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Abstract. Water erosion on arable land can reduce soil fer-
tility and agricultural productivity. Despite the impact of wa-
ter erosion on crops, it is typically neglected in global crop
yield projections. Furthermore, previous efforts to quantify
global water erosion have paid little attention to the effects of
field management on the magnitude of water erosion. In this
study, we analyse the robustness of simulated water erosion
estimates in maize and wheat fields between the years 1980
and 2010 based on daily model outputs from a global grid-
ded version of the Environmental Policy Integrated Climate
(EPIC) crop model. By using the MUSS water erosion equa-
tion and country-specific and environmental indicators deter-
mining different intensities in tillage, residue handling and
cover crops, we obtained the global median water erosion
rates of 7 t ha−1 a−1 in maize fields and 5 t ha−1 a−1 in wheat
fields. A comparison of our simulation results with field data
demonstrates an overlap of simulated and measured water
erosion values for the majority of global cropland. Slope in-
clination and daily precipitation are key factors in determin-
ing the agreement between simulated and measured erosion
values and are the most critical input parameters controlling
all water erosion equations included in EPIC. The many dif-
ferences between field management methods worldwide, the
varying water erosion estimates from different equations and
the complex distribution of cropland in mountainous regions
add uncertainty to the simulation results. To reduce the un-
certainties in global water erosion estimates, it is necessary
to gather more data on global farming techniques to reduce

the uncertainty in global land-use maps and to collect more
data on soil erosion rates representing the diversity of envi-
ronmental conditions where crops are grown.

1 Introduction

Water erosion is widely recognized as a threat to global agri-
culture (den Biggelaar et al., 2004; Kaiser, 2004; Panagos et
al., 2018; Pimentel, 2006). The removal of topsoil by sur-
face runoff reduces soil fertility and crop yields due to loss
of nutrients, degradation of the soil structure and decreas-
ing plant-available water capacity (Våje et al., 2005). Water
erosion is a natural process, but the impact of agricultural
field management on surface cover and roughness is decisive
for the magnitude of water erosion. High-energy precipita-
tion, steep slopes and lack of vegetation cover intensify water
erosion. The most vulnerable areas are mountainous regions,
due to steep slopes; the tropics and subtropics, due to abun-
dant high-energy precipitation; and arid regions, where pre-
cipitation events are rare but often intense and the vegetation
cover is sparse. This global distribution of water erosion is in-
dicated by suspended sediment in rivers (Walling and Webb,
1996). South America, sub-Saharan Africa, South East Asia
and East Asia have been identified as the most vulnerable re-
gions for erosion on agricultural land by several prior studies
(Borrelli et al., 2017; Pimentel et al., 1995).
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Despite its importance for global agriculture, water ero-
sion is usually not considered in global gridded crop model
(GGCM) studies. Throughout the past decade, GGCMs –
typically combinations of agronomic or ecosystem models
and global gridded input data infrastructures – have become
essential tools for climate change impact assessments, evalu-
ations of agricultural externalities and as input data providers
for agro-economic models (Mueller et al., 2017). Few assess-
ments have considered land degradation processes and found
their inclusion and understanding crucial for evaluating cli-
mate change mitigation and adaptation strategies (Balkovič
et al., 2018; Chappell et al., 2016). Beyond crop models,
there is a need to improve the representation of agricultural
management and soil-related processes in earth system mod-
els to better reflect carbon sinks and sources (Luo et al.,
2016; McDermid et al., 2017; Pongratz et al., 2018). More-
over, improving the representation of water erosion in large-
scale models is urgently needed to inform major environmen-
tal and agricultural policy programmes such as the European
Union’s Common Agricultural Policy (CAP), the United Na-
tions Sustainable Development Goals (SDGs), the United
Nations Convention to Combat Desertification (UNCCD)
and the Intergovernmental Science-Policy Platform on Bio-
diversity and Ecosystem Services (IPBES) (Alewell et al.,
2019). Yet, the necessary algorithms to simulate water ero-
sion are often not incorporated into such models. Exceptions
among field-scale crop models, which are frequently used
in GGCM ensemble studies, are the Environmental Policy
Integrated Climate model (EPIC) and Agricultural Produc-
tion Systems Simulator (APSIM). Compared to other com-
monly used crop models in GGCMs, EPIC stands out in its
detailed representation of soil processes including water ero-
sion and the impacts of tillage on soil properties (Folberth et
al., 2019).

Recently, water erosion models such as the Universal Soil
Loss Equation (USLE) and the Revised Universal Soil Loss
Equation (RUSLE) have been used to estimate global wa-
ter erosion. Annual global soil removal estimates and water
erosion rates on cropland of recent studies range between
13 and 22 Gt and between 11 and 13 t ha−1, respectively
(Borrelli et al., 2017; Doetterl et al., 2012; van Oost et al.,
2007). USLE and its modifications were developed in the
Midwestern United States and should ideally be evaluated
against soil erosion measurements when used for other agro-
environmental zones (Evans and Boardman, 2016). However,
the uneven distribution of field data around the world, the
lack of long-term soil measurements in most global regions
and the great variability of the designs of erosion rate mea-
surements hamper the evaluation of global soil loss estimates
derived from models (Auerswald et al., 2004; Borrelli et al.,
2017; García-Ruiz et al., 2015). In addition, model input data
on topography, soil properties and land use are often aggre-
gated over large areas; thus, simulation results cannot be di-
rectly compared to single field measurements at specific lo-
cations.

Most global soil removal estimates using water erosion
models are based on static observation approaches or on very
coarse timescales that do not fall below annual time steps
(Borrelli et al., 2017). Therefore, seasonal patterns of soil
cover and precipitation intensities are neglected even though
they are crucial factors for water erosion. The state of the soil
and its cover is influenced by land management, such as the
choice of crops, planting and harvest dates, tillage, and plant
residue management. Accordingly, neglecting the impact of
seasonal changes in vegetation cover and field management
practices constitutes large uncertainty in global water erosion
estimates. Crop models usually simulate crop growth on a
daily timescale, which allows attached water erosion models
to account for daily changes in weather, soil properties and
vegetation cover. However, uncertainty remains due to the
increasing requirement of input data for daily simulations,
which is especially challenging at a global scale.

The overall aims of this study are (i) to analyse the
robustness of water erosion estimates in all global agro-
environmental regions simulated with an EPIC-based global
gridded crop model and (ii) to discuss the main drivers affect-
ing the robustness and the uncertainty of simulated water ero-
sion rates on a global scale. We simulate global water erosion
rates in maize and wheat fields using different empirical ero-
sion equations in EPIC while accounting for the daily crop
growth and development under different field management
scenarios. Here, maize and wheat are used as representative
crops of global agriculture, as they are grown under most en-
vironmental conditions and represent contrasting soil cover
patterns. Our global simulations are carried out for a baseline
crop management scenario based on a set of environmental
and country-specific assumptions and indicators, which is a
common practice in global gridded crop modelling. In addi-
tion, we quantify the uncertainties of simulated water erosion
values stemming from (i) uncertain field management inputs
and (ii) water erosion calculation methods. We also evaluate
the model’s sensitivity to all inputs involved in the water ero-
sion calculation to interpret the variability and uncertainties
of the simulation results, as well as to discuss the differences
between water erosion equations. Finally, we use field mea-
surements from various locations worldwide to evaluate the
robustness of estimated water erosion rates under different
environmental conditions.

2 Methods

The simplified framework in Fig. 1 illustrates the particular
stages of the methodological procedure applied by this study
and their relationships to input data and model outputs. Both
input and output data are used in two ways. We use input
data (i) to simulate daily maize growth, daily wheat growth
and water erosion with EPIC and (ii) to analyse the sensi-
tivity of relevant model parameters to simulate global water
erosion with all equations in EPIC. We use model outputs
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Figure 1. Scheme of the procedure used for simulating global water erosion with EPIC-IIASA and for analysing the uncertainty, sensitivity
and robustness of our simulation setup.

(i) to calculate a baseline global water erosion scenario and
(ii) to address the uncertainty of simulation results. The fi-
nal step of this study consists of the robustness check of the
model outputs using field data. A detailed description of each
element of this study is described in the following sections.

2.1 Modelling water erosion and crop growth with
EPIC

2.1.1 Global gridded crop model and input data

We use a global gridded version of the Environmental Pol-
icy Integrated Climate (EPIC) crop model, EPIC-IIASA
(Balkovič et al., 2014), to simulate soil sediment loss with
runoff from 1980 to 2010 while accounting for the daily
growth of maize and wheat under different field manage-
ment scenarios. EPIC can simulate the growth of a wide
range of crops and has a sophisticated representation of car-
bon, nutrient and water dynamics as well as a wide variety
of possible field management options, including tillage op-
erations and crop rotations (Izaurralde et al., 2006; Sharpley
and Williams, 1990). Originally, EPIC was named Erosion-
Productivity Impact Calculator and was developed to deter-
mine the relationship between erosion and soil productiv-
ity. Due to its origin, EPIC has several options to calculate
water erosion caused by precipitation, runoff and irrigation
(Williams, 1990).

EPIC-IIASA requires global soil and topography data and
daily weather data. The basic spatial resolution of the model
is 5′× 5′ at which soil and topographic data are provided.

These are aggregated to homogenous response units and fur-
ther intersected with a 30′× 30′ climate grid, the resolution
at which global gridded climate data are available. This re-
sults in a total of 131 326 grid cells with a spatial resolution
ranging between 5′ and 30′ (about 9 to 56 km near the Equa-
tor) (Skalský et al., 2008). We use global daily weather data
from the AgMERRA dataset for the years 1980–2010 (Ruane
et al., 2015), soil information from the Harmonized World
Soil Database (FAO/IIASA/ISRIC/ISSCAS/JRC, 2009) and
topography from USGS GTOPO30 (USGS, 1997). Each grid
cell is represented by a single field characterized by the
combination of topography and soil conditions prevailing
in this landscape unit. Each representative field has a de-
fined slope length (20–200 m) and field size (1–10 ha) based
on a set of rules for different slope classes (Table S1). The
slope of each representative field is determined by the slope
class covering the largest area in each grid cell (Table S1).
Slope classes are taken from a global terrain slope database
(IIASA/FAO, 2012) and are based on a high-resolution 90 m
Shuttle Radar Topography Mission (SRTM) digital elevation
model. In each grid cell, we consider reported growing sea-
sons for maize and wheat (Sacks et al., 2010) and spatially
explicit nitrogen and phosphorus fertilizer application rates
(Mueller et al., 2012).

2.1.2 Water erosion equations

EPIC includes seven empirical equations to calculate water
erosion (Wischmeier and Smith, 1978). The basic equation
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is

Y = R×K ×LS×C×P, (1)

where Y is soil erosion (t ha−1) (mass per area), R is the ero-
sivity factor (erosivity unit per area), K is the soil erodibil-
ity factor (t MJ−1) (mass per erosivity unit), LS is the slope
length and steepness factor (dimensionless), C is the soil
cover and management factor (dimensionless), and P is the
conservation practices factor (dimensionless).

The main difference between the water erosion equations
available in EPIC is their energy components used to calcu-
late the erosivity factor. The USLE, RUSLE and RUSLE2
equations (Table 1) use precipitation intensity as an ero-
sive energy to calculate the detachment of soil particles. The
Modified Universal Soil Loss Equation (MUSLE) and its
variations MUST and MUSS use runoff variables to sim-
ulate water erosion and sediment yield. The Onstad–Foster
equation (AOF) combines energy through rainfall and runoff
(Table 1).

The erosion energy component is calculated as a function
of runoff volume Q (mm), peak runoff rate qp (mm h−1) and
watershed area WSA (ha) or via the rainfall erosivity index
EI (MJ ha−1). The EI determines the detachment of soil par-
ticles through the energy of daily precipitation and a statisti-
cal estimate of the daily maximum intensity of precipitation
falling within 30 min. RUSLE2 is the only equation calcu-
lating soil deposition. If the sediment load exceeds the trans-
port capacity, determined by a function of flow rate and slope
steepness, soil is deposited, which is calculated by a function
of flow rate and particle size (USDA-ARC, 2013).

The soil cover and management factor is updated for every
day where runoff occurs using a function of crop residues,
biomass cover and surface roughness. The impact of soil
erodibility on simulated water erosion is calculated for the
topsoil layer at the start of each simulation year as a func-
tion of sand, silt, clay and organic carbon content. The to-
pographic factor is calculated as a function of slope length
and slope steepness. A detailed description of the cover and
management, soil erodibility, and topographic factor is pro-
vided in the Supplement (Sect. S1). The conservation prac-
tice factor is included in all equations as a static coefficient
ranging between 0 and 1, where 0 represents conservation
practices that prevent any erosion and 1 represents no conser-
vation practices. Typical conservation practice factors can be
derived from tables, which include values ranging from 0.01
to 0.35 for terracing strategies and from 0.25 to 0.9 for dif-
ferent contouring practices (Morgan, 2005; Wischmeier and
Smith, 1978). Alternatively, values can be derived from local
field studies and remote sensing (Karydas et al., 2009; Pana-
gos et al., 2015), from equations using topographical data
(Fu et al., 2005; Terranova et al., 2009) or from economic
indicators (Scherer and Pfister, 2015).

2.1.3 Field management scenarios

Field management techniques influencing soil properties and
soil cover have a significant impact on the amount of wa-
ter erosion. However, these methods are very heteroge-
nous around the world, and data on different field manage-
ment techniques are sparse. Therefore, three tillage manage-
ment scenarios – conventional tillage, reduced tillage and no
tillage – were designed by altering parameters related to wa-
ter erosion to analyse the impact of field management on sim-
ulated water erosion and to draw conclusions on its impact on
the quality of simulation results.

In the reduced and no-tillage scenarios, we decrease soil
disturbance by reducing cultivation operations, tillage depth
and surface roughness, and we increase plant residues left in
the field after harvest. In addition, we reduce the runoff curve
numbers, which indicate the runoff potential of a hydrolog-
ical soil group, land use and treatment class, with decreas-
ing tillage intensification, by using pre-defined values for the
cover treatment classes presented in Table 2 (Sharpley and
Williams, 1990). By lowering the runoff curve numbers, the
impact of reduced tillage practices on the hydrologic balance
can be taken into account (Chung et al., 1999). We simulate
each tillage scenario with and without green fallow cover in
between growing seasons, leading to a total of six field man-
agement scenarios.

2.2 Baseline scenario for estimating global water
erosion in wheat and maize fields

We estimate the rate of water erosion globally by combining
these six tillage and cover crop scenarios in different regions
of the world, using climatic and country-specific assump-
tions and indicators (Table 3). We chose maize and wheat
as two contrasting crop types for analysing water erosion in
different cultivation systems. Maize is a row crop with rel-
atively large areas of bare and unprotected soil between the
crop rows. The plant density in wheat fields is much higher,
which improves the protection of soils against water erosion.

We consider conventional and reduced tillage systems
globally while considering no tillage only for countries in
which the share of conservation agriculture is at least 5 %.
In tropical regions, we simulate water erosion with a green
cover in between maize and wheat seasons to account for
soil cover from a year-round growing season. In temperate
and snow regions, we simulate water erosion affected by both
soil cover throughout the year and bare soil in winter seasons.
In arid regions, we do not simulate green cover in between
growing seasons due to the limited water supply.

On slopes steeper than 5 %, we consider only rainfed agri-
culture, as hilly cropland is irrigated predominantly on ter-
races that prevent water runoff. To account for erosion con-
trol measures on steep slopes, we use a conservation P factor
of 0.5 on slopes steeper than 16 %, and a P factor of 0.15 on
slopes steeper than 30 % to simulate contouring and terracing
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Table 1. Equations for calculating the erosivity factor in each water erosion equation available in EPIC.

Erosivity factor Equation

R = EI (2) USLE, RUSLE, RUSLE2 (Renard et al., 1997;
USDA-ARC, 2013; Wischmeier and Smith, 1978)

R = 0.646×EI+ 0.45× (Q× qp)0.33 (3) AOF (Onstad and Foster, 1975)

R = 1.586×
(
Q× qp

)0.56
×WSA0.12 (4) MUSLE (Williams, 1975)

R = 2.5×Q× qp0.5 (5) MUST (Williams, 1995)

R = 0.79× (Q× qp)0.65
×WSA0.009 (6) MUSS (Williams, 1995)

based on the range of P values presented by Morgan (2005).
The threshold for slopes that are cultivated with conservation
practices is based on the slope classes used for the under-
lying structure of slope information of EPIC-IIASA, from
which the three highest slope classes (16 %–30 %, 30 %–
45 %,>45 %) mark slopes that are less likely to be cultivated
without measures to prevent erosion. We choose the MUSS
equation for the baseline scenario as it generates the lowest
deviation between simulated and measured water erosion as
discussed below. Table 3 summarizes the field management
assumptions of the baseline scenario used to aggregate ero-
sion rates in each grid cell and region.

2.3 Uncertainty analysis of field management scenarios
and water erosion equations

Given the global scale of the analysis and the aggregated
nature of available field management information, there is
much uncertainty about crop management strategies, which
introduces uncertainty in the water erosion estimates. In ad-
dition, each water erosion equation gives a different over-
all erosion estimate. To discuss the uncertainty of simulation
results, we evaluate the variance in simulated water erosion
rates at grid level due to (i) different management assump-
tions and (ii) the choice of water erosion equation. The vari-
ance of simulation outputs is defined as the range between
minimum and maximum simulated water erosion rates with
all combinations of tillage and cover crop scenarios and with
each water erosion equation.

2.4 Sensitivity analysis of model parameters

We use a sensitivity analysis to identify the most essential
input parameters to the factors in the seven water erosion
equations. We use the Sobol method (Sobol, 1990), which
is a variance-based sensitivity analysis that is popular in
environmental modelling (Nossent et al., 2011). With this
method, it is possible to quantify the amount of variance that
each parameter contributes to the total variance of the model
output. These amounts are expressed as sensitivity indices,
which rank the importance of each input parameter for sim-
ulated water erosion. In addition, the sensitivity indices can

be used to determine the impact of parameter interactions on
the model output.

We test 30 parameters directly connected to the water ero-
sion equations in EPIC. In total, we assign 126 976 random
values to all input parameters along a pre-defined triangu-
lar distribution or a range of discrete values (Table S2). Wa-
ter erosion is simulated with EPIC using the seven available
equations for each random input combination at 40 locations
where wheat and maize are cultivated. To represent a het-
erogenous distribution of global precipitation regimes, we
use the natural break optimization method to choose loca-
tions based on average annual precipitation amounts from
1980 to 2010 (Jenks, 1967). For each location and equation,
the most sensitive parameters are ranked. To analyse the im-
pact of precipitation regimes on the sensitivity of each pa-
rameter, we use Spearman coefficients (ρ) to determine if
positive or negative relationships exist between each param-
eter’s sensitivity and annual precipitation.

2.5 Evaluation of simulated erosion against reported
field measurements

We compare our simulated water erosion rates with 606 soil
erosion measurements on arable land from 36 countries rep-
resenting plot and field scales. Most of the selected erosion
rates are based on the 137Cs method. In addition, data from
erosion plots and volumetric measurements of rills collected
by Auerswald et al. (2009), Benaud et al. (2020) and García-
Ruiz et al. (2015) are used. In total, 315 records are derived
by the 137Cs method, 188 records from runoff plots and 103
records from volumetric measurements of rills. An overview
of the field data is presented in Fig. S4–S7, and the full
dataset is available in Table S5.

Guidance on the 137Cs method is provided by Fulajtar et
al. (2017), Mabit et al. (2014) and Zapata (2002). The 137Cs
radionuclide was released into the atmosphere by nuclear
weapon tests and from the accident of the Chernobyl Nu-
clear Power Plant and subsequently deposited in the upper-
most soil layer by atmospheric fallout. After its deposition,
it was bound to soil colloids and can be moved only together
with soil particles by mechanical processes such as soil ero-
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Table 2. Tillage management scenarios for maize and wheat cultivation.

Conventional tillage Reduced tillage No tillage

Total cultivation operations 6–7 4–5 3

Max surface roughness 30–50 mm 20 mm 10 mm

Max tillage depth 150 mm 150 mm 40–60 mm

Plant residues left 25 % 50 % 75 %

Cover treatment class straight contoured contoured and terraced

Table 3. Management assumptions and erosion equation selected for the baseline scenario.

Option Baseline

TILLAGE – Mix of conventional, reduced and no tillage in regions where the national share of
conservation agriculture is >5 % according to the latest reported data in
AQUASTAT (2007–2014) (FAO, 2016): Argentina, Australia, Bolivia, Brazil, Canada, Chile,
China, Colombia, Finland, Italy, Kazakhstan, New Zealand, Paraguay, Spain, USA, Uruguay,
Venezuela, Zambia and Zimbabwe.
– Mix of conventional and reduced tillage in the rest of the world.

OFF-SEASON COVER – Cultivation only with cover crops in tropics according to Köppen–Geiger regions (Fig. S1)
(Kottek et al., 2006). Mix of off-season cover with and without cover
crops in temperate and cold zones.
– No cover crops in arid regions.

CONSERVATION PRACTICE FACTOR Slope 0 %–16 % 16 %–30 % >30 %

P factor 1.0 0.5 0.15

CROP Water erosion is simulated in wheat and maize fields based on the global crop distribution
by MIRCA2000 (Fig. S2) (Portmann et al., 2010).

IRRIGATION Only on slopes ≤ 5 %. Weighted average of irrigated and rainfed cropland based
on MIRCA2000 (Portmann et al., 2010).

METHOD MUSS water erosion equation.

AGGREGATION Median of all management scenarios per grid cell and region.

sion. Its chemical mobility and uptake by plants is negligible
(Mabit et al., 2014; Zapata, 2002). If part of the topsoil con-
taminated by 137Cs is removed by erosion, the 137Cs concen-
trations in soil profiles can be used to trace soil movements
using the mass balance equation (Walling et al., 2014). A
major advantage of the 137Cs method is that it provides long-
term mean erosion rates (representing the period since 137Cs
fallout in the 1960s until the time of sampling) and over-
comes the problem of high temporal variability of erosion.

Bounded plots are the most commonly used method of
erosion measurements. They were introduced in the USA
in the 1920s (Hudson, 1993) and were used for the devel-
opment of the USLE and WEPP models (Brazier, 2004).
Eroded soil material can be quantified with erosion plots in
different ways (total collection of sediment, fractioned col-
lection of sediments using multislot divisors, measurement
of discharge and sediment concentration by tipping buckets

and Coshocton wheels). The overview of this method is pro-
vided by Cerdan et al. (2010); Hudson (1993); Mutchler et
al. (1994); De Ploey and Gabriels (1980); and Zachar (1982).

The volumetric measurements of rill erosion were used
since approximately the 1940s in the USA (Kaiser, 1978,
in Evans, 2013) and the 1950s in Europe (Lobotka, 1955),
usually at the field scale (Boardman, 1990, 2003; Boardman
and Evans, 2020; Brazier, 2004; Evans, 2002, 2013; Herweg,
1988; Zachar, 1982). The volume of erosion rills is derived
from their lengths and profile cross-section areas, which are
measured in field or from terrestrial and aerial photos (Evans,
1986; Watson and Evans, 1991).

The overwhelming effect of the experimental methodol-
ogy on measured erosion rates, the lack of sufficient metadata
accompanying erosion measurements and the granular spa-
tial resolution of our simulation setup hinders a direct com-
parison between simulated and observed water erosion rates.
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Instead we compare aggregated simulated and observed ero-
sion values for different slope and precipitation classes to
analyse the robustness of simulated water erosion rates un-
der different environmental conditions. Therefore, only mea-
surements with recorded slope steepness and annual precip-
itation are used. Where annual precipitation is not recorded,
it is taken from the WorldClim2 dataset (Fick and Hijmans,
2017). Due to the non-normal distribution of the simulated
and measured data, the median deviation (MD) is used as a
measure to compare the agreement between simulated and
measured water erosion values.

3 Results

We estimate global median water erosion rates of 7 and
5 t ha−1 in maize and wheat fields, respectively. The total re-
moval of soil in global maize and wheat fields is estimated to
be 5.3 and 1.9 Gt a−1, respectively. The map in Fig. 2 illus-
trates the global distribution of simulated water erosion rates.
Highest water erosion is simulated in mountainous regions
and regions with strong precipitation, especially in tropical
climate zones. In Asia, those regions are widespread in the
east, south-east and the Himalaya region. In Africa, simi-
lar areas with high water erosion values are spread around
the continent and are most common at the west coast and in
East Africa, including broad areas in Guinea, Sierra Leone,
Liberia, Ethiopia and Madagascar. In South America, high-
est water erosion is simulated in the south of Brazil and re-
gions around the Andes mountain range and the Amazon
river basin. The highest water erosion values on the Amer-
ican continent are simulated in tropical Central America and
the Caribbean. In North America, highest water erosion oc-
curs along the west coast and in the east. Water erosion in Eu-
rope is highest in Mediterranean areas and around the Alps.

Median annual water erosion values for the five largest
wheat- and maize-producing countries demonstrate the
strong impact of climate and topography on simulated wa-
ter erosion. In Brazil, China and India, where a large pro-
portion of cropland is in tropical areas, water erosion is rela-
tively high with annual median values of 10, 6 and 37 t ha−1,
respectively. In Russia and the United States, annual me-
dian values are much lower with 1 and 2 t ha−1, respectively.
Overall, Fig. 2 illustrates the large variation in simulated wa-
ter erosion between tropical climate regions and regions with
a large proportion of flat and dry land.

3.1 Sources of model uncertainty related to
management assumptions and method selection

The uncertainty of the simulation results due to management
scenarios and the choice of water erosion equations is high-
est in regions most vulnerable to water erosion (Fig. 3). The
annual median uncertainty range at each grid cell due to man-
agement is 30 t ha−1. For 97 % of grid cells, the lowest ero-

sion rates are simulated with management scenarios includ-
ing no tillage and cover crops. For 86 % of grid cells, max-
imum erosion rates are simulated under conventional tillage
without cover crops. The annual median uncertainty range
at each grid cell due to the choice of erosion equation is
23 t ha−1. In 74 % of grid cells, the lowest erosion rates are
simulated with the MUSS equation. The highest erosion val-
ues are simulated with RUSLE (46 %), followed by USLE
(25 %).

In most locations, the uncertainty due to field management
exceeds the uncertainty caused by choice of erosion equa-
tion. For 46 % of grid cells, management scenarios cause the
prevailing uncertainty, which we defined as the higher uncer-
tainty range by at least 5 t ha−1. The selected erosion equa-
tion causes higher uncertainty by at least 5 t ha−1 in 14 % of
grid cells. The map in Fig. 4 illustrates the global distribution
of prevailing uncertainty sources.

3.2 Main drivers of the global erosion model

We designed the sensitivity study to explain the large vari-
ability of simulated water erosion rates in different regions
and to discuss the main differences between water erosion
equations. Water erosion is highly sensitive to slope steep-
ness (SLP) for all equations. The first-order sensitivity index
of the slope parameter indicates that 46 %–54 % of the vari-
ance in the model output is attributable to the slope, without
considering interactions between the input parameters (Ta-
ble 4). Daily precipitation (PRCP) is the second most impor-
tant parameter for calculating water erosion, with an individ-
ual contribution of around 9 %–20 % to the variance of the
output. The remaining parameters contribute together 4 %–
13 % to the output variance.

The first-order sensitivity indices do not include interac-
tions between input parameters, which leads to the sum of all
first-order sensitivity indices being lower than 1. The total-
order sensitivity indices sum all first-order effects and inter-
actions between parameters, which leads to overlaps in the
case of interactions and a sum greater than 1. The differences
between the first-order and the total-order indices can be used
as a measure to determine the impact of the interactions be-
tween a specific parameter with other parameters. The total-
order sensitivity indices show that slope steepness, including
interactions to other parameters, contributes 63 %–75 % of
the output variance from which 18 %–21 % is due to interac-
tive effects with other parameters (Table 5). The total-order
sensitivity indices from precipitation range from 21 %–36 %,
from which 10 %–18 % is due to interactions with other pa-
rameters.

The high sensitivity of slope and precipitation is simi-
lar for all equations, but the most sensitive parameters after
these can be different for each equation. Equations estimat-
ing erosion energy by surface runoff and the RUSLE2 equa-
tion are very sensitive to the hydrological soil group (HSG),
which determines the soils infiltration ability. This parameter

https://doi.org/10.5194/bg-17-5263-2020 Biogeosciences, 17, 5263–5283, 2020



5270 T. W. Carr et al.: Uncertainties, sensitivities and robustness of simulated water erosion

Figure 2. Soil loss due to water erosion in maize (a) and wheat (b) fields simulated with the baseline scenario. Each pixel cell illustrates the
median relative water erosion of one representative field. The extent of cropland areas is not considered in pixel cell size. The bars in the
bottom plot (c) illustrate median soil removal for major world regions simulated under maize and wheat cultivation. The lines and whiskers
illustrate the 25th and 75th percentile values. The classification of world regions is illustrated in Fig. S3. Due to the large gap between
aggregated values, all values in the bottom plot have been log-transformed to facilitate the visual comparison.

is used in the calculation of the curve number, which defines
the partition of precipitation into runoff and infiltration. Also,
the land-use number (LUN), which is ranked among the most
sensitive input parameters, is used for the calculation of the
curve number. The most sensitive parameters of USLE and
RUSLE, following slope inclination and daily precipitation,
are soil texture classes (SAND and SILT) followed by daily
temperature changes (TMX). Crop residues (ORHI) are rela-
tively important for all equations but are especially important
for equations based on rainfall energy. Other parameters rel-

evant for field management, such as surface roughness and
mixing efficiency of the topsoil, have little influence on wa-
ter erosion.

The sensitivity of slope steepness has a strong positive
correlation with the amount of annual precipitation at each
location (ρ = 0.69, p<0.01). The increase in the sensitiv-
ity of slope steepness with increasing annual precipitation is
demonstrated in Fig. 5, which illustrates substantially lower
sensitivity indices at dry locations compared to wet loca-
tions. In contrast, the sensitivity indices of daily precipitation
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Figure 3. Water erosion uncertainty due to (a) field management assumptions and (b) water erosion equations.

Figure 4. Prevailing uncertainty, defined as the higher uncertainty range by at least 5 t ha−1.
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Table 4. First-order sensitivity indices (denoted SI) ranking for the five most sensitive input parameters (PARM) for each water erosion
equation including slope steepness (SLP), daily precipitation (PRCP), soil hydrologic group (HSG), land-use number (LUN), soil silt content
(SILT), soil sand content (SAND), curve number parameter (S301), maximum air temperature (TMX) and crop residues left after harvest
(ORHI). The sensitivity indices of the remaining parameters are presented in Table S3.

Rank AOF MUSLE MUSS MUST RUSLE2 RUSLE USLE

PARM SI PARM SI PARM SI PARM SI PARM SI PARM SI PARM SI

1. SLP 0.47 SLP 0.47 SLP 0.46 SLP 0.48 SLP 0.46 SLP 0.50 SLP 0.54
2. PRCP 0.13 PRCP 0.10 PRCP 0.12 PRCP 0.09 PRCP 0.16 PRCP 0.20 PRCP 0.18
3. HSG 0.03 HSG 0.04 HSG 0.05 HSG 0.04 HSG 0.03 SAND 0.05 SILT 0.02
4. SILT 0.02 LUN 0.02 LUN 0.02 LUN 0.02 SAND 0.01 TMX 0.01 TMX 0.01
5. LUN 0.01 SILT 0.02 S301 0.01 SILT 0.02 LUN 0.01 ORHI 0.01 ORHI 0.01
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sum 0.69 0.68 0.71 0.69 0.71 0.78 0.77

Table 5. Total-order sensitivity indices (denoted SI) ranking for the five most sensitive input parameters (PARM) for each water erosion
equation including slope steepness (SLP), daily precipitation (PRCP), soil hydrologic group (HSG), land-use number (LUN), soil silt content
(SILT), soil sand content (SAND), maximum air temperature (TMX) and crop residues left after harvest (ORHI). The sensitivity indices of
the remaining parameters are presented in Table S3.

Rank AOF MUSLE MUSS MUST RUSLE2 RUSLE USLE

PARM SI PARM SI PARM SI PARM SI PARM SI PARM SI PARM SI

1. SLP 0.68 SLP 0.68 SLP 0.63 SLP 0.68 SLP 0.66 SLP 0.69 SLP 0.75
2. PRCP 0.28 PRCP 0.23 PRCP 0.22 PRCP 0.21 PRCP 0.32 PRCP 0.36 PRCP 0.36
3. HSG 0.09 HSG 0.12 HSG 0.13 HSG 0.12 HSG 0.08 SAND 0.12 SILT 0.05
4. SILT 0.07 LUN 0.07 LUN 0.07 LUN 0.07 LUN 0.05 TMX 0.02 TMX 0.02
5. LUN 0.05 SILT 0.07 SILT 0.05 SILT 0.07 SAND 0.04 ORHI 0.01 SAND 0.01
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sum 1.29 1.30 1.25 1.27 1.34 1.27 1.27

are negatively correlated to annual precipitation with a mod-
erate strength (ρ = 0.45, p<0.05). Depending on the equa-
tion, strong positive or negative correlations between SIs and
annual precipitation also exist for other parameters such as
slope length, soil texture, soil organic carbon, channel length,
channel slope and watershed area (Table S4).

3.3 Evaluation of simulation results against field data

The most recent estimated global water erosion rates on
cropland of 11–13 t ha−1 derived from a comparable method
(Borrelli et al., 2017; Doetterl et al., 2012; van Oost et al.,
2007) lie above our simulated median water erosion rates
of 7 and 5 t ha−1 for maize and wheat fields, respectively.
Similarly, our global water erosion estimates in maize and
wheat fields are lower than the median value of 9 t ha−1 from
606 water erosion measurements from cropland around the
world.

To evaluate the agreement between simulated and ob-
served data, we compare median values between simulated
and measured erosion rates grouped by precipitation and
slope classes, which are defined along the whole range of

recorded slope inclinations and annual precipitation amounts
of the field data (Fig. 6a). Although slope and precipitation
classes from the field are spread unevenly, they cover most
climatic and topographic characteristics relevant to global
agriculture. The comparison illustrates that the deviation be-
tween simulated and field data is highest for locations with
steep slopes and high annual precipitation. Where slopes
are steeper than 8 % and annual precipitation is higher than
1000 mm, the median of simulated water erosion exceeds the
median of measured water erosion in most cases by at least
50 t ha−1. With decreasing slope steepness and annual pre-
cipitation, the median deviation between simulated and mea-
sured data is decreasing. Where both slope steepness is below
8 % and annual precipitation is below 1000 mm, the median
deviation is lower than 5 t ha1 in most cases. A comparison of
measured and simulated water erosion using other equations
with the baseline scenario can be found in Fig. S8.

The boxplots in Fig. 6b illustrate the range of water ero-
sion values measured in the field and simulated with the
baseline scenario. The high deviation between observed and
simulated values for grouped locations with slopes steeper
than 8 % and annual precipitation higher than 1000 mm can
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Figure 5. First-order and total-order sensitivity indices (SIs) for (a) slope steepness (%) and (b) precipitation (mm). The dashed vertical line
illustrates median annual precipitation at all tested locations (1248 mm).

Figure 6. Comparison of simulated erosion with measured erosion. (a) Median deviation (MD) (t ha1) between simulated erosion using
the baseline scenario and measured erosion. Simulated and measured data are grouped into precipitation classes and slope classes used for
the simulation setup. (b) Distributions of measured erosion rates, erosion rates simulated with the baseline scenario and uncertainty ranges
for management assumptions and erosion equations. The boxplots are defined by the median, the 25th percentile and the 75th percentile
of simulated and measured erosion rates. Whiskers illustrate the 10th and 90th percentiles. The three bars next to the boxplots illustrate
minimum and maximum median erosion rates calculated with all tillage and cover crop scenarios and with all water erosion equations. The
values have been log-transformed for better visualization.

also be observed between the range of simulated and mea-
sured water erosion values. Outside locations combining
steep slopes and strong precipitation, median deviation be-
tween simulated and measured data is lower than the vari-
ability within the field data. The range of values at locations
with lower precipitation and slope steepness demonstrates
that simulated values are mostly below measured values in
those environments.

The uncertainty in the choice of management scenarios
and water erosion equations included in our baseline scenario
leads to an uncertainty of the deviation between simulated
and measured erosion values. This uncertainty is demon-
strated in Fig. 6b by additional three bars illustrating the

range of simulated medians due to contrasting tillage man-
agement scenarios, cover crop scenarios and different wa-
ter erosion equations. At locations with low to moderate
slope steepness and annual precipitation, the measured water
erosion values agree best with the simulation values gener-
ated under scenarios implying larger water erosion, such as
high-intensity tillage and low soil cover. On the other hand,
at locations with steep slopes and intensive precipitation,
the measured values are closer to the simulated values un-
der scenarios with less-intensive tillage and more soil cover.
In addition, the varying sensitivities of each water erosion
equation lead to a different magnitude of water erosion val-
ues in different environments. On low-to-moderate slopes,

https://doi.org/10.5194/bg-17-5263-2020 Biogeosciences, 17, 5263–5283, 2020



5274 T. W. Carr et al.: Uncertainties, sensitivities and robustness of simulated water erosion

water erosion simulated with the MUSS equation is low-
est, whereas RUSLE generates the highest values. On steep
slopes, RUSLE generates the lowest water erosion values,
which agree best with the measured values. The options to
increase and decrease simulated water erosion with differ-
ent field management scenarios and water erosion equations
creates both uncertainty in the model results but also the pos-
sibility to closely match field data.

At locations combining steep slopes and intense precipi-
tation, most management scenarios and equations generate
water erosion values that are higher than the measured val-
ues. However, those environmental conditions cover only
a small share of global cropland. Cultivation areas with
slopes steeper than 8 % and annual precipitation higher than
1000 mm represent only 7 % of global maize and wheat crop-
land in our grid cells. The map in Fig. 7 illustrates that the
highest concentration of these areas is in East Asia and South
East Asia, followed by Central America, South America and
sub-Saharan Africa.

4 Discussion

4.1 Varying robustness of simulated water erosion in
different global regions

Global water erosion estimates generated with an EPIC-
based GGCM and our baseline scenario overlap with ob-
served water erosion values under most of the climatic and
topographic environments where maize and wheat are grown.
However, global maize and wheat land include locations
where environmental characteristics differ significantly from
the Midwestern United States, where the data were collected
to develop the water erosion equations embedded in EPIC.
The USLE model and its modification were developed with
data for slopes of up to 20 %, which makes model appli-
cation for steeper slopes uncertain (McCool et al., 1989;
Meyer, 1984). Furthermore, the relations between kinetic en-
ergy and rainfall energy in the American Great Plains differ
from other regions in the world (Roose, 1996). Similarly, the
runoff curve number method, which is the key methodology
for the calculation of surface runoff, is based on an empir-
ical analysis in watersheds located in the United States and
might be less reliable in different regions of the world (Ralli-
son, 1980). Due to the high sensitivity of slope steepness and
daily precipitation for the calculation of water erosion, the
reliability of the tested equations decreases in regions where
typical slope and precipitation patterns differ from the Mid-
western US. Although some studies have successfully used
USLE and its modification under a different environmental
context (e.g. Alewell et al., 2019; Almas and Jamal, 2009;
Fischer et al., 2018; Sadeghi and Mizuyama, 2007), many
studies have concluded that the accuracy of these models
may be reduced outside the environments they were created

for without calibration and model adaptation (e.g. Cohen et
al., 2005; Labrière et al., 2015).

The skewed distribution of simulated water erosion values
influenced by extreme soil loss rates in few fields highly sen-
sitive to water erosion results in a large difference between
the global median value of 6 t ha−1 a−1 and the global aver-
age value of 19 t ha−1 a−1 (Fig. S9). Due to the strong influ-
ence of outliers on average values, we used median values
to represent global and regional water erosion rates in wheat
and maize fields. The high sensitivity of the simulation re-
sults to slope inclinations and precipitation suggests that a
significant share of the estimated soil removal of 7.2 Gt a−1

originates from small wheat and maize cultivation areas on
steep slopes with strong annual precipitation.

4.2 Sources of uncertainties in global water erosion
estimates

4.2.1 Uncertain land use in mountainous regions

Changing climatic conditions with increasing elevation and
the variable soils in mountainous regions can favour crop cul-
tivation in higher elevations over lower elevations (Romeo
et al., 2015). However, upland farming without soil con-
servation measures can lead to exhaustive soil erosion and
can become a critical problem for agriculture (Montgomery,
2007). Large areas of land have been abandoned due to high
erosion rates as soils were no longer able to support crops
(Fig. 8) (Romeo et al., 2015). As mountain agriculture is de-
termined by various environmental and socioeconomic fac-
tors, the cultivation of steep slopes can be very variable be-
tween regions. Regional erosion assessments in mountain-
ous cropland suggested that areas with extreme water ero-
sion rates are mainly limited to marginal steep land cultivated
by smallholders (Haile and Fetene, 2012; Long et al., 2006;
Nyssen et al., 2019). In some mountainous regions, efforts to
remove marginal farmlands from agricultural production and
programmes to improve land management on steep slopes
have reduced high water erosion rates (Deng et al., 2012;
Nyssen et al., 2015). On the contrary, recent pressure through
increasing population and crop production demands has re-
sulted in recultivation of hillslopes and a reduction of fallow
periods, which limits the recovery of eroded soil (Turkel-
boom et al., 2008; Valentin et al., 2008).

To analyse the sustainability of simulated maize and wheat
cultivation systems exposed to high erosion rates, we com-
pare simulated annual eroded soil depth with a global dataset
on modelled sedimentary deposit thickness (Pelletier et al.,
2016). The comparison shows that at 4 % of grid cells perma-
nent maize and wheat cultivation would not be sustainable as
the whole soil profile would be eroded at the end of the sim-
ulation period (Fig. S18). Most of the unsustainable agricul-
ture is simulated on steep slopes. Although we account for
conservation techniques and cover crops, we do not imitate
the highly complex farming practices involving intercrop-
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Figure 7. Distribution of low-to-high slope steepness (SLP) and annual precipitation (PRCP) in maize and wheat fields. Dark areas illustrate
grid cells where dominant slopes are steeper than 8 % and annual precipitation is above 1000 mm. Correspondingly, blue, red and grey pixels
are below one or both thresholds.

Figure 8. (a) Sugar cane cultivation on steep slopes in southern China (Nanning, Guangxi Zhuang Autonomous Region). The steepest
slopes are already abandoned and reforested by eucalyptus trees. (b) Maize cultivation on strongly eroded slopes (30 %–60 %) in south-west
Uganda (Kigwa, Kabale District). (c) Abandoned fields and maize cultivation on a steep slope (30 %–60 %) in south-west Uganda (Kigwa,
Kabale District). (d) Degraded and abandoned maize fields on steep slopes (20 %–60 %) in northern El Salvador (San Ignacio, Chalatenango
Department). The photos and additional examples are provided in Figs. S10–S17.
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ping techniques and fallow periods, which are common on
hillslopes typically managed by smallholders (Turkelboom
et al., 2008). Moreover, we assume that the slope class rep-
resenting the largest area in each grid cell most likely rep-
resents the largest share of arable land. This builds on the
idea that a spatially extensive and diverse landscape can be
represented by a single “representative field” characterized
by the prevailing topography and soil conditions found in the
landscape. On hilly terrain this setup simulates maize and
wheat cultivation on steep slopes and thus mainly represents
unsustainable agriculture. Although unsustainable maize and
wheat cultivation can be observed in several mountain re-
gions, cropland is very heterogeneously distributed in moun-
tains and thus erosion rates from one representative field are
highly uncertain.

The uncertainty in cropland distribution can partly be re-
duced by developing a higher-resolution global gridded data
infrastructure, which is currently not available for EPIC-
IIASA. However, due to the large uncertainty in global land
cover maps (Fritz et al., 2015; Lesiv et al., 2019), an ex-
plicit spatial link between cropland distribution and the cor-
responding slope category cannot be established without on-
site observations. We test the impact of this uncertainty for
erosion estimates in Italy, where large maize and wheat cul-
tivation areas are distributed on both flat terrain in the north
and mountainous regions in the south. In an ideal scenario
where cropland is limited to flattest land available per grid
cell, median simulated water erosion in Italy would be re-
duced to tolerable levels below 1 t ha−1. However, in a sce-
nario where the most common slopes per grid cell are culti-
vated, median simulated water erosion increases to 14 t ha−1

due to high water erosion simulated in Italy’s mountainous
regions (Fig. S19). This suggests a high uncertainty in global
water erosion estimates due to uncertain spatial links be-
tween maize and wheat cultivation areas and different slope
categories.

4.2.2 Uncertain field management

Simulated water erosion values are highly variable depend-
ing on the field management scenario. Simulating cover
crop and no tillage worldwide results in the lowest global
soil removal of 2 Gt a−1 with median water erosion rates of
1 t ha−1 a−1 and simulating no cover crops and conventional
tillage worldwide results in the highest global soil removal of
13 Gt a−1 with median water erosion rates of 17 t ha−1 a−1.
These variations cause further uncertainties in the simulation
results.

Indeed, a proper reconstruction of a business-as-usual field
management is important to further narrow down the un-
certainty in global crop modelling (Folberth et al., 2019).
In this study we allocated prevailing field management us-
ing a set of environmental- and country-specific indicators,
similarly to Porwollik et al. (2019). For example, we ac-
counted for conservation agriculture only in countries where

this management strategy is likely according to AQUASTAT
(FAO, 2016). Furthermore, by assuming cover crops in be-
tween wheat and maize seasons we simulated more complex
cropping systems in the tropics, where long and year-round
growing seasons and frequent multi-cropping farm practices
barely leave the soil uncovered. Hence, we did not simulate
bare fallow in the tropics as erroneously high water erosion
values would have been simulated at locations with heavy
precipitation falling on bare soil. In addition, conservation
practices such as contouring and terracing are crucial to re-
duce the simulation of high water erosion values on steep
slopes. We simulated these practices for specific slope classes
under the assumption that farmers around the world uni-
formly use conservation practices when cultivating on steep
slopes. The most relevant parameters used for tillage scenar-
ios are related to crop residues left in the field. In addition,
equations directly connected to surface runoff are strongly
influenced by the land-use number used to determine the im-
pact of cover type and treatment on soil permeability. While
both crop residues and green fallow decrease water erosion
significantly, especially in the tropics, their use varies widely
between regions and even farms, based on a complex web
of factors such as institutional factors, farm sizes, risk atti-
tudes, interest rates, access to markets, farming systems, re-
source endowments and farm management skills (Pannell et
al., 2014). Also, soil conservation measures such as terraces
or contour farming significantly influence water erosion but
are very heterogeneously used between regions, farming sys-
tems and farmers. Our baseline scenario is a very rough de-
piction of the complex patterns of field management around
the world but attempts to represent these highly influential
practices with the limited available data.

4.2.3 Variable estimates from different water erosion
equations

The water erosion equation chosen for the baseline scenario
generates the lowest global soil removal estimate. Different
water erosion equations embedded in EPIC estimate a higher
global soil removal of up to 11 Gt a−1 as well as higher me-
dian water erosion rates up to 19 t ha−1 a−1. The MUSS wa-
ter erosion equation chosen for the baseline scenario gener-
ates water erosion rates closest to the field data. The focus
of equations on either rainfall energy or runoff energy is rel-
evant for the different simulation results under specific en-
vironmental conditions. Equations based on rainfall energy
such as RUSLE and USLE simulate higher water erosion val-
ues than the other equations at most locations. However, on
steep slopes they generate the lowest water erosion values
as runoff becomes a greater source of energy than rain with
increasing slope steepness (Roose, 1996). Also, the vary-
ing sensitivities of other parameters to the equations such as
soil properties and management parameters lead to a varying
agreement between simulated data and field data depending
on the equation selection. Detailed field data would facili-
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tate the choice of an appropriate equation to simulate water
erosion worldwide or for a specific region.

4.3 The difficulty of evaluating large-scale erosion
estimates with field data

The selection of field data for evaluating simulated water ero-
sion was limited by the low availability of suitable water ero-
sion observations covering the entire globe. The lack of reli-
able data on water erosion rates is a severe obstacle for un-
derstanding erosion, developing and validating models, and
implementing soil conservation (Boardman, 2006; Nearing
et al., 2000; Poesen et al., 2003; Trimble and Crosson, 2000).
The main reasons for the low availability of suitable data to
evaluate simulated water erosion rates are twofold: (i) ero-
sion monitoring is expensive, time consuming and labour
demanding; (ii) primary data and metadata of measurement
sites accompanying final results are often not available, and
many older measurements are poorly accessible as they are
not available online (Benaud et al., 2020). A variety of fac-
tors influencing water erosion such as climate, field topogra-
phy, soil properties and field management need to be consid-
ered when modelling water erosion but are often not reported
in available field measurements (García-Ruiz et al., 2015).
This hampers a direct comparison between simulated and
observed water erosion values. We demonstrated the vary-
ing match between measured and simulated water erosion
using different tillage and cover crop scenarios. Metadata on
field management often only provides the crop cultivated and
therefore the conditions under which erosion was measured
in the field are not known sufficiently to evaluate erosion val-
ues simulated under different field management scenarios.
Similarly, information on field topography and soil proper-
ties is often not provided with recorded field measurements;
thus, their use is limited in an evaluation of water erosion
estimates simulated in different global environments. More-
over, most data are concentrated in the United States, western
Europe and the western Mediterranean (García-Ruiz et al.,
2015). In summary, there is a lack of field data representing
all needed regions, situations and scenarios (Alewell et al.,
2019).

The appropriate selection of field data to evaluate model
outputs needs to be considered as well. At different spa-
tial scales different erosion processes are dominant and con-
sequently different erosion measurement methods are suit-
able (Boix-Fayos et al., 2006; Stroosnijder, 2005). Most au-
thors use very heterogeneous datasets to evaluate their mod-
els, involving data generated by different methods at vari-
able time and spatial scales and variable quality. For exam-
ple, Doetterl et al. (2012) used plot data, suspended sed-
iments from rivers data from RUSLE modelling. Borrelli
et al. (2017) used soil erosion rates (measurement methods
are not specified), remote sensing, vegetation index (NDVI)
and results of RUSLE modelling. In his review on erosion
rates under different land use, Montgomery (2007) used field

data derived from erosion plots, field-scale measurements,
catchment-scale measurements using hydrological methods,
137Cs-method, soil profile truncation and elevated cemetery
plots.

Whilst all erosion measurement methods are open to criti-
cism, we decided to use only data obtained by field measure-
ments from runoff plots, by the 137Cs method and volumetric
surveys as these methods are most suitable at plot, slope and
field scales. Geodetic methods such as erosion pins and laser
scanner are also used at plot to field scales, but their accuracy
is much lower than the accuracy of plot measurements and
the 137Cs method. Furthermore, erosion pins are mainly suit-
able for areas with extreme erosion rates (Hsieh et al., 2009;
Hudson, 1993), and laser scanners have difficulties to recog-
nize vegetation (Hsieh et al., 2009). Other commonly used
methods such as the hydrological method (measurements of
discharge and suspended sediment load) and the bathymet-
ric method are more suitable for larger scales and involve a
significant portion of channel erosion, which is not related to
agricultural land (García-Ruiz et al., 2015). We did not con-
sider plot experiments using rainfall simulators as they are
usually performed on small plots with artificially generated
rainfall, which mostly have very low energies and thus gen-
erate low erosion rates (Boix-Fayos et al., 2006; García-Ruiz
et al., 2015).

The 137Cs method was criticized by Parsons and Fos-
ter (2013), who questioned assumptions about the 137Cs
behaviour in the environment (variability of the 137Cs in-
put by wet fallout, its micro-spatial variability at reference
sites, its possible mobility in certain soils, the 137Cs uptake
by plants and other aspects of 137Cs behaviour in soil). To
confront the criticism against the 137Cs method, Mabit et
al. (2013) discussed all objections raised by Parsons and Fos-
ter (2013) and confirmed its accuracy by listing several stud-
ies, in which 137Cs-based erosion rates are compared with
erosion rates derived from direct measurements. The 137Cs
method is based on a set of presumptions which should be
met to produce useful results and thus careful interpretation
of the obtained results is needed (Fulajtar et al., 2017; Mabit
et al., 2014; Zapata, 2002).

Similarly, erosion rates obtained by volumetric measure-
ments require careful interpretation as they are exposed to
various potential sources of errors and do not account for
inter-rill erosion. Although the latter can be neglected un-
der certain circumstances, studies from Europe and semiarid
areas of the USA have reported that inter-rill erosion con-
tributed significantly to the amount of soil eroded in fields
(Boardman and Evans, 2020; Parsons, 2019). Further, mea-
suring the lengths and cross sections of rills during field sur-
veys or on terrestrial and aerial photos can be very subjective
(Panagos et al., 2016). Different approaches used to detect
and measure rills in fields can cause variability in calculated
erosion volumes up to a factor of 2 (Boardman and Evans,
2020; Casali et al., 2006; Watson and Evans, 1991). In order
to obtain soil erosion rates in weight units, soil volumes need
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to be converted using the soil bulk density, which is often
based on estimates (Evans and Brazier, 2005).

The shortcomings of erosion plot measurements were dis-
cussed by several authors (Auerswald et al., 2009; Brazier,
2004; Evans, 1995, 2002; Loughran et al., 1988). Erosion
plots have various sizes and shapes (few metres to a few
hundreds of metres) and various approaches of sediment
recording are used (total collection, multislot divisors, tip-
ping buckets, Coshocton wheels), which all involve signif-
icant uncertainties. Although some long-term plot experi-
ments exist, many plot measurements fail to cover the whole-
year erosion cycle (Auerswald et al., 2009). Often, they have
to be removed during land management operations such as
seeding and ploughing or they are too expensive and labour
demanding.

Despite all the shortcomings of available soil erosion data,
most data provide valuable information (Benaud et al., 2020).
The evaluation against field measurements in this study pro-
vided a first indication of the robustness of results under spe-
cific topographic and climatic conditions. In most environ-
ments relevant for maize and wheat cultivation, the devia-
tion between simulated and measured water erosion values is
lower than the variability within the field data. The reported
data do not enable us to further narrow down the uncertainties
addressed. Although the metadata accompanying the field
measurements include information on slope steepness and
annual precipitation (or geographic coordinates allowing for
overlay with climatic data), information on soil types or tex-
ture classes, crop type, and tillage system implemented over
time are provided only for few points. Also, the various meth-
ods used to measure erosion rates, their complex implemen-
tation and the bias of field studies towards locations sensitive
to erosion lead to an uncertain representation of large-scale
erosion rates based on field measurements. To facilitate an in-
depth evaluation of erosion models across different scales, it
is crucial to provide detailed information on site characteris-
tics and to harmonize approaches to measure erosion in the
field. Moreover, the accessibility of field data should be im-
proved as raw data are often not published or need to be col-
lected from numerous publications, grey literature and con-
ference proceedings to obtain the large amount of data nec-
essary for regional or global erosion studies. Therefore, we
support recent efforts to collate erosion measurements and
metadata from existing studies (Benaud et al., 2020) as we
believe that the availability of field data through a single plat-
form will greatly benefit future modelling studies and the un-
derstanding of soil erosion at all scales.

5 Conclusions

The simulation of water erosion with GGCMs is largely in-
fluenced by the resolution of global datasets providing topo-
graphic, soil, climate, land use and field management data,
which is currently not available at the field scale. Yet, con-

sidering water erosion in global crop yield projections can
provide useful outputs to inform assessments of the potential
impacts of erosion on global food production and to identify
soil erosion hotspots on cropland for management and policy
interventions. To improve the quality of the estimates and to
further develop these models, it is crucial to identify, commu-
nicate and address the existing uncertainties. Increasing the
resolution of global soil, topographic and precipitation data is
central for improving global water erosion estimates. In ad-
dition, this study provides an insight into the importance of
considering field management. The numerous options to sim-
ulate the cultivation of fields result in a large range of possi-
ble water erosion values, which can only partly be narrowed
down at a global scale. Further improvement of global wa-
ter erosion estimates requires detailed and harmonized field
measurements across all environmental conditions to vali-
date and calibrate simulation outputs. Using existing field
data, we were able to identify specific environmental char-
acteristics for which we have lower confidence in the mod-
elled erosion rates. These are mainly found in the tropics and
mountainous regions due to the high sensitivity of simulated
water erosion to slope steepness and precipitation strength,
as well as the complexity of mountain agriculture. However,
these areas represent only a small fraction of global cropland
for maize and wheat. The overlap of simulated and measured
water erosion values in most environments used to produce
maize and wheat underlines the robustness of an EPIC-based
GGCM to simulate the differences in water erosion rates of
major global crop production regions.

Data availability. Additional information on model outputs, meth-
ods, study design and field data is available in the supporting infor-
mation file: TWCarr-si.zip.
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Balkovič, J., Skalský, R., Folberth, C., Khabarov, N., Schmid, E.,
Madaras, M., Obersteiner, M., and van der Velde, M.: Impacts
and Uncertainties of +2 ◦C of Climate Change and Soil Degra-
dation on European Crop Calorie Supply, Earth’s Futur., 6, 373–
395, https://doi.org/10.1002/2017EF000629, 2018.

Benaud, P., Anderson, K., Evans, M., Farrow, L., Glendell,
M., James, M., Quine, T., Quinton, J., Rawlins, B., Rick-
son, J., and Brazier, R.: National-scale geodata describe
widespread accelerated soil erosion, Geoderma, 371, 114378,
https://doi.org/10.1016/j.geoderma.2020.114378, 2020.

Boardman, J.: Soil erosion on the South Downs: a review, in Soil
Erosion on Agricultural Land, edited by: Boardman, J., Foster,
I. D. L., and Dearing, J. A., John Wiley & Sons Ltd, Chichester,
87–105, 1990.

Boardman, J.: Soil erosion and flooding on the eastern South
Downs, southern England, 1976–2001, Trans. Inst. Br. Geogr.,
28, 176–196, https://doi.org/10.1111/1475-5661.00086, 2003.

Boardman, J.: Soil erosion science: Reflections on the
limitations of current approaches, Catena, 68, 73–86,
https://doi.org/10.1016/j.catena.2006.03.007, 2006.

Boardman, J. and Evans, R.: The measurement, estimation and
monitoring of soil erosion by runoff at the field scale: Challenges
and possibilities with particular reference to Britain, Prog. Phys.
Geogr., 44, 31–49, https://doi.org/10.1177/0309133319861833,
2020.

Boix-Fayos, C., Martínez-Mena, M., Arnau-Rosalén, E.,
Calvo-Cases, A., Castillo, V., and Albaladejo, J.: Mea-
suring soil erosion by field plots: Understanding the

sources of variation, Earth-Sci. Rev., 78, 267–285,
https://doi.org/10.1016/j.earscirev.2006.05.005, 2006.

Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Bal-
labio, C., Alewell, C., Meusburger, K., Modugno, S., Schütt, B.,
Ferro, V., Bagarello, V., Oost, K. Van, Montanarella, L., and
Panagos, P.: An assessment of the global impact of 21st cen-
tury land use change on soil erosion, Nat. Commun., 8, 1–13,
https://doi.org/10.1038/s41467-017-02142-7, 2017.

Brazier, R.: Quantifying soil erosion by water in the UK: A review
of monitoring and modelling approaches, Prog. Phys. Geogr., 28,
340–365, https://doi.org/10.1191/0309133304pp415ra, 2004.

Casali, J., Loizu, J., Campo, M. A., De Santisteban, L. M., and
Alvarez-Mozos, J.: Accuracy of methods for field assessment of
rill and ephemeral gully erosion, Catena, 67, 128–138, 2006.

Cerdan, O., Govers, G., Le Bissonnais, Y., Van Oost, K., Poe-
sen, J., Saby, N., Gobin, A., Vacca, A., Quinton, J., Auerswald,
K., Klik, A., Kwaad, F. J. P. M., Raclot, D., Ionita, I., Re-
jman, J., Rousseva, S., Muxart, T., Roxo, M. J., and Dostal,
T.: Rates and spatial variations of soil erosion in Europe: A
study based on erosion plot data, Geomorphology, 122, 167–177,
https://doi.org/10.1016/j.geomorph.2010.06.011, 2010.

Chappell, A., Baldock, J., and Sanderman, J.: The global sig-
nificance of omitting soil erosion from soil organic car-
bon cycling schemes, Nat. Clim. Change, 6, 187–191,
https://doi.org/10.1038/nclimate2829, 2016.

Chung, S. W., Gassman, P. W., Kramer, L. A., Williams, J. R.,
Gu, R. R., Chung, S. W., Gassman, P. W., Kramer, L. A., and
Williams, J. R.: Validation of EPIC for Two Watersheds in South-
west Iowa Recommended Citation Validation of EPIC for Two
Watersheds in Southwest Iowa, Iowa State University, Ames,
Iowa, USA, 27 pp., 1999.

Cohen, M. J., Shepherd, K. D., and Walsh, M. G.: Empirical re-
formulation of the universal soil loss equation for erosion risk
assessment in a tropical watershed, Geoderma, 124, 235–252,
https://doi.org/10.1016/j.geoderma.2004.05.003, 2005.

Den Biggelaar, C., Lal, R., Wiebe, K., Eswaran, H., Breneman,
V., and Reich, P.: The Global Impact Of Soil Erosion On
Productivity∗, II: Effects On Crop Yields And Production Over
Time, Adv. Agron., 81, 49–95, https://doi.org/10.1016/S0065-
2113(03)81002-7, 2004.

Deng, L., Shangguan, Z., and Li, R.: Effects of the grain-for-green
program on soil erosion in China, Int. J. Sediment Res., 27, 120–
127, https://doi.org/10.1016/S1001-6279(12)60021-3, 2012.

De Ploey, J. and Gabriels, D.: Measuring soil loss and experimental
studies, in Soil Erosion, edited by: Kirkby, M. J. and Morgan, R.
P. C., Willey, Chichester, 63–108, 1980.

Doetterl, S., Van Oost, K., and Six, J.: Towards constraining
the magnitude of global agricultural sediment and soil or-
ganic carbon fluxes, Earth Surf. Proc. Landforms, 37, 642–655,
https://doi.org/10.1002/esp.3198, 2012.

Evans, R.: Finding out about water erosion, Teach. Geogr., 12, 17–
20, 1986.

Evans, R.: Some methods of directly assessing water erosion of cul-
tivated land – a comparison of measurements made in plots and
in fields, Prog. Phys. Geogr., 19, 115–129, 1995.

Evans, R.: An alternative way to assess water erosion of cultivated
land – field-based measurements: An analysis of some results,
Appl. Geogr., 22, 187–208, 2002.

https://doi.org/10.5194/bg-17-5263-2020 Biogeosciences, 17, 5263–5283, 2020

https://doi.org/10.1016/j.iswcr.2019.05.004
https://doi.org/10.3923/pjbs.2000.118.121
https://doi.org/10.1079/sum2003212
https://doi.org/10.1016/j.geomorph.2009.04.018
https://doi.org/10.1016/j.gloplacha.2014.08.010
https://doi.org/10.1002/2017EF000629
https://doi.org/10.1016/j.geoderma.2020.114378
https://doi.org/10.1111/1475-5661.00086
https://doi.org/10.1016/j.catena.2006.03.007
https://doi.org/10.1177/0309133319861833
https://doi.org/10.1016/j.earscirev.2006.05.005
https://doi.org/10.1038/s41467-017-02142-7
https://doi.org/10.1191/0309133304pp415ra
https://doi.org/10.1016/j.geomorph.2010.06.011
https://doi.org/10.1038/nclimate2829
https://doi.org/10.1016/j.geoderma.2004.05.003
https://doi.org/10.1016/S0065-2113(03)81002-7
https://doi.org/10.1016/S0065-2113(03)81002-7
https://doi.org/10.1016/S1001-6279(12)60021-3
https://doi.org/10.1002/esp.3198


5280 T. W. Carr et al.: Uncertainties, sensitivities and robustness of simulated water erosion

Evans, R.: Assessment and monitoring of accelerated water erosion
of cultivated land – when will reality be acknowledged?, Soil Use
Manag., 29, 105–118, https://doi.org/10.1111/sum.12010, 2013.

Evans, R. and Boardman, J.: The new assessment of soil loss by
water erosion in Europe, Panagos P. et al., 2015 Environmental
Science & Policy 54, 438-447-A response, Environ. Sci. Policy,
58, 11–15, https://doi.org/10.1016/j.envsci.2015.12.013, 2016.

Evans, R. and Brazier, R.: Evaluation of modelled spatially dis-
tributed predictions of soil erosion by water versus field-based
assessments, Environ. Sci. Pol., 8, 493–501, 2005.

FAO/IIASA/ISRIC/ISSCAS/JRC: Harmonized World Soil
Database (version 1.1), FAO and IIASA, Rome, Italy and
Laxenburg, Austria, 38 pp., 2009.

FAO: AQUASTAT Main Database, available at: http://www.fao.org/
nr/water/aquastat/data/query/index.html?lang=en (last access: 1
July 2020), 2016.

Fick, S. E. and Hijmans, R. .: Worldclim 2: New 1-km spatial reso-
lution climate surfaces for global land areas, Int. J. Climatol., 37,
4302–4315, 2017.

Fischer, F. K., Kistler, M., Brandhuber, R., Maier, H., Treisch,
M., and Auerswald, K.: Validation of official erosion modelling
based on high-resolution radar rain data by aerial photo ero-
sion classification, Earth Surf. Proc. Landforms, 43, 187–194,
https://doi.org/10.1002/esp.4216, 2018.

Folberth, C., Elliott, J., Müller, C., Balkovič, J., Chryssantha-
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