect, does not re-

quire a transversely coherent particle beam and therefore provides a supe-

rior signal count and improves the interference fringe contrast. Additionally,

other matter-wave interferometers have used only optical gratings, either sin-

gle [12, 13] or multiple gratings [14], produced by standing light waves. In all

these cases the source was either an atomic beam created via a pressure differ-

ential or a molecular thermal beam, both of which produce velocities typically

in the region of 100-1000 ms−1. Faster velocities produce shorter de Broglie

wavelengths, which therefore require greater distances between the grating and

detector in order to resolve the interference fringes.

Successfully resolving matter-wave interference fringes from a transmission

grating requires having enough distance between the grating and detector such

that the fringes separate further than the resolution of the detector. If the

distance isn’t sufficiently long, the fringe separation can also be increased by

using slower (colder) atoms to increase the de Broglie wavelength. Here at

UCL, a cold atom source in the form of a metastable argon magneto-optical
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trap (MOT) was available for this application. This MOT uses lasers and

magnetic fields to cool the atoms to temperatures as low as 100µk. Such a

trap has been demonstrated as a source for matter-wave interferometry in 1992

by Shimizu et al., who used a neon MOT [15]. To obtain the slowest possible

velocity to the detector, the atoms were released from the trap by pumping

the atoms to a magnetically neutral state causing them to simply fall out of

the trap and accelerate towards the detector under gravity alone. This created

a very slow longitudinal velocity, which meant the interference fringes were

separated by 227µm after falling 113 mm from double slit with a centre-to-

centre separation of 6µm. This MOT release method also produced a wide

transverse velocity spread, meaning very few of the atoms in the trap would

arrive at the detector.

A better signal intensity can be achieved by introducing an additional laser

interaction in the form of a vertical push beam. The beam imparts an optical

force on the atoms which pushes them out of the trap towards the detector.

By manipulating the interaction strength, either through pulse length or beam

power, the radiation pressure can be controlled and the atomic beam velocity

can be selected. This has been previously demonstrated with metastable argon

atoms in a velocity-tunable, pulsed, cold atom beam [16]. This method was

developed further by exchanging the pulsed nature of the beam for a contin-

uous cold atom source. This beam was generated by a column of unbalanced

radiation pressure within MOT of rubidium atoms [17]. The atoms in the

MOT were continuously replenished as other atoms were continuously pushed

out.

This review, shows that one of the main components of this PhD project,

the multi-slit, matter-wave interferometer, has a very well established exper-

imental history. This makes it a sensible choice for developing a method to

measure the atomic transverse momentum.
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1.2 Weak measurements

Consider a quantum state described by a wavefunction, ψi, comprised of single

observable states, Âs, and a measuring device with a pointer. The pointer has

a position xp and momentum operator P̂p . When the measuring device inter-

acts with the quantum state, the observable becomes coupled to the pointer

through an interaction of strength g(t). The interaction Hamiltonian for such

a measurement, Ĥi = g(t)ÂsP̂p, was given by von Neumann.

A typical quantum measurement, referred to here as a strong measurement

or von Neumann measurement, can reveal the value of an observable, As.

When the coupling is strong the pointer imparts a large back action on the

system and collapses the wavefunction, producing an expectation value of As,

〈A〉 = 〈ψf |A|ψi〉. (1.1)

Conversely, a ‘weak measurement’ can be made when the observable is very

weakly coupled with the measuring device via g(t). In this case, the pointer

is only slightly perturbed by the quantum system such that the corresponding

back action to the observable is reduced. This avoids collapsing the system’s

wavefunction at the cost of a greater uncertainty in the measured value, as a

result this single measurement event does not contain enough useful informa-

tion to observe a state. However, repeating the measurement many times and

averaging the results can reveal a ‘weak value’ for the observable.

This form of weak measurement was introduced in 1988 by Aharonov, Al-

bert and Vaidman(AAV) [18] where the weak measurement was outlined in the

context of a Stern-Gerlach (SG) spin measurement apparatus. The limit for

which a measurement can be considered weak, is given as the range for which

the interaction exp(iHI

∫
dt) is approximately equal to the first order of it’s

Taylor expansion. The quantum system is pre-selected in the state |φi〉 and

post-selected in the state 〈φf |, the weak approximation reveals a ‘weak value’
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〈Aw〉 of the observable, A, defined by

〈Aw〉 =
〈ψf |A|ψi〉
〈ψf |ψi〉

, (1.2)

where 〈Aw〉 is a complex number, but is not an eigenvalue like equation 1.1.

The denominator in equation 1.2, highlights how post selecting a particular

state can lead to amplification effects. As |ψi〉 and 〈ψf | approach orthogonality,

the value of Aw can lie outside the range of possible eigenvalues of A. This was

initially described in AAV’s paper [18] and was later demonstrated experimen-

tally where the amplification allows a higher level of precision measurement

than was previously achievable. For example, measurements of frequency [19],

angle [20] and velocity [21] all used AAV’s weak measurement. More specifi-

cally, in 2009, weak measurements were used to measure a laser beam deflection

of 400 femto-rad [22] in a Sangac interferometer.

The non-perturbative nature of weak values have also been used to fur-

ther probe traditional quantum theories, such as introducing a ‘which way’

measurement in a double slit interferometer [23], albeit only in theory. Ex-

periments did follow [24], including demonstrations of Hardy’s paradox using

photons [25,26], the three box problem [27] and a violation of Bell’s inequality

in time [28].

A weak measurement is essentially an application of an indirect measure-

ment scheme to the von Neumann measurement protocol [29], which in practice

process contains 2 stages, a ‘weak stage’ followed by a strong measurement also

called a ‘post-selection’ stage. The weak stage is a weak coupling of the observ-

able to the pointer, a different property of the system. This weak interaction

does not perturb the system enough to collapse the quantum state. This is

followed by a strong measurement of the system revealing a shift of the pointer

corresponding to a ‘weak value’ of the observable. It is only when the inter-

action is weak as defined by Aharonov, that the observable can be amplified.

This process used to measure transverse momentum of photons in a double
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slit interferometer by coupling the momentum of the photon to a phase shift

in its polarisation as it passed through a calcite crystal. This was achieved in

2012 by Kocsis et al. [30]. This experiment provided the framework to design

a new experiment which measures the transverse momentum of an atom in a

matter-wave interferometer, where the phase shift in the atom’s spin is induced

by a magnetic field.

In the experiment by Kocsis et al., single photons from a quantum dot pass

through a double slit setup and gain transverse momentum via diffraction. In

between the slits and the interference pattern on the 2D detector, the pho-

tons pass through a set of wave-plates and a tilted birefringent crystal, which

together act as a polarisation interferometer. The crystal shifts the phase of

the horizontal and vertical components of the photon’s polarisation by a dif-

ferent amount, dependent on the time spent in the birefringent crystal. The

crystals optical axis is tilted such that the time spent within the crystal is

dependent on the photon’s transverse momentum. Therefore, the phase shift

in the polarisation becomes the shift of the transverse momentum pointer via

a weak coupling. The photons then continue towards the detector preserving

their acquired phase shift. When the photons reach the detector, the phase

shift acquired during the polarisation interferometer is observed as interference

in the signal intensity. From this, a ‘weak value’ of the photon’s transverse

momentum is determined at specific transverse positions. Repeating this mea-

surement at different longitudinal positions between the slits and the detector

allowed them to reconstruct what they called the photons’ ‘average trajecto-

ries’.

It is interesting that the trajectories measured by Kocsis compare well

with those calculated by Philippidis et al. [3], using the de Broglie-Bohm ap-

proach [2] as shown in figure 1.1(b). Bohm (and hence Philippidis) links the

phase of the wavefunction to the local momentum (p = ∇S). The ‘kinks’

in the trajectories, due to a ‘quantum potential’, are not brought into con-
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(a) (b)

Figure 1.1: (a) The ‘trajectories’ reconstructed by Kocsis et al. from observing the weak
value of the photon’s transverse momenta (b) The trajectories of particles passing through
double slits as predicted by the de Broglie-Bohm theory

sideration by the Copenhagen interpretation. The trajectories calculated by

Philippidis et al. were for particles which have a localised mass and which

follow the Schrödinger equation. However, Kocsis used single photons, which

are excitations of the Maxwell field, so the simulations don’t necessarily apply

to photons. To truly test the theory, we need to use particles with a finite

rest mass. Additionally, Kocsis et al.’s use of the word ‘trajectories’ has been

contested by Hiley et al., who replace the word with ‘average momentum,

flow lines’, since a Bohm ‘trajectory’ is the average of an ensemble of actual

individual stochastic Feynman paths [31].

Furthermore, Kocsis’s does not make it clear if his experiment can be con-

sidered ‘weak’, as defined by Aharonov, as opposed to simply being an in-

direct measurement as described by Svensson [29]. Recall the measurement

Hamiltonian, Ĥi = g(t)ÂsP̂p, used in the unitary time evolution operator

exp{iĤit/h̄}. Kocsis states that for the photon’s weak interaction with the

birefringent crystal, the observable Âs is the photon’s transverse momentum,

k̂x and the pointer P̂p is the photon’s polarisation, Ŝ. Kocsis then describes

the interaction Hamiltonian as Ĥi = gk̂xŜ (detailed in the paper’s supporting

online material), however Kocsis does not explain how this can be constructed

using the underlying physics of the photon-crystal interaction.

The interaction coupling strength is given as g and the interaction time,

t, is introduced via the the time evolution operator. However, looking at the
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experiment geometry it is clear that t should be part of the coupling strength

between k̂x and Ŝ in Kocsis’s Ĥi. This Hamiltonian provided by Kocsis ap-

pears to describe the whole process of the photon’s phase shift measurement.

However, it is used in the time evolution operator as though it is describing

just the interaction involved in the refraction of the photons as they enter

the crystal. The observed phase shift in the polarisation is a function of t

and the crystal’s refractive index. If the crystal properties are known, k̂x can

be inferred from t. This makes it difficult to put k̂x into the weak measure-

ment formalism since observing the phase is a measurement of t, which is not

a quantum operator. The resulting weak value is given as 〈xf |k̂x|ψ〉/〈xf |ψ〉,

where the photon’s final position, xf , acts on the spatial wavefunction of the

photon ψ. If we apply the idea of amplification to this ‘weak value’ it does

not provide the same amplification design as previous weak value amplification

experiments.

Despite these gaps in ideas, it is still true that the phase shift in the optical

wave is coupled to the transverse momentum which provides the justification

for this project to measure the atomic transverse momentum in a matter-wave

interferometer. Weak measurements have highlighted a pathway for Kocsis,

and hence our experiment, to study fundamental quantum mechanics. The

definition of ‘weak’ as described by Aharonov does not apply, but there are

many other reasons why the measurement could be described as weak.

Aside from being compared with the ‘Bohm momentum’, the local mo-

mentum has been interpreted in a number of ways, as examined by Berry [32].

Berry discusses different possible meanings of the local momentum of a wave-

function stating that “each have equivalent formulas, but give insight into

different underlying physics”. The local momentum in a matter-wave inter-

ferometer has not been measured for atomic systems before, however weak

measurements with atoms have been shown to work with various coupling

schemes. This thesis aims to make a weak measurement of momentum using
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an atomic system that can be compared to the experiment and interpretation

of the work of Kocsis.

1.3 Spin-state interferometry

To create a weak measurement of an atomic observable, one must consider what

degrees of freedom are available to act as a pointer that can weakly couple to

the observable. This consideration must also include the ways in which one

can interact with the atom and its degrees of freedom. Typically, atomic weak

measurements use the internal degrees of freedom of the atom. These are the

spin states, which are the projections of the atom’s spin magnetic moment and

can interact with optical and magnetic fields.

Denkmayer et al. [33] utilised the spin of a neutron to weakly measure the

position in a neutron interferometer, in doing so they appeared to demonstrate

the spin separating from the centre-of-mass of the neutron. Rubidium atoms

were combined with photon properties in a number of other experiments. For

example, the frequency distribution of the emission from rubidium atoms was

coupled with the spin polarisation of the atom, so the distribution acts as a

pointer for the spin in a new magnetometry technique [34]. The populations

of the states in two energy levels of a rubidium atom were weakly measured

by coupling the populations to the spin of the atoms, which was then optically

measured. The measurement was used as a feedback control to help reduce

decoherence of the two level superposition state [35]. Another optical probe

beam was used to weakly measure the average spin rotation of a caesium atom

ensemble by monitoring the polarisation rotation of the probe beam. This

allowed a continuous weak measurement of the ensemble average spin [36].

The atoms used in this experiment’s matter-wave interferometer are cold

argon atoms in an excited metastable state1. The 4s[3/2]2 metastable state,

1Note: this thesis uses the jl coupling notation, nl[K]J where n is the principal number
of the valence electron, l is the orbital angular momentum of the valence electron, J is the
total angular momentum and K is the sum of the total angular momentum of the atomic
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that is used to cool and trap metastable argon atoms, is in a J = 2 spin state

and can be manipulated with a magnetic field via the state’s five magnetic

sublevels. Additionally, state-to-state transitions can be stimulated via at least

two commercially available laser diode wavelengths, at 801nm and 811nm. As

discussed, the atomic spin has been used as a pointer for weak measurements.

The magnetic degrees of freedom of the multiple magnetic spin states (m

states) and the accessibility of the 4s[3/2]2 transitions, provide coupling to

the transverse momentum via time spent in magnetic fields and the Zeeman

effect.

The spin states of metastable argon travelling through a magnetic field have

been previously used to produce a longitudinal Stern-Gerlach interferometer

(LSGI). One group based at Universite Paris-Nord showed that Stern-Gerlach

splitting from a gradient in the direction of the travelling argon atoms can

be used to create an interferometer [37]. The signal modulation due to the

interference is m state dependent, so while there is a superposition of m states

the phase shift is only observable if the signal intensity from a single m state is

measured. Such a scheme was tested using lasers at 811 nm and 801 nm to pre-

select and post-select the spin states, respectively, of a supersonic metastable

argon beam. The superposition of m states was achieved by a fast rotation

of the magnetic field surrounding the atom, as a result of the atom quickly

travelling from a region of one magnetic field direction into another. This

experiment effectively couples the momentum of the atoms to the phase shift

acquired in the magnetic field strength. The phase shift reflects changes in the

magnetic field. We develop this design by keeping the magnetic field constant

and instead creating a momentum dependent, interaction time.

core and l
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1.4 Thesis overview

Chapter 2

This chapter contains a full theoretical and technical description of each com-

ponent of the experiment to weakly measure the transverse momentum of an

atom in a matter-wave interferometer. This includes the wavefunction in a

matter-wave interferometer, the phase of the spin states of an atom in a Stern-

Gerlach interferometer and how the phase is used to measure the transverse

momentum.

Chapter 3

A velocity-tuneable, cold metastable argon beam is constructed and charac-

terised. The magneto-optical trap, which acts as the beam source, is also

described.

Chapter 4

Matter-wave interferometry using a Si3Ni4 multi-slit grating is demonstrated

using the atomic beam described in the previous chapter. The resulting inter-

ference pattern is used to measure the average beam velocity and the Van der

Waals potential between the atom and the grating.

Chapter 5

A measurement of the phase shift in the wavefunction of metastable argon

atoms, in a longitudinal Stern-Gerlach interferometer, is presented. Using the

atomic beam described in chapter 2, the observed phase shift is used to measure

the magnetic field strength of the interferometer

Chapter 6

This chapter describes how a weak measurement of transverse momentum of an

atom in a matter-wave interferometer could be made. The experiments from
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the previous two chapters are combined in a first prototype design. Results

from this measurement are the ultimate goal of the research group

Chapter 7

This chapter consists of the conclusions summarising the experiments under-

taken and exploring the future development of the project.
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Chapter 2

Measurement of the atomic

transverse momentum in a

matter-wave interferometer

This chapter describes how a weak measurement of the transverse momentum

of a metastable argon atom can be made in a matter-wave interferometer,

using a spin-state interferometer.

I begin by describing an atomic, multi-slit, matter-wave interferometer,

before outlining spin-state interferometry in a longitudinal Stern-Gerlach in-

terferometer (LSGI). Here, the phase shift between the atom’s spin states, due

to the interaction with the magnetic field of the interferometer, is discussed.

Finally, I describe how a modified LSGI can be used to measure the transverse

momentum.

2.1 An atom in a matter-wave interferometer

Consider atoms within a MOT (magneto-optical trap) that are accelerated

towards a position detector, by external radiation pressure, to create a cold

atomic beam. By inserting a mask (material or optical), in the path of the

beam, certain paths between the trap and the detector are prohibited. If the

20



mask contains periodic, narrow openings, then the atoms will diffract and

create a interference fringes on the detector. We initially consider the wave-

function of a free particle and quantum mechanically model the probability

density of the atom’s position as it propagates through the mask and towards

the detector [38]. This provides a guide for the design of the experiment and

also provides a model with which to simulate the transverse momentum.

2.1.1 Wavefunction of the atom

The atomic wavefunction is formulated using the Feynman path integral tech-

nique [39]. In this method, all the possible paths between two points α and

β are summed to give the probability of finding a particle at a particular

point. The sum of all these paths is called the kernel or propagator, K. The

propagator is defined using the classical Langrangian

K(β, tβ, α, tα) = exp[
i

h̄

∫ tβ

tα

m
ẋ2

2
+m

ż2

2
+mgz dt] (2.1)

which for an atom of mass m that begins at x0, t0 and is found at xf , tf , is

given as

Kx(xf , tf , x0, t0) =

(
m

2 i π h̄(tf − t0)

) 1
2

e
im
h̄

(xf−x0)2

2 (tf−t0) . (2.2)

It is sufficient to model these paths in only the x and z plane as shown in

figure 2.1. If the double slits are oriented such that the long edge is in the y

plane, the atoms will not produce any interference in the y plane. For a set of

points, S, where the wavefunction does not vanish, the wavefunction is then

calculated by

ψ(xf , tf ) =

∫
x0,z0∈S

K(xf , tf , x0, t0)ψ0(x, z) dx0dz0, (2.3)
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Figure 2.1: Two paths, out of the many possible paths, between the source and the detector.
At the source, x0 = z0 = t0 = 0, Lss is the distance between the source and the slits, Lsd is
the distance between the slits and the detector, 2a is the slit width, 2b is the slit separation,
zf = Lss + Lsd and xf is the final position of the atom on the detector.

where ψ0(x, z) is the wavefunction at t0, or the wavefunction at the source

defined by

ψ0(x, z) = (2πσ2
x)
− 1

4 e
− x2

4σ2
x eik0xx

(
2πσ2

z

)− 1
4 e
− z2

4σ2
z eik0zz. (2.4)

This quantum description of the atoms simplifies the MOT by using the

statistical variation of atomic positions and velocities as the probabilities of a

pure state. The simplification is sufficient for a description of the experimen-

tal concept. For more accurate predictions a density matrix would be more
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appropriate. For this initial wave packet, we assume the wavefunction is Gaus-

sian with the initial standard deviation in position, σx,y,z, σ0 = 10µm. These

values can be adjusted depending on the actual source size in the experiment.

The initial wave vector is k0 = mv
h̄

, which we choose using the RMS velocity

of the atoms in the MOT. Also σkx = σky = σkz = mσv
h̄

and σk = mσv√
3h̄

, where

σv =
√
KbT/m, Kb is the Boltzman constant and T the MOT temperature.

If the atoms are moving fast enough towards the slits due to an exter-

nal force, the atom’s movement in the z direction is dominated by this force

rather than the expansion of the wavepacket, so this motion can be modelled

classically. This gives a wavefunction, with only x and t as a variables where

equation 2.3 becomes

ψx(x, t, k0x) = (2πs2
0(t))−1/4 exp[−(x− v0xt)

2

4σ0s0(t)
+ ik0x(x− v0xt)] (2.5)

with s0 = σ0

(
1 + ih̄t

2mσ2
0

)
.

A realistic calculation for the probability density should include the spread

of initial transverse momentum, i.e. a sum of all momentum values, k. We

therefore write the probability density, ρ, as

ρ(x, t) =

∫ ∞
−∞

(2πτ 2)1/2e−k
2
x/2τ |ψx(x, t, kx)|2 dkx

= (2πε2
0(t))−1/2 exp[− x2

2ε2
0(t)

]

(2.6)

where

τ =
2mσ2

0

h̄
, (2.7)

ε2
0(t) = σ2

0(t) +
( h̄tσk
m

)2
, (2.8)

σ2
0(t) = σ2

0 +
h̄t

2mσ0

2

. (2.9)

This formalism is a sufficient description for the free propagation of the

wavefunction for atoms leaving a MOT. To model the diffraction from a slit
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pair, we consider all the possible paths that an atom may take to reach the

detector via the slits. For this we use the same kernel (equation 2.2), but

using the positions across the slit width as the atoms’ initial positions, x0 and

equation 2.5 as the starting wavefunction.

The wavefunction after transmission through one slit is

ψs =

∫ b+a

b−a
Kx(x, t, xg, tg)ψx(x, tg, kx) dxa (2.10)

where the subscript ‘g’ indicates the value of the component at the grating

or double slits. This can be extended to include any number of slits, by

simply adding the wavefunctions with xa adjusted to describe the position of

each additional slit. Here, 2b, is the slit separation and 2a is the slit width.

Throughout this chapter, the simulation is simplified by describing the atom’s

propagation through a double slit, rather than a multi-slit grating.

We use equation 2.10 to calculate the probability density for a two slit

configuration, where b = −128 nm or 128 nm for the left and right slit respec-

tively, a = 45 nm and the atom velocity is 51 ms−1. From this we observe the

separation and intensities of the interference fringes as shown in figure.2.2.

(a) (b)

Figure 2.2: The calculated probability density for atoms emerging from double slits. The
grating is positioned 76 mm below the MOT (0 mm). The probability density is given in the
(a) near field, 0.1 mm after the slits and (b) the far field, 150 mm after the slits.

A fringe spacing of approximately 200µm is given by the far field trajectory
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plot at a distance of 150 mm below the slits. Measuring the fringe spacing

allows us to assess the suitability of our detector resolution. For example,

for a detector resolution of 20µm, at 150 mm below the slits, there would be

approximately 10 pixels per fringe. Assuming that 2 fringes could be resolved

by a minimum of 3 pixels, then fringes as close as 40 mm below the slits, could

be observed with the detector. Details on the available detector resolution are

covered in section 3.4.

This data not only allows us to confirm the shape and size of the expected

interference pattern at various detector positions, but also allows us to accu-

rately determine the atom’s spatial distribution while passing though the weak

measurement stage. This is the first step in modelling the atom’s transverse

momentum, which is outlined in section 2.3.

2.1.2 Coherence

The model outlined above is useful for estimating the fringe separation and

is necessary to determine the atomic transverse momentum. However, there

were some discrepancies when attempting to use the calculated wavefunction to

compare with the experimental results of the matter-wave interferometer. The

model does not take into account the full spread of the initial longitudinal and

transverse velocities and when attempting to do so, revealed some limitations

in available computing power. The velocity distributions in the x and z axes

contribute to the incoherence of the atomic beam and reduce the contrast of

the interference fringes in different ways. An analogy with optics was used

to understand the coherence of the atomic beam, with many of the equations

taken from [40], which also models a double slit configuration.

Longitudinal Coherence

In matter-wave interferometry the longitudinal coherence, also referred to as

the temporal coherence, is a measure of the phase shift, between two points
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separated longitudinally. For the atomic beam, this can also be viewed as two

points in time on the detector. The distance of each fringe from the central

axis is nL λ
2b

, where n is the order of the fringe. Considering that the de Broglie

wavelength of the atom, λ, is inversely proportional to the velocity, one can see

that a distribution of velocity will result in a distribution in the fringe spacings,

which increases the width of fringes by proportionally greater amounts for

higher order fringes. Figures 2.3 show the effect of this distribution.

(a) (b)

Figure 2.3: (a) An interference pattern calculated from 5 grating slits for atoms travelling
at 55 m.s−1, i.e. 0 ms−1 longitudinal velocity distribution (b) the same setup but with the
average of 3 velocity contributions 51, 46 and 41 ms−1.

To achieve enough longitudinal coherence to ensure visible interference

fringes, the difference in path lengths between adjacent fringes should be less

than the longitudinal coherence length given by

llc =
λ2

0

∆λ
. (2.11)

In this project the central path length l0 (the 0th order fringe) is 0.1559 m.

This is the shortest possible path between the grating and the detector. The

fringe separation for a velocity of 51 ms−1 is 107µm. So the difference in path

length between the 0th and 1st order, is 3.8×10−8m. We need this value to

be less than the longitudinal coherence length in order to observe well re-

solved higher order fringes. In equation 2.11, if we replace the ‘llc =’ with

‘3.8×10−8 <’ and rearrange to solve for ∆v using λ = h/mv, we can deduce
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an upper limit for the longitudinal velocity distribution in order to achieve

sufficient longitudinal coherence. For an average velocity of 51 ms−1, the dif-

ference in path length for the first order fringe would become greater than the

longitudinal coherence length when ∆v is greater than 0.25 ms−1

Experimentally, the spread in longitudinal velocities can be attributed to

the initial temperature of the atoms in the MOT and the force that accelerates

the atoms towards the detector (either by gravity or by radiation pressure from

a push beam laser). This is discussed in more detail in section 3. Typically, the

temperature of the MOT is of the order of 100µK with a standard deviation of

20µK. Using the Maxwell-Boltzmann particle velocity distribution and looking

at the mean of the magnitude of the temperature of the atoms, v =
√

8kbT/mπ

gives a velocity of 0.5± 0.1 ms−1. The typical atomic beam velocities achieved

using the push beam are between 1 and 50 ms−1, so it is clear that for higher

velocities, the spread in velocities due to temperature is dwarfed by the total

velocity, therefore the velocity distribution will be predominantly due to the

interaction with the push beam, as described in section 3.6.

Transverse Coherence

We can define the transverse coherence in a similar way to the longitudinal

coherence; the phase difference between two points separated along the x axis,

perpendicular to the atomic beam direction. Again, as with longitudinal co-

herence, the interference fringe contrast is reduced by a lack of transverse

coherence. For an atomic beam, the transverse coherence depends upon the

distribution of the initial positions and transverse velocities of atoms that reach

the detector.

To analyse this, we again look at the differences in optical path lengths

caused by a variation in the transverse velocities or starting positions. If the

atoms in the source had identical transverse (and longitudinal) velocities, the

path length between anywhere transversely across the source and wherever the
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atoms arrive on the grating would always be approximately the same. This

distribution of transverse velocities can arise due to the nature of the source,

for example due to temperature distribution or scattering as it is not a point

source as shown in figure 2.4(a)

(a) (b)

Figure 2.4: (a) Some of the possible path lengths to the grating from a thermal source
(b) The same thermal source, set behind a slit or pinhole. There is still a difference in
possible path lengths, i.e. 1 and 3, but there will be a central region where the differences
are negligible.

The source size may be neglected from coherence calculations if there is

zero or very low distribution in transverse velocity. If this does not naturally

arise from the properties of the source, restricting the starting positions and

selecting only a narrow band of transverse velocities will improve coherence by

creating a central region where the path length variation is small as shown in

figure 2.4(b). In this case we can consider the transverse distance, over which

the path lengths are approximately equal, as the transverse coherence length.

Another way to approach transverse coherence when the source is masked by

a slit or pinhole, is to consider that the width of the aperture will determine

the curvature of the wavefront incident on the grating due to diffraction, which

in turn determines the transverse coherence. Figure 2.5 shows how a curved

wave front causes the diffracted wavefunction to be transmitted through the

grating slits at slightly different times (the wavefront passing x1 will do so
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slightly after it passes x2).

Figure 2.5: Example showing how the curvature of a diffracted wavefront approaching the
grating causes a phase shift between points across the grating. This shifts the location at
which constructive interference occurs and smears out the overall fringe pattern.

An expression for the transverse coherence length can be derived [13] and

is given by

ltrans =
λ

2α
(2.12)

where α is the angle that the source subtends from the grating. To describe

the contrast of the interference signal, we talk about the ‘degree of spatial

coherence’

The spatial coherence as a function of the source size, is a slowly changing

value so there is no a clear boundary between a coherent and incoherent source.

The contrast of the interference fringes can be used to derive an expression

for the degree of spatial coherence, γ12, between two points (1 and 2) on a

transverse plane for a double slit interferometer [40] and is given by

γ12 = sinc
[ a12πws
LsgλDB

]
. (2.13)

Here a12 is the separation of two points on the grating over which to determine

the degree of spatial coherence. Here the width of the source is given by ws

and the source to grating distance is Lsg. The degree of coherence, given by
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the value of γ12, is described as

|γ12| = 1 coherent limit

|γ12| = 0 incoherent limit

1 > |γ12| > 0 partial Coherence

(2.14)

where |γ12| = 1 would give 100% contrast in the interference pattern and

|γ12| = 0 would give 0% contrast.

Using this to analyse the coherence in our atomic beam, we need to choose

two relevant points on the grating between which to determine the degree of co-

herence. A collimation slit, positioned immediately above/before the grating,

sets the width of the beam when it arrives at the grating, so a12 is approxi-

mately the width of this collimation slit, ws2. In our case is ws2 = 50µm. For

example, if we have a source width of 10µm with atoms travelling at 50 ms−1,

then γ12 = 0.13. This suggests the fringe contrast will be very low, but could

still be sufficient to observe and analyse the interference fringes.

2.2 Spin-state interferometer

The weak measurement of an atom’s transverse momentum requires its mo-

mentum to be coupled to another observable quantity of the atom. This ex-

periment uses metastable argon atoms whose internal magnetic spin states can

be manipulated by a weak magnetic field that does not significantly perturb

the momentum of the atom. The magnetic field induces a phase shift in the

wavefunction describing the atomic spin state and can be arranged such that

the interaction between the field and the atom is dependent on the atoms

transverse momentum. We can observe this phase shift using a longitudinal

Stern-Gerlach interferometer (LSGI).

Initially we test the LSGI in a configuration that does not make the phase

sensitive to the atom’s transverse momentum. An atomic beam is prepared in
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a spin polarised state and the atoms are then put into a linear superposition

of spin states using a spin-flipper. While in a superposition of spin states, the

atoms are exposed to a magnetic field which induces a spin-state dependent

phase shift of the atom’s wave function. The phase shift is also dependent

on the interaction time and the magnetic field strength. Another spin-flip

builds a new coherent superposition which combines the spin states and allows

the phase shift to be measured as interference in the spin-state population

probability density [37]. A schematic diagram of this process is given in figure

2.6.

Figure 2.6: A schematic of the stages of an LSGI for an atom in a metastable state with
five Zeeman sublevels m. When the individual m states are individually observed, the
interference appears as modulations in the intensity of the signal.

The LSGI only becomes coupled to the transverse momentum when we tilt

the interferometer with respect to the the atomic beam. We describe how to

create a transverse momentum dependent interaction time and this is detailed

in the succeeding section, 2.3.

2.2.1 Superposition

Typically, a simple example of an interferometer will begin with a pure state

being split into a linear superposition of two or more eigenstates. There are

many examples of this; a polarising beam splitter for horizontally and vertically

polarised photons or a double slit providing two paths for matter-waves. In

this case, we use a superposition of the magnetic quantum states (m states)
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of the argon atom. For the J = 2 state, metastable argon has five magnetic

substates (m = 0,±1,±2) which we use to create a superposition.

The superposition is achieved using a spin-flipper which re-projects the

atom’s quantisation axis via a non-adiabatic, spin-axis rotation. This re-

projection is achieved, by rapidly rotating the atom’s quantisation axis fast

enough so the atomic spin, rotating about the external magnetic field direction

at the Larmor frequency, does not adiabatically follow the rotating quantisa-

tion axis [37]. This transition causes a single state to be re-projected into a

linear superposition of five states along a new axis. This quantisation axis

rotation is achieved by rotating the external magnetic field.

The populations of each m state after the projection are defined by the

angle of rotation θrot and can be calculated using the Wigner D matrix defined

as DJ(φ, θrot, χ) where J = 2 for metastable argon and φ = χ = 0. An atom’s

initial state |Ψ〉i is described using a wavefunction which is separated into the

spatial components ψpath and spin components ψspin. Here, the spatial part is

described as a plane wave with wavenumber k and the spin part is polarised

in the substate m = 2. The total wavefunction can be represented by

|Ψ〉i = |ψpath〉 ⊗ |ψspin〉

= eikz ⊗ |J = 2,m = 2〉
(2.15)

where the Wigner matrix for a θ rotation is given in appendix A. For a rotation

of θrot = π
2
, acting on the initial state |ψspin〉1 = |2〉 the superposition state is

described by

|ψspin〉2 = D2(0, π
2
, 0)|ψspin〉1

= D2(0, π
2
, 0)|2〉

=

(
1

4
|−2〉 − 1

2
|−1〉+

√
3

8
|0〉 − 1

2
|1〉+

1

4
|2〉

)
.

(2.16)

This spin flip projection is only achieved when the condition, ωL � ωB is met.

32



The Larmor precession frequency is defined as

ωL =
gfµBB

h̄
(2.17)

where B is the magnetic field strength, gf is the g-factor and µB is the Bohr

magneton. ωB is the velocity of the angular rotation between the initial and

final quantisation axes and is given by

ωB =
θrot

∆trot
. (2.18)

If this spin-flip condition is fulfilled, the rotation of the atomic spin vector

does not adiabatically follow the rotating external magnetic field and provides

a superposition of the five m states based on the new quantization axis.

2.2.2 Phase shift

We induce the m state dependent phase shift of the atom’s wavefunction using

a weak magnetic field. The magnetic field shifts the potential energy of the

atom via the Zeeman operator V̂ = gfµBĴ · B, where B is the magnetic field

strength and Ĵ is the spin-state operator. If the magnetic field is weak enough

such that V is very small compared with the kinetic energy E, we can invoke

the WKB approximation. In this limit we can write the wave vector for the

matter-wave as

k(z) =

(
2m

h̄2 (E − V (z))

)1/2

(2.19)

where z is the direction of propagation. The spatial wavefunction is then given

by

ψ = ei
∫ L
0 k(z)dz. (2.20)

We can see that a change in V will result in a change in the phase via a

modification to the wavenumber, k. The phase shift of the wavefunction, φ,
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can be written as

Φ =

∫ L

0

(k(z)− k0)dz (2.21)

where k0 = mv/h̄ is the initial wave number. To calculate this equation, we

express k0 as a function of energy, which gives

k(z)− k0 =

√
2mE

h̄

((
1− V (z)

E

)1/2

− 1

)

≈ −mv
h̄

V (z)

2E

=
1

h̄v
V (z).

(2.22)

To describe the potential energy V (z) in more detail, consider that the

magnetic field of the phase object gives rise to a m dependent phase shift in

the Zeeman energy, V (z) = mgFµBB(z) and therefore the phase in equation

2.20 is given by

mφ =
1

h̄v

∫ L

0

V (z) dz

=
1

h̄v

∫ L

0

mgfµBB(z)dz

Φ = m
gfµB
h̄

Btws.

(2.23)

This acquired phase for an atom’s interaction with the magnetic field is fac-

torisable and can be applied to each term in equation 2.16, to give the spin

state of atom, after passing through the magnetic field as

|ψspin〉3 = e−2iφ1

4
|−2〉 − e−iφ1

2
|−1〉+

√
3

8
|0〉 − eiφ1

2
|1〉+ e2iφ1

4
|2〉. (2.24)

2.2.3 Interference

To measure the phase shift we interfere the m states to create interference

fringes in the probability density of the m state populations, allowing a mea-

surement of the phase shift. This second spin-flip re-projects the states as the
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quantization axis is rotated back to the original axis.

As before, the rotation must be abrupt, fulfilling ωL � ωB, such that the

spin axis does not adiabatically follow the rotating quantisation axis and the

new populations of each m state are again determined by the rotation angle

and the Wigner matrix shown in section 2.2.1.

The full description of the final state is a 5 x 5 matrix. If we only choose to

observe one m state, for example m = 0, it will combine the |0〉 components

from each new projection and take elements vertically from the Wigner matrix

to give a probability of

〈0|ψspin〉4 = 〈0|D2(0,−π
2
, 0)|ψspin〉3

=
1

4

√
3

8
e−2iφ − 1

4

√
3

2
+

1

4

√
3

8
e2iφ

=

√
3

8
sin2 φ(vx).

(2.25)

Expanding the exponential component into polar form, simplifying and squar-

ing, we can express the probability density for an atom initially in m = 2, to

pass through the LSGI and be in m = 0 at the detector as the intensity

I = |〈0|ψspin〉4|2 (2.26)

By following these steps for any initial and final spin state, the generalised

description for signal intensity, Ii,f , where i is the initial spin polarisation and

f is the final spin polarisation is then

Ii,f =
+2∑

m=−2

∣∣∣D2 (θ2)MA D
2 (θ1)MP e

miφ
∣∣∣2 (2.27)

where MP and MA are the m states chosen for the initial polarisation and the

final detection respectively. For the first and second rotation angles θ1 = θ2 =
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π
2
, this produces the following equations for the relative intensities

I2,0 = I−2,0 =
(√ 3

32
+

√
3

32
cos[2φ]

)2

,

I2,2 = I−2,−2 =
(3

8
− 1

2
cosφ+

1

8
cos[2φ]

)2

,

I2,−2 = I−2,2 =
(3

8
+

1

2
cosφ+

1

8
cos[2φ]

)2

,

I2,1 = I−2,−1 =
(1

2
sinφ+

1

4
sin[2φ]

)2

.

(2.28)

We plot the changing probability of the m = 0, 1, 2 states as a function of the

incrementally increasing interaction time in figure figure 2.7. The frequency of

the oscillations is dependent upon the phase shift φ, so we show the effect of

different values of the variables of φ, given as B and t. We assume that both

spin-flip rotations have θrot = 90◦. Due to the experimental setup described in

section 5.2, the second rotation angle should be opposite to the first, θ1 = −θ2.

In such a case, we can take equation 2.27 and apply an initial polarisation of

m = 2 and final m states of m = 0, 1, 2.

(a) (b)

(c)

Figure 2.7: Visualising the phase, φ (equation 2.23) through the populations of the m = 0
state (black), m = 1 state (red) and m = 2 state (blue) from equation 2.28. The 3 plots show
the change in the probability of the m state as a result of the phase shifts for different phase
object interaction strengths, due to either an increase in B or tws. Here (a) B(z) = 36µT
and tws = 2µs, (b) B(z) = 72µT and tws = 2µs, (c) B(z) = 36µT and tws = 4µs.
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Another variable we analyse is the rotation angle which should ideally be

90◦. If we have a more acute or obtuse angle, the difference between the

troughs and peaks changes, shown in figure 2.8.

(a) (b)

Figure 2.8: Populations of the m = 0 state (black), m = 1 state (red) and m = 2 state
(blue) for different spin-flip rotation angles. The same settings as plot 2.7(a), B(z) = 36µT
and tws = 2µs, but with (a) θ = π

3 and (b) θ = 2π
5 .

2.3 The ‘weak’ measurement

The model for the weak measurement follows the same general steps as the

longitudinal Stern-Gerlach interferometer (LSGI) shown in section 2.2. The

main difference is the time dependence of the phase shift φ is coupled with

the transverse momentum of the atom. Firstly, this is achieved by using a

permanent magnetic field for the phase object rather than a pulsed field. With

a permanent field, the atom’s interaction time is dependent on the velocity of

the atom. Secondly, the field is tilted with respect to the transverse axis such

that there is a different interaction time for atoms with different transverse

velocities. In figure 2.9 we consider two trajectories that would arise from

equal, but opposite transverse velocities, vx1 and vx2.

2.3.1 Observing a transverse momentum dependent phase

shift

Consider the same initial state that enters the standard LSGI, (equation 2.15),

where the push beam spin polarises the atoms in the |J = 2,m = 2〉 spin state.
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Figure 2.9: Schematic showing how different transverse velocities (vx) result in different
interaction times, tws(vx), due to the magnetic field tilted by θt.

The same m state superposition is created,

|Ψ〉i = |ψpath〉 ⊗ |ψspin〉

|Ψ〉2 = |ψpath〉 ⊗D2
(
π
2

)
|2〉

= |ψpath〉 ⊗
(1

4
|−2〉 − 1

2
|−1〉+

√
3

8
|0〉 − 1

2
|1〉+

1

4
|2〉
)
.

(2.29)

At this point the only difference between the weak measurement description

and the LSGI description is that here, the spatial component of the wavefunc-

tion has been modified by the introduction of a double slit/diffraction grating.

In this case |ψ〉path can be described by the wavefunction formulated in section

2.1.1.

The atoms now travel through the weak magnetic field of the phase object

which we describe using the time evolution operator

|Ψ〉3 = e−iĤI t/h̄|Ψ〉2. (2.30)
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For an atom in a magnetic field, the potential energy in the Hamiltonian

is the Zeeman operator (V̂ = gfµBĴ · B). The Hamiltonian does not contain

a coupling of the transverse momentum with the phase of the spin. This

challenges the idea that this is an AAV type weak measurement as discussed

previously, where the interaction Hamiltonian couples the observable to the

pointer. However, it is still completely analogous to the work of Kocsis.

The definition of ‘weak’ for the present measurement

As with the experiment to measure the transverse momentum of photons in

a matter-wave interferometer, the coupling of the atomic transverse momen-

tum to the pointer (spin state) does not strictly align with the definition of a

weak measurement as defined by AAV. For this to be the case, the interaction

strength, mgfµBBt, would need to be weak enough such that the 1st order

Taylor series expansion is approximately equal to the time evolution operator

in equation 2.30. However, the simulations performed in this chapter shows no

dependence on this limit. Furthermore the Hamiltonian would need to include

a transverse momentum component, k̂x. The transverse momentum kx is in-

troduced into the description via the interaction time, but does not constitute

part of the measurement’s interaction Hamiltonian.

There are still a number of reasons why the measurement should be defined

as ‘weak’ in a general sense. When the magnetic field is tilted (or when the

atom’s momentum is not parallel to the field’s gradient), the field gradient

upon entry to the field imparts a spin-state dependent force in both the x and

z components of the atom’s momentum. The force can be considered ‘weak’

if it doesn’t spilt the spin states such that the spatial separation exceeds the

width of the atom wave packet. This condition of weakness can apply to the

force from the gradient or the duration of the interaction and is illustrated in

figure 2.10.
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Figure 2.10: Diagram showing how a ‘strong’ interaction with magnetic field can prohibit
the phase from being measured. The gradient direction and hence the force direction that
the atom experiences going from a region of no field into a magnetic field is shown in blue.

A transverse momentum dependent interaction time

When B is uniform throughout the magnetic field interaction region, the only

remaining variable of the atom’s evolution is the interaction time, t, which for

a tilted field, is dependent on the transverse momentum, illustrated in figure

2.9). After the initial atomic acceleration, the atom falls with an approximately

constant velocity, v0, entirely oriented in the z axis until it reaches the double

slits or grating. After the grating the atom has a velocity component in both

x and z, the product of which is v0. Using t = Lws
v0

we can replace t in equation

2.30. The length of the path through the weak stage is

Lws =
w

cos[θt + θv]
(2.31)

where the diffraction angle is θv = sin−1[vx
v0

]. The expression for Lws for small

tilt angles is

Lws =
w

cos[θt + sin−1[vx
v0

]]

≈ w sec θt +
w sec θt tan θt

v0

vx

= α(1 + βvx)

(2.32)
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where α = w sec θt and β = tan θt
v0

.

With that, we can write the time dependent phase in equation 2.30 as a

function of vx,

ĤI

h̄
t =

gfµB
h̄

BĴ
α(1 + βvx)

v0

= φ(vx)Ĵ

(2.33)

where

φ(vx) =
gfµB
h̄

B
α(1 + βvx)

v0

. (2.34)

The wavefunction in the weak stage is then

|Ψ〉3 = e−iĤI t/h̄|Ψ〉2

= eiφ(vx)Ĵ |Ψ〉2.
(2.35)

The spin operator is Ĵ = −2|−2〉〈−2| − 1|−1〉〈−1| + 0|0〉〈0| + 1|1〉〈1| +

2|2〉〈2|. The equation becomes factorisable with the phase shift now being m

dependent. The wavefunction for an atom initially is in a superposition of m

states and after a weak magnetic field interaction, becomes

|Ψ〉3 = eiφ(vx)Ĵ

(
|ψpath〉 ⊗

(1

4
|−2〉 − 1

2
|−1〉+

√
3

8
|0〉 − 1

2
|1〉+

1

4
|2〉
))

= |ψpath〉 ⊗
(1

4
e−2iφ(vx)|−2〉 − 1

2
e−iφ(vx)|−1〉+

√
3

8
|0〉

− 1

2
eiφ(vx)|1〉+

1

4
e2iφ(vx)|2〉

)
.

(2.36)

To observe φ(vx), we must interfere the spin states. This is achieved by

a second spin-flip occurring on exit from the weak magnetic field. This π
2
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rotation re-projects each of the five states of |ψ〉spin

|Ψ〉4 = D2
(
π
2

)
|Ψ〉3

= |ψpath〉 ⊗D2
(
π
2

) (1

4
e−2iφ(vx)|−2〉 − 1

2
e−iφ(vx)|−1〉+

√
3

8
|0〉

− 1

2
eiφ(vx)|1〉+

1

4
e2iφ(vx)|2〉

)
.

(2.37)

This results in a equation containing 25 terms (appendix A). To simplify,

we focus just on the observation of a single m state. In this example, the

final measurement is made on the m = 0 state so we take coefficients from

the the central row of the Wigner matrix. With the values from an initial

state |J = 2,m = 2〉 and by only observing |J = 2,m = 0〉 after the second

projection, the wavefunction is

〈0|Ψ〉4 = |ψpath〉
(1

4

√
3

8
e−2iφ(vx) −

√
3

8

1

2
+

1

4

√
3

8
e2iφ(vx)

)
|Ψ〉f = |ψpath〉

√
3

8
sin2 φ(vx).

(2.38)

The atoms exit the weak stage field and then continue towards the detector

to give a position measurement at xf . The probability density is modulated by

the phase shift for which many repeated measurements will build up a picture

of the modulated probability density given by

〈xf |Ψ〉f = 〈xf |ψpath〉
√

3

8
sin2 φ(vx) (2.39)

which will reveal the phase shift φ(vx) of atoms arriving at a given xf position.

To model the expected signal modulation, we need to model vx to calcu-

late φ(vx). The transverse velocity can be calculated from standard quantum

mechanics as shown in [38], giving

vx =
∇S
m

=
ih̄

2m

(ψ∇ψ∗ − ψ∗∇ψ)

ψψ∗

(2.40)

42



which contains the description of the wavefunction’s probability current.

For the wavefunction |ψ〉path, given in equation 2.5, the values of vx, are

calculated for a 50 ms−1 atomic beam using this experiment’s geometry and

a double slit grating (for simplicity). The observed, unperturbed interference

pattern shown in figure 2.11(a), is modulated by an LSGI with width w =

2 mm, tilt angle θt = 15◦ and field strength B = 60.75µT and shown in figure

2.11(b). The spikes observed in figure 2.11(b) represent the kinks that appear

(a) (b)

Figure 2.11: (a) A calculation of the probability density at the detector after passing through
a 2 slit grating and (b) the probability density which has been modulated by passing through
the weak stage measurement.

when plotting flow lines of the probability current.

In order to extract a simulated measurement of φ from the modelled data

we compare the modulated signal 〈xf |Ψ〉 (figure 2.11(b)) with that of the

same interference signal, but without the LSGI perturbation, 〈xf |ψ〉path (figure

2.11(a)). This gives a distribution of the phase shift for a range of positions

on the detector. Since the phase is dependent on the transverse momentum

we can rearrange equation 2.39 to give vx (for m = 2 and m = 0 for the initial

and final spin polarisations respectively).

gµBB

h̄

α(1 + βvx)

v0

= sin−1
[

4

√
8

3

|〈xf |Ψ〉|2
|〈xf |ψ〉path|2

]
vx =

[
(

h̄v0

gµBBα
sin−1

[
4

√
8

3

|〈xf |Ψ〉|2
|〈xf |ψ〉path|2

]
)− 1

] 1

β
.

(2.41)

Using equation 2.40, we calculate the expected distribution of transverse ve-
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locity for the atoms for a fixed ‘grating to weak stage’ distance, shown in figure

2.12. This is ultimately what we would expect to experimentally measure via

a measurement of the atom’s phase shift. The vertical lines or spikes seen

in the plot indicate sudden changes in the atom’s transverse velocity which

correspond to the kinks of the momentum flowlines. Thus we aim to be able

to resolve and measure these spikes in the experiment.

Figure 2.12: The transverse velocity of atoms which have passed through a multi-slit grating.
The transverse positions in the plot covers the width of the interference pattern shown in
2.11(a).

2.3.2 Reconstructing flowlines

Thus far, in this simulation the values of vx are plotted for one dimension

with the tilted LSGI at a set distance, z, from the grating. Here, we map

the transverse momentum across x and a range of z, in the near field in figure

2.13(a) and in the far field in figure 2.13(b). The variation of vx in the near field

can be seen to be finely detailed and is only detectable with high resolution

mapping. The white areas of the plot indicate where the value of transverse

momentum has exceeded the range of values on the legend.

If we choose a starting position for the atom, from anywhere across the

widths of the grating slits, we can find the atom’s expected position at some
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(a) (b)

Figure 2.13: The calculated trajectories for a 2 slit grating. There are 200 evenly spaced
starting points for each slit (a) The transverse velocity, vx in ms−1 calculated from equation
2.40. This was calculated for atoms in a 2 mm region below the double slits. (b) The
transverse velocity, vx, in ms−1 from equation 2.40. This was calculated for atoms in a
150 mm region below the double slits.

time interval later based on the measured transverse momentum at that initial

point. To determine how this position, evolves over time, providing it remains

localised, we use an explicit Runge Kutta method to solve equation 2.40 for x.

The longitudinal velocity, vz(t), is dependent on the atom’s initial thermal

velocity leaving the trap, gravity and the spread of the Gaussian wave packet

over time. In the z direction, the change in the wave packet size is negligible

compared to the changing position due to the initial velocity, therefore the z

position can be treated classically as

z(t) = v0t+
1

2
gt2 + z0

σz(t)

σz
(2.42)

where the final term, which describes the change in the width of the wavepacket

can be neglected. With x and z computed for a range of values of t, we can plot,

parametrically, a local momentum flow line, also described as a trajectory [30].

We present the results for the flow lines in the near field (2 mm) and far field

(150 mm), for step sizes of 0.1µm. If the step size is any larger, the plot does

not account for the finer detail of the interference in the near field. For each

plot, the starting positions are given for 100 evenly spaced x values, between

the walls of each slit in the double slit grating. This is shown in figure 2.14
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and agree well with previous work [38].

(a) (b)

Figure 2.14: The calculated trajectories for a 2 slit grating. There are 200 evenly spaced
starting points for each slit (a) shows the trajectories 0.5 mm below the slits and (b) over
100 mm below the slits. The values on the z axis are measure from the trap. The grating is
positioned 50 mm below the trap.

These flow lines represent an ideal version of the expected results from this

project’s ultimate experiment. The feasibility of achieving such results depend

on the capability and limits of the weak measurement design, the details of

which make up the majority of this thesis.
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Chapter 3

Creating a low velocity and

tuneable, atomic beam

3.1 Introduction

To ensure the matter-wave interferometer produces well resolved interference

fringes, it requires an atomic beam with a well-defined velocity and narrow

velocity spread. Additionally, the beam must have a de Broglie wavelength of

approximately 1-10 Å to achieve sufficient longitudinal and transverse coher-

ence in our experimental setup.

An existing cold atom source in the form of a magneto-optical trap (MOT)

was modified for this purpose. The MOT traps and cools metastable ar-

gon atoms and presents many convenient advantages over other atomic beam

sources. For example, the metastable atoms are easily detectable and the low

temperatures provide an initial de Broglie wavelength 10 times larger than

typical effusive and thermal sources.

This chapter describes the construction and testing of the atomic beam used

for the experiment, beginning with a review of cold atom beams. Following this

is a description of the cold atom source and the atomic detection process used

in this project. Finally, the atomic beam, which is created by accelerating the
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atoms, is characterised by measuring its time-of-flight (TOF) velocity, velocity

distribution and atomic spin polarisation.

3.2 Conventional cold atomic beams

The supersonic atomic velocities produced by conventional atomic beams can

be greatly reduced using optical manipulation of the atoms such as optical

scattering and dipole forces. Applying counter-propagating cooling radiation

to a typical effusive, high intensity beam in the form of a Zeeman slower has

been achieved with Rb and Ne where an atomic beam velocity, v, in the region

of 45-120 ms−1 is produced, with ∆v=9 ms−1. This velocity can be measured

by either the time-of-flight method [41] or by spectroscopic techniques which

measure the Doppler shift to infer the velocity [42].

To create very low energy, cold atomic beams the thermal or effusive sources

are substituted with cold, trapped atoms [16]. The atoms can then be accel-

erated by applying controlled optical forces to the trap. While dipole forces,

produced by off-resonant fields, have been used to create pulsed, low energy

beams, it is more common to use the radiation pressure force of a resonant or

near resonant optical field. By unbalancing the power of the trapping forces

in a MOT, a low velocity intense source (LVIS) can be created. Velocities in

the region of 14-18 ms−1 with a 3 ms−1 distribution [17, 43] can be created in

this way.

To extend the velocity range, a laser beam separate from the trapping

beams can be applied as a pulse. This extends the range over which the

beam’s velocity can be selected, achieving velocities of 10-150 ms−1 with a

velocity width of 7 ms−1 [16, 44].

Finally the ability to characterise atomic beam properties is critically im-

portant for constructing an experiment to measure the transverse momentum-

dependent phase in a multi-slit grating, matter-wave interferometer. The

atomic beam velocity and velocity distribution have a direct effect on the
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fringe separation and fringe contrast of the interference pattern. Addition-

ally, the spin polarisation of the atomic beam must be considered in order to

measure the Zeeman phase shift in a spin-state interferometer.

3.3 Cold atom source

3.3.1 The magneto-optical trap

The magneto-optical trap (MOT) cools and traps a cloud of atoms in an ultra

high vacuum. It uses a quadrupole magnetic field and three pairs of orthogonal

laser beams to optically cool the atoms in all directions. The argon atoms are

cooled by absorbing and scattering photons in a closed cycle transition [53]

Figure 3.1: The vacuum setup used to create the metastable argon MOT. The gas passes
through two, 200CF, 6-way cross chambers, including a skimmer between the chambers to
collimate the beam. After the 2nd chamber, the Zeeman slower coils extend towards the
spherical octagon MOT chamber, while the Zeeman beam counter-propagates the atomic
beam. The MOT chamber contains the trapping and push lasers. Attached to the bottom
of this chamber is the detector, upon which the camera is focussed. Not shown is a 200 ls−1

turbo molecular pump attached to the MOT chamber.

The atoms reach the intersection of the beams, where laser cooling takes

place, via 4 steps. First, ground state argon is fed into the differentially

pumped vacuum chamber creating an effusive atomic beam. A radio frequency

discharge is created in the gas which produces the 4s[3/2]2 metastable argon
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atoms. The metastable atoms with very low transverse velocity travel towards

the trapping chamber and are cooled using a Zeeman slower. The atoms in the

beam are slowed by the counter propagating Zeeman slower laser beam until

they reach the intersection of the three MOT beams, where they are cooled

from six directions and trapped as shown in figure 3.2. The MOT is then used

as the source for the cold atomic beam.

Figure 3.2: Main chamber showing paths of the orthogonal laser beams (red) and the Zeeman
slower beam (orange). The axes show the co-ordinate system used throughout this thesis.

The cooling beams alone are not sufficient to trap the atoms. A single

pair of counter propagating beams creates an optical molasses, which cools

the atoms along the axis of the beams. However, they cannot keep the atoms

localised. In order to create a trapping region, a magnetic field works in con-

junction with the beams to create an optical force which is position dependent.
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The necessary field is created by a pair of anti-Helmholtz (AH) coils. In our

case, the coils are 160 mm in diameter and placed 76 mm apart. This creates

a magnetic field with a small region of zero field strength in the centre of the

chamber which then increases in field strength with the distance from the cen-

tre. The magnetic field shifts the frequency of the atomic cooling transition

by an amount dependent on the atom’s position. The frequency of the cooling

beams is red detuned, such that the strongest interaction with the laser radi-

ation will happen when the atoms reach a certain distance from the centre.

This creates a spatial region within which the atoms remain trapped. Figure

3.3 shows the entire mechanism for a spin-state system of m = −1, 0, 1.

Figure 3.3: A 2D schematic of how a MOT works for a simpler 3 state system of J=1 and
m = −1, 0, 1. This diagram indicates the interplay between the atom’s resonant frequency
ωatom, the frequency of the laser, ωlaser, the detuning, δlaser, and the shift in the atom’s
energy levels as a function of position. Also shown is how the radiative cooling effect
is modified using polarisation such that even though any atom is constantly radiated by
beams from both directions, the atoms only experience a force towards the centre of the
MOT. This is achieved by using a different circular polarization (σ+σ−) for each beam and
using a magnetic field to rotate the atom’s quantisation axis so they will only absorb a
particular polarisation of photon.
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Optimising the MOT for an atomic beam source

Optimising the MOT as an atomic source for matter-wave interferometry gen-

erally involves adjusting the position and size of the MOT and maximising the

density of the trap. It is also beneficial to minimise the temperature of the

atoms.

The location of the zero magnetic field region, which determines the po-

sition of the MOT, is changed by adjusting the background magnetic field.

This field can be controlled using a ‘compensation cube’ made up of 3 pairs

of square Helmholtz coils arranged in a 600 mm x 600 mm x 600 mm cube.

The MOT’s position is generally kept in the centre of the chamber, but is

adjusted for maximum throughput given the introduction of the push beam

which directs the atoms through two collimation slits.

We use two collimation slits positioned below the MOT, therefore the fluc-

tuating volume of the MOT does not have an effect on the beam density. The

slits define the beam’s effective source size and so the beam intensity is primar-

ily determined by the slit width. The MOT is typically ≈1 mm wide, with the

slits 10-50µm wide, so any increase in MOT size does not have an equivalent

increase in signal. Instead, to maximise the signal intensity, the atomic density

of the MOT is maximised. This involves optimising the frequency, alignment

and power of the Zeeman slower and cooling beam.

The MOT density has an upper limit due to the absorption saturation pa-

rameter for metastable argon and intra-trap collisions, so as the MOT volume

decreases, the density remains constant at the upper limit, (provided the MOT

is configured correctly). However, if we choose to expand the volume of the

MOT, by reducing the trapping field strength and the detuning of the tuning

beams, the density is reduced but can be compensated by higher beam power.

A less dense MOT provides cooler atoms and a larger volume can help with

alignment.
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MOT characteristics

The cooling process causes florescence from the trapped atoms and this light

can be used to estimate the number of atoms in the MOT via the equation for

the photon scattering rate [53], equation 3.1

NAr∗ =
1 + 6s0 + (2∆/Γ)2

6s0(Γ/2)Ωdl

Ncountsη

texp
(3.1)

where s0 = I/I0 and I is the power density of the cooling beams. I0 is the

absorption saturation intensity. ∆ is the detuning from resonance, Γ is the

natural linewidth, Ncounts is the number of photons that the camera measures,

η is the efficiency of the camera, Ωd is the fraction of the total light emitted

that the camera sees, l is a factor that accounts for attenuation from all the

imaging optics and texp is the camera exposure time. Given that the MOT

typically has a 1
e2

radius of approximately 500µm, the calculation gives the

MOT in our experiment a typical density of 1.7 × 106 atoms mm-3, trapping

approximately 9× 105 atoms.

When atoms are released from the trap, a period of time must pass before

the MOT can reload and return to its original size and density. This forces

the experiment to use a pulsed operation (whether dropping or pushing). For

efficient data taking, the time for one drop cycle should be minimised. There-

fore, to maximise the atoms arriving at the detector, it is useful to know how

long it takes for the MOT to fully load.

3.3.2 Laser system

The accessible closed cycle cooling transition for argon is between the 4s[3/2]2

and the 4p[5/2]3 metastable states, using light from an 811.5 nm laser beam.

An external cavity diode laser (Toptica DL100) was used for the main optical

source. However, this alone did not provide enough power as the optical re-

quirements for this experiment meant dividing the laser power between cooling
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beams (approximately 4 mW per beam), the pump and probe beam for laser

frequency locking (20 mW), the Zeeman slower beam (20mW) and the push

beam (5 mW). As a result the output was sent through a tapered amplifier

(Moglabs MOA) which could provide up to 1W of power if needed. Consider-

ing losses across the laser setup, the average total laser power needed for this

experiment was in the region of 500 mW.

Figure 3.4: Schematic of the laser system. Lenses and polarizing beam splitters are unla-
belled and coloured blue. In reality, the 0th order from AOM2 would actually be straight
and the 1st order, which is retro-reflected, is emitted at angle.

The laser frequency was locked to the 4s[3/2]2→4p[5/2]3 transition fre-

quency using the discharge from the RF source (see following section). The

laser was then detuned by various amount depending on th application. It was

necessary to detune the Zeeman slower beam by a much greater frequency than

the MOT beams in order to match the Doppler shifted frequency as a result

of the counter-propagating atomic beam. The Zeeman slower beam was red
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detuned by approximately 154 MHz. This was achieved with an acousto-optic

modulator at 77 MHz in a double pass configuration (AOM1 in figure 3.4).

The beam power is then amplified using a tapered amplifier. A fraction of the

output was used for the Zeeman slower beam, while the majority of this red

detuned beam is shifted back up by 138 MHz via a second AOM (AOM2 in

figure 3.4) in a double pass configuration. The output from AOM2 was then

used for the MOT beams. The final frequency was red detuned by 16 MHz

from the natural resonant frequency of the cooling transition. This detuning

can be adjusted by controlling the frequency of the RF signal sent to AOM2

and ultimately controls the temperature of the atoms in the trap. The push

beam makes use of the discarded 0th order transmission from AOM2, as this

can be directed into a third AOM (AOM3), which shifts the beam frequency

back up by around 160 MHz. The frequency shift can be adjusted so the final

frequency is then blue detuned between 4 and 15 MHz from resonance. The

advantage of using a 3rd AOM is that the frequency of the push beam can be

controlled independently from the cooling beams.

3.3.3 Metastable atom generation

The atoms can interact with the laser when they are excited to the metastable

state, the excitation is achieved using a radio frequency (RF) discharge. This

is also used as a reference cell with which to lock the frequency of the trapping

laser via Doppler free absorption spectroscopy [52].

Argon gas passes through a leak valve and into one end of a quartz 10 mm

diameter pipe. The pipe extends 200 mm into the entry chamber as shown in

figure 3.1. A 40 mm diameter copper coil wraps around the pipe and is enclosed

in a brass cylinder which acts as a RF resonator. A 30 W, 135 MHz RF signal

is fed into the coil and is impedance matched into the coil using an antenna

tuner (MFJ-924). The RF field accelerates free charges which initiates collision

processes with argon atoms and result in excitation of the argon atoms. The
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discharge can be observed by a purple, fluorescent glow. One of the many

excited states that are created is the 4s[3/2]2 metastable state used for laser

cooling. This has a half life of 38 s and previous work has shown the efficiency

of metastable production to be 1 in 1×105 [52]

Figure 3.5: A schematic diagram of the laser locking setup. The RF discharge, which
creates the metastable argon atoms, is shown in purple. This is used instead of a vapour
cell typically used for frequency locking of the laser to the atomic transition.

The discharge extends away from the coil and out of the chamber. Just

outside the chamber we perform saturation absorption spectroscopy to lock

the frequency of the laser. We pass a π-polarised pump and probe beam

through the gas as shown in figure 3.5, which provides a Doppler free absorption

peak when we analyse the probe beam. Two coils placed either side of the

discharge, create a magnetic field which causes a Zeeman shift in the spin

states of the metastable atoms. This slightly shifts the transition frequency,

in opposite directions for positive and negative m states, and an equivalent

shift is observed in the absorption peaks. The probe beam output is separated

into its horizontal and vertical polarisation components and the intensities are

measured separately on 2 photodiode detectors.

The two signals are fed into a servo controller (New Focus LB1005) which

subtracts one from the other to create a new error signal. The servo controller

uses the error signal to output a feedback signal that controls the laser fre-
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quency via a piezo-electric transducer. The signal is sent to a piezo motor

controlling the angle of a grating in the ECDL. Thus the servo controller can

set the laser at the exact frequency of the transition and keep it there for long

time periods, compensating for any drift in laser frequency due to temperature

changes for example.

3.3.4 Vacuum system

The MOT vacuum system consists of 3 main stages. The entry chamber, the

Zeeman slower and the trapping chamber as shown in figure 3.1.

The first stage, is split into two identical sections, each with a 1000 ls−1

turbo molecular pump. The argon enters the first chamber through a leak

valve at a pressure of 6 × 10−2 mbar. As a result, the pressure in the sec-

ond entry chamber is about 3 × 10−8 mbar. Between the two sections is an

externally controlled shutter which can be closed to block the atomic beam.

This is necessary when we want to detect atoms from the MOT since atoms

in the atomic beam, which do not become trapped, create a large amount

of background noise on the position detector and dominate the atomic signal

from the MOT. The Zeeman slower connects the two entry chambers to the

trapping chamber. The trapping chamber is a spherical octagon, which has 10

viewports in total, providing optimal optical access while keeping the overall

volume small. One side of the trapping chamber connects to a 200 ls−1 turbo

molecular pump where we measure a pressure of 1 × 10−8 mbar. Connected

to the bottom of the octagon is the micro-channel plate and phosphor screen

which observes the atom’s positions. It is attached by a purpose built flange

which maximises the distance between the trap and the detector.
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3.4 Detection

An argon atom in the metastable state not only has an accessible transition

frequency for commercially available NIR lasers at 811.5 nm, but is also easily

detected via ionisation due to its high-lying outer electron (11.5 eV), which is

close to the ionisation potential (15.8 eV).

Each push cycle can deliver anywhere between less than one and as many

as 10,000 atoms to the detector, depending on the experimental configuration.

For example, the narrow transverse velocity created using 2 collimating slits

(10µm and 50µm) with an average atomic velocity of 14 ms−1 observes roughly

one atom every 3 cycles. With one collimation slit and an average atomic

velocity of 50 ms−1 (used for testing the spin-state interferometer) the detector

sees roughly 300 atoms per cycle. The throughput could be improved with a

further transverse cooling stage either with existing beams or a new beam.

Individual metastable atoms arrive at the detector, which in turn emits a

packet of photons to indicate the position of the atom. The light reaches the

sensor of a CCD camera, which produces a digital 2D image indicating the

atoms’ final position.

3.4.1 Micro-channel plate detector

The detector is a stack of two micro-channel plates and a phosphor screen.

Each of the two plates have multiple 6µm diameter tubes (‘channels’) coated

in a secondary emissive material. When an ion or electron is incident on a

channel, it will cause the surface of the channel to emit electrons. There is

typically a potential difference of 1.7 kV between the top and bottom plates,

so the electrons are accelerated down the channels. The channels are set at an

angle of 5◦ from the vertical axis and the electrons repeatedly hit the tube sur-

face causing a cascade of electrons down the 300µm long tube. For increased

gain, this process is repeated as the cascade hits the second plate, as shown

in figure 3.6. The second plate is set at -5◦ to the vertical axis, creating a ‘V’

58



or ‘chevron’ stack overall. Finally the cascade of electrons are accelerated to-

wards a phosphor screen, which is at a further 2.5, kV potential difference from

the 2nd plate. The accelerated electrons cause the phosphor to fluoresce, and

the photons are observed by imaging the phosphor screen on a CCD camera

(PCO PixelFly).

Figure 3.6: Schematic of the detection process within the MCP.

The spatial resolution of the detector is initially defined by the width of

the channels. However, the channels emit a diverging cascade of electrons,

so while the introduction of a second micro-channel plate increases the sensi-

tivity, it also degrades the observed resolution. One micro-channel plate has

an ultimate resolution, defined by the tube diameter, of 6µm. The electron

cascade exiting the 1st plate will spread to more tubes on the second plate,

bringing the resolution to at least 12µm. This increase in resolution will de-

pend on the distance between the plates and the inter-gap voltage accelerating

the electrons. The inter-plate distance is determined by the thickness of the

ceramic spacer used to insulate one plate from the other and is 300µm, how-

ever the detector electronics can be developed to allow both plates to be in

contact to improve the resolution. This wasn’t required for this project, but

may be useful for future designs. The same ‘distance-resolution’ dependency

applies between the second plate and the phosphor screen. The actual reso-

lution observed in the raw signal is harder to define for a number of reasons.

The spatial distribution of photons from the signal of one atom is Gaussian so
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we consider the ability to separate two Gaussian peaks. This depends on the

signal noise, overall stability of the apparatus, the size of the phosphor grains,

the voltage on the plates and the spatial sampling given by the pixel size and

camera-detector distance. However, the typical resolution for this detector

setup is between between 40 and 60µm. The average signal from one atom

can be seen in figure 3.8. Further steps in processing the detection images to

improve the resolution are described in section 3.4.3

The detector plates were changed a number of times during the course of

the experiment. The high voltages make the plates very susceptible to arcing

if there is any microscopic debris touching the plates. As a result of one MCP

repair, the ultimate resolution of the plates was downgraded from 5µm to

6µm, since only 6µm channel plates were available. Also, the replacement

plates had a reduced gain factor since the only available plates were without

a magnesium oxide coating (a secondary electron emission material) typically

available for MCP detectors.

3.4.2 Camera/plate voltage exposure time

Considering a single digital image, the detector can provide information about

the spatial distribution of the atomic beam, but does not give information

about the velocity distribution. Only by taking images at different TOF arrival

times can a time dependent picture of the atomic signal be constructed. For

the data in figure 3.12, the camera only acquires photons for 10 ms, triggered

to begin at a chosen arrival time. After 100 cycles, an average number of

detected atoms can be calculated for that particular arrival time. The trigger

time to begin the 10 ms exposure is increased in 10 ms increments.

This method does not provide enough temporal resolution if you reduce the

exposure time below ≈1 ms. This is partly because the phosphor used to make

the detector (P43) takes 1 ms for the intensity of the emitted photons to decay

from 90% to 10% [54]. So for example, even if the camera sensor may only be
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exposed for 0.5 ms, the fluorescence from atoms which have arrived just before

this period will still be emitting photons during the selected exposure window.

To overcome the problem the MCP voltage is gated. When gating the

detector, the voltage on the top plate is kept at 1.5 kV instead of 1.75 kV. At

this lower voltage, the plates do not accelerate the electrons enough to cause

florescence on the phosphor screen. A TTL pulse is delivered to a switch in the

MCP voltage circuit which causes 250 V to be added to the top plate. When

this extra voltage is present, the detector can accelerate electrons enough for

the resulting fluorescence to be observed by the camera. The length of the TTL

pulse determines the period of time that any atoms impinging on the detector

cause florescence. Any atoms arriving just before this window will not have

initiated a significant electron cascade. Using this technique, a much finer

time resolved plot of arriving atoms was achievable and is shown in figure 3.7.

Knowing the atom’s arrival time more precisely, allows a better measurement

of the beam’s velocity distribution.

Figure 3.7: The velocity distribution of the MOT cloud, derived from TOF measurements.
The beam was created with a push beam pulse length of 0.6 ms and push beam detuning of
20 MHz. This was measured using a gated detector allowing a time resolution of 0.5 ms.

It is also useful to think of the gating in terms of the portion of the falling
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atom cloud that the MCP will detect. The difference in velocity between the

atoms that arrive first and last in figure 3.7 is about 19 ms−1. From this we

can calculate that the MOT cloud will have stretched out to approximately

50 mm long by the time it reaches the detector. If we then gate the detector for

50µs such that we only see atoms that arrive at the detector within this time

period, the gating time will correspond to 2-3 mm of the total 50 mm atom

cloud (depending on when you begin the gating since distance is inversely

proportional to time). This is relevant as it provides the distance over which

we need the magnetic field to act uniformly in the spin-state interferometer

and weak measurement.

3.4.3 Image processing

Generally speaking, the signal from a single push cycle does not give enough

useful information and an average of many push cycles is required. For exam-

ple, depending on the configuration, anything between 50 and 50,000 frames

are needed to build up an image of the distribution of positions where atoms

are detected. From the averaged image we can then measure the spatial prob-

ability density distribution in space for a particular time-of-flight range.

The image of a single atom hit is pixelated, as shown in1 figure 3.9(a). With

the camera at full zoom, each pixel from the camera can detect photons over

a distance of 11.6µm on the phosphor screen. Figure 3.8 shows the average

peak from 14 single atom detections. The pixel values are converted into a

floating point format that MATLAB can process. A threshold operation is

applied which selects all the pixels below a certain threshold value and reduces

these pixel values to zero. At the same time all the pixels above that value are

increased to 1, as shown in figure 3.9(b). This is called ‘binarising’. During

this operation, information about the peak shape is lost and a Gaussian shape

in the raw signal is converted to a binary peak. This would reduce the ability

to resolve between two overlapping peaks. However, in cases when ultimate
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Figure 3.8: The profile of an average signal peak from the detection of a single atom. Here
there are 14 peaks (black squares) and their average (red triangles). The grey value is the
16 bit value recorded by the camera.

resolution is not critical, the process gives the final image a higher contrast

and allows MATLAB to easily count the number of atom hits. The processed

image from each push cycle is averaged. The individual atom hits then begin

to effectively form a 2D probability distribution.

Binarising also improves the temporal resolution of the detector. When

one atom hits the detector, the decay time of the phosphor means photons

from this event will be detected by the camera over a period of ≈1 ms. The

signal intensity will vary over time as a result of the decaying florescence. If a

threshold is set to only select the very brightest signals, the weaker florescence

signal, originating from atoms that arrived in an earlier time frame is not

included.

If we take the outline of the signal from a single atom hit, we can read an

{x, y} co-ordinate closest to the centre of the fluorescence signal. This acts as

a good estimate of the atom’s final position. This co-ordinate can be assigned

to the nearest integer and hence pixel. Setting this pixel value to 1, improves

the spatial resolution since the original signal width, a Gaussian peak covering
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(a) (b)

(c)

Figure 3.9: Three stages of the centroiding process. (a) Shows the pixel intensity of an
image of a detector image zoomed in to a single atom hit. (b) Shows the same data after it
has been binarised according to a chosen threshold and (c) shows the single pixel calculated
as the approximate centre of the position signal.

multiple pixels, has been reduced to a single pixel. The detector’s spatial res-

olution is now limited to the distance over which one pixel is observing on the

detector which in our case was 11.64µm. This technique is known as ‘centroid-

ing’ and an example is shown in figure 3.9(c). While it is useful to know how to

push the detector’s resolution to it’s maximum, there are some limitations to

consider. The centre of the signal in figure 3.9(a), does not necessarily relate

to the exact position that the atom arrived at the detector. The initial angle of

incidence of the atom, the angled channels and the resulting emission angles of

the cascading electrons all contribute to the shape and spread of the detector

signal. The ‘un-binarised’ signal conveniently incorporates the uncertainty of

the atom position into the signal. Additionally, in practice, images using the

centroided signal require a much greater overall atom count to clearly see the

shape of the atomic beam or interference, so the centroiding method was not

often used.
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3.5 Gravity accelerated atoms

The spherical octagon chamber, shown in figure 3.2, was chosen to fit a cooling

beam configuration that allows the atoms to fall unobstructed towards the

detector. The atom cloud is dropped by turning off the cooling lasers and

the AH coils. Turning off just one of the two components results in additional

forces on the atoms, which either restrict or completely inhibit atoms travelling

from the trap position to the detector.

When both components are turned off, atoms will travel in all directions,

with a mean velocity, v0 determined by the trapped atoms’ mean temperature,

T.

v0 =

√
kbT

m
(3.2)

where m is the atomic mass and kb the Boltzmann constant. All the atoms fall

under gravity, but those with a larger velocity component in the xy plane, have

a higher probability of hitting the chamber wall before they reach the detector.

In a collision, the metastable atom will ionise. The greater the x or y velocity,

the more likely it is to hit the wall before the detector. The number of atoms

reaching the detector was counted for different TOF arrival times. The arrival

time gives a value for the average velocity using simple kinematic equations.

This was repeated for different trap temperatures, as shown in figure 3.10.

The initial velocity was converted to an initial temperature using equation

3.2. The area under the curves represent the approximate total number of

atoms reaching the detector from the MOT, which slowly decreases for higher

temperatures.

Initially without this atom detector, a complicated method was used to esti-

mate the trap temperature consisting of taking a snapshot image of the MOT

expansion immediately after the trap is turned off. However, this method

would only give a single average value of the temperature. Here, with this

TOF method, we can observe an average velocity and the distribution of ve-
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Figure 3.10: A plot of the temperature distribution in the MOT for different cooling beam
detuning frequencies of 6 MHz (magenta), 10 MHz (blue), 14 MHz (red) and 22 MHz (black)
where the laser is red detuned from the 4s[3/2]2→4p[5/2]3 transition frequency. The tem-
perature is taken from the TOF distribution after releasing the atoms by turning the trap
off. The signal intensity is a measure of how many atoms arrive at the detector at a par-
ticular time and hence have a particular velocity which then can be used to determine the
temperature.

locities together. The data shows that as the detuning of the cooling beams is

increased, the average temperature of the atoms reduces.

To achieve sufficient transverse coherence for the interferometry experi-

ments, it was necessary to select a narrow range of transverse velocities using

collimation slits. There was little success in using the gravity acceleration

method with collimation slits for 2 main reasons. Firstly, it was difficult to

completely block out atoms with high transverse velocities, once they leave the

trap they can bounce all around the chamber, often ionise along the way, but

many atoms still make it to the detector, contributing to excessive noise in the

signal. Secondly, the metastable state is deflected by magnetic fields present

in the chamber. The compensation cube is effective at creating a zero or ex-

tremely low field, in a small region within the centre of the chamber, but this

condition is not maintained along the whole path of the falling atoms. This

effect was modelled and shown to introduce a significant element of transverse
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Figure 3.11: The peak MOT temperature as a function of the cooling beam frequency
detuning. This data was derived from the TOF distributions shown in figure 3.10.

velocity since the atoms travel so slowly. This could potentially be overcome by

using the 801 nm laser to quench the atoms and only detect the magnetically

neutral m = 0 state (see section 5.2.4), but this would also reduce the signal

by 80%. As a result, other methods were explored to direct the atoms from

the trap to the detector, without being strongly affected by the experiment’s

magnetic field.

3.6 Push beam

The push beam is equivalent to a single additional MOT beam. This creates

an unbalanced accelerating force acting on the atoms in one direction. The

interaction between the push beam and the atoms is determined by the laser

intensity, frequency, polarisation and pulse length of the push beam.

While there are multiple parameters with which to control the resulting

atomic beam velocity and spin polarisation, we aim to only use the controls

which are the easiest to adjust and monitor. In order to decide which pa-

rameters to test and which to keep constant, we consider how precisely and
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accurately we can measure the small incremental changes in the parameter as

we adjust it. For example, measuring the push beam power density is done us-

ing a power meter placed in the path of the beam. The power is adjusted using

power density filters, which limits the number and size of power increments.

Additionally, the power would need to be regularly monitored using a power

meter which is more disruptive than measuring one of the other parameters.

The push beam frequency (controlled via the acousto-optic modulator and

measured precisely using an RF meter) or the pulse length (set with high pre-

cision using a TTL pulse generator) can both be constantly monitored without

blocking the beam.

The push beam power density was measured once and maintained above

the saturation level for metastable argon (1.4 mWmm−2), while the push beam

pulse length, frequency and polarisation was adjusted to control the beam’s

average velocity and velocity distribution. The initial push beam tests focussed

around controlling the atomic velocity. However, given that that a right or left

circular photon polarisation will pump the atoms to either the m = −2 or

+2 state respectively, the spin polarisation of the atomic beam could also be

controlled. This became very useful for later experiments, since the spin-state

interferometer initially requires a spin polarised atomic beam. This is discussed

in chapter 3.6.4

The push beam alignment was adjusted using mirrors, with a camera fo-

cussed on each collimation slit to monitor the alignment. The transmitted

laser light diffracts after the first slit and this diffraction reduces the precision

with which one can discern the centre of the push beam on the second slit. It

becomes increasingly difficult to align the push beam for a narrower transverse

velocity selection, due to the requirement for narrower slit. For the beam to be

properly aligned, it should pass through the centre of 2 slits and then hit the

centre of the detector. In reality it was very difficult to make sure these three

components were perfectly aligned, as a result the push beam could either be
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well aligned through both slits, but then not hit the centre of the detector, or

it may hit the centre of the detector, but not transmitted efficiently through

the two slits. In this case, the profile of the atomic beam on the MCP detec-

tor would not be symmetrical. To help with alignment, particularly for the

narrower slits, a vacuum compatible piezo stage was introduced to move the

2nd slit in steps of 10nm. This was only necessary when using a 25µm or less,

second collimation slit.

3.6.1 Pulse length

The push beam pulse length was controlled by a TTL pulse sent to a switch

on an RF circuit. The RF signal feeds into acousto-optic modulator, shown as

AOM3 in figure 3.4. Since the push beam is taken from the 1st order diffracted

beam from AOM3, switching the input RF signal also switches the push beam

on and off with durations as low as 30 ns.

The majority of the push beam testing was done without any collimation

slits unless stated otherwise. Without the collimation slits, the signal intensity

is very large and reduces the necessary acquisition time.

The TTL pulse, which starts the push beam, is synchronised with the TTL

pulse which turns off the cooling beams. The atoms begin to see the push

beam at the same moment they stop being radiated by the cooling beams. If

the atoms experience a significant delay between the turn-off of the trapping

beams and the turn-on of the push beams, they rapidly disperse due to their

thermal velocity spread and are lost from the push beam region. Even at low

temperatures, this reduces the MOT density and hence the number of atoms

that are pushed towards the detector.

A longer pulse length results in faster atoms and a narrower longitudinal

velocity distribution. This changes with the introduction of the collimation

slits because single slit diffraction reduces the laser power density by a factor

of approximately 2 every millimetre below the slit. The 12 mm MOT-first slit
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distance therefore gives an upper limit to how long the push beam will signif-

icantly interact with the atoms. This problem also determines how effectively

Figure 3.12: The distribution of TOF taken for the atoms to reach the detector for push
beam pulse lengths of 7ms (black), 4 ms (red), 5ms (blue) and 2ms (magenta). A low power
push beam was used, so even for the longest pulses, the average TOF is only approximately
45 ms.

the atoms can be spin polarised by the push beam. When working without

the slits, the spin polarisation occurs easily due to the much longer interaction

times. The extra interaction time makes up for any losses from detuning or

polarisation which has not been optimised. However, since the final experi-

ment has the 1st slit 12 mm below the chamber centre, we disregard this idea

and work with a push beam that stops interacting 12 mm below the MOT.

3.6.2 Frequency & magnetic field effects

Understanding the effect of the push beam frequency on velocity, velocity

spread and atom polarisation is a little more complicated than the pulse

length since the atom’s transition frequency also depends on the magnetic field

present. The effect of the magnetic field and frequency need to be considered

together.
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Consider a change in the push beam frequency such that it is shifted away

from the atom’s cooling transition frequency (increasing the ‘detuning’ of the

push beam). The laser-atom interaction strength will decrease. If a magnetic

field is then introduced, the transition frequency will be shifted as ∆E ∝ B.

In a spatially varying magnetic field, as in the MOT coils, the interaction

with the push beam will be dependent the atom’s position. The maximum

interaction strength will occur when the frequency of the photons matches the

shifted absorption frequency of the atom. Therefore, in some cases, detuning

the push beam frequency can increase the accelerating force of the push beam.

For the push beam and the MOT, the length over which the interaction

takes place, will depend on the the laser frequency and the field from the AH

coils, which Zeeman shifts the atomic cooling transition frequency. Therefore,

there can be a maximum interaction strength at zero, high or low detuning,

depending on the magnetic field strength present. Figure 3.13 shows the effect

of changing the push beam frequency on the atomic velocity, for a AH coil

current of 5 A and hence a fixed magnetic field gradient.

Figure 3.13: The distribution of time taken for the atoms to reach the detector, hence the
atomic velocity distribution, for detunings of 2.4 MHz (blue), 3.2 MHz (red) and 6.4 MHz
(black). Here, the scaling factor of the peak heights are shown.
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When the push beam frequency is close to the resonant frequency, for

example ∆ = 2 MHz, the atoms in the trap receive a strong momentum kick

in the direction of the push beam. As they fall downwards, they enter a

stronger magnetic field from the AH coils. The coils Zeeman shift the atomic

energy levels and, as a result, the resonant frequency of the cooling transition

is shifted away from the frequency of the beam. If the frequency is blue

detuned from resonance, the push beam can still weakly interact with the

atoms enough to give them an initial kick away from the trap centre. As

they travel further into the stronger magnetic field region, the field keeps the

atom’s transition frequency close to the Doppler shifting laser frequency. This

increases the overall interaction time and hence increases the average velocity

and observed signal. If the detuning is taken too far from resonance, for

example ∆ = 40 MHz, the atoms require an even larger magnetic field to

maintain the atom-laser interaction. There is very little momentum imparted

to the atoms from the laser in the central trapping region. In this region the

magnetic field strength is low and the atomic transition frequency is not shifted

enough to match the laser. In this case only atoms that reach the highest areas

of magnetic field strength (through their own thermal velocity), while staying

in the line of sight of the push beam, will continue to interact with the push

beam and eventually reach the detector.

The Doppler shift of the laser frequency that the atoms experience as a

result of travelling away from the push beam must also be considered. This is

similar to the magnetic field in that a small detuning gives a good initial kick,

but is less effective as the atom speeds up. Again, if the detuning is larger,

there is less of an initial kick but more interaction when the atom speeds up.

The final experiment uses 3 very weak magnetic fields, for interferometry

and the weak measurement. Therefore it seemed sensible to turn off the AH

coils as soon as possible in the push cycle, to avoid the strong AH coils field

interfering with the other weaker fields. As a result, the total background
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magnetic field, originating predominantly from the compensation cube, is of

the order of 50µT. At these field strengths the Zeeman shift is much lower

compared with the Zeeman shift induced from the AH coils field. In the case

of turning the AH coils off, the range of control of the velocity via frequency

detuning is reduced, but not eliminated. The optimal choice of frequency for

pushing and for atomic beam polarisation is detailed in section 3.6.4.

3.6.3 Transverse Coherence

The transverse coherence of the atomic beam determines the contrast of the

interference fringes seen when the beam passes through a multi-slit grating.

As described in section 2.1.2, the atomic velocity, source size and the source

to grating distance determines the transverse coherence. Due to the need for

a long grating to detector distance, in order to spatially resolve the fringes,

the distance between the source and the grating was limited to approximately

50 mm. The source size was then minimised to optimise the transverse coher-

ence.

The source size (diameter of the MOT) can be reduced by increasing the

trap’s magnetic field strength. This will reduce the overall number of atoms

per push cycle and the average atomic beam width would be increased by

any small changes in the MOT position. A more robust solution is to place

a slit immediately below the MOT. The slit was positioned 17 mm beneath

the MOT, which was as close as possible without the slit material blocking

the MOT cooling beams. A quartz slide with a hole in the centre, shown in

figure 3.14, was used to hold the slit secured using Kapton tape. This slit now

defines the source size and hence the transverse coherence length. For atoms

travelling at 12 ms−1, a 10µm wide slit gives a transverse coherence length of

1.8× 10−6m which would cover ≈ 7 slits of the grating.

This should be sufficient to observe interference fringes providing the co-

herence length occupies enough of the beam width. To minimise the beam
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Figure 3.14: A CAD drawing of the slit housing. The nearest of the 4 pillars holding up the
top plate is made transparent to show the holding plate for the 2nd collimation slit. In this
particular configuration, the second slit would be precisely positioned using the piezo stage
seen next to the translucent pillar.

width further and ensure the degree of coherence is good, a second collimation

slit was introduced. To calculate what proportion of the atomic beam will be

coherent at the grating, we look at the beam divergence angle given by

θd = 2 tan−1
[ws + ws2

2Lss

]
(3.3)

where ws/ws2 are the widths of the 1st slit and the 2nd slit, while Lss is the

distance between the 1st slit and the 2nd slit. For a combination of a 10µm

slit and a 50µm slit, the width of the signal when it reaches the grating is

≈ 73µm making the transverse coherence length 2% of the total signal width.

This is likely to produce observable fringes, albeit with poor contrast.

The collimation slits were fitted to the experiment on a purpose built slit

housing frame, figure 3.14. The slits were laser cut into 12µm thick molyb-

denum foil and clamped or stuck onto aluminium plates which fit onto the
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frame. The range of atomic transverse velocities is selected by collimating the

beam using this apparatus. The resulting atomic beam width at the detector

is shown in figure 3.15. The width of the prominent peak is determined by the

combination of collimating slits used (10µm and 50µm, separated by 30 mm).

Significantly, the width of this peak is unaffected by the velocity of the atoms.

It is useful to know the width when modelling the contrast of the interference

fringes in matter-wave interferometry. Therefore, the transverse velocity range

that is selected, vx, depends on the TOF velocity vz. From this data we mea-

sure vx = ±0.027 ms−1 for vz = 11 ms−1, vx = ±0.020 ms−1 for vz = 15 ms−1

and vx = ±0.017 ms−1 for vz = 18 ms−1.

Figure 3.15: Measured atomic beam width profile for the three velocities that are used for
the matter-wave interferometry (approximately 11 ms−1 (blue), 15 ms−1 (red) and 18 ms−1

(black)). This beam width was narrowed using a 10µm slit and a 50µm for the initial and
second collimating slit respectively.

The wider, less intense peak which appears as a background signal is a

result of scattering off the collimating slit walls and thus the properties of

this background peak are affected by the thickness of the foil used for the

collimating slit.
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3.6.4 Spin polarisation

The absorption and emission of photons that happens during the acceleration

of the atom by the push beam can, under certain conditions, spin polarise

the atoms to either stretched state, m = 2 or m = −2, depending on the

laser polarisation and the magnetic field direction. While the atoms are in the

MOT, they are cycling between the m states since they are constantly being

radiated by both right and left circularly polarised photons, as shown in figures

3.3 and 3.16.

Figure 3.16: Possible state transitions between the 4s[3/2]2 and the 4p[5/2]3 energy levels
for Ar* when radiated with either right σ+ or left σ− circular polarisation. The atoms in
the MOT are illuminated by both types of light, therefore, while in the trap, atoms are
constantly being pumped between all states.

The push beam is switched on at the same time that the MOT cooling

beams are switched off. If the push beam is set at right circular polarisation,

σ+, or left circular polarisation, σ−, relative to the atoms quantisation axis, the

atoms are pumped towards a stretched state, m = 2 or m = −2, respectively.

The quantisation axis of the atoms is set by the external magnetic field. In

this case, the field is a quadrupole field created by the anti-Helmholtz MOT

coils. This conveniently creates a central column of approximately uniform

field direction, at least across the width of the atomic beam, from the centre

of the chamber outwards.

The polarisation of the atomic beam was tested using a Stern-Gerlach (SG)

wire, which is discussed in more detail in section 5.2.4. The magnetic field

induced by a current in the wire imparts a spin-state dependent force on the

atomic beam. The five m states arrive at different locations on the detector

76



Figure 3.17: Approximate field directions around an anti-Helmholtz coil pair. The field
direction is approximately constant when moving from the centre outwards, along the x or
z axis.

and the relative areas of each signal peak effectively indicate the polarisation

of the atomic beam. To ensure adjacent peaks are resolvable, the deflection

of the atoms is maximised by positioning the wire at the bottom of the slit

housing, 150 mm from the detector, as shown in 3.18.

Figure 3.18: View of the SG wire positioned be 150 mm above the detector when installed.
The second collimation slit is visible behind the wire.
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The push beam laser is initially linearly polarised and passes through a

quarter-wave plate which transforms the polarisation to left or right circular

polarisation (σ− or σ+) when rotated 45◦ or -45◦ from the vertical axis. As a

result, we see an atomic beam polarisation of m = −2, for σ− light polarisation

and m = 2, for σ+ light. When the wave-plate kept at 0◦, the push beam

remains linearly polarised (π) and we see a mixture of m = 0,±1,±2 in the

atomic beam. This control of the atomic beam polarisation is shown in figure

3.19, where the pulse length of the push beam is set at 0.6 ms and the detuning

at 15 MHz. If there is not sufficient push beam interaction time or interaction

strength, the push beam will not successfully spin polarise the atomic beam.

Figure 3.19: The atom signal after being pushed past the SG wire, which spatially separates
the m states. The push beam is circularly polarised using a λ

4 waveplate. When set to 0◦,
the light is a linearly polarised, at 45◦ and −45◦ it is σ+ and σ−. Simulated peak positions
are shown in red.

This description of the tunable, cold atomic beam provides an initial step

towards estimating the atomic velocity, which has a direct effect on the atom’s
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de Broglie wavelength. This defines the contrast and separation of the matter-

wave interference fringes, which can then be used to further characterise the

beam.

3.7 Conclusions

This chapter has demonstrated the production of a low velocity and tuneable

atomic beam. The beam was formed by applying radiation pressure in a push

beam to a MOT. The atom’s position and TOF were then observed on a

micro-channel plate detector below.

The range of the longitudinal velocities that can be produced was shown

to be 1 − 52 ms−1. The velocities could be controlled primarily by adjusting

the detuning frequency of the push beam. However, the push beam pulse

length and beam power could also be used. Transverse velocities were selected

using 2 collimation slits and were shown to be between 0.017− 0.027 ms−1 for

longitudinal velocities of 18−11 ms−1. The cooling transition used by the laser

to accelerate the atoms also spin polarises the atoms in the beam. An atomic

beam of m = 2 or m = −2 atoms with high purity was produced.

The beam’s transverse coherence was sufficient to perform matter-wave

interferometry using a multi-slit grating, while the atom’s spin polarisation

provided a suitable beam for a longitudinal Stern-Gerlach interferometer.
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Chapter 4

A multi-slit matter-wave

interferometer for metastable

argon atoms

4.1 Introduction

This chapter describes the construction of the matter-wave interferometer

which utilises the velocity-tunable atomic beam described in chapter 3. This

interferometer is one component of the weak measurement of transverse mo-

mentum, but it was also used to characterise the velocity of the atomic beam

with greater detail than typical time-of-flight (TOF) methods.

Matter-wave interferometry with atomic beams typically involve coherently

manipulating the motion of the atoms to simultaneously create two or more

paths such that when the paths recombine the difference in path length re-

sults in a phase shift in the atom’s spatial wavefunction. It has been shown

that the atom’s centre-of-mass motion can be efficiently manipulated through

momentum kicks from photon interactions in a Ramsey-Borddé interferome-

ter. Here, momentum transfer from photon absorption places the atom in a

superposition of two momentum states and two internal states [55].
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Alternatively, diffractive interferometers, which are closely analogous to

optical diffraction through a material slit, put the atom’s centre-of-mass in a

spatial superposition without any changes to the internal states. This type of

interferometer allows subsequent manipulation of the spin states which is more

conducive to making a weak measurement of momentum using the spin states

of atoms. Importantly, it is exactly analogous to the Kocsis experiment [30]

with which we wish to compare our results. In diffractive interferometers, a

nanostructured, material mask or a standing light wave (Kapitza-Dirac inter-

ferometer) is used to diffract the atoms. A standing wave can act in the same

way as a material grating by prohibiting certain paths of the atom between

the source and the detector. This can be achieved with the optical dipole

force used to channel [13] or scatter [57] the atoms. It can also be achieved

by quenching [56] or ionising [14] such that the atoms do not interact with

detector.

Unlike that of material slits, an optical grating which uses channelling

has a much higher transmission efficiency, since all the incoming atoms are

diffracted. However, the choice of optical grating width and separation is lim-

ited to the range of accessible laser wavelengths that will interact with the

atoms. In addition, optical gratings also require other equipment to monitor

the state of the standing wave. In contrast, material nanostructured gratings

are small, stand-alone, stable objects which are much simpler to implement.

Additionally, a wider range of slit geometries can be used which provide a

greater flexibility to the experiment design. The stability, size and ease-of-use

of the material gratings compensates for the problematic atom-surface inter-

actions and reduced transmission efficiency and so we decided to implement

them in this work.

Material masks have been successfully used in matter-wave interferometers

using both double [15] and multi-slit gratings. The number of paths deter-

mines the total throughput of the interferometer, but more paths increases the

81



need for a narrow transverse velocity selection in order to achieve sufficient

interference fringe contrast. The narrow velocity selection of the atomic beam

can impose enormous constraints on the throughput, in which case, a set of

gratings in a Talbot-Lau configuration [58] can be used instead. This removes

the need for the initial narrow transverse velocity selection, but limits the ap-

plicability to the near field regime, which does not leave enough space to design

a weak measurement using a magnetic field based spin-state interferometer.

In this project, the interferometer must be able to spatially resolve inter-

ference fringes using an atomic beam ≈ 200 mm long, while leaving enough

space between the grating and the detector to implement a spin-state inter-

ferometer. We therefore decided to use conventional diffractive interferometer

using a single nanostructured mask.

4.2 Constructing the interferometer

The required slit separation of the grating depends on the necessary interfer-

ence fringe separation for the particular experiment. The fringe separation

is determined by the atomic momentum, mv, and the distance between the

grating and the detector, Lgd. In our case Lgd is limited to ≈ 0.15 m. The de-

tector’s ultimate resolution is ≈ 12µm, meaning that for a perfectly optimised

experiment, the interference fringes would need to be separated by a minimum

of 24µm to be resolved on the detector. In reality, to account for poor beam

coherence while the equipment is being initially optimised, the fringe separa-

tion needs to be at least 5 times higher than this. The fringe separation for a

matter-wave ∆x, is

∆x =
h

mv

Lgd
d

(4.1)

where d is the grating period, h is Planck’s constant and m is the atomic mass.

The velocity range of the atomic beam is 1 − 52 ms−1, so to achieve a fringe

separation of at least 120µm, the grating period must be at narrower than
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186 nm for an atomic velocity of 52 ms−1, 466 nm for an atomic velocity of

21 ms−1 and 4656 nm for 2 ms−1.

The etching resolution of laser micro machining only reaches as low as

≈ 3µm due to the limitations of the objectives that focus the laser. To machine

below such lengths, techniques such as focussed ion beam etching and optical

or electron lithography must be used, at a much greater financial cost.

4.2.1 A Si3N4 diffraction grating

We obtained two Si3N4 gratings from Prof. Markus Arndt of the University of

Vienna. Records from the batch fabrication indicate that the grating structure

has a periodicity of 257 nm and a slit width of 90 nm. The grating has a cross

bar support structure where the cross bars are spaced ≈ 1.5µm apart. The

structure gives the grating an open fraction of 66% parallel to the slits and

38% orthogonal to the slits. The overall transmission is therefore 25%. The

profile of the grating bars was described by the supplier as having a thickness,

t, of 160µm and a wedge angle, β of 7◦ as shown in figure 4.1

Figure 4.1: Diagram showing the profile of the slits. This indicates that the given slit width
of 90 nm is probably an average value of the top and bottom slit widths.

SEM images of the grating slits are shown in figure 4.2. They were used to

confirm the given dimensions of the slits. The pixel calibration, which indicates

the length in the focus plane that one pixel of the SEM image observes (shown

in the bottom left corner of each image) is used to extract the necessary dimen-

sions. While the slit width and slit separation could be directly measured from
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the image, the profile dimensions could not. Instead, this measurement was

made by measuring the slit width from above the grating ‘looking down’, su,

and below the grating ‘looking up’, sl. This gives the thickness of the grating if

the wedge angle is known or vice versa. The image measurements are based on

the microscope calibration which could not be validated. It was also difficult to

know if the plane of the grating and the microscope beam axis are sufficiently

perpendicular. The slit separation was measured as d =252 nm, however if the

calibration is taken to be incorrect, then comparing the measured width with

the manufacturer’s value d = 257.4 nm provides a ratio which with to calibrate

other measurements. In this case, t was measured to be 132.5 nm assuming

β = 7◦, or assuming t = 160 nm, β = 5.8◦.

(a) (b)

Figure 4.2: SEM images of the grating slits (a) a wide angle view showing the aspect ratio
of the slits (b) close angle and tilted to give an idea of the thickness of the grating.

The grating covers a 5× 5 mm window within a 10× 10 mm frame of 1 mm

thickness. The frame is fixed to the slit housing as shown in figure 4.3(a) and

sandwiched between two aluminium plates. The orientation of the grating is

optimised using a 633 nm HeNe laser on a benchtop.

84



(a) (b)

Figure 4.3: (a) An image of the grating that was used fitted to the underside of the slit
housing. (b) A schematic of the full experimental setup including the push beam source
(the MOT) and the transverse velocity selection via 2 collimation slits as well as the grating
itself.

4.3 Interference using a multi-slit Si3N4 grat-

ing

4.3.1 Fringe contrast

The observed interference pattern created by a source of width, ws, can be

considered to be a combination of interference patterns from a number of

point sources positioned across the extent of ws. To describe the pattern from

a point source, consider a plane wave of wavenumber k(v) = 2π
λDB(v)

, incident

on a grating of N slits. The signal intensity, I0, as a function of transverse

position, x, and atomic velocity, v, observed at the detector is given by [46]

I0(x, v) =
(sin(1

2
N k(v) d sin( x

Lgd
))

sin(1
2
k(v) d sin( x

Lgd
))

)2

|fslit(x, v)|2. (4.2)

The signal is a product of a grating function (1st term) and a slit function

(second term). The grating function describes the interference pattern, while

the slit function describes single slit diffraction, hence the envelope of the
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pattern. The slit function is derived from the description of the diffracted

wavefunction due to Huygens principle and also accounts for the interaction

between the atoms and the slit walls [46]. For a slit width, s, we have

fslit(x, v) =
2 cos( x

Lgd
)√

λ(v)

∫ s
2

0

dζ cos
[
k(v) sin(

x

Lgd
)(
s

2
− ζ)

]
τ(ζ, v) (4.3)

where Lgd is the distance between the grating and the detector, τ is the trans-

mission function for a single slit (equation 4.8) and ζ is the transverse position

across the width of the slit. Equation 4.2 describes the interference pattern

for a point source positioned at x = 0 in the transverse plane. This is shown

in figure 4.4 for the dimensions used in this experiment, where s = 90 nm,

d = 257 nm, Lsg = 0.156 m, and v = 12 ms−1. The number of slits illuminated

by the atomic beam is chosen as N = 30. In the experiment the number is

≈ 180. However, with this value the fringes are too narrow to be clearly seen

for the available resolution of the position axis.

Figure 4.4: The calculated interference pattern for a point source positioned at x = 0
transmitted through 30 slits.

We develop this model to describe the full extent of the source, by con-

sidering the possible paths an atom can take from any point on the source to

the detector. These paths are dependent on the transverse velocity selection

of the atomic beam. For a non point-like initial thermal source, the transverse
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velocity distribution is generally too wide to achieve sufficient coherence and

resolve the interference fringes, so we introduce two collimation slits before the

grating as shown in figure 4.5.

Figure 4.5: The extent of the possible paths for an atom travelling between the source and
the grating, via two collimation slits. This assumes negligible diffraction through the slits.
Lss is the distance between the two collimation slits and Lsg is the distance between the
last slit and the grating. ws is the width of the source (the 1st slit) and ws2 is the width of
the second slit.

If the probability density at the detector is I0(xc, v), for a point source

positioned in the centre of the actual source distribution is xc (x = 0), then

the overall pattern, I(x, v), as a result of the distribution of point sources

across the actual source width, ws is given by

I(x, v) =

∫ ws/2

−ws/2
dwI0(xc + ∆x(w), v) (4.4)

where ∆x(w) is the shift in the centre of the interference pattern for each

position of the point source. For a two collimation slit configuration as used

in this experiment, the shift is given by

∆x(w) =
w

2

Lsd + ws2Lss
ws+ws2

Lss − ws2Lss
ws+ws2

(4.5)

which produces the signal seen in figure 4.6.

Since the source intensity varies across its width, a suitable function A(x,w)

is included which describes the source intensity distribution that is seen at

the detector as seen experimentally in figure 3.15. In this example a simple
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Figure 4.6: The calculated interference pattern for a source of a finite width and two colli-
mation slits of width ws and ws2.

Gaussian curve is used. The intensity is now given by a convolution of I(x, v)

with A(x,w).

I(x, v) =

∫ ws/2

−ws/2
dwA(x,w)I0(xc + ∆x(w), v). (4.6)

The initial function shown in figure 4.6 (equation 4.2), convolved with A(x,w)

is shown in figure 4.7

Figure 4.7: The calculated interference pattern for a collimated source which has a spatially
dependent intensity described by A(x,w).
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The previous plots are for a single value of v. In reality, atoms from a range

of longitudinal velocities, ∆v, are being detected across the chosen detector

exposure time. The distribution of the longitudinal velocity, or the temporal

coherence is incorporated into the model by integrating the interference pattern

over the longitudinal velocity spread that is acquired during the detector’s

exposure time. This is shown in figure 4.8 and the signal is now given by

I(x, v) =

∫ ∆v/2

−∆v/2

I(x, v)dv. (4.7)

Figure 4.8: Interference pattern for a range of longitudinal velocities, from a collimated
source which has a spatially dependent intensity described by A(x,w).

4.3.2 The effects of Van der Waals interactions on diffrac-

tion

As the atoms pass through the slits of the grating, the Van der Waals (VdW)

potential between the Si3N4 grating and the atoms can influence the motion of

the atom and effect the interference pattern. The potential is given by VV dW =

C3/l
3, where l is the distance between the atoms and C3 is the strength of the

interaction. The interaction strength is dependent on the grating material and
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the type of atom used for diffraction. This is an attractive force with causes

further divergence of the atomic beam after passing through the grating slit.

The VdW interaction changes the slit function which is observed as a

change in the envelope of the diffraction pattern. This change was used to

determine C3 more accurately than previous measurements [46, 47]. The in-

creased polarizability of metastable atoms means that the VdW constant C3

is much larger compared to that of ground state atoms, which has been shown

previously for helium and neon [48]. In an experiment with a metastable ar-

gon beam diffracting from a nanometer scale Si3N4 grating, the resultant slit

function was compared with calculated C3 values [49].

To include the effects of the VdW interaction, the overall slit function,

given by equation 4.3, is now modified [46] so that

τ(ζ, v) = exp
[
i
t cos β

h̄v

C3

ζ3

1 + t
2ζ

tan β

(1 + t
ζ

tan β)2

]
(4.8)

where t is the thickness and β the wedge angle. This interaction effectively

reduces the slit width as C3 increases and modifies the envelope of the in-

terference pattern. The envelope is shown in figure 4.9 when using a Si3N4

grating with atoms at 11 ms−1. The slit function that is used to model the

expected interference pattern is then given by equation 4.7 with the C3 modi-

fied slit function and the grating function taken from previous work [46]. For

the source intensity distribution, A(x,w), we use a Gaussian peak fitted to the

observed source image (the signal without the grating) at the detector. The

resulting equation is evaluated numerically using the trapezoidal method.

4.3.3 Other factors affecting the interference pattern

There are a number of other factors that can affect the shape and intensity

of the interference pattern. We have chosen to omit them here as their effect

is negligible when included in the modelling of the interference pattern. This

includes;
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Figure 4.9: The effect of the VdW coefficient on the diffraction pattern. The data shows
the slit function equation 4.3 for C3 = 0 (black), C3 = 0.78 a.u. (red), C3 = 1.55 a.u. (blue),
C3 = 2.33 a.u. (magenta).

• Slit disorder. This is a variation in the width of the slits which causes

a decrease of the relative peak height of the higher order interference

fringes. The disorder can also differ between the leading edge of the slits

and the trailing edge. A difference in the disorder between the leading

and trailing edge causes an asymmetric slit function [46]

• Disorder in grating periodicity. This is a variation in the centre to centre

separation of the slits. This also causes a decrease in the relative peak

height.

• Surface roughness. A variation in the surface roughness averages to an

equivalent slit width disorder and so is an additional decrease of the

relative peak heights for higher order peaks.

• Scatter. Atoms that collide with the slit walls and are elastically scat-

tered gaining a new transverse momentum. This creates an incoherent

background underneath the interference fringe pattern
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4.4 Spatial matter-wave interference of Ar*

atoms

The atoms in a magneto-optical trap are accelerated by radiation pressure,

towards the detector to create a cold atomic beam, as described in the last

chapter. Positioned 17 mm below the MOT is a 10µm wide collimation slit.

A further 30 mm below is a 50µm wide collimation slit. Both slits ensure that

only atoms with very low (negligible) transverse velocities reach the multi-slit,

Si3N4 grating, placed 59 mm below the MOT and 147 mm from the detector.

This arrangement is shown in figure 4.3(b). The atoms diffract through the

slits and create an interference pattern on the 2D detector below the grating.

The interference fringes were observed for a range of de Broglie wavelengths

(determined by the atomic velocity). Data for one atomic velocity setting

typically took around 360,000 push beam pulses, which at a pulse cycle length

of 0.5 s equates to ≈ 50 hours of continuous data acquisition. The velocity

of the atomic beam was measured using the interference fringe spacing and

compared with the typically used TOF velocity measurement method. An

estimate of the velocity can be determined from the TOF and is given by

vTOF =
s− 1

2
at2

t
+ at (4.9)

where t is the TOF and s is the source to detector distance which is measured

as 206.5 ± 0.5 mm. This distance is taken from the CAD drawings from the

centre of the MOT chamber to the face of the detector with an uncertainty

due to the MOT position. The uncertainty in vTOF is also due to the initial

spatial and velocity spread of the atoms. The velocity spread, due to the MOT

temperatures, is distributed further given the spread in the accelerating force

of the push beam on the atoms.
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Interference with a vTOF = 12 ms−1 atomic beam

For this experiment, the push beam was blue detuned by 4.76 MHz from res-

onance with a pulse length of 0.6 ms to remove the atoms from the trap. The

velocity range was selected by setting the camera exposure to 1.5 ms begin-

ning 17 ms after the atoms are pushed from the trap. Equation 4.9 gives

the TOF velocity as vTOF = 11.72 ms−1 and TOF velocity distribution as

∆vTOF = 0.49 ms−1. The interference fringes from this TOF velocity group

are presented in figure 4.10. Equation 4.7 is fitted to match the fringe spacing

(a) (b)

Figure 4.10: (a) The detector image showing the average of 350,000 frames. For a TOF of
17.75± 0.75 ms and averaged 1 atom count for every 12 cycles. (b) The averaged profile of
the blue boxed region in (a), the red line shows the modelled optical interference pattern
for the same apparatus dimensions.

in figure 4.10. The fixed parameters are taken from the experimental setup

described in this chapter. The number of slits N is now given as 181, which is

the number of grating slits illuminated by the beam width. Fixed parameters

N , m and h̄ contribute with negligible uncertainty. Other fixed parameters

such as distances L, d, slit and grating dimensions d, w, s, β, t and the longitu-

dinal velocity spread ∆v all have some associated uncertainty. However, for

an initial simplified measurement the uncertainties were omitted. Only v is

left as a free parameter for the software to fit. This gives a measurement of

the average atomic velocity at the grating as v̄ = 12.85± 0.55 ms−1. The mea-

surement is an average over the detector exposure time where the uncertainty
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in the parameter is calculated via a ‘variance-covariance’ matrix during the

Levenberg-Marquardt fitting algorithm in OriginPro.

Interference with a vTOF = 14 ms−1 atomic beam

This experiment was adjusted to acquire a signal from a slightly faster set

of atoms. The push beam pulse was blue detuned by 8.01 MHz from reso-

nance, but the 0.6 ms pulse length was maintained. The camera was triggered

14 ms after the atoms were pushed from the trap and the exposure time was

again 1.5 ms giving vTOF = 14.07 ms−1 and ∆vTOF = 0.71 ms−1. The data is

presented in figure 4.11. Again, equation 4.7 was fitted with the same con-

ditions as the last velocity measurement to match the fringe spacing, giving

v̄ = 15.15± 0.55 ms−1.

(a) (b)

Figure 4.11: (a) The detector image showing the average of 350,000 frames. For a TOF of
14.75 ± 0.75 ms and averaged 1 atom count for every 13 frames. (b) The averaged profile
of the blue boxed region in (a), the red line shows the modelled optical interference pattern
for the same apparatus dimensions.

Interference with a vTOF = 17 ms−1 atomic beam

To complete this data set, the atomic velocity was increased again. The push

beam was blue detuned by 11.31 MHz from resonance and a 0.6 ms duration

push beam was again used. The camera exposure time was reduced to 0.8 ms

and was triggered 12 ms after the atoms were pushed from the trap. This
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gives vTOF = 16.71 ms−1 and ∆vTOF = 0.54 ms−1. Figure 4.12 shows the

fringe contrast has significantly decreased as a result of a shorter de Broglie

wavelength giving a less coherent beam. We can see the result of this in the

larger uncertainty in the fit which gives the average atomic velocity at the

grating as v̄ = 18.65± 1.15 ms−1.

(a) (b)

Figure 4.12: (a) The detector image showing the average of 350,000 frames. For a TOF of
12.4± 0.4 ms and averaged 1 atom count for every 5 frames. (b) The averaged profile of the
blue boxed region in (a), the red line shows the modelled optical interference pattern for the
same apparatus dimensions.

Comparing the 3 data sets, we observe that the slower atoms have a longer

de Broglie wavelength, which produces a wider interference fringe separa-

tion and increases the interference fringe contrast, as a result higher orders

fringes are more visible. Averaging the ratio between the two velocity mea-

surements across the data sets gives vTOF = 0.91v̄. The average uncertainty in

vTOF = 2.4% and in v̄ = 4.7%. This shows the velocity measurement using the

interference pattern gives a slightly higher value than the velocity measured

using the TOF method.

This difference in the measured velocities is understandable given that the

TOF method over simplifies the acceleration of the atomic beam. The accel-

eration of the atomic beam is not well characterised and is expected to have

some variation given the number of parameters that determine the push beam

interaction strength, as discussed in 3.6. The velocity measurement made us-
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ing the interference pattern is much more accurate since it is only affected by

the velocity range from the grating to the detector, where the acceleration is

a=9.8 ms−2 for all atoms and is negligible.

Measuring an accurate value for the average atomic velocity below the grat-

ing is extremely important for the weak measurement of transverse momentum.

The weak measurement allows the transverse momentum to be extracted from

the total velocity, therefore the accuracy of the transverse momentum mea-

surement will rely on the accuracy of the velocity measurement.

A new measurement for the Van der Waals coefficient

The diffraction pattern is strongly dependent on the strength of the Van der

Waals interaction between the atoms and the slit walls. This attractive force

increases the width of the envelope of the signal and simultaneously increases

the intensity of the tails of the peak as shown in figure 4.9. With this, we

can fit equation 4.7 to the data by eye to determine the Van der Waals co-

efficient, C3, shown in figure 4.13. For v̄ = 12.85 ms−1, C3 = 1.97 ± 0.19 au,

Figure 4.13: A comparison of the fit different values of C3 corresponding to 1.78 au (red),
1.99 au (blue) and 2.15 au (magenta) for the 12 ms−1 atomic velocity matter-wave interfer-
ence.
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v̄ = 15.15 ms−1, C3 = 2.02± 0.16 au and v̄ = 18.65 ms−1, C3 = 2.71± 0.23 au.

Here the uncertainty is estimated from the difference between the upper and

lower C3 values that plausibly fit the data. The previous free parameter v

was fixed at the measured value from the previous velocity measurements and

all other fixed parameters were kept the same with the same uncertainties.

This is not including C3 which was then changed to a free parameter. This

is the first measurement of C3 for the interaction between metastable argon

and Si3N4. Two of the measurements agree with previous simulations for the

interaction [49]. The atoms travelling at v̄ = 18.65 ms−1 produced a low con-

trast interference pattern due to the poor beam coherence. This is a possible

explanation of why the measured value is much higher than the other two

approximately equivalent values.

More accurate and varied characterisation of the atomic beam would be

possible with improved data sets that show higher order interference peaks.

The longitudinal velocity distribution can be extracted by more accurately by

fitting equation 4.7, but rely on the higher order fringes for an accurate fit.

Additionally, the simulations in figure 4.14 show that not only C3 nut also ∆v

affect the diffraction profile and should be fitted parametrically. For a more

accurate measurement of ∆v and C3, higher interference fringe orders could

be resolved with better transverse and longitudinal coherence of the atomic

beam.

4.5 Conclusions

This chapter shows the construction of multi-slit matter-wave interferometer.

The interferometer demonstrates a spatial superposition of atoms in the atomic

beam as a result of diffraction through a nanostructured Si3N4 grating. The

resulting interference pattern was used to measure the velocity of the atoms at

the position of the multi-slit grating. The velocities were consistently higher

than the TOF velocities indicating the discrepancy between vTOF and the true
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Figure 4.14: A simulation of the interference pattern for the 0-8th order fringes. The plot
shows the fringes for ∆v=0 ms−1 (black), ∆v=0.5 ms−1 (red) and ∆v=1 ms−1 (blue).

v. Additionally, the envelope of the interference pattern was used to measure

a Van der Waals coefficient for the interaction between the atoms and the

grating. To our best knowledge, this was the first time this has been measured.

98



Chapter 5

A longitudinal Stern-Gerlach

interferometer for metastable

argon atoms

5.1 Introduction

A fundamental characteristic of a weak measurement is the coupling of an

observable to a pointer. Our observable is the transverse momentum of an

atom in an matter-wave interferometer, which is described in detail in chapter

4. The pointer must be an internal state of the atom, which changes depending

on the atom’s transverse momentum during the weak measurement interaction.

Importantly, the interaction must not significantly perturb the centre-of-mass

motion of the atom. For the pointer we use the magnetic spin states of the

metastable argon atom (J = 2, m = 0 ± 1 ± 2) since a uniform, magnetic

field induces a spin-state dependent phase shift of the atom’s wavefunction.

We therefore need a device which can measure the phase shift induced in

metastable argon spin states by a magnetic field. We also require the phase

shift to be dependent on transverse momentum.

Such a device is known as a longitudinal Stern-Gerlach interferometer(LSGI)
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[37] and a schematic outline of this process is displayed in figure 5.1

Figure 5.1: A schematic of the stages of an LSGI for an atom in a metastable state with
five Zeeman sublevels, m. When the individual m states are individually observed, the
interference appears as modulations in the intensity of the signal.

The operating principles of an LSGI for metastable argon can be broken

down into the following sections. First, a linear superposition of m states is

created by a spin-flip of a spin polarised atom. A spin-state dependent phase

shift then occurs due to a magnetic field (phase object) followed by another

spin-flip which builds a new coherent superposition. The last flip interferes the

phase-shifted m states and when then the individual spin states are isolated

from one another, the interference is observed.

We consider using spin polarised metastable argon atoms in the 4s[3/2]2

state. Their magnetic spin state is described by the wavefunction |ψ〉0 = |J =

2,m = 2〉 where the atom is quantised along the magnetic field Bz. It is then

prepared in a superposition of spin states by a spin-flip which projects the

initial state along the x axis. This process is represented using the Wigner

rotation matrix DJ(φ, θ, χ) where θ = 90◦, giving a new wavefunction

|ψ〉1 = D(0, π
2
, 0)|ψ〉0

=
1

4
|−2〉+

1

2
|−1〉+

√
3

8
|0〉 − 1

2
|1〉+

1

4
|2〉.

(5.1)

A magnetic field induces a spin-state dependent phase shift, φ, given by

|ψ〉2 = e−2iφ1

4
|−2〉+ e−iφ

1

2
|−1〉+

√
3

8
|0〉 − eiφ1

2
|1〉+ e2iφ1

4
|2〉. (5.2)
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The states are re-projected back along the z axis by another spin-flip, such

that the wavefunction is then given by

|ψ〉3 = D2(0,−π
2
, 0)|ψ〉2. (5.3)

This causes interference of the spin states and an encoding of the spin depen-

dent phase into the probability density. The populations of the individual spin

states are then observed by optically filtering or spatially separating the atoms

in a magnetic field gradient. For the case of m = 0, the probability density is

given as |〈0|ψ〉3|2, where the probability density is

〈0|ψ〉3 =
1

4

√
3

8
e−2iφ − 1

4

√
3

2
+

1

4

√
3

8
e2iφ. (5.4)

In this chapter we describe and test an LSGI which allows us to measure a

time dependent phase shift in the spin states of metastable argon atoms. This

in itself is not a weak measurement of the transverse momentum since the time

dependence is not related to the transverse momentum. However, as discussed

in the theory chapter, tilting this system with respect to the transverse axis

will allow a weak measurement of transverse momentum.

5.2 Experimental method

The atomic beam enters a mu-metal, magnetic shield which encloses the LSGI.

The LSGI is a copper plate connected to a current supply and a switch. At

either end of the plate is a double loop ‘guiding coil’. The coils and the atomic

beam are concentric and parallel to the resultant magnetic field direction, Bz.

The atoms fall through the centre of the first coil which sets the quantisation

axis to z. The atomic beam must be initially prepared in a spin polarised

state (m = 2), as outlined in chapter 3. From the source the atoms fall 0.2 m

towards the MCP detector, where the position of the atom is observed. The
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constructed LSGI is shown in figure 5.2

Figure 5.2: A schematic diagram of the LSGI. The magnetic field produced by the guiding
coils and the phase object are shown in red. The current in the copper plate is pulsed on,
rotating the overall magnetic field vector direction. The Stern-Gerlach (SG) wire spatially
separates the spin states which are observed on the detector below. The field from the SG
wire is not shown.

The interference process is initiated when the current in the copper plate

is switched on, creating a new magnetic field direction perpendicular to the

guiding coil’s field. This quantisation axis rotation causes a non-adiabatic

rotation and re-projects the atoms into a superposition of spin states.

Once the atom is in a superposition, the magnetic field induces two effects.

During the transition into the magnetic field, the resulting gradient imparts

a state dependent force on the atoms and spatially separates the spin states.
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Additionally, over the length of the phase object, the uniform magnetic field

induces a time dependent evolution which induces a spin-state dependent phase

shift of the atom’s wavefunction.

The current applied to the copper plate is rapidly switched off which again

produces two effects. The quantisation axis is rotated to re-align with the field

direction of the second guiding coil. In doing so the spin states are re-projected

along the z axis, encoding the acquired phase shift into the new spin-state

population probabilities. Secondly, the magnetic field gradient longitudinally

deflects the atoms exiting the field and spatially recombines the paths of the

spin states.

To observe the populations of the individual spin states, the atoms are

spatially separated due to a magnetic field gradient created by a current car-

rying wire (SG wire). The wire is positioned within the mu-metal shield only

to allow enough distance between the wire and the detector so that the spin

states can be spatially resolved.

5.2.1 Spin-state superposition

The spin polarised atoms enter the LSGI where the m = 2 state is put into a

linear superposition of the five possible m states through a re-projection of the

initial state. This is induced by a rapid rotation of the external magnetic field,

which causes an abrupt non-adiabatic rotation of the atom’s quantisation axis.

Within the constricted spatial limits of this experiment, we rotate the ex-

ternal magnetic field by switching between two perpendicular magnetic fields.

Since the LSGI is contained within a mu-metal shield, the overall field direc-

tion does not include any contributions from the geomagnetic field or any other

magnetic field sources in the experiment. Therefore, we use two conductors

with perpendicular current directions, the guiding coils and the copper plate

(which also acts as the phase object). The currents are chosen so that the

resulting magnetic field strength from the coils is much weaker than the field
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strength from the copper plate, as shown in figure 5.2. By applying the current

to the copper plate, the external magnetic field direction switches from the di-

rection set by the coils to the approximate field direction set by the copper

plate. It is approximate since the direction is actually the combined coil and

plate vectors. This then defines the quantisation axis rotation angle as the

angle between these two field directions.

The equipment was designed such that the superposition process is re-

peated as the phase object ends, which in this case is when the current on the

plate is switched off. This second re-projection process is achieved with an

approximate 90◦ abrupt rotation of the spin axis. As before this is achieved

by a rotation of the overall magnetic field direction. The direction is initially

transverse, set by the plates and rotates to the longitudinal field direction,

determined by the guiding coils.

There are two key aspects of this process that determine the nature of the

resulting superposition. The quantisation axis rotation rate and the angle of

rotation.

Rotation rate of the quantisation axis

To achieve a spin-state superposition via re-projection, the rotation rate/angular

velocity, ωB, of the atomic quantisation axis must be much faster than the

Larmor precession caused by the external magnetic field, ωL. The modelling

suggested that a maximum magnetic field strength of the order of 10µT should

be used. Exceeding this causes phase shifts that are greater than 2π. At this

field strength, the Larmor precession frequency is ωL ≈ 1.3× 106 rad s−1. For

the spin-flip condition ωL < 0.1ωB, a 90◦ rotation we requires a rotation rate

that is faster than ≈ 120 ns. To achieve this we rapidly switch the current in

the copper plate, the speed of which depends on the circuit inductance and

the rise time of the transistor used. Here we use a power MOSFET (IRF320)

which is specified to have a 90 ns rise time. This gives ωB = 1.7× 107 rad s−1

104



which is more 10 times greater than the Larmor precession frequency at 10µT.

(a) (b)

Figure 5.3: Oscilloscope traces showing the voltage supplied to the MOSFET switch (black)
and the voltage associated with the current through the copper plate (red). A small amount
of ringing is shown in (a) which is plotted across 2.5µs. The effective current switching time
can be estimated as 75 ns from graph (b) which is plotted over 350 ns.

In reality the time it takes for the quantisation axis rotation isn’t simply the

switch rise time. A more accurate model would include the relative strengths

of the initial external magnetic field and the phase object magnetic field. If

the phase object field is much stronger than the background field the new field

direction, given by the phase object field plus the background field, begins to

dominate the magnetic field direction early on during the rise time and a 90◦

rotation would be achieved some time before the end of the 90 ns.

Rotation angle of the quantisation axis

We define the quantisation axis rotation angle as the angle between the atom’s

initial and final quantization axes before and after the phase object is turned

on. The rotation angle, θ, determines the fractional population probabilities

of each m state of the superposition which are given by the Wigner rotation

matrix DJ(φ, θ, χ). Ultimately, when the final signal is observed, θ affects the

contrast of the m state population interference fringes. The maximum contrast

is achieved with a θ = π
2

rotation.

The mu-metal shield does not entirely block out all the magnetic fields. A

small magnetic field, of the order of 10 nT originating from the experiment,
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will always leak into the shield defining an unwanted direction of quantisation.

In order to have a well-defined quantisation axis inside the shield, a magnetic

field is created by a pair of identical coils, named ‘guiding coils’ and are centred

on the beam axis. The double loop coils have a 13 mm radius, set 70 mm apart

from each other and the pair can be positioned at any height within the shield.

Figure 5.4: A CAD drawing of the formers used to build the guiding coils and how they
attach to the copper plate. The current directions are shown in blue.

The mu-metal cylinder attenuates the background magnetic fields to at

least 10 nT. With a current of 1 A through the coils, a field of 10µT is created

at the midpoint of the coils and the resulting magnetic field direction is parallel

or anti parallel (depending on current direction) with the direction of the falling

atoms along the z axis.

The phase object is a 1 mm thick copper plate measuring 50 x 25 mm, with

the long edge set parallel to the atomic beam. The plate provides a relatively

uniform magnetic field strength required for a weak measurement of transverse

momentum. The plate is connected to a current source using a wire fixed at
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(a) (b)

Figure 5.5: The magnetic field created by the guiding coils. (a) Shows the field measured
using a Gaussmeter, at 0 mm (black), 3 mm (red), 6 mm (green), 9 mm (blue) and 12 mm
(magenta) from the midpoint of the coils along z for a range of wire currents. The errors
for each data point are too small too resolve in the graph. (b) The simulated field strength
from 1 A in the the guiding coils along a z axis passing through the centre of the coils.

both top corners and a wire fixed at both bottom corners. The current travels

either parallel or anti-parallel to the atomic beam depending on the current

direction. The resultant magnetic field direction is then always 90◦ to the

background field set by the guiding coils provided the plate’s field strength

is much greater than the coil’s field strength. This provides the necessary

rotation angle for an optimised superposition of the five m states.

The guiding coil field strength varies with z position, see figure 5.5(b).

Therefore, for the packet of atoms that are detected, the total field strength

B will be different depending on the atom’s position when the phase object is

turned on and off. Subsequently, the timing of the current pulse determines

the rotation angle (and more importantly, the success of the spin-flip via the

spin-flip condition, ωL � ωB). This creates a field-strength-dependent limit of

when the current in the copper plate can be switched on/off.

5.2.2 The phase object

The phase object of the LSGI is a weak magnetic field created by passing a

current through a copper plate. Section 2.2.2 derived the equation for phase

shift, φ, due to the interaction between the atom and the magnetic field and
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is given by

Φ = m
gfµB
h̄

B(z)tws. (5.5)

This is dependent on the m state of the atom and two properties of the phase

object; the magnetic field strength and the interaction time. With the atom

in a superposition of states, the phase shift differs between each m state.

Comparing this with the refraction of light through a bi-refringent medium, we

are presented with a multi-refringent atomic-optical system of five polarisation

states rather than two in the optical case.

To help extract meaningful data from the observed phase shift, we need to

change the magnetic field strength, while keeping the interaction time constant,

or vice-versa. When the LSGI is implemented in a weak measurement scheme,

the magnetic field strength must be kept constant and the interaction time is

measured. However, for a simple initial step the LSGI is tested independently

by keeping the interaction time constant and measuring the average magnetic

field strength from the phase shift. Here the interaction time is well-defined

and controlled, therefore the LSGI can be well calibrated and optimised before

using it to observe the small changes in the atom’s transverse momentum for

the weak measurement.

Interaction strength between the atoms and the magnetic field

The phase object magnetic field is pulsed on and off during each atomic beam

pulse, therefore the LSGI interaction time is controlled by setting the TTL

pulse width, which switches the MOSFET controlling the current in the copper

plate. The total interaction strength is dependent on tws and B so any increase

in one can be compensated by a decrease in the other.

To select an appropriate interaction time of the phase object, the overall

magnetic field strength and shape must be considered. The field of the guiding

coils, given in figure 5.5(b), and the copper plate, figure 5.6, make the field
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strength of the phase object dependent on where the atoms are when the

current pulse is switched.

If the field is too strong, the temporal separation of the m states’ interfer-

ence fringes can become too small to resolve on the detector for the achievable

gate times, this relationship is modelled and shown in figure 2.7. Additionally,

a strong field gives rise to an unwanted B field gradient in the y direction

whereby the signal, separated by m states in x direction, again loses resolution

of the interference fringes for a given phase object length. This is investigated

in section 5.3.3 as the ‘Magnetic gradient parallel to the plate’.

The field strength also affects the spin-flip process. For the spin to be re-

projected at all, the field strength must be low enough to meet the spin-flip

condition. Additionally, the spin-flip rotation angle will determine the contrast

of the LSGI’s interference fringes. Therefore, it is often useful to visualise the

phase object duration as the length of the region that the atoms traverse, while

exposed to the phase object. This also becomes increasingly relevant for the

weak measurement design using the LSGI concept.

To test the LSGI we incrementally adjust the phase object duration be-

tween 1 and 100µs. For atoms travelling at 50ms−1 this corresponds to a length

of 0.05 - 5 mm. This change from the atomic velocity used in the matter-wave

interferometer (12 - 17 ms−1) is due to the increased signal intensity achieved

with faster atoms. For each data point, the phase object length is kept con-

stant, therefore any change in the observed phase shift at that point is due to

changes in the magnetic field strength.

Characterising the magnetic field of the phase object

The current used to induce the phase object magnetic field, is controlled by a

power supply (TTi, EX1810R) with a range of 0 - 10 A. Given that the MOS-

FET and copper plate are the only components of the circuit, no more than

1 V is required. Since the magnetic field strength is spatially varying, it must
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first be characterised. We can then select a current value to create a suitable

magnetic field strength in the vicinity of the atomic beam. The suitable range

of values are ones which do not cause the interference to over-modulate the

atomic signal (estimated in section 2.2).

The magnetic field strength, parallel to the plates, for positions along the

y axis, is given in figure 5.6(a). The current was increased from the typical

operating currents of 1-2 A up to 6 A, in order to resolve the small changes

in field strength given the Gaussmeter’s resolution of 0.3µT. The shape of

the gradient does not significantly vary as the current is reduced, so the field

magnitude is measured for a variety of currents at the same fixed position. The

probe of the Gauss meter has a sensor area, and hence a spatial resolution, of

0.3 mm. The magnetic field gradient was measured by moving the Gaussmeter

away from the plate along the x axis, as shown in 5.6(b). The measurements

are repeated for different currents.

(a) (b)

Figure 5.6: The magnetic field strength created by a current passing through a single copper
plate of 50x25x1 mm, as shown in figure 5.4. In (a) the probe was scanned across the 25 mm
width of the plate (along the y axis in figure 5.4), for a 2 mm distance in x, between the
probe and the plate, which is the distance between the atomic beam and the plate, for 6 A.
In (b) the probe was kept at y = 0 and incrementally moved further away from the plate,
along the x axis. This was repeated for 5 current settings; 1.2 A (black), 1.0 A (red), 0.8 A
(blue), 0.6 A (green) and 0.4 A (magenta).

Combining the two data sets shown in 5.6(a) and 5.6(b), it was possible

to extrapolate or interpolate to estimate the field strength, in a the region

near the plate for any current setting. Figure 5.7 shows how, for any current,

you can estimate the slope and intercept of the fit in figure 5.6(b) in order to
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estimate field strength at some position.

Figure 5.7: The values of the gradient (black triangles) and the intercept (red squares) for
each measured magnetic field strength curve in figure5.6(b). Mapping out the values this
way allows the magnetic field strength from any current, at any position in the local area,
to be well estimated.

Each measurement was taken with the plates set up outside the vacuum

chamber. The background magnetic field strength was measured and sub-

tracted to give each data point a value solely due to the current on the plate.

In practice, with the plates positioned inside the experiment we need to find

a way to eliminate, or at least attenuate, the natural background field so that

we can be sure the field strength matches the reference measurements from

outside the experiment.

5.2.3 Mu-metal shielding

Earth’s geomagnetic field measured by the National Oceanic and Atmospheric

Administration, is on average 20µT, 8µT and 44µT [59] for the experiment’s

x, y and z axes respectively, at the lab’s latitude and longitude. Discounting

any other field sources in the lab, the Earth’s field alone is enough to increase

the atoms’ Larmor frequency such that the spin-flip condition is difficult to
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meet. Additionally, the field will dominate over the phase object’s field, dis-

torting the rotation angles. These key obstacles lead us to design and build a

mu-metal shield to attenuate the natural background field strength.

The shield had to be cylindrical with a diameter no wider than 37 mm

in order to fit through the viewport of the chamber. Additionally, cylinders

are the optimum shape for mu-metal shields. The thickness of the shield was

limited to approximately 5 mm, any greater and it would start to restrict the

available volume to contain the phase object. Cylindrical mu-metal shields

have a stronger attenuation effect using multiple thin layers rather than one

thick layer [60], therefore two concentric cylinders of 2 x 1.5 mm thick walls

with a 2 mm gap were designed. The cylinders are closed ended to attenuate

the field in the z axis. The end caps were welded on to the bottom of the

cylinders and left loose on the top to allow the phase object to be inserted into

the shield. Slots were made on each end cap to allow the atomic beam to pass

through.

When positioned in the vacuum chamber, the cylinder blocks the path

between the detector chamber and the turbo molecular pump for atoms to

escape when the chamber is pumped down. To address this, the cylinders

were designed with holes in the end caps and the inner cylinder. The holes,

if too large or many, reduce the effectiveness of the cylinder’s attenuation.

Simulations were again used to demonstrate this effect and find the largest

possible hole size without reducing the attenuation of the shield.

The simulation of the field attenuation achieved with the final design is

shown in figure 5.9. With a natural background field strength of
√

3 mT, whose

direction is 45◦ from the x, y and z axis, the internal field reduces to ≈ 10 nT.

The simulation did not include fields entering from different directions, which

may permeate by different amounts through the holes. However, the degree of

attenuation shown by the model for the given field strength was strong enough

to suggest that typical fields from any other direction, which would likely be
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Figure 5.8: The exploded diagram of the mu-metal shield. The inner and outer cylinder
here are shown side by side with exploded parts. The design also includes a spacer that sits
at the bottom between the 2 cylinders.

much weaker, would not significantly contribute to the field within the shield.

(a) (b)

Figure 5.9: The magnetic field strength along (a) the cylinder’s axis and (b) across the
diameter of the mu-metal shield, modelled in COMSOL, with a 1mT external field in the
x, y and z directions. The plots show the field strength of Bx (red), By (blue), Bz (green)
and the total field, B (black).
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5.2.4 Observing individual states

Key to observing the phase change in the m states is the ability to observe

the signal from individual m states. Since the detector does not discriminate

between these states, it is necessary to either spatially separate the m states

using a magnetic field gradient or to isolate the m = 0 state using a ‘quench’

laser beam. Both were used while testing the experiment.

Spatial separation

The ideal solution for observing the m states is to spatially separate them

using a magnetic field gradient, as in a traditional Stern-Gerlach experiment.

This method measures the population of all the m states simultaneously and

allows a direct comparison of the phase shift between the m states. The easiest

design for this gradient was to run a wire along side the copper plate, which

was parallel to the slit orientation and very close to the atomic push beam, as

shown in figure 5.10. The wire was connected to a 60 V battery and a MOSFET

switch (Crydom D5450) that essentially short circuited the battery when the

switch was open. By keeping the switch open for only a few milliseconds, the

battery would momentarily carry a very high current of around 240 A, but

not have enough time to overheat and melt the circuitry. The resulting field

created was enough to resolve the 5 states on the detector despite the relativity

short distance between the detector and the wire of about 100 mm.

We only observe a fraction of the atoms of each push beam pulse due to the

exposure time set on the detector. The current switch is activated when the

atoms, which are later observed on the detector, are at a position level with

the wire. Modelling the wire’s magnetic field switch on time and subsequent

deflection of the atomic beam is shown in figure 5.11 and 5.12. This shows

that only a very momentary current pulse is needed for an efficient m state

separation.

Spatially separating the states using a wire requires a narrow transverse
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(a) (b)

Figure 5.10: (a) A CAD drawing showing the location of the Stern-Gerlach wire in relation
to the phase object (copper plate) and guiding coils. The approximate position of the atomic
beam is shown with the m states being deflected by the wire’s magnetic field gradient which
is shown in (b). The x axis indicates the radial position from the wire. The gradient of this
field is proportional to the transverse force that separates the m states.

Figure 5.11: The atomic deflection of a m = 2 atom after a TOF of 4 ms (v=50 ms−1). The
switch-on time of a 0.5 ms current pulse through the SG wire is varied.

velocity distribution of the atomic beam. If the distribution increases, it re-

quires a greater magnetic field gradient to be able to resolve the signal peaks
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from each m state. The transverse velocity can be selected using the collima-

tion slits. The transverse velocity spread needed to resolve the m states will

depend on the z position of the wire, the current on the wire and the atom’s

velocity. For atoms travelling at 50 ms−1 and when the wire is 100 mm from the

detector, the transverse velocity selection should be better than ≈ ±0.12 ms−1.

The spread in the atom’s final transverse position is not only dependent

on the slit’s transverse velocity selection. There is also a spread observed due

to the m state dependent interaction with the wire’s field gradient. Atom’s

with m < 0 will be deflected towards the wire and m > 0 are deflected away,

so m < 0 state atoms will experience a larger gradient and hence a larger

deflecting force due to the shape of the gradient from the wire, as shown in

figure 5.12. This results in a defocussing effect, which is stronger for the lower

m states.

Figure 5.12: A simulation of trajectories for five transverse initial velocities, between -0.1
and 0.1 ms−1. These are plotted as they pass through the magnetic field from a current
carrying wire centred on the black cross-hairs. Each velocity selection contains the paths
for the m = −2 (blue) and m = 2 (green) spin states. The focussing of +m states and the
defocussing of the -m states can also be seen.

Filtering

In some cases, spatially separating the atoms introduced further problems.

Firstly, there is uncertainty whether or not another spin-flip occurs when the
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SG wire turns on. Secondly, for very fast atoms or a poorly collimated beam,

the large SG wire current that is needed to achieve acceptable resolution be-

tween the states is too high for safe use of the equipment. Lastly and most

importantly, when considering the final weak measurement setup, the matter-

wave interference fringes will be distributed in the transverse direction (x axis).

The spin-state separation would then need to be distributed in the perpendic-

ular direction (y axis). This would again need collimating in the y axis and

hence would require pinholes to sufficiently collimate the beam in both the x

and y axes, thus massively reducing the signal. As a result, alternative meth-

ods were considered to observe individual states. One of which involves using

an 801 nm laser to ‘quench’ 4 of the 5 m states, such that only the m = 0 state

is present.

As described in section 3.3.1, laser cooling of metastable argon uses the

closed cycle transition 4s[3/2]2→4p[5/2]3, where the excited state always de-

cays back to the same J state. However, there is also a 4s[3/2]2→4p[5/2]2

transition that decays to the ground state (via the 4s[1/2]1 and 4s[3/2]1 state).

The quenching process can be stimulated in any of the five m states. How-

ever, selection rules allow particular states to be unaffected by the quench

beam. If the quench laser is polarised parallel to the quantisation axis of the

atom, the m = 0 state cannot absorb the photons. This will filter out the

m = ±1, 2 states by sending them to the ground state. A similar process can

be used to isolate the m = ±2 states using circularly polarised light, indicated

in figure 5.14.

It is necessary to use a magnetic field to define the quantization axis, but

care must be taken to use the correct field strength. If the field is too strong,

it will shift the energy of the transition via the Zeeman effect. This will shift

the transition frequency away from the frequency range of the quench laser.

Similarly as the atoms are travelling at a speed of approximately 50 ms−1 in z,

the quench beam must be perpendicular (in the yz plane) to the atomic beam
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Figure 5.13: Grotrian energy level diagram for this experiment’s relevant Argon transitions.

to avoid a change in the relative frequency due to the Doppler effect.

The quench beam source was produced by a 9 mm laser diode which was

designed to operate at 808 nm. However, since not all these diodes operate

at exactly 808 nm, it was hand picked by the manufacturer to be as close as

possible to 801 nm. The diode was operated using a current and temperature

controller (Thorlabs LDC220C and TED200C respectively) and laser frequency

was monitored using a wavemeter (High Finesse WS-u 30).

The lab’s ambient temperature was controlled by an air conditioning sys-

tem, using a built in PID-servo control. This control causes the lab temper-

ature to oscillate at a level that affects the laser’s temperature, which could

not be corrected by the laser’s temperature controller. Diode lasers change fre-

quency at about 0.3 nm per degree Celsius and the laser temperature controller

could only maintain a constant temperature to within ±0.1◦C. As a result, the

laser frequency slowly oscillates throughout the day. With the quench beam
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Figure 5.14: The excitation and decay schemes for various laser beam polarisations for
the 4s[3/2]2→4p[5/2]2 transition. At the bottom is the Clebsch-Gordon coefficients for
transitions between the states.

pointed directly at the MOT, we can get an idea of the range over which the

quench beam will interact with the atoms. This was about 200 MHz and is

indicated by the dotted line in figure 5.15(a)

To combat this, another PID-servo controller was introduced. The con-

troller was built in LabView and uses the output of the wavemeter as a feed-

back signal to send a voltage to the laser current controller via an Arduino

Uno. The plot of the Arduino controlled 801nm laser frequency can be seen in

figure 5.15(b). It stays well within the 200 MHz necessary for efficient quench-

ing. There are random spikes in the plot where the required voltage signal

for the laser current falls out of the immediate range of the Arduino output.

The Arduino output range is automatically adjusted and the output voltage

returns to the chosen setpoint.
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(a) (b)

Figure 5.15: The 801 nm laser frequency measured through the wavemeter over time. (a)
Over the course of the day, with no laser frequency stabilisation, the oscillations occur due
to small temperature changes in the laboratory, driven by the lab’s air conditioning unit.
(b) The same setup, but now with the Arduino PID-servo control adjusting the laser current
to compensate for the temperature oscillations.

Figure 5.16: A schematic diagram of the quench laser system.

The quench beam is passed through the atomic beam just before the the

atomic beam reaches the detector. Optical access via two parallel viewports

on a purpose made rotatable adapter, allow the beam to be retro reflected

and double the power density at the point of interaction, figure 5.17. The

rotatable adapter allows the quench beam to perpendicularly cross the atomic

beam. This is important since a small deviation from the perpendicular axis

can reduce the efficiency of this type of filtering. If there is a reduction in
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the orthogonality of the quench beam and the atomic beam (i.e. the beam

makes an angle from the xy plane), the atoms will see slightly Doppler shifted

photons as a result of the atom’s velocity in z. The shift brings the relative laser

frequency away from the transition frequency and hence reduces the interaction

with the atoms.

Figure 5.17: A CAD drawing showing how the quench laser is introduced into the experi-
ment, perpendicular to the atomic beam.

The quench beam is linearly polarised, the angle of which should be parallel

to the atoms’ quantisation axis in the region of interaction with the atomic

beam. The angle is optimised by rotating a half-wave plate to match the

quantization axis in the interaction region. This optimisation only works if

the magnetic field direction has no strong x component. The field direction

is estimated by measuring the x, y and z component using a Gaussmeter.

For settings used in this chapter, the field was measured as Bx = 1 ± 0.4µT,

By = 1± 0.4µT and Bz = 14± 0.4µT.

The data in figure 5.18 shows the optimisation of the quench beam polari-

sation. It is clear that even with the optimum polarisation angle, there is still

some atoms in the m = ±1 states that are not being filtered out. This inability
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Figure 5.18: Data showing the average atomic signal intensity for each m state as the angle
of the half-wave plate controlling the quench beam polarisation is rotated, m = −2 (black),
m = −1 (red), m = 0 (blue), m = 1 (magenta) and m = 2 (green). At 0◦ the half-wave
plate is transmitting light which is polarised in the z axis.

to completely quench the m = ±1 states is unlikely to be due to an incorrect

quench beam frequency, since the stretched states, m = ±2, which are even

further away from the central transition frequency than the m = ±1 states,

are still quenched efficiently. It is more likely to be caused by poor optimisa-

tion of the polarisation angle, which allows some m = 0, excited states to be

populated and then spontaneously emit from the m = 0 state back down the

m = ±1 states.

5.3 Results

5.3.1 Spin polarisation of the atomic beam

The atomic beam, constructed in chapter 3, demonstrated a m = 2 spin po-

larised source of metastable argon atoms. During the construction of the LSGI,

the mu-metal shield was introduced with the SG wire now positioned roughly

100 mm from the detector (figure 5.10). The atomic beam spin polarisation
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was tested again. The results showed that the beam does not maintain its spin

polarisation when the atomic beam passes through the shield. It was initially

thought that switching the current in the SG wire was causing a spin-flip and

hence a re-projection of the spin states. It was also considered that the low

field strength in the field and the deforming effect that the mu-metal has on

the magnetic field could cause regions of rapidly changing field direction in the

narrow entry slot of the cylinder. Either or both of these hypothesis could be

correct. The problem was overcome with the introduction of the guiding coils.

The guiding coils set the background field strength and direction. The

coils provide a constant quantisation axis that would dominate any small,

stray fields. Additionally, the direction of the guiding coil magnetic field is the

same direction as the SG wire magnetic field (in the moment that the SG wire

field is turned on). The guiding coils address both concerns of the loss of spin

polarisation that were introduced by the mu-metal shield. The atomic beam

polarisation was tested using the SG Wire for various guiding coil currents,

figure 5.19(a).

(a) (b)

Figure 5.19: (a) The atomic beam signal which has passed by a SG wire to spatially separate
the m states. The atoms were initially polarised in the m = 2 state and travel through the
mu-metal shield. With 0 A (red) passing through the guiding coils, a spin-flip is observed,
but with 4 A (black) the guiding coils maintain the background magnetic field direction,
hence maintain the spin polarisation. (b) Using a quench beam to isolate the states, the
changing populations of the m = −2 (black) and m = 0 (red) states as the current on the
guiding coils is varied. When there is no current, the loss of a well-defined quantisation axis
allows a spin-flip that causes the initial m = 2 polarisation to be lost.

The result shows the spin polarisation of the atomic beam is not perfectly
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pure, so even when the stretched states are maximally populated, there are

always some atoms in the remaining m states. In order to investigate any effect

of a possible spin-flip from the switching-on of the SG wire, the atomic beam

was quenched to measure the population in m = 0. Comparing the results from

the two methods also highlights the value of the extra information gained by

spatially separating the atoms.

5.3.2 Spin-state re-projection

Superposition

Initially we test the spin-flip re-projection by looking at the populations of

each m state after a single rotation of the the quantization axis. Comparing

the results to equation 2.16 we can determine the success of the spin flip and

the angle of rotation.

To initiate the spin-flip, the current on the copper plate is switched on when

the atoms pass by the copper plate. The push beam and detector is configured

to only observe atoms with a TOF velocity of 51.5 ± 0.1 ms−1 which equates

to approximately 1 mm of the falling atom packet. This means the rotation

angle calculated from this data is correct for a longitudinal region of 1 mm. At

this velocity the majority of the atoms pass by the copper plate between 1.8

and 2.7 ms after the atoms were pushed from the trap. Comparing the results

with the model, we can determine the angle between the quantization axes set

by the guiding coils and the quantisation axis set by total field (guiding coils

plus the phase object).

The current through the copper plates remained switched on until the

atoms reached the detector. This meant that there was no abrupt switch

off of the magnetic field and hence no second superposition due to a spin-flip.

As a result the populations observed at the detector were due to a single spin-

flip re-projection only. The signal intensity peaks for each m state are shown

in figure 5.20. Here the guiding coil current was set at 1 A and the phase
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Figure 5.20: The atoms’ m state populations after experiencing a spin-flip due to switching
on the current in the copper plate. The z axis shows the time between the start of the
push beam pulse and when the current is switched on. Peaks with areas equivalent to the
expected m state populations, for a π

2 spin-flip rotation angle, are shown in red.

object (copper plates) current was set at at 15 A. This meant the phase object

magnetic field easily dominates the guiding coil field and the rotation angle

was very close to 90◦.

The second spin-flip

A similar procedure was carried out to test the rotation of the quantization

axis when the phase object field was switched off, as shown in figure 5.21. The

rotation angle in this case is between the field direction of the total magnetic

field (the phase object plus the guiding coil) and the guiding coil field alone.

The phase object was switched on before the atoms were pushed from the trap.

This way the atoms adiabatically align with the quantisation axis set by the

phase object as they fall through the apparatus. No re-projection happens
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yet since the atom’s quantisation axis rotation happens much slower than the

frequency of the Larmor precession. When the phase object field is switched

off, the rotation rate is much quicker than the Larmor precession frequency.

The spin-flip condition is therefore met and the populations of the m states

are determined by the angle of rotation.

Figure 5.21: The atoms’ m state populations after experiencing a spin-flip due to switching
off the current in the copper plate. The z axis shows the time between the start of the
push beam pulse and when the current is switched off. Peaks with areas equivalent to the
expected m state populations, for a π

2 spin-flip rotation angle, are shown in red.

These projections were achieved with 2 A current (12.56 V/6.3 Ω) on the

single copper plate and 1 A on the guiding coils. The data for figures 5.20

and 5.21 were obtained using constant push beam parameters, so the atom

velocities are consistent between the data sets. At these velocities, the atoms

are level with the top of the copper plate after 1.8 ms from the atoms being

pushed from the trap and are level with the bottom of the copper plate after

2.7 ms. In figure 5.21 we see that at 2.0 ms after the atoms are pushed, the
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spin-flip condition is not met, even though by 2.0 ms the atom would be 1 cm

(0.2 ms×51 ms−1) lower than the top of the plate. It is only until 0.3 ms after

passing the top of the copper plate that the condition is met. This could be

explained by the fact that the region above the plate is close to the centre

of the top guiding coil. This increases the magnetic field strength, hence a

higher Larmour frequency would be produced and a faster axis rotation would

be necessary to meet the spin-flip condition. In addition, having a stronger

background field makes it harder for the phase object field to dominate the

overall direction and rotate the quantisation axis quickly enough or by a large

enough angle.

5.3.3 The phase object

To create the interferometer, switching on and switching off the phase object

magnetic field is now done in the same push cycle. The phase change acquired

between each spin-flip is encoded in the resulting interference. After this pro-

cess, the spin states are spatially separated by the SG wire and the interference

is observed as oscillations in the m populations. To change the acquired phase

shift, adjustments can be made to either the magnetic field strength or the

phase object length (the TTL pulse width).

Varying the phase object length with a high field strength

Here we use a phase object duration of t = 1.4− 4.0µs which is equivalent to

a 70-200µm phase object length, for atoms travelling with an average velocity

of ≈ 51 ms−1. The phase object duration is changed by increments of 0.1µs

and the changes in the m state populations are observed and compared with

the model. This comparison is shown in figure 5.22 where the current supplied

to the plate was again 2 A. The model of the m state populations was fitted to

the experimental data using equations 2.23 and 2.26. Since t was given by the

pulse generator with a negligible uncertainty, the magnetic field strength B was
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Figure 5.22: The m = 0 (blue), m = 1 (red) and m = 2 (black) populations as the length of
the phase object is increased from 1.4-4µs. The model was fitted using 2 parameters, the
magnetic field strength, B, which determines the oscillation period and the spin-flip rotation
angle θ1 (= θ2), which affects the relative peak heights. The data is normalised to clarify
the relative peak heights.

left as a free parameter. From this, B was calculated to be 38.56±0.22µT with

the uncertainty given in the parameter calculated with a ‘variance-covariance’

matrix during the Levenberg-Marquardt fitting algorithm in OriginPro. This

gives a measurement for the average magnetic field strength through the phase

object and is consistent with the calculated field strength from section 5.2.2.

It is an average value since the total field magnitude will slightly change across

the phase object due to z dependent contributions from the guiding coil.

The relative peak heights of each m state are dependent on the quantization

axis rotation angle for the first and second spin-flips, θ1 and θ2. The data

was compared with the model (section 2.2) and indicated a rotation angle of

approximately 2π
5

. This is in broad agreement with the angles presented in

section 5.3.2, which suggested that θ1,2 ≈ π
2
.
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Varying the phase object length with a low field strength

The measurement was repeated for a lower magnetic field strength, which

was achieved by inserting a larger resistor in the phase object circuit. At

7.5Ω, the current was 1.7 A. The magnetic field strength was calculated to be

33.41± 0.35µT by again fitting to the data in figure 5.23. The switch-on time

of the phase object (or the atoms’ z positions during phase object interaction)

was slightly later than the previous data. This means they are in a different

field strength due to the guiding coils. This will contribute to a different overall

field strength and also a different rotation angle for the spin-flip process and

can be seen in the data as the maximum peak height ratios between the m

states. The value for the rotation angle was estimated to be 3π
7

.

Figure 5.23: The m = 0 (blue), m = 1 (red) and m = 2 (black) state populations as the
length of the phase object is increased with 1.7 A passing through the copper plate.

Magnetic field gradient parallel to the plate

So far the LSGI has only been tested with a phase object interaction time, t,

of up to 4µs, which is approximately an atom packet of length 200µm, for

atoms with a velocity of 51 m s−1. In order to develop the LSGI for a weak
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measurement, the phase object length needs to be of the order of millimetres,

irrespective of the atomic velocity.

Testing was carried out with incrementally longer phase objects. When

t was extended to 10µs and beyond, a secondary m state oscillation begins

to emerge. This secondary oscillation is along the y axis, across the length

of the individual m state’s signal, as shown in figure 5.24. When the phase

object length is set so that the interference phases cause the m = 2 state to

be maximally populated, you would expect the entire length of the m = 2

signal area to be illuminated. However, we can see in the detector signal that

while the top section is illuminated, the bottom part isn’t. As t increases,

the bottom part becomes illuminated as the signal in the top part decreases.

As t continues to change the m = 2 signal in the y axis, where the spatially

separated m = 2 state atoms land, has an oscillating intensity.

Figure 5.24: Raw data of the atomic beam signal on the detector. The beam has been split
by the SG wire into five spatially separated m states. The empty box indicates where the
atomic beam passes in relation to the copper plate and the direction of the associated B
field. The signal is approximately 2 mm tall and wide. As the phase object pulse length is
extended from 9.5 to 10.9µs, the population of the states oscillate. The oscillation can be
seen in the y direction due to a gradient in By.

This oscillation shows that the interaction strength was not uniform along

the y axis i.e parallel to the copper plate. Since the interaction time is well-
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defined and fixed, the oscillating signal parallel to the plate must be due to a

gradient in the y direction of the total magnetic field strength, B. This non-

uniformity in B doesn’t dominate the phase difference, φ, when using a short

phase object length, t, as in the previous section, but slowly becomes more

and more significant as t increases. The dependency of φ on B is exaggerated

if t is increased since φ ∝ Btpo

Testing of ∂B
∂y

was done with a phase object pulse duration of t = 10µs.

Much higher values of t induced a gradient too high to clearly observe the

oscillation frequency. A quantitative analysis of this oscillation is in figure

5.25. For this data, the signal was measured for a 0.4 x 2.4ṁm region at the

top and bottom of the signal.

(a) (b)

Figure 5.25: The atomic signal intensity as the phase object interaction time is varied, for
different sections of the m = 2 signal. Measurements are taken for the signal intensity at
the top (black) and bottom (red) of the boxed region shown in figure 5.24. (a) shows the
position of maximum signal intensity as the phase object interaction time is extended for a
plate current of 1.7 A (b) shows the same measurement but for plate current of 10 A.

The peaks are again fitted using equation 2.24 and solved for B, the mag-

netic field strength. For a current of 1.7 A through the plate, the magnetic field

strength changed between 38.17 ± 0.06 and 39.49 ± 0.04µT along the 2 mm

length of the signal in the y direction. This is a B gradient of 660µT m−1.

Whereas in the case of 10A on the copper plate, the difference in field strength

for the same two positions was between 122.43±0.1µT and 110.17±0.11µT, a

gradient of 6.13 mT m−1. This increase in the magnetic field gradient indicates
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that a dominant source of the gradient is the current in the copper plate rather

than the guiding coils or stray fields.

The magnetic field gradient parallel to the copper plate was measured using

a Gaussmeter and shown in the data of figure 5.6. The change in magnetic

field strength for 6 A of current, in the region of the atomic beam (1 mm either

side of the centre of the copper plate, along y, and 2 mm away from the plate

surface, along x) is 93µT and 92.1µT, giving a gradient of 300µT m−1. This

shows a discrepancy between the gradient measured with the LSGI and the

gradient measured using the Gaussmeter.

At this point in the experiment, the plate was connected by only one wire

on either end, whereas the measurements done on the bench top had the plate

connected by two wires on each end. Within the LSGI, the current input was

connected to the top corner and the ground to the bottom corner, on the same

side as shown in figure 5.26(a),

(a) (b)

Figure 5.26: COMSOL simulations of the current density and direction for (a) 2 terminals,
both attached on the same side (b) 4 terminals, attached on all sides. The arrows indicate
the current direction. When 2 terminals are used, the direction is not always completely
parallel with the long edges of the plate and the current density is less uniform than when
using 4 terminals.

The current density along the width of the plate, which would define the

magnetic field strength at positions parallel to the plate is shown in figure

5.27, for a copper plate connected with one terminal at either end, and two
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terminals, one on each corner.

Figure 5.27: The copper plate field strength, By along the y axis for either 2 (black) or 4
(red) terminals connected to the plate. Modelled in COMSOL, this can be fully visualised
in 2D in figure 5.26.

It was critical to minimise the non-uniformity along the plate for the subse-

quent weak measurement experiment. To do this, the copper plate was recon-

nected with 4 terminals as shown in 5.26(b). The guiding coils are modelled to

have some non-uniformity in the radial direction (x or y). By also decreasing

the current through the guiding coils and also the plate itself, all the contribu-

tions to any magnetic field gradients were reduced. The interaction time could

be increased up to 80µs without introducing significant oscillations in the y

direction, as shown in figure 5.28

Analysing the data shows a magnetic field strength of 41.00± 0.03µT and

40.28 ± 0.03µT for the top and bottom respectively and an average gradient

of 360µT m−1 was measured over 4 mm longitudinally. This is a significant

reduction compared to the gradient of 660µT m−1 over 250µm across the

signal in the y axis for the case when the plate was connected using only two

terminals.

The data also indicates a change in the rotation angle during the spin-flip
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Figure 5.28: Raw data of the atomic beam signal on the detector. The beam has been split
by the SG wire into five spatially separated m states. The empty box indicates where the
atomic beam passes in relation to the copper plate and the direction of the associated B field.
As the length of the phase object pulse is extended from 100 to 101.4µs, the population of
the states oscillate. There is little to no oscillation in the y direction.

Figure 5.29: The signal intensity of the m = 2 state as the phase object interaction time
is varied, for different sections of the signal for a plate current of 1.7 A. Measurements are
taken for the signal intensity at the top (black) and bottom (red) of the boxed region shown
in figure 5.28.

process. It can be seen that while the m = 2 state is maximally populated,

there are still some atoms in the m = 1 state and even the m = 0 states. Re-

ferring to the simulated results for different rotation angles in figure 2.8, the
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populations of m = 0,±1 when m = 2 is maximally populated, increase as the

rotation angle moves away from 90◦. Another result of an acute or obtuse ro-

tation angle (rather than the 90◦ rotation) is that the m = 2 population/signal

will never reach 0. This is observed in the raw data in figure 5.29.

Despite the oscillations in the population not being as distinctive for longer

phase object lengths, the oscillations that the interferometer did produced

could still be used to couple the m state population to the transverse mo-

mentum for a weak measurement. Extending the length of the phase object

without seeing large magnetic field gradients was also a useful accomplishment.

The atomic velocity used in this data is approximately 49 ms−1. At this veloc-

ity, a phase object interaction time of 80µs equates to a phase object length

of approximately 4 mm. Achieving m state interference using a 4 mm phase

object length provides sufficient space to fit in a new tilted field for the weak

measurement.

5.4 Conclusions

This chapter has demonstrated a measurement of the Zeeman phase shift ac-

quired by metastable argon atoms, as a result of interacting with a magnetic

field in an (LSGI). Two spin-state superpositions were created using a spin-flip

process and the phase acquired between them is observed as interference fringes

in the probability density of individual m states. The m states were observed

separately using a state dependent force from the magnetic field gradient of a

Stern-Gerlach (SG) wire.

For a given current of 1.7 A in the interferometer, a magnetic field strength

of 33.41 ± 0.35µT was measured using the induced phase shift. The spatial

distribution of the field strength was also measured. Using this technique,

small gradients in the magnetic field strengths were measured.

The interferometer has demonstrated a measurement of magnetic field de-

pendent phase shift in atomic spin states for a fixed interferometer interaction

135



time. Modifying the LSGI such that the interaction is for a fixed magnetic

field, but is dependent on time, indicates a path towards making a weak mea-

surement of transverse momentum in a matter-wave interferometer.
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Chapter 6

A weak measurement of the

transverse momentum of an

atom

The experimental results of this project have demonstrated the successful im-

plementation of two important components required for a weak measurement

of the atomic transverse momentum. This includes a multi-slit, matter-wave

interferometer and the measurement of the Zeeman phase shift induced by a

longitudinal Stern-Gerlach Interferometer (LSGI). Both have been achieved

using the same metastable argon cold, atomic beam and detector. For mea-

surements of transverse momentum, we aim to combine these two elements to

create a weak measurement of the atom’s transverse momentum in a matter-

wave interferometer. In order to do this, the phase shift measured within

the LSGI must be dependent upon the atom’s transverse momentum. This

is achieved by introducing a permanent magnetic field which is tilted with

respect to the atomic beam’s transverse axis. Such a magnetic field configu-

ration ensures that the time which an atom spends in the field, and hence the

observed phase shift, is dependent on its transverse momentum.
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6.1 Experimental Sequence

The LSGI is modified from the experiment presented in chapter 5 to under-

take weak measurements of transverse momentum. As before, the atomic

beam is spin polarised and passes through the multi-slit grating, where the

atoms diffract and acquire a new component to their transverse momentum.

The atoms pass through the mu-metal cylinder, into a region of magnetic field

created by the guiding coils. The field direction sets the atom’s quantisation

axis in the z direction. The atoms now fall past two copper plates, which re-

place the single copper plate to increase the magnetic field uniformity. When

Figure 6.1: A schematic of the LSGI with the weak measurement stage included. The
diagram shows the apparatus from two angles. The apparatus is generally the same as the
LSGI (figure 6.1), although now there are two copper plates to improve field uniformity (one
is removed in the xz view), the plates are rotated 90◦ and the tilted field is introduced.

the current through the plates is activated, the new transverse field direction
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rapidly rotates the atom’s quantisation axis, creating a linear superposition

of five spin states (m states). While in this state, the atoms fall through an

additional weak measurement field, which is tilted to create the transverse

momentum dependent interaction time. This field is the new addition that

differentiates the experiment from the LSGI. The current for this field has no

time dependence and is always constant. The atoms acquire a transverse mo-

mentum dependent phase shift of their spin due to the transverse momentum

dependent interaction time.

The atoms fall through the weak measurement stage and remain in the

phase object interaction stage until the current on the copper plate is switched

off. At this point, as in the LSGI, the atom’s quantisation axis is rapidly

rotated back to the z axis and in doing so creates a new superposition of phase

shifted m states. The new state creates interference in the probability density

of the m state populations. The atoms then fall towards the detector and

the individual m states are observed after a spatial separation via a Stern-

Gerlach wire, or by optical quenching as previously described. The phase shift

is observed as an intensity modulation of the interference pattern, allowing the

transverse momentum to be measured.

6.2 Weak measurement design

Here, the design requirements for the magnetic field used for the weak mea-

surement in terms of the geometry of the field, its spatial localisation and its

uniformity are presented.

6.2.1 Creating a uniform field for the weak stage

In the LSGI, the phase shift in the atom’s spin is measured using a pulsed

current in a copper plate. The interaction time does not depend on the atomic

momentum and cannot be used for a weak measurement of transverse mo-
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mentum. The magnetic field of the weak measurement stage should allow the

atom’s interaction time to vary only according to the atom’s transverse veloc-

ity. This means introducing a uniform, permanent, tilted magnetic field with

fixed dimensions. This can be produced by a pair of thin wires, carrying equal

currents in opposite directions, creating a magnetic field which is uniform along

the length of the wires. The field direction, measured along the line which is

equidistant from each wire, is perpendicular to the current direction, this is

illustrated in figure 6.2.

Figure 6.2: A cross section of the magnetic field created by two wires carrying current in
opposite directions. The line bisecting the wires, has a field direction orthogonal to the
wires.

To position the wires such that the magnetic field is uniform in the trans-

verse x axis, the copper plates from the LSGI are rotated 90◦ so that they lie

in the xz plane, instead of the xy plane used for the LSGI, this is shown in

figure 6.1. The wires can then lie in the xz plane, unobstructed by the copper

plates. The wire pair are separated by 2 mm shown in figure 6.3.

The wire pair are tilted by θt and set at 15◦ with respect to the y axis to

create a transverse momentum dependent interaction time. The tilt angle is

chosen such that the resulting phase shift distribution for a given magnetic

field strength and distribution of transverse and longitudinal velocities, vx,

does not contain a phase shift greater than π
2

for all observed velocities. This

ensures that the observed phase is approximately linear and no two vx values

give the same phase shift, φ(vx). Atoms initially polarised in the m = 2

state, which pass through the spin-state interferometer and are detected in the

m = 0 state will have a signal modulated by 3
8

sinφ(vx)
4 (see equation 2.39).
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Figure 6.3: A CAD drawing of the how the wire pair would be positioned in the existing
LSGI. The atomic beam passes through the centre of this apparatus along the z axis and
towards the detector below. The two coils and the copper plates of LSGI are still used to
set the quantisation axis and create a spin-flip, respectively.

The phase shift for a range of vx is shown in figure 6.4. A peak magnetic field

of 150µT is chosen to give an approximately linear phase shift for the given

weak measurement field design.

(a) (b)

Figure 6.4: (a) The range of transverse velocities of an atom passing through the tilted
field which has been diffracted by a multi-slit grating while travelling at 51 ms−1. (b) The
resulting modulation of the signal intensity, 3

8 sinφ(vx)4, for a range of transverse velocities
and a field tilted at 15◦ to the transverse plane.
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The new field direction within the weak stage is then 90-θt degrees from the

quantisation axis set by the copper plates. The combined field strength of the

copper plate and wire pair is shown in figure 6.6. As the atom falls through

the wire pair, its quantisation axis rotates 75◦ and then -75◦ as it falls towards

and away from the the wire pair. The atom’s spin precesses about this field

direction and the spin axis follows the changing field direction adiabatically for

the atomic velocities achievable with the atomic beam. This rotation does not

cause a spin-state re-projection since the rotation rate is slow and the spin-flip

condition (ωL � ωB) is not met. Only the field strength is relevant here which

we use to determine the phase shift.

The wire pair design also allows the magnetic field’s z position to be ad-

justed. This means the weak measurement can be made at various distances

from the grating to build up a map of the transverse velocities and reconstruct

average momentum flow lines.

6.2.2 Localising the field

Introducing this new weak stage field into the existing phase object requires the

field to be well localised in the z direction. The copper plate’s magnetic field,

must still be used to provide the spin-flip that creates the m state superposition

in the LSGI. This new field could potentially interfere with the rotation rate

and rotation angle of the spin-flip. Furthermore, magnetic field gradients will

limit the length of the phase object and hence the weak stage. As described in

section 5.2.2 and tested in section 5.3.3, the phase object length cannot exceed

≈ 80µs due to the field strength of the guiding coils and field gradients in the

y direction across the face of the copper plate.

Localising the field is also important as the weak stage length defines the

longitudinal spatial resolution of the weak measurement. To localise the field

of the weak stage produced by the wire pair we use a mu-metal shield. This is

in addition to the existing mu-metal shield that houses the LSGI. The wires
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are enclosed within a mu-metal rectangular tube measuring 1.5 x 3 x 22 mm.

A empty volume between the wires and a slot in the centre allows atoms to

pass through and interact with the magnetic field, as shown in figures 6.5 and

6.6.

Figure 6.5: A CAD drawing showing the design for the mu-metal shield housing the wire
pair. The shield is held at a fixed angle of 15◦ by two PEEK clips. The clips allow the weak
measurement to be translated to different z positions. Also visible is the slot which allows
the atomic beam to pass through. One of the copper plates has been made translucent to
reveal the inner detail.

(a) (b)

Figure 6.6: The direction and strength of the wire pair and the copper plate combined field,
including the attenuation from mu-metal shield, modelled in COMSOL. This is the direction
of the quantisation axis after the first spin-flip. (a) The field direction in the xz plane. (b)
A cross section of the two wires and shield in the yz plane with the two copper plates on
either side.

143



The slot creates an unavoidable problem of the slot reducing the effect of

the shield in the region of the atomic beam. The size and shape of the slot is

designed to achieve a balance between being large enough to allow a sufficient

portion of the atomic beam through, but not too large such that the strength of

the magnetic field significantly interferes with the magnetic field of the copper

plates. Trying different designs in COMSOL showed the optimum shape had

rounded corners and a width or height as narrow as possible. Given the matter-

wave interferometer diffracted the atoms in the transverse x direction, the

atomic signal in the y direction was not a priority. The final design is shown

in figure 6.7

Figure 6.7: A view of the final slot design in the xy plane. The position of the wires within
the shield are also indicated.

The combined field strength of Bx and Bz from the copper plate and the

wire pair, for atoms passing through the centre of the slot and with no trans-

verse velocity, is shown in figure 6.8. To calculate the effect that the wire pair

have on the spin-flip process we recall that the probabilities of the m states

when in superposition are dependent on the spin-flip rotation angle (section

2.2.1). Assume that the copper plate and wire pair would turn on at the same

time. The spin-flip rotation angle is then between the z axis and combined
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Figure 6.8: The Bx (blue crosses), Bz (red crosses) and Bnorm (black line) magnitudes that
an atom with vx = 0ms−1 experiences while travelling past the copper plate and then in
addition, through the weak measurement field.

field direction of the copper plate and wire pair. The angle depends on the

atom’s position when the two fields are turned on, this is shown for 4 mm above

and below the wire pair in figure 6.9.

In this representation, it is clear that the field from the wire pair will

cause a spin-flip rotation angle of 60◦ or less at 2 mm above the wire pair.

This will reduce the contrast of the spin-state interference fringes of the LSGI.

However, by reversing the current on the wire pair, it may be possible to find

a small region of field direction that keeps the rotation angle closer to 90◦. It

may also be possible to use a better combination of field strengths and tilt

angles such that the wire pair field has a reduced effect on the copper plate

field. A greater tilt angle would increase the angle from the vertical axis of

the total magnetic field direction (copper plate and wire pair). Increasing

the tilt angle also reduces the magnetic field strength needed from the wire

pair to differentiate between the phase shifts for the atom’s given transverse

momentum distribution. This would also reduce the overall influence the wire

pair field has on the copper plate field.
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Figure 6.9: The spin axis rotation angle experienced by an atom that is quantised along the
z axis and is then exposed to the combined field of the wire pair and the copper plates. The
red and blue data show the angle for two opposite current directions and hence magnetic
field directions. This is given for various positions from the position of the wire pair, z=0.

6.2.3 Transverse uniformity of the magnetic field

In the weak measurement region, the observed phase shift in the spin wave-

function is dependent on either a change in the magnetic field strength or a

change in the interaction time. Therefore, in order to relate the phase shift

to only the interaction time, the magnetic field strength must be sufficiently

uniform across the region that the weak measurement is made.

The wire pair create field uniformity, along the length of the wires. How-

ever, introducing the mu-metal shield to localise the field deforms the areas

of constant magnetic field strength. The area over which the weak measure-

ment is made on the atoms is defined by the 2 x 0.6 mm slot in the mu-metal

shield. The field around the mu-metal shield was modelled in COMSOL and a

magnified area of the central region of figure 6.6(a) is shown in figure 6.10(a).

The signal modulation is given for atoms with the same transverse velocity,

but with a range of transverse positions. Again, this modulation is given

by 3
8

sinφ(vx)
4. Here, we show that for an arbitrary fixed transverse velocity,
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(a) (b)

Figure 6.10: (a) Atom trajectories for a fixed transverse velocity are shown in white crossing
the magnetic field strength of the tilted wire pair. (b) Shows the modulation of the atomic
signal, due to the spin-state interferometer, as a function of position, for a fixed transverse
velocity. The plot acts as a magnetometer and shows the region of uniformity in the x
direction.

there is a 100µm region of the weak measurement field that will give a uniform

modulation of the signal intensity due to an almost uniform B field.

The area of this uniform region depends on the size of the slot in the mu-

metal shield and the current in the wires. The width of the uniform region

determines the transverse width of the interference pattern over which the

weak measurement can be made. A small fluctuation of B across the chosen

transverse length will contribute to the error in the measurement of transverse

momentum. It should be noted that a change in B as little as 0.2µT, will

change the shape of the phase shift curve plotted in figure 6.10(b) such that the

uniformity is lost. As a result, to achieve the desired uniformity, a very precise

measurement and control of the magnetic field strength would be required.

6.2.4 Resolution of the measurement of transverse mo-

mentum

With the proposed design, the spatial resolution of the weak measurement

of the transverse momentum is not sufficient to observe precise details of the

atom’s transverse momentum distribution, such as the spikes discussed in sec-
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tion 2.3.1.

The longitudinal spatial resolution of the transverse momentum measure-

ment is an average value taken over the length of the phase object. This is

at best 2 mm in the current design. However, the simulations show that the

kinks occur over distances of ≈ 0.1 mm or less. In the near field of the matter-

wave interferometer (figure 2.14(a)), the kinks would be too close together and

would not be observed. If the longitudinal resolution of the weak measurement

Figure 6.11: The signal intensity modulation due to a transverse momentum dependent m
state phase shift, for atoms exiting the weak stage in m = 0. The plot effectively shows the
transverse momentum dependence of the phase shift and this is shown for measurements
taken at 3 distances from the grating, 40 mm (black), 60 mm (red) and 80 mm (blue).

is infinitely small, like in figure 6.11, then the spikes begin to appear when the

plot uses an x data-point resolution of 2µm or less. However, the width of the

spikes will be affected by the longitudinal resolution. The width may increase

if the longitudinal resolution is decreased. i.e. if a measurement made over

a longer vertical distance. Figure 6.12 shows a magnified view of one of the

spikes for three different longitudinal resolutions. In this case the transverse

resolution is infinitely small.

For the measured transverse momentum to be coupled with a position, the

MCP detector should coincide with the end of the phase object magnetic field.

In this configuration, the detector’s resolution in the x axis limits how close
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Figure 6.12: The signal modulation due to changes in the atom’s transverse momentum
across a small region containing the characteristic ‘spikes’ or ‘kinks’ in the atom’s momen-
tum. The plot shows the average transverse momentum measured using a weak stage length
of 100µm (black), 500µm (red) and 1 mm (blue).

to the grating we can measure the spikes. For example, three pixels would

be needed to resolve two spikes, given the current detector resolution limit

of 11.4µm, meaning the spikes would be separated by 22.8µm. The spikes

should occur with roughly same separation distance as the fringes, therefore

the minimum grating-detector distance would be approximately 40-10 mm for

atoms travelling at 50-12 ms−1. Any measurement closer to the grating would

not be possible.

6.3 Further experimental considerations

In order to realise the weak measurement of transverse momentum, the follow-

ing points would need to be considered.

Measuring the transverse magnetic field uniformity

The magnetic field uniformity of the wire pair can be measured by setting

θt = 0. In this configuration, each atom within the detector’s exposure win-

dow will spend approximately the same period of time interacting with the
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weak measurement magnetic field. Therefore, any modulation observed in the

probability density will have arisen due to modulation in the magnetic field

strength alone. From this, the field strength and region of uniformity could be

characterised. This would need to be performed before any weak measurement.

Longitudinal uniformity of the magnetic field

This concerns the deflecting force that would arise from the gradient in the z

direction as the atom passes through the weak stage. The mathematical de-

scription of the weak measurement assumes that the magnetic field is uniform

throughout the interaction. In this simplified case, there is a small gradient

upon entry to, and exit from, the field, but the atom’s accumulated phase

can simplified as a change in the Larmor frequency due to a magnetic field B,

ωL =
gfµBB

h̄
. As discussed, the wire pair create a transversely uniform field,

however, there is no uniformity in the longitudinal direction. This gradient

means there is an additional force deflecting each m state and for a tilted field

there is a limit to how steep the gradient can be before the wavepacket is

spatially separated according to its m states, via the Stern-Gerlach effect.

Position-measurement coupling

In order to relate the measurement of transverse momentum to a transverse

position, the final position detection should be made as close as possible to

the end of the weak measurement field. This means that the detector should

have the capability to move in the z direction, along the beam axis. The

detector that has been used is a standard 2-dimensional MCP detection stack

with a modified design so the stack is removable from its flange. The stack

is secured to the flange at three points using long screws. The screws can be

replaced with threaded pillars and a lock-nut mechanism which would allow

the distance between the stack and the flange, to be adjusted and fixed.

In addition, the phase object would need to be modified for it to be posi-

150



tioned close to the top of the detector. In its current form, with the guiding

coils and the copper plates, the closest that the detector could realistically get

to the measurement position is approximately 30-40 mm.

6.4 Conclusions

A design for a weak measurement of transverse momentum of an atom in a

matter-wave interferometer has been presented. The design combines a multi-

slit matter-wave interferometer and a modified longitudinal Stern-Gerlach in-

terferometer (LSGI) to infer the atomic transverse momentum from the phase

shift observed in the atom’s spin states. The LSGI is tilted with respect to

the atomic beam’s transverse axis such that the interaction strength of the

interferometer’s magnetic field is dependent on the interaction time.

The design was modelled to show the limitations of the apparatus in terms

of the spatial resolution of the weak measurement.
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Chapter 7

Summary and conclusions

7.1 Summary of Experiments

7.1.1 Velocity-tuneable cold atomic beam

An atomic beam for a weak measurement of transverse momentum in a matter-

wave interferometer requires a metastable atomic beam with a well-defined

and narrow velocity distribution. This requirement led to the creation of a

metastable argon atomic beam generated by applying radiation pressure from

a laser to a cloud of cold trapped atoms. The resultant atomic beam was then

velocity-tunable over a wide range by adjusting the properties of the push

beam. Longitudinal velocities in the range of 1-50 ms−1 were demonstrated

by adjusting the push beam frequency or pulse length and were shown to be

suitable for the mater-wave interferometry experiment. The transverse and

longitudinal coherence length of the beam was sufficient to resolve interference

fringes for atomic velocities of up to approximately 18 ms−1.

A closed cycle transition in the atom’s metastable state was used to spin

polarise the atomic beam when the light was left or right circularly polarised,

with this an atomic beam in a pure m = −2 or m = 2 state was prepared.

This important step was required for the construction of the spin-state inter-

ferometer.
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7.1.2 Matter-wave interferometer

A multi-slit matter-wave interferometer was constructed for a weak measure-

ment of transverse momentum of an atom. While the primary reason for

building the interferometer was for weak measurements, the interference pat-

tern was also used to characterise the atomic beam and to make a measurement

of the Van der Waals C3 coefficient.

The fringe spacing was used to measure the average longitudinal velocity

of the atomic beam at the position of the grating. This velocity measurement

was considered an improvement over the typical time-of-flight (TOF) velocity

measurement and shows a new method for characterising the atomic beam.

Additionally, the Van der Waals coefficient C3 was measured. To our knowl-

edge this was the first time such a measurement has been made for metastable

argon.

7.1.3 Longitudinal Stern-Gerlach interferometer

The experiment demonstrated a measurement of the atom’s Zeeman phase

shift acquired by metastable argon atoms, as a result of an interaction with

a magnetic field in a longitudinal Stern-Gerlach interferometer (LSGI). The

successful demonstration of this was important for the design of the weak

stage.

The average magnetic field strength within the interferometer was also

measured from these phase shift measurements. The spatial distribution of

the field strength could also be measured since the phase shift was observed

for atoms with different paths through the interferometer. Using this tech-

nique, small gradients in the magnetic field strengths were measured. These

measurements were important as they affect the final application of the weak

measurement of transverse momentum using a modified LSGI.

Based on this work I designed and modelled a feasible scheme to under-

take weak measurements of transverse momentum. This involved tilting the
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magnetic field of the LSGI such that the interaction strength that determines

the atom’s phase shift is dependent on the time that the atom spends in the

field. With this, the observed phase shift taken from the spin-state interference

pattern can be used to determine he atoms transverse momentum.

7.1.4 A weak measurement of atomic transverse mo-

mentum in a matter-wave interferometer

A design for a weak measurement of transverse momentum of an atom in a

matter-wave interferometer was presented. The design combines the multi-slit

matter-wave interferometer and the longitudinal Stern-Gerlach interferometer,

both previously tested. The design was modelled and experimental results

were simulated. The modelling data directed the experimental design based on

suitable magnetic field strengths and geometries. Initial steps were taken in the

construction of the experiment and the work presented informs of limitations

of the design in terms of the spatial resolution of the measurement.

7.2 Improvements to the experiment

7.2.1 Increasing throughput/signal

The interferogram from the lowest velocity beam passing through the multi-slit

grating, matter-wave interferometer was acquired over ≈ 50 hours. This long

acquisition time was due to the low beam density used in the interferometer.

To reduce the necessary acquisition time and allow clearer measurements, the

throughput of the interferometer could be improved.

The source contains a very wide range of transverse velocities relative to the

range which the collimation slits select. Therefore, to increase the throughput,

the transverse velocities of the atoms in the MOT would need to be reduced.

This could be done by further cooling atoms in the trap by further increasing

the cooling beam detuning. In the case that the MOT operates in the lower
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range of the typical trap temperatures, it is also feasible to further reduce

the transverse velocities by using a transverse cooling beam during the push

phase. A pair of cooling beams, with the same polarisation configuration as the

MOT cooling beams, would transversely intersect the atomic beam between

the MOT position and the first slit. However, this could potentially change

the spin polarisation of the atomic beam.

Assuming the throughput is maximised, the final observed signal of the

spin-state interferometer could also be increased by choosing to observe a dif-

ferent final m state. The available space in the experiment meant the m states

could be separated provided the beam has a narrow transverse velocity. In the

weak measurement, the beam would diverge in x and y such that the spin-

states could not be separated and resolved using the SG wire. Instead, the

‘quench’ method could be used to measure m = 0, the population of which

is modulated by the function 3
8

sin[φ(vx)]
4. Therefore, the maximum possible

signal intensity is 37.5% of the total atomic beam intensity, since we discard

the signal from other m states. However, the modulation for m = ±2, given

by sin[φ(vx)/2]8, would produce a signal with a maximum intensity of 100% of

the total atomic beam intensity.

Selecting only the m = ±2 states would be possible using right or left circu-

larly polarised light in the quench beam. It would also require the quantisation

axis of the atoms to be aligned with the axis of the quench beam (x axis), in

the region where the quench beam intersects the atomic beam. This would re-

quire an additional magnetic field source since the background magnetic field

is in the z direction.

7.2.2 Modifying the current weak stage design

One major problem highlighted in the thesis is that the spatial resolution of

the weak measurement may not be sufficient to measure precise values of the

atom’s transverse momentum distribution.

155



The micro-channels in the experiment’s detector were close to the smallest

width possible and may not be small enough to observe the kinks close to the

grating. To improve the transverse resolution of the weak measurement, the

dimensions of the matter-wave interference region would need to be changed

to expand the fringe spacing and resolve the pattern closer to the grating. A

larger grating period or grating to detector distance, would increase the dis-

tances over which the kinks occur. This can be seen in the results from Kocsis’s

photon experiment [30] which is performed over 8 meters. The best possible

spatial precision of the measurement is also dependent on the longitudinal reso-

lution of the weak measurement interaction. The longitudinal resolution could

be improved by miniaturising the wire pair and mu-metal shield that were

used to create the transverse momentum dependent phase shift. To achieve

this, printed electronic circuits can be created with current carrying compo-

nents as small as 10µm. These ‘atom chips’ have previously demonstrated

manipulation of atoms including Stern-Gerlach interferometry [61,62].

The guiding coils, which were used to set the quantisation axis of the atoms

before and after the spin-state interferometer, created a uniform field direction

along the atomic beam, but with a spatially varying magnetic field strength.

The timing of the switch-on and switch-off of the interferometer was restricted

to within a few millimetres of the central position of the two coils. Beyond

that distance, the balance of the field strengths between the copper plates and

the guiding coils would not create a superposition of m states. Additionally,

the due to the gradient in the field strength, if the LSGI’s measurement of the

magnetic field strength is closer to the coils, it is less accurate.

Ideally, the quantisation axis should be a uniform field throughout the

interferometer. This could’ve been achieved by constructing a solenoid that

encloses the whole interferometer to set the quantisation axis.
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7.2.3 Optical weak stage design

Considering the possible limitations to the magnetic weak stage that have been

discussed, a number of alternative options were briefly explored. An interaction

between atoms and photons would allow a much more localised interaction as

laser beams can be focussed down to lengths of the order of 10µm.

Consider an atom, spin polarised in a stretched state, travelling longitudi-

nally in the apparatus, with a small transverse component to its momentum.

The atoms enters the optical field which is polarised such that the repeated

absorptions of the photons will pump the atoms towards the opposite m state,

via all the intermediary m states. The selection rules that allow this process

were discussed in 3.6.4. The time that the atom spends in the laser field, will

dictate the distribution of m state populations when the atom exits the beam.

7.3 Future work

Given that the project is a work in progress, the final chapter of the thesis

overlaps with future work. When a weak measurement of transverse momen-

tum can be made with sufficient resolution at one longitudinal position, the

measurements at different z positions would need to be made in order to recon-

struct the momentum flow lines. Theorists collaborating with this project are

currently developing ideas of how the experiment could be modified to test the

‘quantum potential’ [63] which arises in Bohm’s treatment of the Schrödinger

equation, along with the phase representing the atom’s local momentum.

The cold atomic beam and multi-slit matter-wave interferometer can be

used to study unique atom-light interactions by illuminating the grating with

a laser and observing the change in the interference pattern.
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7.4 Concluding remarks

This thesis has taken the first steps towards making a weak measurement of

the atomic transverse momentum in a multi-slit matter-wave interferometer.

The experiments undertaken, together with simulations, have demonstrated

how the individual components of such an experiment would work and has

provided a useful platform for future experiments to explore the interpretations

of quantum mechanics.
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Appendix A

Appendices

A.1 Wigner matrix

From [64]

| − 2〉 | − 1〉 |0〉 |1〉 |2〉



cos4 θ2 − 1
2 sin θ(1 + cos θ)

√
3
8 sin2 θ − 1

2 sin θ(1− cos θ) sin4 θ2
1
2 sin θ(1 + cos θ) − 1

2 (1 + cos θ(1− 2 cos θ) −
√

3
2 sin θ cos θ − 1

2 (1− cos θ(1 + 2 cos θ) − 1
2 sin θ(1− cos θ)√

3
8 sin2 θ

√
3
2 sin θ cos θ 1

2 (3 cos
2 θ − 1) −

√
3
2 sin θ cos θ

√
3
8 sin2 θ

1
2 sin θ(1− cos θ) 1

2 (1− cos θ)(1 + 2 cos θ)
√

3
2 sin θ cos θ − 1

2 (1 + cos θ)(1− 2 cos θ) − 1
2 sin θ(1 + cos θ)

sin4 θ2
1
2 sin θ(1− cosθ)

√
3
8 sin2 θ 1

2 sin θ(1 + cos θ) cos4( θ2 )

for θ = π
2

this gives

|2,−2〉 |2,−1〉 |2, 0〉 |2, 1〉 |2, 2〉
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2

√
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8

−1
2
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[48] Brühl, R., Fouquet, P., Grisenti, R. E., Toennies, J. P., Hegerfeldt, G.
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