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Introduction

As technology and digital resources have become ubiquitous in mathematics
education research and practice, it is time to examine the particular ways that
digital technology is affecting the different knowledge domains. It is clear that
the discerning use of technology requires a deeper understanding of how the
mathematics shapes and is shaped by the technology. This prompts a rethinking
of curriculum hierarchies and closer examination of the relationship between
technological and non-technological approaches.

The CERME conferences in the last 20 years have revealed how research on
technology has evolved from its early focus on interactions between mathematics
and students, to involve a broader dialectic with theories and, more recently,
aspects relating to resource and task design alongside the concepts of teachers’
professional knowledge and practice.

Inspired by the contributions to the Thematic Working Groups 15 and 16 in the
last CERME 10 in Dublin, which highlighted the diversity of current research and
its overlaps with other TWG themes, the ERME Topic Conference 5 MEDA:
Mathematics Education in the Digital Age is an interdisciplinary, multifaceted
collaboration that brings together participants who would normally attend a range
of CERME Thematic Working Groups to provide the opportunity for further in-
depth discussion and debate.

The conference draws together the following three themes:

Theme 1: Mathematics teacher education and professional development in
the digital age

Theme 1 focuses on how the digital world has impacted on mathematics teacher
education (pre-service and in-service); professional development and teachers’
professional growth; teachers' professional development practices, collaboration
and communities of practice; models and programmes of professional
development (contents, methods, and impacts); and the professional development
of teacher educators and academic researchers.

Theme 2: Mathematics curriculum development and task design in the
digital age

Theme 2 addresses issues related to digital curriculum materials, resources
(including those using digital technology) and e-textbooks with a focus on their
design, appropriation, use, and wider dissemination.



Theme 3: Theoretical perspectives and methodologies/approaches for
researching mathematics education in the digital age

Theme 3 addresses how different theories shape research in this field and how
they can possibly be combined in a synergic way to address the complexity of
teaching and learning processes with digital technology, by providing a particular
insight into: the relationship between uses of technology and the development of
students’ mathematical knowledge; the role of teachers in a technology-rich
environment; and teachers’ professional development needs, for example,
concerning task design.

Cross-theme Relationships

Whilst these three themes were initially chosen to support more focused work
during the conference, we were acutely aware of the overlaps and relationships
between all three. Consequently, the conference programme was scheduled such
that all participants could hear talks and work on ideas that concern all of the
themes. This was to ensure that the ERME “three Cs” or cooperation,
collaboration and communication were the golden threads through the
conference!

We thank Dame Professor Celia Hoyles, UCL Institute of Education, London, for
giving the plenary talk — Mathematics Education in the Digital Age: Promise and
Reality.

We especially thank Niels Gronbak from the University of Copenhagen and his
whole local organising team for hosting the conference and giving all participants
the opportunity to come to the beautiful city of Copenhagen.

Hans-Georg Weigand
Alison Clark-Wilson
Ana Donevska-Todorova
Eleonora Faggiano

Jana Trgalova
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Designing mathematics learning activities in e-environments
Giovannina Albano ', Umberto Dello Iacono ', Giuseppe Fiorentino > and Maria Polo

"'University of Salerno, DIEM, Italy, galbano@unisa.it; > Accademia Navale di
Livorno, Italy; ° University of Cagliari, Italy

This paper describes the use of a systemic model to design mathematics learning
activities in advanced technological environments. The model comprises four roles
involved in the learning process which can be played by different actors along the
process. Technology is one of these.

Keywords: Instructional Design, Digital Storytelling, e-Learning, Tetrahedron Model,
Technology Enhanced Learning

INTRODUCTION AND THEORETICAL FRAMEWORK

We present the ongoing design of a digital interactive storytelling framework that we
are developing within an Italian research project [1]. In literature we find different ways
of using storytelling in mathematics (Zazkis & Liljedahl, 2009; Zan, 2011), here we
use it as a narrative framework for immersive role-playing activities. The project aims
to devise a methodology for designing digital interactive storytelling in mathematics
(DIST-M) (Albano, Dello Iacono & Fiorentino, 2016), based on a Vygotskian
(Vygotsky, 1980) and discursive (Sfard, 2001) approach to mathematics learning,
where learners are engaged in social discursive activities while constructing their
knowledge. This approach takes the motivational benefits of the storytelling and
considers the learner not as a mere listener but as a character of the story interacting
with it and with other characters.

In Albano, Dello Iacono & Fiorentino (2016) we report some empirical data concerning
a pilot study made with a prototype DIST-M. This paper is focused on the analysis of
the work done so far, providing the theoretical framework for the design and rethinking
of the model. The analysis follows the tetrahedron model framework (Albano,
Faggiano & Mammana, 2013; Albano, 2017) which includes the classical entities of
the didactic triangle (Chevallard, 1989) — Mathematics (or just M in the following) is
some mathematical knowledge to teach/learn; Student (S) who is expected to learn
Mathematics; Tutor (T), who is supposed to help Student learn Mathematics — and adds
a new one: Author (A), who is in charge of planning, developing and managing the
whole learning process. In this way, as shown in Figure 1, the new vertex (4uthor)
adds three new (triangular) faces to the classical didactic triangle. In this model,
technology is both internal and external to the learning system.

Technology inside the tetrahedron represents the set of digital tools chosen by all actors
with an explicit didactic purpose. Technology outside the tetrahedron is the pervasive
technology which everyone daily uses.
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Figure 1: The tetrahedron model
THE CASE STUDY

The ongoing DIST-M prototype aims to introduce students to algebraic modelling,
reasoning and proving using the following mathematical problem (Iannece & Romano,
2008; Mellone & Tortora, 2015): given four consecutive natural numbers, show that
the difference between the product of the first and the last ones and the product of the
second and the third ones is always 2. The problem can be generalized considering four
consecutive odd (or even) natural numbers or, more generally, taking four consecutive
items from an arithmetic progression of given ratio k. In the last case, for instance,
students should prove that the above calculation always yields 2k2. The problem can
also be used to foster students’ thinking on mathematical key concepts such as the
meaning of “consecutive” numbers or the density of rational numbers in R. The DIST-
M supports students with individual and collaborative learning activities (LA)
(Weinberger et al., 2009) about algebraic thinking, conjecturing and proving. The LAs
are shown in Figure 2 and will be described in the following. The LAs in dashed boxes
in Figure 2 are optional or alternatives.

Brrast i, £ b |
| Consecutiv |
‘ oven |
' NUMDOTS
) | I
Ly i L_. ol
I’ r_ P 3 .—I
Consaciutive ' | Consocutive |
natural | >33 I
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Figure 2: The learning activities’ flow (dashed lines indicate optional LAs)
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THE DESIGN PROCESS

The tetrahedron model foresees four vertices: Author, Tutor, Student and Mathematics
which do not denote fixed entities (such as the teacher, the tutor or students) but active
Roles that can be played by different Actors in different situations.

Within the MST (Mathematics-Student-Tutor) face of the tetrahedron, the interactions
among the three vertices occur by means of digital storytelling. In fact, Tutor is
embedded as a character of the story while Mathematics naturally arises from the plot.
Several e-tools have been chosen and carefully configured to support the expected
interactions. Tutor interacts with Student (all the engaged students) orchestrating
discussions towards general arguments and algebraic proofs. In this context, Tutor
behaves as an expert according to Vygotskian approach (Vygotsky, 1980). This
interaction occurs with a Forum to exploit the intrinsic asynchronicity of written
communication in a literate register and provide flexible time for adequate reactions.
In the ongoing classroom pilot, Tutor’s role is played by the teacher, in cooperation
with Author’s mathematics education researcher in charge of mathematical content and
competence. Both actors are needed since the teacher knows students' mathematical
background, their attitude and feelings, while the researcher is expert in managing
mathematical discussions aimed at teaching objectives. We are now collecting notes
and reflections from the first pilot to draft a guideline handbook as a scaffolding tool
for teachers willing to use DIST-M resources in their classes.

Within the AMT (Author-Mathematics-Tutor) face, all vertices are involved in
mediating Mathematics for Student. Author designs the learning path according to
didactical objectives and plans when Tufor should intervene. However, the learning
path can still develop in different directions according to contingencies such as the
curriculum of the class and students’ competences. In fact, some steps, shown with
dashed lines in Figures 2 and 3, may be optional and supervised by Tutor managing
Mathematics on the fly.

On the same AMT face of the tetrahedron, specific mathematical e-tools such as
Spreadsheets and Computer Algebra Systems, when carefully used and dosed, can play
an important role as semiotic mediators of Mathematics content.

Within the AMS (Author-Mathematics-Student) face, the central role is played by
Mathematics and its didactic transposition. It is natural to think that Author arranges
Mathematics for Student but, sometimes, also students may act as Author creating
Mathematics. This happens when they produce conjectures, (counter)examples, etc.
Moreover, the absence of Tutor allows to think at this face as the preferred situation
for social interactions, where the whole group of engaged students acts as Author of
Mathematics for their peers.

Within the AST (Author-Student-Tutor) face, we may place the classical (asymmetric)
interaction between teacher and Student. In our case, the interaction goes from Author‘s
design of the activities, including the schedule of each phase, to Tutor’s scaffolding
interventions.
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THE ROLE OF TECHNOLOGY

During the design phase, Author may also consider technology as a Tutor, designing
automatic scaffolding activities (for instance, by means of adaptive feedback or
scaffolding questions). Moreover, as it happened in our pilot, due consideration to
Tutor’s reports may suggest modifications or fine tuning of tasks and e-tools. For
instance, in one case, students abandoned the chosen chat of the learning environment
in favor of the more familiar WhatsApp.

As shown in Figure 3, a generic LA consists in various tasks, some of which are
optional (shown in dashed lines) and taken according to Tutor’s decisions. The
tetrahedron model helps thinking about which e-tool is better suited for the interaction
needs of different actors.

Figure 3: The tasks (dashed lines indicate optional ones)

Mathematics 1s always proposed to Student as a fundamental part of the story.
Mathematical problems occur along the way and Student’s interventions are essential
to carry on with the story. Sometimes Mathematics 1is just displayed on the screen, in
other cases it is embedded into a mathematical e-tool. This happens when students are
equipped with GeoGebra, benefitting from it's Spreadsheet and CAS (Computer
Algebra System) views. Interactions with these (rather unusual) views are integrated
within the story, providing valuable e-tools to enhance and support mathematic
activities. The Spreadsheet view provides an effective way to explore, conjecture and
formalize relationships among numbers. The CAS view, used by the end of the story,
provides an interesting way to prove (or disprove) mathematical conjectures. So we
may support the whole Mathematics involved, from numbers to algebra, with sound
mathematical e-tools. It is well known that spreadsheets are valuable semiotic
mediators (Bartolini Bussi & Mariotti, 2008); within our framework they allow a
natural switch from numbers to algebra and hypothesis testing. In fact, cells, with their
actual values and their (symbolic) references within formulae, provide a natural setting
where “numbers” and “algebra” coexist and can be directly experienced by Student.
By defining and dragging formulae, students can explore a wide range of cases and
witness the synthesis of a single (algebraic) formula capturing and explaining
regularities of (large) sets of data. Moreover, students will increase their confidence
with spreadsheets, an important (and greatly underexploited) problem posing and
solving tool. They will also face its peculiarities, among which the use of the equal sign
(which has very little in common with both mathematics and programming) and the
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powerful (but rather unsetting) relative cell reference. They will also get in touch,
probably for the first time, with a Computer Algebra System, witnessing its application
in areas commonly believed out or reach of computers, such as theorem proving. So
students will also gain some real transversal competencies (soft skills) with important
problem-solving tools whose reach goes far beyond the proposed activity.

A SHORT DESCRIPTION OF THE TASKS

The task Choice of roles (Figure 3) pushes students towards a real collaboration
(Weinberger et al., 2009) and can be framed in the AST face. This can be an optional
task after the first LA if Tutor allows students to change their previously chosen roles.

With tasks Inquiry, Argument/Conjecture and Proof, Student is respectively asked to
investigate on his own on the proposed question, conjecture and argue with his mates
and, finally, develop a proof with the support of Tutor. Tutor may decide to extend
these tasks with some technology enhanced ones, as shown in Figure 3.

The design of the task Inquiry has been done assuming the AMS view. In fact, Author
designs the activity flow, planning all requirements and choosing the best (internal or
external) e-tool for each one. In particular, Author typically chooses a Chat for informal
communication steps, since it is closer to Student’s habits and a Forum for steps
requiring higher mathematical communicative registers. Here is where Mathematics
comes into play with mathematical content and argumentative competence, which is
the main focus of DIST-M. The output of this task is a “digital resource” which is also
the input of the following one. In this way, Student, besides acting as a peer, also
produces "original" arguments and, in this sense, is also an Author. Also the task
Argument/conjecture has been designed taking into account the AMS view. This task
foresees the comparison of all conjectures and arguments found by the students
fostering the convergence towards a common and agreed version. In doing that,,
Mathematics is present as argumentative competence (Sfard, 2001). Author is also
present as a role assumed by students when Mathematics content is produced by
Student as in task 2. This task also shares with the AST view when students act as Tutor
for their mates.

The task Proof consists in a Moodle Forum, where students are asked to agree on a
shared proof; it aimed at fostering the development of more literate mathematical
statements. The task can be thought as interrelation between all three MST vertices. In
fact, mathematical discussions arise from asking Student to prove previously stated
conjectures. In our mathematical problem, involving consecutive natural numbers,
Tutor, acting as one of the characters of the story, mediates the discussion among the
students with the aim of gradually guiding them, first to the identification of any four
consecutive natural numbers with »n, ntl, nt+2 and n+3 and then towards the
construction of the proof:

(n+1)(n+2)-n(n+3)=2, for each natural number .
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Tutor manages the discussion and drives Student towards the construction of formal
proofs. Mathematics is naturally involved in conjecturing and demonstrative
competence. Student builds his own proof and, when its quality is high, he naturally
acts as a Tutor for his mates. In reality, Student can even act as Author when he finds
“novel” proofs. In this case, this task also shares with the AMT face.

Within the optional tasks Guess by spreadsheet and Check by spreadsheet, the inquiry
and the production of conjectures are supported by spreadsheets (as a GeoGebra view)
integrated within the story and the learning environment (Moodle). The explorative
path is supported by a progression of worksheets preloaded with quadruples of numbers
exploring cases of increasing generality (from consecutive natural numbers, to
consecutive even or odd numbers, to consecutive items of an arithmetic progression).
In all cases, students are always free to add more rows and explore relationships with
formulae as in Figure 4.
| A| B | c | b | E| E |

1 6 7 8 9 2

2 ‘ 15 16 17 18 |=02*IBZ - D2*A2

Figure 4: The spreadsheet tool

By writing the correct formula (the product of the second and third number minus the
product of the first and the fourth one, as in Figure 4) for one of the quadruples and
dragging it, Student may check that the result is always the same (2 in the simplest case
of Figure 4). The writing of the formula, with its cells references actually anticipates
the Mathematics generalization through algebra. Moreover, with this tool Student can
also explore and model the concept of “consecutive” in many ways.

The optional task Proving by CAS integrates a Computer Algebra System engine (again
a GeoGebra view capable of performing symbolic calculations) within the story and
the learning environment to support the production of algebraic proofs. This task
scaffolds the construction of algebraic proofs. In fact, having correctly represented the
four “consecutive numbers” (this is where Mathematics and algebra takeover takes
place), it allows Student to explicitly compute the expected algebraic relation. For
instance, Figure 5 shows how the student can write the general formula for two kinds
of “consecutive numbers” and compute the resulting identities.

1 | (n+1)*(n+2)-n*(n+3)
- 2
(n+k)*(n+2k)-n*(n+3k)

2
» 2 k2

Figure 5: using the CAS tool

So Student, providing some mathematical knowledge, may interact with Mathematics
by means of the CAS, using some of its embedded mathematical knowledge.
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Looking at the relations among the vertices of the tetrahedron, we point out that the
role of Tutor comes into play twice and is played by different actors. First, being an
optional task, Tutor decides to start it or not, according to Student’s knowledge.
Second, the CAS engine with its feedback may assume the Tufor role. From this point
of view, the task lies within the MST face. However, Author designed this task to
support Student’s proof building attempts by choosing the most appropriate tools and
their configurations; the task thus also shares with the 4AMS face.

The optional tasks Put into words by tiles and Formalize by tiles respectively allow
Student to build argumentations and proofs, using some sentence-tiles tiles designed
by Author (Albano & Dello Iacono, 2017), as shown in Figure 6.

oo ffine oroduc
T O CIRRE (2
I 6

Figure 6: Some sentence-tiles for the given problem

Both tasks, on one hand, act as Tutor scaffolding argumentation and proof
development; on the other hand, lead Student to reflect on the mathematical concepts
referred by the cards. So, Mathematics is at stake both as competence in proof and
argumentation, and as mathematical content in each sentence-tail. Student, when
building his sentence becomes the Author of that proof.

CONCLUSIONS AND FUTURE WORK

This paper provides the theoretical framework for the analysis and design choices
performed in Albano, Dello Iacono & Fiorentino (2016). It also provides a better
insight on how technology can be further exploited within the model. A DIST-M
(Digital Interactive Storytelling in Mathematics), as described in this paper, is now
being tested with about 60 14/15-year-old students in two classroom pilot studies. Such
pilots are providing interesting research data and useful suggestions for a redesign of
the activities, allowing us to make small design adjustments in nearly real time. We are
also working on another outcome of the project: a set of guidelines for teachers willing
to adopt a DIST-M for teaching mathematics.

NOTES

1. This work is part of the PRIN 2015 project “Digital Interactive Storytelling in Mathematics: A Competence-based
Social Approach”, funded by MIUR, with effect from 5 February 2017.
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In this paper we propose a comprehensive model, conceived as a heuristic to support
a co-disciplinary approach to the design, development and analysis of the didactical
system, in particular in the case of mathematical e-learning situations. It has been
developed by expanding the classical didactical triangle into a tetrahedron, and
including within it a mediatory sphere whose intersection points with the tetrahedron
can shed some light on the impact of technology within the didactical system. We
explain how the model could address the need to take into account, in a co-disciplinary
mode, different theoretical and empirical perspectives, within and beyond mathematics
education.

Keywords: e-learning, didactical tetrahedron, co-disciplinary approach
INTRODUCTION

At a first level, this paper focuses on the interactions between students and teachers
with the content and with digital resources, in the context of mathematical e-learning
situations. First of all, we need to specify what we mean by e-learning. There is no
doubt that we move into a web based environment, but the Web has changed
throughout the years. The three web generations can be described by the following
verbs: read, write/communicate, collaborate, each of them intended to be added to the
previous ones (Hussain, 2012; Miranda et al., 2014). This means that educational
technology has allowed the learners more and more engaged, from a passive role to an
active one and finally to a social one. Just as knowledge was delivered in the era of e-
learning 1.0, then it was co-constructed by the learners with the advent of e-learning
2.0 and now it is socially constructed by communities of learners. Note that the main
difference between the 2.0 and 3.0 eras depends on the kinds of interaction among
learners: in the former case, learners can write resources and share them, in the latter
case, learners can collaborate in writing resources. Moreover, we point out a further
feature of the Web 3.0, that is mobility: nowadays we can access technology anywhere
and anyhow, e.g. by any device. Some contend that e-learning 3.0 should also be
considered “intelligent”, as well as “collaborative” (Rubens et al., 2014), but in this
paper we neglect the subject on artificial intelligence. Herein, we will draw our
attention to the teaching/learning process which occurs in an e-learning 3.0
environment, taking into consideration general purposes teaching platforms, integrated
with social apps, eventually added to online mathematical software. Note that the most
popular platform, Moodle, is already available in mobile version, and it can be used in
mobile learning together with other social apps, such as Whatsapp.
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From now on, with the term mathematical e-learning we will refer to this kind of
teaching/learning process, focused on mathematics education, concerning both a
distance and blended setting. In order to study mathematical e-learning situations we
believe that we need a comprehensive model which could firstly take into account
research results on the use of tools in mathematics education, without disregarding
input coming from other research fields beyond it. We consider worth of note, for
instance, that in the General Didactic research field it has been underlined that learning
is a process that can occur only with teaching mediation: thanks to the interaction with
didactic mediators, that facilitate the transition from the specific experience to the
generalization of it, pupils organize and conceptualize their own experience during the
learning process. In particular, the key role of every learning activity is played by a
system of didactic mediators: the educational action makes use of functional multiples
mediators that follow each other. In this perspective what becomes important to
understand, in the case of mathematical e-learning situations, is what does change if in
the mediators’ system there are also digital tools. As far as mathematics education is
concerned, instead, tools were used long before new technology entered the classroom
and have always played an important role. Here, the term “tools” is used in a broad
meaning as means, incorporated in mathematical activities. Moreover, it is noteworthy
that tools always have affordances and impose constraints on the user, and that teachers
need to understand and to be aware of the implications of the use of tools in
mathematics classrooms. And this is true, in particular, in every teaching/learning
situation involving new technologies, and thus also in e-learning situations.

In this paper we intend to propose a comprehensive model which expands the classical
didactical triangle into a tetrahedron. Indeed, in order to become aware of the impact
of technology on the relationships between the Teacher (T), the Students (S) and the
Mathematics (M) in a e-learning situation, as will be explained better below, we believe
it is important to consider also the Designer (D). A fundamental characteristic of the
model we are going to present is that, unlike what happened in other studies, the
technology is not a vertex, but it is embedded in a mediatory sphere immersed in the
tetrahedron, whose vertices are T, S, M and D.

At a second level, according to results coming from a recent study (Faggiano et al.,
2017) involving educationalists and experts in mathematics education, we argue that
every didactical intervention is shaped by a complex space/time device in which
knowledge is consolidated and conceptualization is fine tuned. The interactions
between teacher and student allow a sort of alignment between the student’s
experiences and the scientific knowledge. It has been made possible also thanks to the
presence of artefacts/mediators with structural and structured role with respect to the
mediation between teacher and student, student and knowledge, but also teacher and
knowledge. These considerations call for the need to study mathematical
teaching/learning processes from a wider perspective, considering and taking
advantage of results coming from other research fields, such as general didactic or the
educational technology. For this purpose, we adopted a co-disciplinary perspective
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(Blanchard-Laville, 2000) in which the prefix “co”, which means “with”, is about
evoking the construction of a co-thinking research space fostered by a certain empathic
understanding and acquaintance with the points of view of the other researchers about
the same object of study.

FROM THE DIDACTICAL TRIANGLE TO THE TETRAHEDRON

The didactical triangle can be considered as a heuristic that identifies the fundamental
components of any didactic system: teacher, student and content. The idea to expand
the didactical triangle to a tetrahedron in order to consider the role of technological
artefacts in mathematics education is not new (see e.g. Tall, 1986). In particular, Rezat
and Straler (2012) proposed a socio-cultural tetrahedron, in which the fourth vertex is
the mediating artefact. It offers an important representation of the complexity of the
system that affords, in particular, a level of detailed reflection on the didactical role of
the tasks. Our approach starts from the assumption that the full exploitation of e-
learning environments requires a well design didactical intervention, not only in terms
of contents and tasks (didactical transposition) to be arranged and eventually included
in a platform, but also of the environment to be set up, the structure of the
teaching/learning activities to be organized, the technology to be selected, the
methodologies through which the interactions can be allowed and fostered and so on
(didactical engineering). We argue, indeed, that an e-learning platform has a role of
aggregator and that the true and meaningful sense of the didactical action lies in the
complex system architecture of the learning environment rather than only in the content
materials. For this reason, in the attempt to model the situations, we contend the need
to introduce as a new vertex the designer (D). This allows us to highlight the role,
performed mainly through a-priori rather than situational choices, of a further actor or,
more precisely, “scriptwriter”, in charge of that complex designing activity. In an
ordinary situation it is often the teacher who assumes, on one hand the role of the
designer, when he/she is involved in the selection and/or design of the resources, the
construction of the tasks and the planning of the activities, and on the other the role of
teacher/tutor during the development of the teaching/learning process. In more
complex situations, however, it could also be the case that a collective entity, with
different professional skills, needs to act as designer, while a (eventually further)
collective entity acts as teacher/tutor during the development of the activities.

As far as mathematical e-learning is concerned, Borba, Clarkson, and Gadanidis (2013)
already noted the importance of teamwork inside the collective designer. They claimed
that the low design and pedagogical quality of online interactive mathematics contents
can be avoided by the simultaneous work of various experts, such as mathematics
educators and human-computer designers, which can take into account and integrate
both didactic objectives and design principles. We argue that, a co-disciplinary team,
especially involving educationalist, can take care not only of the design of the content
materials but also of all the other choices which impact on the teaching/learning
process: the comparison, the discussion, the co-thoughts that can occur among the
different experts can affect decisions about the whole didactical architecture with
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respect to a fixed didactic goal. This point of view also seems to be highlighted by
Schoenfeld (2009) who wishes for a synergy between educational researchers and
educational designers. He claims that the richness of the designer enables the creation
of varied scenario of pedagogical expectations concerning knowledge, of professional
or ideological beliefs, of implicit philosophies that provides an enrichment of the e-
environment and carries out robust and well-engineered products made available to the
targeted learners.

THE CO-DISCIPLINARY PERSPECTIVE

In light of the above, following Albano et al. (2013), we assume that the didactic
system concerning mathematical e-learning situations can be modelled in a systemic
way by a tetrahedron, which includes: some mathematical knowledge, that is
Mathematics (M), someone who is expected to learn M, that is the Student (S), the
Teacher/Tutor (T) and the Designer (D), in charge of planning, developing and
managing the didactic organization. As a matter of fact, the present tetrahedron is an
extended version of the cited, in particular with respect to the last vertex (that we have
decided here to name “Designer” instead of “Author”): herein, indeed, we aim at
assuming a wider approach considering the authoring of the content materials as part
of a more complex role that is the one of the designer as described above.

Student

Designer Teacher/Tutor

Mathematics

Figure 1: the didactical tetrahedron for mathematical e-learning

We claim that this model acknowledges the need to design, develop and analyse
mathematical e-learning in a co-disciplinary approach, hence the tetrahedron with the
internal mediatory sphere have to be considered in the whole complexity. However, an
insight on each of the four faces allows us to focus on the various aspects on which the
model can shed light, taking in account different perspectives on the interactions
among the actors, with respect to the integration of technology in the teaching/learning
situation.
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The basis of the model still remains the classical didactical triangle students-teacher-
mathematics, that is referred by the face STM. According to Rézeau (2001) teacher’s
action could be seen as a continuous balance/mediation between the didactical
disciplinary oriented processes and the educational processes. The latters are
intertwined with the formers and the teacher’s expertise consists of the ability to realize
this balance which varies according to the context, between scaffolding and fading,
between autonomy and support. The intersection point between the mediatory sphere
and this face of the tetrahedron is the technology, seen as a mediatory tool. The view
of this face represents the focus on the didactical action and on the role of the
teacher/tutor as “arranger”.

In the perspective of DTM face, attention is focused on the processes, where design
and enacting are intertwined, in which the Designer interacts with resources selecting,
adapting, revising and reorganising them, by means of an a-priori analysis. It is
worthwhile noting that these processes are ongoing processes which continue in usage.
This face, hence, depicts the instrumented mediated activity of planning the
mathematical experience. From this point of view, the Designer looks for resources,
plans the activities, chooses the e-tools and defines the educational setting. The
instrumental genesis takes place, that is the Designer defines how to use the artifact
(instrumentalization) and at the same time the affordances and constraints of the
particular chosen e-tools influence the design of the activities.

The view from the SDM face allows us to focus on the mediating role of technology
with respect to the the role of the Designer in organizing the learning settings for the
Student to learn Mathematics. From this perspective it can be useful to consider the
Geiger’s (2006) distinction of the four metaphors to describe the degree of
sophistication in which technology can mediate learning: Technology as master, where
the student is subservient to the technology and the relationship is induced by
technological or mathematical dependence; Technology as servant, where the
technology is subservient to the student, typically used as a reliable timesaving
replacement for mental, or pen and paper computations; Technology as partner, where
the technology is used creatively to boost student empowerment, treating the
technology almost as a surrogate human partner; Technology as extension of self,
where users draw on their technological expertise as an integral part of their
mathematical thinking.

Looking at the face STD, the focus is on the classical relationship between the
Teacher/Tutor and the Student, planned by the Designer. It can be represented by the
word “conversation”, referring to the Conversational Framework (Laurillard, 2001).
The Designer models the learning experience as iterative interactions among two
participants (e.g. Teacher and Student) at two levels, practice and communication,
connecting the two levels by means of adaptation and reflection. This means that we
can think of the whole face STD as cycles of designing for learning (D plans activities,
also with the use of e-tools), doing for learning (S interacting with the e-environment),
communicating for learning (starting from the practice, reflection and discussion
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between S and T and among students), tuning for learning (D perfects the design with
respect to T feedbacks). The previous cycles including peer learning, assuming both
the participants are students.

DISCUSSION AND CONCLUSIONS

The didactical tetrahedron proposed above can operate as a heuristic not only
acknowledging the need to analyse the relationships among the actors, but also drawing
attention to the didactical system supporting the design, the development and the
analysis of mathematical e-learning situations according to a co-disciplinary approach.
An example can be given considering the Theory of Semiotic Mediation (Bartolini
Bussi and Mariotti, 2008). From this perspective: the view of the STM face focuses on
the role of the teacher within the process, which consists of fostering the social
evolution of the emergent personal signs, coming from the artefact-use, into shared
mathematical signs, through the orchestration of meaningful discussions; the view of
the DTM face focuses on the design of both materials and activity phases, in order to
foster the unfolding of the semiotic potential of the artefact in use and the construction
of mathematical meanings through the guided evolution of signs, performed by the
Designer; the view of the SDM face allows us to focus on the artefact sign production
provoked by the use of technology thanks to the task that has been set up by the
Designer; finally, it is with a co-disciplinary perspective that the analysis of the
teaching-learning process can be broaden considering the STD face, taking into
account some contributions coming beyond mathematics education thanks to which we
can also focus on the didactical elements influencing the teaching-learning practices.

As a further example we can refer to a study in which the model has been applied to
define, tune and analyse the design of a Digital Interactive Storytelling in Mathematics
(Albano et al., 2018). One of the main features of the model is its systemic view of the
actors involved, which has allowed us to reflect on the learning process in a non linear
way, differing from the initial mode of learning in e-environments. Anyway, the model
can be used also to conceive the actors in terms of played roles rather than of persons.
In fact, this has led to thinking of them in a dynamic way, so imaging in some cases
technology (suitably chosen from the internal sphere and shaped according to the
intended use) as Tutor scaffolding specific learning goals. Analogously, the student
can play the role of the Designer, who produces the resources needed to make the
activities progress, or the role of the Tutor, in terms of expert among peers. This
example refers to the design phase, but further work is on-going in order to use the
model for analysing the output in terms of learning.

The design of teaching/learning activities in e-learning 3.0 environment is a complex
work. In fact, such activities generally foresee the use of various e-tools, some general
purposes and some domain specific, which should be pedagogically integrated among
them, on the basis of the didactical objectives of the teaching/learning activity. The
tetrahedron by Rezat & Strider (2012) that generalizes the classical didactic triangle
including the “Artifact” as a new vertex, has, in our view, the merit to recognizes that
the connections represented by the classical didactical triangle require mediation. It can
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be seen as embedded in our model if we consider the face STM connected with the
tangent point of the inside sphere of technology. However, we believe that the socio-
didactical tetrahedron is not completely suitable to take care of the complexity of
mathematical e-learning teaching-learning activities. This complexity is especially
intrinsic in the non simultaneity of time and spaces of any interactions which requires
a didactical orchestration not comparable to the face-to-face case. For this reason, we
have considered the proposal of a new specific tetrahedron for mathematical e-learning
worthwhile in which the vertex D is brought to the fore.
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The present research main goal is to examine processes that a community of inquiry
undergo within a PD program in which middle school mathematics teachers develop
mathematics lessons with technology. The research used interviews, audio-recorded
discussions, written lesson plans and reflections. Data were analyzed using constant
comparison method following Goos and Bennison (2008) and Jaworski (2006). The
research findings indicated that to plan and implement a mathematics lesson with
technology, the participating teachers went through a series of community processes
that included choosing, discussing, suggesting, deciding, commenting, critical
alignment, implementing and reflecting. These processes resulted in a shared
repertoire of resources.

Keywords: professional development, community of inquiry, mathematics lessons with
technology.

INTRODUCTION
Professional development of mathematics teachers

Researchers are interested in PD programs that aim to develop teachers' integration of
technology. Thomas and Palmer (2014) argued that PD practice is best constructed
around a supportive community of inquiry (Col) that gives teachers the opportunity to
observe, practice, and reflect on the use of digital technology in the classroom (Goos,
2014). Doing so, Thomas and Palmer (2014) suggested a PD design that involves
organizing a small heterogeneous group of teachers, each one presenting in turn a
prepared lesson incorporating technology. The lesson becomes the center of
community discussion and reflection. This PD design is close to the 'inquiry cycle'
design suggested by Jaworski (2008). The present research used the 'inquiry cycle'
(Jaworski, 2008). This cycle includes the following processes: planning, acting &
observing, reflecting and analysing, giving feedback. This cycle provides teachers with
opportunities to experiment, make mistakes, discuss, and negotiate. In fact, the
participants in an 'inquiry cycle' work as members of a Community of inquiry (Col) to
develop their professional knowledge.

Mathematics teachers' knowledge

Shulman (1987) proposed a framework for professional knowledge that includes seven
domains of teaching knowledge, where the category that revolutionized researchers'
thinking was pedagogical content knowledge (PCK). Ball and colleagues (Ball et al.,
2008) noted that Shulman’s categorization was theoretically rather than empirically
based, and proposed a model that focuses on Mathematics Knowledge for Teaching
(MKT). Shulman's PCK and Balls' MKT influenced a new theoretical framework, the
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pedagogical technology knowledge (PTK) framework, proposed by Thomas and
Palmer (2014) for teachers' knowledge concerning the integration of technology in
classroom practice. Thomas and Palmer (2014) maintained that several teacher factors
combine to produce PTK, including the MKT factor, which relates to pedagogical and
mathematical content knowledge. In the present research, one goal is to verify teachers'
knowledge that develop in a Col.

Development of teaching through Col

The framework was developed based on Lave and Wenger’s (1991) theories of
community of practice. Lave and Wenger put the knowledge in the practice and argue
that it can be interpreted in a school context. Teachers may develop their practices of
teaching as part of the community of teachers within the school.

Wenger (1998) suggested that learning is developed through three modes of belonging:
(a) engagement or mutual participation in joint tasks, (b) imagination, which is the
willingness to explore and try new things, then reflect on how these relate to other
practices, and (c) alignment, which is the convergence of a common focus, cause, or
interest. Seeking to look critically at what alternatives may be available, a Col is able
to think and act differently (Jaworski, 2003). In such an inquiry approach, the idea of
critical alignment is central to that of Col (Jaworski, 2006). Jaworski (2006) and Goos
and Bennison (2008) have described three dimensions or practices of Col by which the
community develops: mutual engagement of participants, negotiation of a joint
enterprise, and development of a shared repertoire of resources for creating meaning.

Shifting from community of practice to Col provides a reflective development of
teaching (Wells, 1999). A feature of a Col that distinguishes it from a community of
practice is the importance attached to meta-knowing by reflecting on what is being or
has been constructed, and on the tools and practices involved in the process (Wells,
1999). In the present study, we used the Col (Jaworski, 2006) and the 'inquiry cycle'
(Jaworski, 2008) designs to engage middle school mathematics teachers in teaching
mathematics with technology. The present study aims to describe processes, which are
observed in the Col. Another aim is to verify the roles of the community members in
developing the technology-based mathematics lessons. A third aim is to verify teachers'
knowledge that develops in Col.

Research question

1. What are the processes that middle school mathematics teachers who collaborate
in the frame of a Col undergo to develop technology-based lessons?

2. What are the roles of the community members in their collaboration to develop
technology-based lessons?

3. What teachers' knowledge develops in the frame of a Col who develops
technology-based lessons?
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METHODOLOGY
Research context and participants

The PD program was conducted in the academic year 2017-2018. It aimed to help
middle school mathematics teachers make effective use of technology in their
classrooms. It is based on Col practices (Goos & Bennison, 2008; Jaworski, 2006),
specifically it uses the 'inquiry cycle' suggested by (Jaworski, 2008). The participants
in this PD program are mathematics middle school teachers. They meet once every two
weeks, for two academic hours, during six months (10 meetings). In the PD program,
teachers work in groups and engage in three inquiry cycles. Each cycle includes:
Planning an ICT lesson within their groups, implementing and recording the planned
lesson (acting) in their classrooms, observing the implemented lesson, reflecting on
and analyzing this implemented lesson, and giving, as individuals, feedback about
(suggesting improvements to) the plan of the lesson. The participants videotaped the
lessons and discussed them in their group during the PD sessions. Specifically, for this
study, we chose one of the groups that participated in the program and which
constituted of five teachers: Marwa, Reem, Mosab, Salsabil and Manar (pseudonyms).
Marwa and Reem completed last year their B.Ed. in mathematics education with
honour degree, Mosab is ICT guide, Salsabil is Mathematics teacher guide and Manar
is an experienced teacher (more than 15 years seniority). We chose this group as a focus
group due to the group unique combination (varied expertise).

Data collection tools

The research used interviews, audio-recorded discussions, written lesson plans and
reflections. In more detail, we interviewed each participating teacher individually at
the end of the PD program. The interview was semi-structured. An example of a
question in the interview: “What was the role of the other mathematics teachers in your
group in writing your lesson plan that integrates technology?” The participants’
discussions at every meeting regarding the planning of their lessons, and the
implementation of their lesson plans in the mathematics classroom were audio-
recorded. The participating teachers prepared three written lesson plans that integrated
technology in mathematics teaching as well as written reflections. The reflections were
of two types: individual and collective reflections. The reflections were written after
the implementation of each lesson.

Data analysis

Data were analyzed using the constant comparison method. Part of the analysis was
deductive, following the categories described in Goos and Bennison (2008) and
Jaworski (2006). These categories relate to practices of community of inquiry (mutual
engagement, negotiation and shared repertoire). In addition, part of the analysis was
inductive, searching for themes and categories related to the roles of the pre-service
teachers in the Col and related to teachers' knowledge developed in the frame of Col
processes.
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FINDINGS

The series of processes that the community undergo while preparing a technology-
based lesson

When preparing a mathematics lesson with technology, the participating teachers went
through a series of processes as a community. This series included mutual engagement
of the participants and negotiation regarding choosing the topic of the lesson,
discussing its general plan, deciding upon the roles of each member in the group
regarding the writing of the lesson, suggesting activities for each part of the lesson by
the member responsible for it, commenting on the activities, and critical alignment
regarding the final content and structure of the activity. These processes resulted in a
shared repertoire of resources for the participants, where this repertoire included the
components of the planned lessons: the built activities, the teaching strategies and the
technological tools used in the activities.

The roles of the group members in processes the community undergo

What influenced the roles of the group members were their previous experiences.
Those who were more expert in technology were responsible for choosing appropriate
technological tools to be used by the students in carrying out the activities. Those who
had more seniority in teaching were responsible for determining the time and order of
the activities. It could be argued that the group activity started from a repertoire that
included the expertise of each of the members.

One of the members of the group, Reem, described the division of labour between the
group members, saying: “Salsabil and Manar have more experience than the rest in
teaching mathematics, so they told us what the students should learn in the
mathematical topic, the topics that they learned before and the topic that they learn
after. Salsabil suggested how we should sequence the activities”. Reem continued:
“Mosab 1s more experienced than the rest of the members in technology, so he looked
for applets for the lesson ‘The area of the parallelogram’. We afterwards decided which
applets to use in the lesson™.

The members of the group also took care of an alternative plan if something went
wrong with the technological tool. One of the members, Manar, prepared such without-
technology lesson plan. This role was given to Manar because she is an experienced
teacher who teaches usually without technology.

The fixation of the group members’ roles

In this group, the members had fixed roles. One of the members, Marwa, described the
community members’ roles in building the activities in the following way: “Salsabil
and Mosab took the introduction of the lesson and the summary. This happened in the
preparation of the three lessons. Everyone in the group took a specific part of the lesson
and was responsible for its preparation. It is right that they sent us what they prepared,
but it was their role to take care of the introduction and the summary. We gave
comments for each other, and only after correcting according to the comments, the
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lesson part was adopted by all of us”. So, the fixation of the roles of the group members
did not indicate the lessening of negotiation in the group.

Although the roles of the members were fixed, the members considered their roles as
complementing each other. This complementing was strengthened by the similar
beliefs of the group members. Marwa said: “We were different regarding the
knowledge that we possess. Some had more content-knowledge, some had more
pedagogical-knowledge, while others had more technological-knowledge. In spite of
this difference, we had similar beliefs and goals regarding the integration of technology
in the mathematics classroom. These similar beliefs and goals made us utilize our
differences in preparing the lesson plan”.

Community processes that led to the development of the pedagogical
mathematical knowledge

The discussions in the community developed the members' mathematical pedagogical
knowledge. For example, in the preparation phase of the first lesson — the equation of
the line that passes through two points, Reem suggested starting the lesson by drawing
two points and asking the students about the number of the straight lines that pass
through the two points. Manar did not agree with this suggestion and suggested
drawing a straight line, assigning various points on it, finding the ratio of the difference
of the y-coordinates to the difference of the x-coordinates of every two points and
demonstrating that this ratio is fixed for any straight line. Reem agreed with her that
her suggestion would advance the students to discovering one important feature
towards finding the equation of a straight line.

In the preparation phase of the second lesson — the triangle area, Reem showed the
other members an activity that she prepared for the students to explore the triangle area
topic. All the members were engaged in suggesting some modifications. Manar
suggested shortening this activity because it would take all the lesson time. She also
suggested that they first give the students questions about the triangle altitude topic
(the previous topic) to make them ready for the area topic. On the other hand, Salsabil
suggested that there is no need for one question in the activity. This question requested
the students to draw from a triangle's vertex a parallel line to the opposite edge and
drag the altitude along the parallel line, observing all the time the length of this
altitude”. Manar did not agree with Salsabil's suggestion, arguing that this question is
needed to take care of all types of triangles including obtuse-angle triangles. After
discussion, the group members agreed to keep the question.

Community processes that led to the development of the technological
pedagogical mathematical knowledge

In choosing a lesson to teach using technological tools, this group of pre-service
teachers discussed the type of technological tools that could be integrated in each
lesson: applets, GeoGebra, spreadsheets, videos, PowerPoint presentations, etc. Manar
claimed that there is not technological tool that could help the students in discovering
the rules of adding or multiplying positive and negative numbers. Mosab, on the other
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hand, suggested using Excel for that matter. He showed the group how to do that.
Manar did not accept his suggestion, but when Mosab and Salsabil prepared an
appropriate worksheet, she agreed that the worksheet could be a good start for the topic,
but the students need to discuss the spreadsheets results in order to understand
conceptually the addition and multiplication of positive and negative numbers.

In choosing an applet to use in a lesson, technological pedagogical knowledge played
arole. In the third lesson — the area of the parallelogram, the applet that the pre-service
teachers found at the beginning showed one altitude of the parallelogram. Salsabil said
that they should look for another applet that shows the two altitudes of the
parallelogram, which would help the students arrive at a generalization. Reem and
Manar did not agree with her, saying that two altitudes would make the mathematical
situation difficult for the students.

In addition to the above, the role of technology differed in the three lessons. This
change was due to the reflection and discussion that the teachers performed after the
implementation of each lesson. These reflections in which the members were engaged,
helped them negotiate their further planning, which resulted in their critical alignment
regarding the lesson plan.

To elaborate more about the role of technology in the lessons, in the first lesson,
‘finding the equation of the line that passes through two points’, the technology was an
applet that enables the student to draw a line through two points, to change one of the
points and watch the equation of the line changes. The applet chosen by the group did
not have a functional role for the learnt topic; i.e. it did not help the student to see the
method of finding the equation of a line that passes through two given points. This
applet only enabled the student to see a line that passes through two points.

Reflecting and discussing the first lesson, One of the group members, Manar, suggested
to give the students directions how to work with technological tool, so that the students
do not waste the time lesson because they have not the sufficient knowledge to work
with the tool. In addition, the group members aligned towards using tools with different
functionalities. So, in the second lesson, ‘the area of the triangle’, they used an NCTM
applet for the area of the triangle. Through this applet, the student could manipulate the
triangle, add the lengths of the base and its altitude to a table, and the applet finds the
triangle area. This applet is functional to the triangle area topic and the students are
expected to arrive at the formula of the area by working with the applet.

Reflecting and discussing the second lesson, the group members aligned towards using
an applet with similar functionalities. So, in the third lesson, ‘the area of the
parallelogram’, the teachers decided to use an applet similar to the one in the second
lesson, but here they themselves built an appropriate applet using GeoGebra. They
decided to use a GeoGebra applet taking care of technical consideration; i.e. to have an
applet that works offline. Also, in the third lesson, the worksheet was electronic.

Also, the group used a long PowerPoint presentation in the introduction of first lesson,
which made it difficult to proceed as planned in the exploration part of the lesson. The
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engagement in reflection, discussion and negotiation after the lesson made the group
align towards a shorter presentation in the second and third lessons. Finally, the group
aligned towards not using a similar video for summary in the second and third lessons,
as they found that it was not meaningful to the students’ learning. The used video
repeated the steps exactly as the students did, without emphasizing the main processes,
and thus it did not work as a summary for the lesson. Instead, they used a short and
animated PowerPoint presentation.

DISCUSSION

The present study intended to describe the processes a Col undergo within a PD
program, that enabled the participating teachers develop mathematics lessons with
technology. The research results indicated that to plan and implement a mathematics
lesson with technology, the participating teachers went through a series of processes as
a community. These processes included: choosing the topic of the lesson, discussing
its general plan, deciding upon the roles of each member in the group regarding the
writing of the lesson, suggesting activities for each part of the lesson by the member
responsible for it, commenting on the activities, critical alignment regarding the final
content and form of the activity, implementing the activity in the classroom and
reflecting individually and collectively on this implementation. These processes
indicate that the teachers acted as community of inquiry (Goos & Bennison, 2008;
Jaworski, 2006): engagement, negotiation and critical alignment in their intention to
work on their joint enterprise that is developing technology based mathematical
lessons. Furthermore, these processes resulted in a shared repertoire for the
participants: the planned lessons that included the designed activities, the teaching
strategies and the technological tools used in the activities. It could be argued that all
the participating teachers developed as collective and as individuals as a result of
participating in the community of inquiry which agrees with Jaworski’s (2003)
argument, that an individual’s development of mathematics teaching practice “is most
effective when it takes place in a supportive community through which knowledge can
develop and be evaluated critically” (p. 252). This supportive community was special
in the case of the community that the present research describes. In more detail, the
different expertise of the members supported their community practices and the
development of each one of them in the different expertise fields needed to develop
and implement technology-based lessons. It should be noted that the different expertise
of the members resulted in fixation in their community roles throughout the PD
program, but this fixation did not hinder their development of the technology-based
lessons.

REFERENCES

Ball, D. L., Thames, M., & Phelps, G. (2008). Content knowledge for teaching: What
makes it special? Journal of Teacher Education, 59(5), 389-407.

Goos, M. (2014). Researcher—teacher relationships and models for teaching
development in mathematics education. ZDM, 46(2), 189-200.

Proceedings of the 5" ERME Topic Conference MEDA 2018 - ISBN 978-87-7078-798-7 25



Goos, M. E., & Bennison, A. (2008). Developing a communal identity as beginning
teachers of mathematics: Emergence of an online community of practice. Journal of
Mathematics Teacher Education, 11(1), 41-60.

Jaworski, B. (2003). Research practice into/influencing mathematics teaching and
learning development: Towards a theoretical framework based on co-learning
partnerships. Educational Studies in Mathematics, 54(2-3), 249-282.

Jaworski, B. (2006). Theory and practice in mathematics teaching development:
Critical inquiry as a mode of learning in teaching. Journal of Mathematics Teacher
Education, 9(2), 187-211.

Lave. J. & Wenger, E. (1991). Situated learning: Legitimate peripheral participation.
New York: Cambridge University Press.

Shulman, L. (1987). Knowledge and teaching: Foundations of the new
reform. Harvard Educational Review, 56(1), 1-22.

Thomas, M.O.J. & Palmer, J.M. (2014). Teaching with digital technology: obstacles
and opportunities. In A. Clark-Wilson, O. Robutti & N. Sinclair (Eds.), The
Mathematics Teacher in the Digital Era. An International Perspective on
Technology Focused Professional Development (pp. 71-89). Dordrecht: Springer.

Wells, G. (1999). Dialogic Inquiry: Toward a Sociocultural Practice and Theory of
Education. Cambridge University Press, Cambridge.

Wenger, E. (1998). Communities of Practice: Learning, Meaning and Identity.
Cambridge University Press, Cambridge.

26 Proceedings of the 5" ERME Topic Conference MEDA 2018 - ISBN 978-87-7078-798-7



Designing mathematical tasks to promote students’ online interaction
Chiara Andra, Domenico Brunetto and Elisabetta Repossi

MOX - Department of Mathematics, Polytechnic of Milan, Italy,
chiara.andra@polimi.it

In this paper we aim at identifying the tasks, posted online by a teacher, that occasion
more Students’ interactions than others, namely threads for which a larger number of
students posted more comments on line with respect to other threads, where fewer
students posted less comments. Being explorative, our study considers a varied set of
tasks in terms of topic, length and being procedural or conceptual. To analyse the data,
we resort to the methods provided by the most recent advances in network analysis.
The results allow us to pinpoint a tentative list of characteristics of tasks that promote
online interaction, and at the same time we identify subgroups of tasks that attract
students with different preferences and behaviour.

Keywords: community analysis, mathematical tasks, network analysis, online math
forums, students interaction.

INTRODUCTION AND BACKGROUND

As van de Sande (2011) observes, school mathematics learning is usually featured as
an in-class part plus an homework part, and recently students do not only use textbooks,
class notes, peers, parents and tutors, in order to master the content they are trying to
learn outside school, but they also seek help in open, free, on line math forums. An
underlying inquiry-based teaching pedagogy characterises such forums (van de Sande,
2011), where many-to-many interactions are often allowed. These forums represent a
form of computer-mediated discourse, which is distinct from speaking and writing
(Herring, 2011): we can see a change from traditional, formal, private, one-to-one
student-initiated help seeking, to a new, informal, public activity between people who
share some interest in the subject domain but are otherwise unconnected. Several
characteristics of both mathematics and communication emerge, that are unique to this
kind of interaction (see van de Sande, 2011): (1) gestures and looks have to be conveyed
in alternative ways, (i1) formal mathematics has to be communicated informally, (ii1)
contributions are directed towards anonymous and unknown recipients, (iv) a written
record can be accessed later on time, and it can be revised.

Even if some out-of-school mathematics forums have thousands of members and
receive hundreds of posts every day (van de Sande, 2011), researchers have observed
that technology is underused in classroom mathematics teaching, and —when used—
underexploited (Clark-Wilson et al., 2011). Joubert (2013) argues that a reason for this
is that the “grand challenges” themes on the use of technology in mathematics teaching
and learning have not been addressed by researchers in mathematics education.
According to Joubert (2013), in fact, the three “gran challenge” themes are:
orchestrating learning—which aims at understanding and characterising the
opportunities for teachers when technology is introduced into their classroom, and at
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exploring the use of tools to facilitate orchestration; contextualising learning—which
focuses on how and to what extent technology provides new and different learning
contexts for teaching and learning; and connecting learners—which concerns the
issues and questions that arise from the increased connectedness of students. In her
study, Joubert finds out that there is a need for more research on connecting learners,
a theme that 1s strongly related to students’ interaction in learning process, and thus to
interactions theories in Mathematics Education. A special focus is on students’ online
interactions, distinguished from students’ in class interactions. With Engelbrecht &
Harding (2005), we observe that, in online math forums, mathematical knowledge is
acquired by construction, not by transmission alone, and the process of knowledge
acquisition is contained both internally, by what one already knows, and externally, by
cultural artefacts such as shared language and notation. To this respect, Larsen &
Liljedahl (2017) noted that a certain amount of diversity as well as a certain amount of
redundancy are needed for interaction to take place in online forums. Diversity allows
for novel actions and possibilities because it refers to the diversity among the
participants in the forum, while redundancy allows for stability and coherence because
it refers to the common ground among participants. Without redundancy, participants
in a forum may not be able to communicate, but without diversity, they may never have
anything to communicate about.

Studies like Larsen & Liljedahl’s ones shed light on an important issue concerning the
potential for online forums to be a case of learning where students are connected and
share knowledge. Another important issue is the kind of math problem that is shared
in online forums. As a matter of fact, indeed, we know that some threads generate lots
of comments, posts and replies from students, while others get somehow ignored. If it
is true that not necessarily the former ones are better than the latter ones, it is as well
true that when the concern is promoting interaction, the former ones serve the purpose
of a teacher better that the others. In our study, like Larsen & Liljedahl (2017), we
apply the categories of diversity and redundancy to the threads and we understand
redundancy as a feature of a task of connecting the students’ knowledge. Diversity is
a feature of the task consisting in appearing as new and challenging for the participants.
A 100% redundant task is a task already seen by the students, while a 100% diverse
task is so far from the students’ knowledge that they are even unable to understand it.
Such features of the tasks can be inferred a posteriori, from the data. We, thus,
generated a varied set of tasks to be posted on line and we seek for evidence of
interaction among the students.

METHODOLOGY

Which are the features of a task that promote online interaction? In order to answer to
this research question, we consider the forum of a massive, open, online course
(MOOC) realised at the Polytechnic of Milan in 2015. The name of the course is Pre-
calculus and its contents reflect the mathematics that is needed to enter Engineering
and Architecture courses at this university. Within the learning opportunities for high
school students who aim at enrolling at the Polytechnic of Milan, there is a blended
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course which adopts an historical perspective in six in-presence lectures held by
university professors, and an interactional perspective in five learning “weeks”
delivered on line. For six subsequent school weeks, every Monday, the students came
to university and attended a lecture on one of the topics of the Pre-calculus MOOC
(arithmetic, logics, algebra, geometry, relations, and probability & statistics), while in
the rest of the week they watched video lessons on the MOOC and interacted in the
forum, since a secondary school teacher, called the fufor (who is also the third author
of this paper), posted every day a new math task to discuss about. 30 different tasks are
the object of the study and vary with respect to the topic (5 about arithmetic, 5 about
logics, 5 algebra, 5 geometry, 5 relations and 5 probability), the nature (15 are
procedural, 15 are conceptual), and the length (from few words to long paragraphs).
Year after year, edition after edition, we noticed that some math problems occasion
much more interaction than others, despite the time of the day, or the day in the week,
in which they had been posted by the tutor. Moreover, the number of interactions does
not seem to depend neither on the topic, nor on the order in which they are posted
(which allows us to exclude variables like fatigue as the main reasons for that
difference). In this paper, we consider the edition of the course that took place on
January 2017 and that involved 35 high school students (17 years old). The online
forum is the standard one provided by EdX, with a home page where new threads can
be inserted by any participant, and the kind of interaction that is possible once a thread
had been initiated is either to reply to, or to comment on a post.

We show some tasks that exemplify cases of many/few interactions occasioned.

Problem W1Q2: s the sum of three subsequent natural numbers divisible by 3? Justify
your answer. [arithmetic, conceptual, short]

Problem W1Q3: Is the product of three subsequent natural numbers (greater than or
equal to 1) always divisible by two? Is it always divisible by 4? Is it always divisible
by 3? Is it always divisible by 6? Justify your answer. [arithmetic, conceptual, long]

Problem W1Q4: Order these numbers on the number line: 2 1 % V3 2 ’—:’ 6.12 64

[arithmetic, procedural, short]
Problem W2Q4: Solve these inequalities: (a) x°>0, (b) x’-2 <0, (c) x’+2x+5<0. Solve

1 «

A

= ()

the following inequalities with fractions:

[algebra, procedural, long]

Problem W2QS: Write in symbols: (a) one third of the double of a number to which
its half had been subtracted, (b) the half of the square root of three times the cube of
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an even number. Solve: (a) Charles says to Alison: “if you give me 2 euros, we have
the same amount of money”. Alison replies: “if you give me 2 euros, I have twice the
amount of your money”; (b) twice my age is half of yours, and their sum is 20. [algebra,
conceptual, long]

Problem W3Q3: Represent the following parts of the Cartesian plane and compute
their perimeter and area: (a) x’+y° <9 (b) (x-1)° < 36 intersect (y+2)° < 25 [geometry,
conceptual, short]

Problem W4Q3: There are elements in nature whose atoms tend to decade, emitting
particles, generating other elements. The speed of decay varies from element to element
and it is identified by the so called “halving time”, namely the time that is necessary
for the number of atoms of the element, which are initially present in a body, halves.
Carbon 14 is a radioactive element that has an halving time of 5730 years. If today in
a rock there are 107 atoms of carbon 14, how many of them were present 2000 years
ago? How many of them will be present 100 years ahead? 1000 years ahead? 10° years
ahead? [relations, conceptual, long]

Problem W5Q3: In the Lotto game, five different numbers are extracted in each one
of ten cities. Numbers range from 1 to 90. The Lotto outcome of Saturday, March 1
2014, had been this one:

| i

Bari 36 78 39 21 79
Cagliari 60 83 53 56 59
Firenze 21 2 5 20 61
Genova 52 13 38 58 85
Milano 27 69 19 32 5

Napoli 89 27 42 51 84
Palermo 81 15 9 25 36
Roma 7 a9 41 75 27
Torino 54 63 29 2 43
Venezia 45 a7 3 18 49
Nazionale 67 75 1 82 63

Which one of the following sequences would you bet on the next week?
a) 1 2 3 45

b) 13 7 45 36 72

c) 36 78 39 21 79

How many different sequences of 5 numbers is it possible to have? [probability,
conceptual, long]

Each problem has been labelled as WxQy, where x is the respective week in the
MOOC, while y represents the day when the task has been posted. For instance,
problem W1Q2 is the second task posted on week 1 (arithmetic). Each problem
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corresponds to a separate thread in the forum and for each thread the students were
invited to post their solutions and/or to comment the others’ solutions.

In order to analyse the features of the tasks that promote students’ interactions in the
forum, we build a network in this way: each task is a node in the network and there
exists a /ink between two tasks if the same student posted something in the two
respective threads. The network is weighted because the more comments are posted by
same students, the stronger the link between two nodes. The network is also undirected,
because of the symmetry of the link.

The analysis of this network allows us to identify the tasks that are most central, by
looking at their weighted degree and at their betweenness, but this also allows us to
identify different “communities” of problems, which “attract” subgroups of students
(see Newman, 2010). The weighted degree of a node is defined as the sum of the
weights of the links of each node. The betweenness of a node i is related to the concept
of distance among nodes and it measures how much “longer” would be to pass from
node j to node & in case node i is removed from the network. In a network is it possible
to identify clusters of nodes, called communities: they represent a partition of the set of
nodes and community analysis is performed by computing a quantity that maximises
the probability that a random walker would not get out from a community, if he starts
moving from a node of the community (Newman, 2010). Moreover, we consider the
within-community degree, which measures the extent to which a node is well connected
to the other nodes in the community (see Guimera, Mossa, Turtschi & Amaral, 2005).
It is equal to the difference between the degree of the node and the average degree of
the nodes in the community, divided by the variance of the degree of the nodes in the
community. If the within-community degree is positive, it means that the node is
central in the community and it is connected to the other nodes within the same
community. If it is negative, it means that the node 1s peripheral and it is connected to
nodes outside the community. In our study, a community which has a high percentage
of nodes that have negative within-community degree allows us to identify the tasks
that attract students who prefer to interact a lot (namely, to publish many posts) on a
limited set of tasks (i.e., the ones in that community), while the opposite situation is
the one of tasks which attract students that interact a lot on many tasks.

DATA ANALYSIS

Figure 1 shows the network of problems posted in the forum. The weighted degree is
represented by the radius of the node: the bigger the circle, the higher the degree. We
notice that some of them are much more central than others: problem W1Q3 has the
highest degree (1091), followed by W1Q2 (degree 936) and W3Q3 (757). Task W1Q3
has a conceptual nature and requires some reasoning and some general, abstract
understanding of the concept of multiple numbers. It concerns arithmetic and is pretty
long. W1Q2, which has the second highest degree, concerns arithmetic and general,
abstract properties of natural numbers as well, but is shorter. W3Q3 is geometric,
conceptual and pretty short. It may require a draw. Let us consider the five tasks with
the lowest degree: W2Q1 and W2Q3 are procedural and about algebra, asking to
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compute the MCD and mcm of polynomials and sto simplify fractions; W3QS5 asked
the definition of non-Euclidean geometries (and the students copy-pasted definitions
taken from internet); W5Q4 asked to compute the probability of getting an ‘ambo’ in
the Lotto game, and W5Q5 concerns the meaning of average in statistics. We notice
that tasks W5Q4 and W5Q)5 are conceptual and very far from the mathematical content
the students are used to deal with in math classrooms in Italy.
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Figure 1: the network of 30 tasks in the online math forum.

High weighted degree for a task means that the comments to that task come from
students who tend to comment a lot, so we can say that more interactive students have
been more attracted by tasks concerning arithmetic (and analytic geometry), and
requiring abstract reasoning or conjecturing. Students who are less interactive overall
have been more attracted by tasks concerning probability and procedural algebra.

Betweenness in Figure 1 is represented by the size of the label of the node: the higher
the size of the label, the higher its betweenness. If we consider betweenness as index
of centrality, we see that problem W1Q3 has also the highest centrality (19), followed
by W1Q1, W3Q3 and W5Q3, whose betweenness is 9. All the other problems have
betweenness equal to 0. W1QI1 concerned arithmetics and logics, in that it asked to
compute the number of students who do not play neither tennis not football, knowing
that there are 400 students in the school, of which 150 play tennis, 100 play football
and 30 play both. W5Q3 is about probability, it is conceptual and long.

High betweenness of a node means that it is necessary for a random walker to pass
through the node in order to reach the other nodes, namely that the comments on those
tasks come from students who commented at least once in many other nodes. While
the degree measures how many times a student makes a comment, the betweenness
measures the presence of a student in each thread. The fact that 26 over 30 tasks have
betweenness equal to 0 means that the majority of students tend to post many times in
the same task, instead of posting few times in almost all the tasks. This makes it
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interesting to analyse how they cluster around subgroups of tasks that attract subgroups
of students. Tasks form a community if a student tends to interact on the tasks of that
sort more than with other tasks.

In Figure 1 communities are identified by colours and three communities of tasks have
been found. Community 1 (C1) (green) is made of W2Q4, W4Q3 and other three tasks.

In C2 (purple) we find W1Q2, W2Q5, W3Q1, W5Q3 and other eleven tasks. This
community is the biggest one.

In C3 (orange) we find W1Q3, W1Q4, W3Q3 and other 9 problems. This is the
community which has the most central problems in the network.

Within-community degree of each node in the network can be either positive or
negative. C1 has 40% of nodes with positive within-community degree (tasks W4Q2
and W2Q4), and 60% of nodes with negative within-community degree. This cluster
of tasks attracts the students who interact and post comments on few tasks, but they
post relatively many comments. In a sense, we would say that this community of tasks
attracts rather focused, selective students.

In C2, 47% of tasks have positive within-community degree (among them, W1Q2) and
53% have negative one (among them, W2Q1 and W3Q5). The tasks in this community
attract those students who tend to make comments to many tasks, few comments per
task. In a sense, we would say that this community attracts rather superficial students.

In C3, only 31.5% of tasks have positive within-community degree, while 68.5% of
them are more connected to tasks outside the community. Since this is the community
of tasks with highest weighted degree, we can say that it is made of tasks that attract
the most interactive students: they interact a lot on the tasks of this community, and
they interact a lot also on the tasks outside the cluster. We would say that this set of
tasks allows us to identify the most active students.

CONCLUSIONS

Students’ online interaction may help us to shed light on their engagement in math
forums —even if engagement does not have to be confused with ‘simple’ interaction,
namely with posting/commenting. The features of the tasks on which students tend to
interact more than others are: the topic (e.g. arithmetic and geometry provoke more
interaction than probability and algebra), and their conceptual nature. Being short or
long seem not to have an effect on interaction. We also aimed at identifying tasks that
attract students with different tendencies. We identified three kinds of students’
behaviour in online forums: 1) focused, specialised students who tend to comment a lot
on selected, few tasks; i1) students that more superficially tend to comment a few on
many tasks; and ii1) very active students, who like some tasks more than others (and
comment a lot on them), but who also comment on the other tasks. We further comment
that these results confirm well-known findings in literature, however we remark that
the methodology employed (i.e., network analysis) is potentially applicable to analyse
forums with small to huge numbers of students and threads like the ones presented van
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de Sande’s (2011) study. Future work may address a larger sample performing finer
grain analysis.
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The present research examines the influence of pre-service teachers’ professional
development (PD) program in metacognitive skills on their practice of these skills in a
mobile technologies environment. Twenty-four pre-service teachers participated in the
PD program. The data was collected from the pre-service teachers’ texts for activities
solutions, as well as from their Edmodo discussion. We analyzed the data using the
constant comparative method. The research results indicate that at the beginning, the
pre-service teachers did not use such skills, but, because of the preparation, they
started using these skills as learners, where this use utilized the mobile technologies.
In a later phase, the pre-service teachers used these skills as teachers to encourage
their students to use metacognitive skills collaboratively.

!

Keywords: metacognitive skills, pre-service teachers, mathematics teachers
education, mobile technologies.

INTRODUCTION

Researchers are interested in the metacognitive aspect because of its relationship with
other aspects as the cognitive aspect (Gavelek & Raphael, 1985) and the social and
affective aspects (Daher, Anabousy & Jabarin, 2018). Belet and Guven (2011) claim
that metacognition makes students aware of their learning. This awareness supports the
internalization of what one learns and makes him/her consider carefully how to solve
problems posed in the classroom. These advantages of metacognition for students’
learning make it necessary that teacher education colleges attempt to prepare pre-
service teachers, so that they develop their knowledge of metacognition for teaching.
This development is expected to develop also their perceptions of metacognition in
teaching and learning. In the PD program that the present study accompanies, we
intended to develop the metacognitive skills of mathematics pre-service teachers as
learners and teachers of mathematics.

LITERATURE REVIEW

Researchers looked at metacognition as cognition about cognition or knowledge about
knowledge (Flavell, 1976; Panaoura, Philippou & Christou, 2003). Flavell (1976) was
the first to use the term 'metacognition' to refer to the individual's awareness,
consideration and control of his or her own cognitive processes and strategies. Since
then, a variety of definitions has been given to the term of metacognition. Du Toit and
Kotze (2009) argue that the various definitions of metacognitive processes in the
literature, including that of Schoenfeld (1992), emphasize the monitoring and
regulation of cognitive processes. Moreover, Gavelek and Raphael (1985) argue that
metacognition involves promoting effective understanding through adjusting the
cognitive processes involved in the activity. Furthermore, Panaoura et al. (2003) say
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that it coordinates cognition, affecting it and, as a result, affecting students' academic
success.

Researchers pointed out, that metacognition is comprised of two different components
connected to each other. Veenman et al. (2006) argue that the most common distinction
in metacognition distinguishes between metacognitive knowledge and metacognitive
skills. On the one hand, Flavell (1999) defines metacognitive knowledge as the
knowledge or beliefs about the factors that act and interact to affect the course and
outcome of cognitive enterprises: person, the task and the strategy. On the other hand,
metacognitive skills involve planning, monitoring, evaluating and regulating the
processes leading to achieving goals. Davidson and Steinberg (1998) described a
theoretical framework that includes the following metacognitive skills: encoding,
representation, decomposition, planning, selecting strategy, monitoring, evaluating and
suggesting other strategies. In the present study, we focused on metacognitive skills
and utilized the previous framework to introduce metacognition to our pre-service
teachers.

In addition, researchers suggested ways to encourage students to use metacognitive
processes (e.g., Spiller & Ferguson, 2011). Schoenfeld (1992) describes ways for
students to practice monitoring and evaluating their performance on math problems.
For example, pause frequently during problem solving to ask themselves questions
such as “What am I doing right now?”” Spiller and Ferguson (2011) say that if we want
students to use metacognitive processes, we need to encourage them to consider the
nature and sequence of their own thinking processes. Chauhan and Singh (2014) say
that as students become more skilled at using metacognitive strategies, they become
confident and more independent as learners. In the present research, we wanted to
educate mathematics pre-service teachers for using metacognitive processes, as
learners and as teachers, through utilizing mobile technologies and collaborative
learning.

Mobile technologies in mathematics education

Mobile technologies in general have been used in the mathematics classroom for more
than a decade now. Advantages of using mobile technologies in education encourage
teachers' use of these technologies, where various reasons encourage teachers to use
them in their teaching (Daher & Baya'a, 2012; Ng & Nicholas, 2012). Ng and Nicholas
(2012) reported that teachers are interested in mobile technologies for their
professional development and because these technologies raise students' motivation to
learn. In addition, these mobile technologies influence positively students’ behavior
and emotions. Daher and Baya'a (2012) found that mobile technologies could be
utilized as proper strategies for mathematics measurements and investigation in solving
real life problems. These positive influences and utilizations of mobile technologies
make us encourage our pre-service teachers to use them in their teaching. In the present
research, we encouraged them to use the mobile technologies in their metacognitive
processes, especially as strategies for solving real life mathematical problems.
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Research question

How would mathematics pre-service teachers develop their metacognitive learning and
teaching skills as a result of one-year preparation?

METHODOLOGY
Research context and participants

This PD program was held for a full academic year 2016-2017. Twenty-four pre-
service teachers participated in the PD program. They were in their third academic year
majoring in teaching mathematics and computer science in middle schools. Two of the
authors, who were the pedagogical supervisors of these pre-service teachers,
accompanied them in two middle schools in the frame of the practical training. Our
preparing of the pre-service teachers in metacognitive skills was based on the work of
Davidson and Steinberg (1998) (See above), with special emphasis on using mobile
technologies for solution strategies. In addition, special attention was given for
collaborative learning among the pre-service teachers’ groups and their students. To
achieve this goal, the pre-service teachers utilized the forums in Edmodo — an
educational social network site, to discuss their preparation and implementation of the
mathematics activities. The role of Edmodo discussions was crucial since all the
disagreements, negotiation and alignment occurred in these forums. To read the
detailed description of the PD phases, including the role of Edmodo discussions, see
Daher, Baya'a, Jaber and Anabousy (2018).

Data collection and analysis

The data tools were the pre-service teachers’ texts for the solutions of the activities that
we requested them to carry out using metacognitive processes. In addition, we used the
pre-service teachers' discussion texts in Edmodo forums.

To analyze the texts, we used inductive and deductive qualitative content analysis.
Content analysis is a process designed to condense raw data into categories or themes
based on valid inference and interpretation that use inductive reasoning. Deductive
reasoning can also be used with the goal of generating concepts or variables from
theory (Patton, 2002). Using the deductive reasoning we looked for themes related to
the metacognitive skills from the work of Davidson and Steinberg (1998). Using the
inductive reasoning, we tried to find out if additional metacognitive skills not given in
the literature were described by the pre-service teachers.

FINDINGS

The findings report the participating pre-service teachers’ metacognitive activity when
solving authentic mathematical problems during the one-year preparation. First, they
practiced using metacognitive skills, as learners, to solve an authentic mathematical
problem prepared by their pedagogical supervisors. Second, they used metacognitive
skills, as teachers, in the preparation of authentic mathematical activities that use
mobile devices. Finally, it reports the pre-service teachers' metacognitive processes
when implementing the prepared activities in the middle school with their students.
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The pre-service teachers' metacognitive activity as learners

At the beginning and in the first activity, when the pre-service teachers were requested
to build a plan for measuring the height of a tree, they did not mention any
technological tools that would help them in measuring the tree height. They suggested
using a stick, but could not elaborate on the process of the solution. While, in the
following activities, for example, when given an authentic problem about a computer
engineer from a village in the suburbs who was hired to work for a Hi-tech company
in the city. The participating pre-service teachers were requested to help the engineer
find the most efficient way to get to work. They suggested a plan that demonstrated
their awareness of the metacognitive processes needed for such plan. Following is their
suggestion in which they used the terms of the metacognitive processes.

Encoding of the givens — We can use Google Maps to identify the locations of the
village and the city, and to measure the distance between them.

Representation of the givens — After presenting the locations on Google Maps, we
prepare a table of the various measurements of the variables that could contribute to
the efficiency of each way of transportation.

Decomposition of the problem — Depending on Google Maps representations, we can
identify various roads of transportation.

Planning the solution strategies — After finding data about each road of transportation,
we give weight for each road to determine its efficiency, and finally decide on the best
road.

Selecting and implementing strategy — We will suggest to the engineer several roads
that utilize Google Maps and the Mobile application "Waze". This would help provide
data on each road, such as distance, time, toll payment, traffic jam, etc. These data
determine the efficiency of the road. This mobile application would facilitate the
obtaining of the data.

Monitoring of the plan — We advise the engineer to travel using more than one
suggested road. Doing that, the engineer needs to keep collecting data, using a mobile
application like "Waze", to keep calculating the efficiency.

Evaluating the solutions — To look after the measurement and compare between the
efficiencies of the different roads, the engineer could register the collected data in a
mobile spreadsheet. This application facilitates the evaluation of the efficiency of the
transportation roads.

Suggesting other strategies or mobile applications — Finally, we advise the engineer to
keep tracking of new strategies/applications that could improve the accuracy of the
measurements in order to get better assessment of the efficiency of the transportation
roads.
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The pre-service teachers' metacognitive activity as teachers

We will describe an activity that shows the pre-service teachers' actions when preparing
a metacognitive mathematical activity for their students. The whole activity occurred
in Edmodo.

The activity: We want to plan an activity that encourages the use of metacognitive
processes of middle school students regarding the following mathematical problem: A
landowner needs to calculate the costs of tiling a wall in a building that includes the
entrance to that building. Help the landowner with the calculations?

As a first step, the pre-service teachers discussed the task in Edmodo utilizing the
metacognitive framework of Davidson and Steinberg (1998). Doing that, they
discussed which questions they need to ask the middle school students in each phase
of metacognitive processes. This discussion led them to adopt the following questions
for students at each phase:

Encoding of the givens — Appropriate questions are: Which givens are present in the
problem? Which givens are needed to compute the costs of tiling?

Representation of the givens — What ways do we have to represent the givens in the
problem? What ways do we have to represent the givens needed to compute the costs
of tiling?

Decomposition of the problem — After you represented the problem givens, how do
you suggest that we decompose it?

Planning the solution strategies — How would you find the needed givens? How many
ways or strategies are there? What are the differences between these strategies?

Selecting and implementing strategy — How can we implement each of the strategies
that we identified? Which mobile applications can help us implement the planned
strategy? What are the advantages and disadvantages of each mobile application?

Monitoring of the plan — How can we assert that the implementation of the plan is
effective?

Evaluating the solutions — How can we evaluate that the implementation of the strategy
is effective? How can the mobile application which we used help us in this evaluation?

Suggesting other strategies — How can we assert that the strategy which we used is
more effective than other strategies? How can we assert that the mobile application
which we used is more effective than other mobile applications?

The pre-service teachers' metacognitive processes when performing the prepared
activity and their teaching this activity to middle school students

To ensure that they know how to guide the students' metacognitive processes, the pre-
service teachers went through the whole series of metacognitive processes for solving
the problem by themselves. Doing so, they suggested that the mobile applications
'Photo Ruler' and 'Smart Measure' would help them to implement their strategies. Some
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of them decided, in order to facilitate the implementation phase, to prepare user guides
for using these applets and uploaded them to the Edmodo. In the monitoring phase,
they looked at the measurements which each application gave. Evaluating the
performance of each application, they found that the 'Photo Ruler' gave relative non-
realistic measurements, while the 'Smart Measure' helped in calculating the scale of
measurements from the same location, so they could convert the relational
measurements to actual realistic ones.

The pre-service teachers pointed at the advantages of the collaborative learning to the
metacognitive processes of the group regarding the solution of mathematical problems.
They said that this collaborative learning contributes positively to all the metacognitive
processes because every participant critically evaluates the suggestions of the rest of
the participants.

The pre-service teachers worked with their students in the training school, in the
Edmodo context and in the classroom context. They posed the questions which they
agreed upon beforehand, and other questions that were raised as a result of the students'
metacognitive processes related to the solving of the problem. The students were
encouraged to manage their learning, to ask questions about this learning and to
regulate it.

All the previous sequence of metacognitive processes was accompanied by reflections
and discussions in Edmodo environment, which facilitated the success of these
processes.

After the preparation and implementation of this activity, the pre-service teachers were
required to work in groups of 4-5 members to design more activities of this type.
Finally, each group of pre-service teachers was requested to choose an activity of those
they designed earlier by themselves, and to implement it with a group of students.

DISCUSSION

Educating pre-service teachers for new practices has attracted the attention of
educational researchers for its influence on teachers’ practice as college students and
as future teachers. In the present research, we wanted to examine the influence of pre-
service teachers’ preparation in metacognitive skills on their practice of these skills in
a mobile technologies environment. The research results indicate that at the beginning,
the pre-service teachers did not use such skills, but, as a result of the preparation, they
started to use these skills as learners, where this use utilized the mobile technologies.
In a later phase, the participating pre-service teachers used these skills as teachers to
design activities and encourage their students to use metacognitive skills while
performing them. These results indicate that metacognitive skills for learning and
teaching could be learned and adopted by teachers, which agrees with other studies in
mathematics education that examined the influence of education on teachers’
knowledge and practice. For example, Agyei and Voogt (2012) found that as a result
of working collaboratively to design and develop technological solutions for authentic
problems they face in teaching mathematics during their in-school training, a group of
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pre-service teachers developed their TPACK. We should note that the roles of the
mobile technologies as tools for problem solving were influenced by metacognitive
questions that the pre-service teachers asked in each metacognitive phase.

To conclude, the present research demonstrated that it is possible to educate
mathematics teachers to use metacognitive processes. This education would affect
positively their students' use of metacognitive processes (Du Toit & Kotze, 2009),
which would result in deeper cognitive processes of the students (Gavelek & Raphael,
1985). Moreover, to succeed in this education, the pre-service teachers need to solve
activities that emphasize metacognitive skills, to design such activities, to implement
them with students, to discuss their practices, and to reflect on the whole sequence of
their metacognitive processes.
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Instrumental genesis of a preservice mathematics teacher:
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This paper focuses on the instrumented actions of a preservice mathematics teacher
while working on perpendicular line construction in a dynamic geometry environment.
Data is collected through task-based interviews and were analysed from the
perspective of instrumental genesis. A thematic analysis of the data revealed that the
participant referred to four major strategies with the use of specific tools of GeoGebra
to construct perpendicular line going through a point on a line that is provided. More
precisely, instrumentation schemes including (i) angle with given size tool, (ii)
perpendicular line and the tangent tools, (iii) parallel line and perpendicular bisector
tools, and (iv) the reflection tool have been used for achieving the construction task.

Keywords: geometrical construction, dynamic geometry environment, instrumental
genesis, preservice mathematics teacher, task based interview.

INTRODUCTION

In geometry education, geometrical representations enable learners to develop
mathematical ideas about concepts. In particular, drawing and figure are highlighted
as two important geometrical representation types in which “drawing refers to the
material entity while figure refers to theoretical object” (Laborde, 1993, p. 49).
Constructing geometrical figures in a dynamic geometry environment (DGE) provides
learners with feedback about invariants of geometrical objects by manipulating spatio-
graphical aspects of the representation (Arzarello, Olivero, Paola, & Robutti, 2002). In
this sense, DGEs are considered having an important role in (re)inventing characteristic
properties of the figures and also in the meaning-making of mathematical concepts. To
create such a context, it is essential to design tasks that are based on Euclidean
geometry in a DGE which bring about the difference between drawing and figure.
Figure in a DGE can be regarded as construction in the Euclidean sense and preserves
its invariants under dragging, which is defined as robustness (Laborde, 2005).
Implementing mathematical ideas for making a robust construction in a DGE requires
integration of appropriate tools into construction strategies.

In this work, we focus on construction strategies and aim to elaborate how GeoGebra
could be used to shape the user’s thinking processes while working on perpendicular
line construction. This is particularly crucial in teacher education since working on
construction tasks in a DGE require a combination of mathematical knowledge of
Euclidean geometry as well as technology knowledge of DGEs, which are core
competencies for teaching and learning mathematics. Along this direction, we consider
a research question: what are the observed instrumented actions of a preservice
mathematics teacher whilst working on geometric construction problems in GeoGebra?
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THEORETICAL FRAMEWORK

In order to explore a preservice mathematics teacher’s instrumented actions while
working on construction problems with the use of GeoGebra, we chose to use
instrumental genesis as a theoretical perspective (Artigue, 2002). The instrumental
approach points out the difference between the terms ‘artefact” and ‘instrument’. In this
approach, the process through which an artefact becomes an instrument is called
instrumental genesis, which is a twofold process including instrumentalisation and
instrumentation. The former is directed towards the artefact and concerns the way in
which the artefact is shaped by the user. The latter is directed towards the user and
concerns “the development and appropriation of schemes of instrumented action which
progressively take shape as techniques that permit an effective response to given tasks”
(Artigue, 2002, p. 250). For the aim of this study, the latter concept is of crucial
importance. The word ‘instrument’ is used in a psychological sense, which is
developed by the user through mental schemes for use in specific tasks (Hoyles, Noss,
& Kent, 2004). Basically, an artefact is initially not meaningful to the user until he or
she develops associated schemes of instrumented action to use the artefact for
achieving a task, and effectively turning the artefact into a useful mathematical
instrument. Instrumentation schemes consist of technical and conceptual components.
In this paper, following the stance of Drijvers, Godino, Font, and Trouche (2013),
techniques are considered “as the observable part of the students’ work on solving a
given type of tasks (i.e., a set of organized gestures)” and schemes “as the cognitive
foundations of these techniques that are not directly observable, but can be inferred
from the regularities and patterns in students’ activities” (p. 27). From the instrumental
genesis perspective, this study will focus on the preservice mathematics teacher’s
development or appropriation of instrumentation schemes and related conceptual
components and techniques used while working on construction problems in
GeoGebra.

METHODOLOGY

This paper is part of an on—going research project on the elaboration of preservice
mathematics teachers’ instrumental genesis on specific geometrical construction tasks.
The project is designed as a holistic case study focusing on the participants’
instrumentation processes, more specifically, it focuses on the preservice teachers’
emerging utilisation schemes and related conceptual and technical elements (Drijvers
et al., 2013) while they make use of GeoGebra. GeoGebra is open source dynamic
mathematics software that has a geometry toolbar containing tools organised into
several main groups (i.e. construction tools, line tools, circle tools, measurement tools,
transformation tools) and each tool is briefly described which helps to orientate the
users. In this paper, we will present pilot study results of a single task with a preservice
mathematics teacher, Gonca (pseudonym), who is twenty-two years old and enrolled
in a (lower secondary) mathematics teacher education program at a state university in
central Turkey. Gonca was selected through a purposeful sampling method in which
we considered her (1) geometry course performance, (ii) communication skills and (iii)
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background in the use of GeoGebra. Data is collected from a series of task—based
interviews, which were recorded through a video-camera filming the participant’s
working environment, which includes a laptop with GeoGebra installed in front of
Gonca. Screen recorder software was also used to capture the techniques Gonca
employed in detail. All the collected data were analysed through thematic analysis
techniques. Codes and themes that define schemes and conceptual elements were
assigned by each researcher according to the main tool utilised by the participant and
her reasoning behind it with reference to the used techniques. Final decisions were
made based on a consensus in the follow-up meetings.

The Task

The task was designed to explore the participant’s various strategies for constructing a
perpendicular line while using functions and tools of GeoGebra. A GeoGebra file
including a line (called d) through a point (called 4) was prepared in Graphics window
without the grids and axes. The question at stake was: construct a line/line segment
that is perpendicular with line d and goes through point A. In order to explore the
participant’s use of different strategies, during the task implementation, each time
when the participant finished a strategy, the interviewer removed the tool that had just
been used by the participant during the finished strategy. For instance, if the participant
used the ray tool to complete the task, then the interviewer removed the ray tool from
the screen to see which strategy the participant would use without this tool. In this
sense, by removing a tool each time we aim to give deeper insight into the extent of
the participant’s knowledge.

FINDINGS

Gonca used five strategies in total for completing the task. For the sake of brevity (due
to page constraints), we will present four of her strategies in detail (other one was not
included in here since it has a very similar way with the first strategy). We will discuss
each strategy in detail below.

The First Strategy: The Use of Angle with Given Size Tool

The first strategy is based on the angle with given size tool. Before using this tool, she
created a point (called B) and drew a circle with the centre of B and radius [BA]. She
formed a 45-degree centre-angle and then tried to form a 45-degree BCA angle with
the use of the angle with given size tool, but she could not locate the C point. She then
deleted the sketches and created the second point (where the line would pass) with the
use of the angle with given size tool inputting 90 degree (see Figure 1, where the red
arrow shows the second point assigned by angle with given size tool). Then she
constructed the perpendicular line. She justified this strategy by saying: “this line is
perpendicular because I used the right angle”.

Proceedings of the 5" ERME Topic Conference MEDA 2018 - ISBN 978-87-7078-798-7 45



~N

Figure 1: Finding the second point that the perpendicular line goes through

The Second Strategy: The Use of Perpendicular Line and Tangent Tools

After the first strategy, the interviewer removed the angle with given size tool and asked
Gonca to complete the task with the remaining tools once again. This time, she focused
on the relationships between a circle, its centre point and its chords. As a first step, she
drew a circle with the centre A and then a chord (but she did not construct), which
seemed to be parallel to the diameter. Next, she drew a line segment from the centre of
the circle to the chord. This new line segment seemed as if it bisected the chord (Figure
2a). Although she could not express it in a clear way, she tried to employ her pre-
knowledge, focusing on the fact that “two lines have a common perpendicular line if
they are parallel”, here she also stated that “a line segment from the centre to the chord
is perpendicular to the chord”. Then, she used the angle measurement tool and
dragging test to check her claim and she noticed that her figure was not a robust
construction, hence refuted her claim. After that, she constructed a circle through A
with the centre point B and focused on properties of the tangent line. She used the
perpendicular line tool to construct the tangent through A. With this, she completed
her strategy (Figure 2b) by explaining the function of the perpendicular line tool. In
the end, she noticed that she could have straightaway made use of the perpendicular
line tool without creating a circle, which would have achieved the same thing.

As was done previously, the interviewer removed the perpendicular line tool from the
GeoGebra interface and requested Gonca to consider the task with the remaining tools.
She then completed the task with the same steps, but only used the tangent tool instead
of the perpendicular line tool at the end.

(a) (b)
Figure 2: (a) Chord based strategy; (b) Tangent based strategy
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The Third Strategy: the use of Parallel Line and Perpendicular Bisector Tools

The interviewer this time removed the fangent tool and requested Gonca to consider
the task with the remaining tools. In her third strategy, she constructed a circle with the
centre A. Then, she constructed a chord by using the parallel line tool which enabled
her to construct a line parallel to the diameter chord of the circle (Figure 3a).

(a) (b)

Figure 3. (a) Construction of a chord parallel with the diameter chord, (b)
Construction of the perpendicular bisector of the chord

To reason her initial steps, Gonca stated again that she first tried to develop a strategy
based on her pre-knowledge that “two lines have a common perpendicular line if they
are parallel”. After that, she thought that she needed to construct the perpendicular
bisector to the chord which then would also be the perpendicular bisector of the
diameter chord. For this, she used the intersect tool and the /ine segment tool in order
to mark the line segment. Finally, she used the perpendicular bisector tool and finished
the strategy (Figure 3b). She then tested her figure’s robustness by using the dragging
test.

The Fourth Strategy: the use of the Reflection Tool

The interviewer removed the parallel line tool and the perpendicular bisector tool, and
requested Gonca to consider the task with the remaining tools. Gonca, at first, aimed
at adapting the strategy that she used earlier for the perpendicular bisector construction
(constructing the common chord of intersecting circles) to its new strategy. Gonca then
used the point and reflect about point tools to position the point A at the midpoint
between two points on the line d. For this, Gonca firstly marked a point (called point
B) on the line d and reflected point B about point A (Figure 4a) to construct point B’
(aiming to situate point A as the midpoint) and through these points constructed the
line segment BB’ and then applied the perpendicular bisector construction strategy.
During her adapted perpendicular bisector strategy, she constructed two intersecting
circles whose centre points are B and B’ respectively and whose radii measured BB’

line segment by using the tool circle passing through the centre and one point (Figure
4b).
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(a)

(b) (c)

Figure 4. Gonca’s reasoning steps with tools

In the next step, she marked intersection points of the circles with the use of the
intersect tool and constructed the common chord of the circles with the use of the /ine
segment tool. In the end, she used the dragging tool to test the robustness of her
construction. Gonca justified her construction by stating: (1) the line segment goes
through point A (perceptual inference), (2) the radii drawn from the central points to
the intersection points of the circles by using the line segment tool create two congruent
triangles (deductive justification), (3) these congruent triangles indicate the occurrence
of a right angle on the basis of the fact that congruent triangles have equal angles
(deductive justification) (Figure 4c).

In order to overview the participant’s instrumentation schemes and related technical
and conceptual elements regarding four strategies for completing perpendicular line

task, we present the following table (Table 1) adapted from Drijvers et al. (2013).

Table 1: Instrumentation Schemes, Technical And Conceptual Components In The

Process
Scheme Technique Conceptual Elements Technical Elements
-Cli i B A
. -In order to construct a Click on, respectlvely, the B and
Angle -Use angle with . . belonging to line d
. . line, at least two points are . 0
Scheme given size tool required -Give measurement value 90
d -Construct a right angle whose vertex is 4
Tangent in -Iejseendicular line -Tangent line is :gr)?lvsvtilzr: ltiu% 0:111% ;?f{?%ghufin
Circle perp perpendicular to diameter . 8 Y £
Scheme and tangent tool perpendicular line tool
-Draw a circle with centre 4
-Use parallel line | -Two lines have a common | -Draw a parallel line to diameter intersecting
Chord in tool perpendicular line if they two points on the circle
Circle -Intersect tool are parallel -Two parallel -Mark the intersection points
Scheme -Perpendicular chords have a common -Highlight the chord with line segment tool
bisector tool perpendicular bisector -Construct perpendicular bisector line of
chord through 4
-Use reflection “Procedural knowledge -Construct two symmetrical points (B, B’) at
. tool . A
Perpe':ndlcu -Draw two about co'nstructl'ng . -Draw two congruent circles whose centre
lar Bisector congruent perpendicular bisector with oints are B and B’ and whose radii are line
in Circle in tefrgsec tin intersecting circles Is)e ment BB’
Scheme . £ -Relationships between £ . . .
circles aneles of equal trianeles -Draw a line segment between intersection
£ q g points of circles
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DISCUSSION AND CONCLUSIONS

The findings of the study revealed that the participant preservice teacher developed
instrumentation schemes for perpendicular line construction with the use of GeoGebra
and these schemes influenced the deductive steps in her strategies. Although she
initially tended to justify her strategies according to her perceptual understanding, it
has been become apparent that during the development of instrumentation schemes she
extended her mathematical techniques, which also shaped her mathematical
knowledge. She instrumented a number of tools in GeoGebra, such as perpendicular
bisector, tangent and symmetry for achieving the perpendicular line construction task.

Gonca’s construction processes indicate that she first tried to construct perpendicularity
as an indirect invariant with the use of circles but she could not design a strategy based
on a deductive reasoning process to complete the task (Baccaglini-Frank, Antonini,
Leung, & Mariotti, 2017). At this point, her first strategies generally referred to her
pre-procedural knowledge about using circles for construction problems instead of the
use of deductive reasoning. Then, taking into account the affordances of various DGE
tools, she constructed the direct invariant related to perpendicularity by utilising angle
with given size and perpendicular line tools. After removing the tools that were already
utilised by Gonca during the task, she was limited to construct the indirect invariant,
therefore she started to engage in a deductive reasoning process by considering
affordances of the parallel line, perpendicular bisector and reflect about point tools.
Starting from this point, she finally adapted her previous procedural knowledge about
perpendicular bisector construction to the task of perpendicular line construction.
During the last strategy, she justified her steps with reference to both her perceptual
knowledge and mathematical inferences obtained with the help of other DGE tools like
reflect about point. In this sense, her instrumentation schemes on various DGE tools
became an effective way to scaffold her deductive reasoning in construction tasks.

On the other hand, it was also seen that she initially formed soft constructions because
her perceptual apprehension misled her geometrical conjectures. At this point, as
Laborde (2005) states, robust construction tasks enable students to improve their
theoretical perspective and also Arzarello et al. (2002) remark that the dragging test
provides opportunities for students to see whether a figure preserve representations of
invariant properties of a geometrical object as a robust construction. Similarly, by the
means of the dragging test, Gonca started to distinguish the robust constructions based
on the deductive approach from soft constructions that are generally based on her
perceptual approach. Therefore, utilisation of the dragging test enabled her to reflect
on how to develop valid strategies by considering mathematical affordances of the
toolbar that was continuously limited by interviewers. At this point, her utilisation
scheme about the dragging test provided development of further utilisation schemes
about given DGE tools. To conclude, the participant’s instrumented actions were
observed with the use of particular tools including angle with given size tool,
perpendicular line and the tangent tools, parallel line and perpendicular bisector tools,
and the reflection tool for achieving the construction task.
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ABSTRACT

This paper discusses the role of appropriate digitally-enhanced resources and tasks for
learning and cognition in mathematics education. It bases on the cognitive load theory
as a grand theoretical framing, lesson planning as an intermediate-level frame and a
theory about modes of description and thinking of mathematical concepts asa domain-
specific frame. The theoretical analysis resulted with three principles which we see
important in the design of technology-supported resources and tasks. Further on, the
paper offers a concrete design of a set of tasks for concepts in geometry in a dynamic
geometry environment according to the suggested principles.

Keywords: mathematics education, learning and cognition, principles, design of
resources and tasks, technology, dynamic geometry environment.

INTRODUCTION AND RELEVANCE

One of the three main themes at the fifth ERME Topic Conference on Mathematics
Education in the Digital Age (MEDA) refers issues related to mathematics curriculum
development and task design in the digital age. This paper is a contribution to this
theme but may also be relevant for mathematics teacher education and their continuous
professional development and to issues regarding development of theories for
technology-enhanced designs. We begin with theoretical considerations about how are
technology-enhanced resources and tasks in mathematics education defined in current
literature. The paper then continues with a discussion about the present research state
and our theoretical framing which enables formulating research questions. They are
related to design principles that take into consideration the importance of technology-
supported resources into facilitating learning and cognition having in mind empirical
challenges for teachers and students. Finally we propose a design to illustrate and
analyze the principals.

THEORETICAL BACKGROUND

Technology-Enhanced Resources and Tasks for Teaching and Learning
Mathematics

With this paper we aim to increase teachers’ awareness of the potentials of technology
implementation and possible challenges and also to enable them to adapt existing
designs according to the needs for learning and cognition of the students in their
classrooms, facilitate in re-designs and eventually sustain and scale valuable resources.
In order to achieve this, we have firstly considered the theoretical separation of
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research on digital curriculum materials from research on instructional technology
(Pepin, Choppin, Ruthven & Sinclair, 2017). In our understanding, the first one refers
to the deliberate attention to aims and content of teaching and learning mathematics,
the roles of teachers and students and the educational potential of technologies, and the
later one represents the broad literature about hardware and software designs and tools
for educational purposes. This distinction cannot be perceived as rigorous, as the
authors have also noticed that “clearly there is some overlap” (Pepin et al., 2017).
Moreover, educational technology cannot lead to successful instruction by itself either.
So, the first does not exclude the second one and vice versa. They rather coexist and
complement each other. Therefore, we further use the terminology technology-
enhanced resources and tasks for the teaching and learning of mathematics (inclosing
substantial technology-based environments or micro-worlds, applets and digital
manipulatives with accompanying instructional materials, tools with specifically
created tasks for their usage). This understanding of the digitally-supported resources
is in consistency with the definition resources that afford or embed mathematical
representations that teachers and learners can interact with by acting on objects in
mathematical ways (Call of MEDA).

State of Research Regarding Design Principals

In search of clarification about the place of task design within design research, Kieran
etal., (2015) point out two key issues: (1) a distinction between design as intention and
design as implementation (Ruthven, Laborde, Leach & Tiberghien, 2009) and (2) the
status of an initial design of the set of tasks depending on the roles of theories and ways
in which they are framed during the design process (Kieran et al., 2015, pp. 28 - 29).
While design as intention focuses attention specifically on an innovative, hypothetical
formulation of the design, design as implementation refers the integration of an actual
teaching-learning designed sequence and its subsequent progressive refinement.
Regarding the second central issue, resent theoretical frameworks and principles for
task design in the research of mathematics education can be conceptualized as: grand
theoretical perspectives (e.g., the cognitive-psychological, the constructivist, and the
socio-constructivist), intermediate-level frames (e.g., the Theory of Didactical
Situations, the Anthropological Theory of Didactics, Realistic Mathematics Education
theory, Lesson Study, etc.), and domain-specific frames for task design research which
deal with a particular mathematical field are more assorted than their intermediate-level
counterparts (Kieran et al., 2015, p. 36). Prusak, Hershkowitz & Schwarz, (2013) have
argued that (theoretically developed) five principals regarding a creation of: multiple
solutions, collaborative situations, socio-cognitive conflicts, tools for checking
hypotheses, and possibilities for reflection and evaluation on solutions may serve as
principle-based research means for investigations of students’ conceptual
understanding and problem-solving through multimodal argumentation in elementary
geometry.

We have undertaken a particular selection of a specific theoretical frame in each of the
three major groups (by Kieran et al., 2015) and focus on their networking in the context
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of technology enhanced teaching and learning of geometry. The cognitive load theory,
as a grand theoretical frame, has its validation in investigations of increased cognitive
demand by large computations in arithmetic which have been widely researched and
registered in literature (e.g. Weigand & Weth, 2002). Yet, little is known about how to
facilitate the decrease of cognitive load when linking two or more representations of
concepts in geometry. This is in particularly relevant to the context of technology
enhanced teaching and learning, for example of congruence mappings, and we
therefore use the theoretical framing of lesson planning to further ground the
emergence of students’ knowledge through solving exacting tasks. As a domain-
specific frame, we refer to three modes of description and thinking of concepts in
Geometry.

Three Modes of Description and Thinking of Concepts in Geometry

The theoretical construct about the existence of three modes of description and thinking
is adapted from the research field in linear algebra (Hillel, 2000; Sierpinska, 2000) but
here we transfer it to concepts in geometry. We refer to a nested model which
emphasize three modes of thinking of concepts in linear algebra (Donevska-Todorova,
2018): the arithmetic-algebraic, the geometric and the formal-structural mode. This
model has been exemplified for the group of all plane congruence mappings with the
operation composition of transformations in a dynamic geometry environment from
the semiotic perspective (Donevska-Todorova & Turgut, 2017). Here, we extend and
deepen the analysis from a new perspective, the cognitive load theory and specify it
with examples.

Potentials of Technology-Enhanced Resources and Tasks Examined Through the
Cognitive Load Theory and Modes of Thinking

Resent literature (e.g., Sweller, Ayres & Kalyuga, 2011) describe intrinsic cognitive
load depending on the difficulty of the content to be learned, extraneous cognitive load
depending on the quality of the learning environment and “the levels of both intrinsic
and extraneous cognitive load are determined by element of interactivity” (p. 58). “If
the elements can be learned successively, rather than simultaneously because they do
not interact, the intrinsic cognitive load will be low” (Sweller, 1994, p. 295). This is of
high importance in designing tasks, teaching and learning sequences in digitally
enhanced environments and digital curriculum materials and we perceive the
supporting role in the reduction of extraneous cognitive load as crucial potential of
technologies if elements of interactivity can be established. They may offer possibilities
for a simultaneous learning of complex mathematical contents with a decreased total
cognitive demand (if for example, there is an existence of elements of interactivity
between the three modes of description and thinking).

RESEARCH QUESTIONS AND METHODOLOGY

Drawing upon the above theoretical analysis, we have identified three main challenges,
which we formulate as the following three research questions:
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(1) How to reduce the total cognitive load with the help of carefully designed
technology-enhanced resources and tasks in geometry?

(2) How to integrate the three modes of description and thinking into technology-
enhanced resources and tasks in dynamic geometry? How to embed elements of
interactivity in the design?

(3) What could be design principles for technology-enhanced resources and tasks
for the teaching and learning of mathematics with primary goal gaining
mathematical knowledge and developing cognition?

The methodological approach involves consideration of relevant literature starting
from more global towards more specific theoretical frames. We have initially taken
into account general principles for mathematics education (e.g. principle of active
learning, principle of adequate visualization, principle of variation of resources for
learning) and wide-ranging principles for instructional design (e.g. simple-to-complex
sequencing of tasks). Further, we have moved towards considering principles of
specific theories, e.g. RME principles for designing online tasks (Drijvers, Boon,
Doorman, Bokhove & Tacoma, 2013). Finally, we have narrowed the broad scope of
approaches by founding our proposal on the triple-layer theoretical back-grounding
suggested by Kieran et al., (2015) by adapting it to the purposes of investigations in
geometry.

DESIGN PRINCIPLES FOR TECHNOLOGY-ENHANCED RESOURCES
AND TASKS IN ELEMENTARY GEOMETRY

We continue the theoretical discussion from the perspective of teachers as ‘actors’ in
the design and engaging in lesson planning. The above mentioned distinction of
research on digital curriculum materials from research on instructional technology
(Pepin, Choppin, Ruthven & Sinclair, 2017) seems to be related to two constructs,
purpose and utility, correspondingly, suggested by Ainley, et al., (2006) aiming to offer
a framework for task design that may resolve of what they called a planning paradox:
“if teachers plan from tightly focused learning objectives, the tasks they set are likely
to be unrewarding for the pupils, and mathematically impoverished. If teaching is
planned around engaging tasks the pupils' activity may be far richer, but it is likely to
be less focused and learning may be difficult to assess” (Ainley, et al., 2006, p. 24).
Whilst the final form of presenting mathematics starts with definitions and aims
towards theorems and proofs, the development or the discovery of mathematics and
especially school mathematics usually has an opposite direction: experience through
usage and engagement without mathematical rigor towards a conclusion later
strengthened as a definition or other mathematical statement. Regarding the modes of
description and thinking, this means that students firstly use either the algebraic or the
geometric and seldom engage with both in a subsequent order. After a long-lasting
process of learning they eventually develop the structural mode, although they have
already used parts of an algebraic structure without being aware of it (e.g. one or more
properties that define it, like associativity or commutativity of certain operation such
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as composition of congruence mappings). Thus, a connection of engagement and focus
on mathematics (e.g. Ainley, Pratt & Hansen, 2006) in the design of technology
supported resources and tasks is meaningful.

The above theoretical considerations allow framing three design principles for
technology-enhanced resources and tasks for learning mathematics and developing
cognition, which we present in the following Table 1 [1].

Design principles

Empirical rationale (through the theoretical frames)

Principle 1. Reduction of the total
cognitive load by decrease of the
extraneous cognitive load

Teacher-related challenge: Teachers’ design capacities e.g.
(un)awareness of the cognitive load by traditional and digital
resources, possessing/lacking IT skills

Student-related challenge: (Un)familiarity with technology
enhanced learning, (in)ability to understand the role of the
digital media

Operational challenge: lacking digital equipment

Principle 2. Reduction of the total
cognitive load by decrease of the
intrinsic cognitive load by a
careful and gradual integration of
the three modes of description
and thinking of mathematical
concepts (in connection to
element interactivity)

Teacher-related challenge: the level of mathematical
knowledge, e.g. (un)awareness of the existence of all three
modes and their connections

Student-related challenge: integration of new with existing
knowledge, e.g. developed geometric thinking but (in)ability to
connect it with the algebraic counterpart of a particular concept

Operational challenge: determine appropriate digital tools that
can support all modes, i.e. detect effective tools

Principle 3. Connection of active
engagement and focus on
mathematical contents

Teacher-related challenge: Teachers’ math knowledge,
Resolving the planning paradox

Student-related challenge: stayed focused during different
purposeful activities

Operational challenge: Methodical issues

Table 1: Overview of design principles for technology-enhanced resources and tasks for
the teaching and learning mathematics with focus on cognition

The three principals explain the rationale for implementing technology and their
meaningful and multifaceted usage in mathematics instruction. Certainly, there are
challenges for teachers and students which we have also addressed in the right column
of Table 1 (formed similarly as by Lo, Hew & Chen, 2017).
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SUGGESTED DESIGN FOR CONGRUENCE MAPPINGS RELAYING ON
THE PROPOSED PRINCIPLES

This section suggests a design of a set of tasks about congruence mappings in a DGE-
environment e.g. in a pre-service teacher education course. It is only the introduction
into the topic aiming at the understanding of a congruence mapping as a composition
of at most three line reflections and finally understanding the meaning of the group
structure of congruence mappings.

Task 1: What is the composition of two line reflections? Is the operation associative or commutative?
(A design of intention and implementation for the composition of two line reflections which is a
rotation, a translation or the identity congruence mapping depending on the position of both axes of
reflection is suggested by Donevska-Todorova & Turgut, 2017).

Task 2: There are two plane geometric figures, e.g. quadrilaterals on the Figure below, given such
that one is an image of the other one with respect to a particular congruence mapping in the plane.

a) Determine a congruence mapping that maps one of the quadrilaterals into the other one.

b) How can the congruence mapping in a) be represented as a composition of two line
reflections? Explain and draw the axes of reflection.

c) Draw the ‘missing’ image quadrilateral obtained after the first line reflection.

-

a) Task 1. Composition of two line | b) Task 2. Center and angle of | c¢) Task 2. Axes of both reflections

reflections with intersecting axes rotation

7
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d) Task 2. Image quadrilateral and | ¢) Task 2. Invariance of the | f) Task 2. Invariance of the composition
symbolic representation composition and the image figures | and the image figures under the drag
under the drag mode for replacing | mode for replacing the axes

the axes

Figure 1. Technology-enhanced task design as intention

While it may be easy to discover that a composition of two line reflections with intersecting
axes at a point is a rotation (Task 1), the task in the opposite direction (Task 2) may be more
requiring.

Analysis of the suggested technology-enhanced task design of intention through
the principals

P1. | Design only in the geometry window with an integrated symbolic (algebraic) representation
in it, e.g. see Fig 1.d), e) and f). Investigations of invariant properties through dragging.

P2. | First work only with the geometric mode - Fig.1b) and c), then include the arithmetic-algebraic
- Fig.1d) and e) by including the checkbox and text tools from the menu as elements for
interaction between the modes.

P3. | Extend the tasks with parallel or overlapping axes and prove that the composition is a
translation for a vector, a rotation or the identity congruence mapping. Finalize with the
formal-axiomatic mode of description- closure property of a group Fig.1a), d), e) and f).

Table 2. Analysis of the design of intention through the principals

Solving the problems in Tasks 1 and 2 takes place only in the geometry window
(Principle 1), e.g. see Fig. 1. An increased cognitive load due to involvement of two or
three modes may be reduced with a careful design for a gradual addition of a new mode
of description (Principle 2). Current DGS allow such designs (e.g. Figure 1).

CONCLUSION

In this paper we have discussed technology-enhanced resources and tasks as designs
of intention for teaching based on a cognitive load theory as a grand-theory, lesson
planning as an intermediate-level frame and modes of description of concepts in
geometry as a domain-specific theoretical frameworks. If one of the three main aspects
of teachers’ design capacities is “a set of design principles (“robust” and at the same
time “flexible”)” (Pepin, Choppin, Ruthven & Sinclair, 2017, p. 8), having the learning
of mathematics and developing cognition in students as a goal of the design, then we
propose such set of three principles (Table 1) which meets the third research question.
Regarding the first research question about how to reduce the total cognitive load with
designed technology-enhanced resources and tasks we suggest reduction of the
extraneous and the intrinsic cognitive load by pointing elements of interactivity
included in the design of intention (Table 2). This leads to answering the second
research question that the elements of interactivity could be stimuli that allow switches
from one into another mode of description and thinking without changing windows but
by a simple drag or check of a text- or checkbox. Lastly, our further activities refer
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practical implementation of the created technology-enhances task design of intention
referring the analyses through the principles related to lowering the cognitive load.
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problem-based curriculum that has evolved over 30 years. We offer a new design on
problems presented in a digital medium.
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INTRODUCTION

In this paper, we discuss important task design considerations for problems in a
problem-centered curriculum. In our work, we view problems that are embedded
within sequences of mathematics problems to promote inquiry-based teaching and
learning. Specifically, we report on the design considerations for problems in a print
version of a problem-centered curriculum. We then revisit the design considerations
for the problem-solving activities based on our work of transitioning from print to
digital curriculum. This work is funded by two National Science Foundation projects
in the United States. These projects investigate student learning and engagement
through use of collaborative and individual spaces on a digital platform.

CHALLENGES OF PROBLEM-BASED CURRICULUM OVER TIME

The Connected Mathematics Project (CMP) at Michigan State University has worked
over 30 years to design, develop, field-test, evaluate, and disseminate student and
teacher materials for a middle school mathematics problem-centered curriculum,
Connected Mathematics. The CMP curriculum development has been guided by a
single mathematical standard:

All students should be able to reason and communicate proficiently in mathematics. They
should have knowledge of and skill in the use of the vocabulary, forms of representation,
materials, tools, techniques, and intellectual methods of the discipline of mathematics,
including the ability to define and solve problems with reason, insight, inventiveness, and
technical proficiency (Lappan & Phillips, 2009, p. 4).

To accomplish this goal, problems must embody critical mathematical concepts and
skills and have the potential to engage students in making sense of mathematics. Thus,
each CMP Problem has some or all of the following characteristics:

*  Embeds important, useful mathematics

* Promotes conceptual and procedural knowledge

* Builds on and connects to other important mathematical ideas

* Requires higher-level thinking, reasoning, and problem solving
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* Provides multiple access points for students

* Engages students and promotes classroom discourse

* Allows for various solution strategies

* (reates an opportunity for teacher to assess student learning

From the onset in 1990, the design and development challenge of the CMP is to create
an environment that supports students’ mathematical development through the process
of exploring, conjecturing, reasoning, communicating, and reflecting. Creating this
classroom environment requires thoughtful attention to the strategies students use to
solve the problem, to the embedded mathematics, and to connections to prior learnings
(Figure 1).

Ungack the
Emteodded

MaThemanNCe

Teaching G Ao it L

& Learmong
Mathesnatics

Conmact Learming
10 Pt and

Future Knowhedge

Salve
the Problem

Figure 1: Teaching and learning mathematics in problem-centered classrooms.

The time required to develop a particular mathematical idea fully, the extent to which
students grasp the mathematical subtlety of ideas, and the degree to which students
reach useful closure of the idea being developed require careful attention to the
mathematical challenge of the problem and the position of the problem within a
carefully sequenced set of problems (Lappan & Phillips, 2009).

These design challenges were attented to in the unique design research development
process of CMP which spans repetitive years of unit design, field trials, and data
feedback cycles. Iterative feedback cycles focused on revisions to the curriculum units
based on feedback from teachers and students across the country as well as
mathematicians and educational researchers. Approximately 500 teachers in 55 trial
sites around the country (and thousands of their students) were a significant part of the
team of professionals that informed material development for CMP1, CMP2, and
CMP3.

Even though extensive research on CMP shows that both student and teacher learning
increases (e.g., Cai, Moyer, Hwang, Nie, & Garger, 2012; Reys, Reys, Lapan, Holliday,
& Wasman, 2003) and CMP students’ positive attitudes towards mathematics persisted
through high school (Moyer, Robison, & Cai, 2018), the CMP authors continue to seek
ways to enhance student and teacher learning. For example, as the CMP authors
interacted with the field with the print curriculum, their knowledge of student
understandings and teacher needs grew. Many of these new learnings found their way
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into problem tasks. In some cases, the tasks became longer and more nuanced. As an
example, the following is a version of a problem from the Accentuate the Negative unit
on addition of integers in CMP2 and CMP3 (see Figure 2).

Developing an Algorithm for Addition of Rational Numbers

Problem 2.1 from Problem 2.1 from CMP3
CMP2

A. Use chip boaeds or number Ine C. You know that -8 + 5 3. Use this E.1. Find the sums n Group 3
models 10 solve these problems. information 10 help you solve the 2. What x

folowing related problems have ¥ on?
1. Find the sums n each group 1, ~B25 4+ 45 3. Write three new problems that
belong o Geoup 3

LR . 2 D. For parts (1) = (3). decide whether of
not the expressions are ogual

F. Weite & sioty 10 masch each number
serience. Find he soktions

2.=15¢m =42
J-30++420=u

G.1. Use propertes of addson 1o find
cach value
B 417 4 <17 4 <43
b 447 + 462 + 47
2. Luciana dams that if you a3d
numbers with the same s v sSum
15 always greater than eac
addends. Is she correct? Explain

Figure 2: Evolution of a problem from CMP2 to CMP3 (Lappan, Fey, Fitzgerald, Friel,
& Phillips, 2006; Lappan, Phillips, Fey, & Friel, 2014).

Transitioning to Digital Curriculum Materials

Building on prior research and development, the current NSF-funded projects explore
two broad hypotheses about how a new technology environment can enhance student
learning:

* Development and testing of a digital version of CMP will yield important
insights into a variety of specific teaching and learning strategies made possible
by technology rich educational environments.

 Use of curriculum materials delivered in a digital medium will produce
significant improvement of student engagement and learning in diverse settings
for middle grades mathematics instruction.

The purpose of one NSF project is to build collaborative and individual spaces on a
digital platform to enhance student development, communication, and learning records
of mathematics. The purpose of the second NSF project is to enhance student
engagement and learning by redesigning problems and embedding them in the same
digital platform.

Efforts to (re)design the mathematics problems in the digital curriculum focus on three
aspects: (1) the Initial Challenge to contextualize and problematize the situation, (2)
What If...? scenarios to surface the embedded mathematics of the problem, and (3)
Now What Do You Know? to connect learning to prior and future knowledge.
Additionally, the digital medium affords an opportunity for “just-in-time” supports that
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connect to each component. As shown in Figure 3, these aspects of the mathematics
problem relate directly to the identified challenges described earlier.

Figure 3: Redesigned problem structure and its connection to the task design challenges.

The new problem design format affords an environment that is visually less daunting
with more succinct focus for students and teachers. For example, Table 1 shows the
redesign of a problem on developing an algorithm for adding rational numbers that was
discussed earlier (see Figure 2). The redesigned problem allows students to develop
this algorithm efficiently as it builds on prior knowledge and experiences involving
chip models and number lines. Through the problem and its three components, students
can choose a model to help solve the problem or another approach such as a numeric
strategy. This differs from the print material that directs learners by suggesting
particular pathways for developing an algorithm, imposing a particular model, and
finding specific sums of two numbers.

The “just-in-time” supports are provided to support students in their problem-solving
pathways. Drawing on the affordances of learner-controlled scaffolding for inquiry-
oriented mathematics classrooms (Edson, 2017), “just-in-time” supports or prompts
are provided by curriculum authors and teachers that can help students solve an
immediate difficulty, gain new knowledge, insight, or skill, or recall something that
has been learned and forgotten. The premise of the prompt supports in a problem-
centered environment is that if the students struggled unproductively in getting started
in an open problem, they maintained ownership of the learning by using the supports
without teacher intervention (Edson, 2016). In addition, empirical research has shown
that students used the prompts as a mechanism to assess their group discussions or
solution strategies without confirming their final answers with an external authority
(Edson, 2016). Examples of “just-in-time” supports for Problem 1.3 are shown in Table
1.

Initial Challenge What If...? Now What Do You Know?
How can you predict whether the What if you changed the order of What is an algorithm for adding
sum of two rational numbers is 0, the two numbers you are adding. rational numbers? How does this
positive, or negative? Will this affect your answer? compare to your algorithm for adding
Explain. whole numbers?

What if you have more than two
addends?
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Just-in-Time Supports

Just-in-Time Supports

Just-in-Time Supports

How could you model the
example you have? Would a
chip model be helpful? How
would you use a number line
to model your example?

Have you tried adding two
positive numbers? Two
negative  numbers?  One
positive and one negative?

Study the patterns in the
examples you recorded.

What patterns will help you
add two numbers with the
same sign?

What patterns help you add
two numbers with different
signs?”

[Teacher generated option]

What is an algorithm for adding
two numbers with the same sign?
What is an algorithm for adding
two numbers with different signs?
[Teacher generated option]

Do you have a record of the
examples you have tried?
* [Teacher generated option]

Table 1: Redesign of Problem 2.1 of Accentuate the Negative.

In the digital medium, the problem appears differently than on print. Figure 4 shows
the Initial Challenge for Problem 1.3 of the Moving Straight Ahead unit as seen on the
digital platform. Here, students navigate through each component of the new design.

Figure 4: The Initial Challenge of a problem from the Moving Straight Ahead unit.

Student selected supports would be immediately available to each and every student
and their groups as they explore problems. Students could select supports by clicking
on buttons to reveal the prompts. The teachers could modify or create new supports.
Another option is that teachers can generate and/or release prompts. While planning or
enacting problems, teachers can assess the needs of their students, and release prompts
to the entire class, select groups of students, or individuals. Not all students would
access these supports unless the teacher released them.

For example, Figure 5 shows the student-selected supports (in orange) and the teacher-
released supports (in yellow) when they have been activated by students in the digital
medium. Also shown in Figure 5 is how the teacher can write the prompts and release
the prompts to students. Note that teachers are notified when students activate the
teacher-released supports.
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Problem 1.3

Initial Challenge How can you deternine if s relatronship is linear? If a relationship i finear, what i the pattern of change?

7 If one variable changes by a constant amoant, how does the other variable change?

NEEEC & ? How is the constant e of change represented in a cottext? Table? Graph? Equation?

Now What Do You

a. Activated student-selected supports on the student digital platform.

Moving Straight Ahead Probleen 1.3 Redsing Money: Using Linear Relationships

MU Teat oAt e Lo

| # AdDrawing | | Q Upioad bmage | | I A02 Table | |kt Add Geagh | | 19 Open Aritacts Achive | | % Open Poster View | | 8 Putiien Al |

c. Activated teacher-released support on the student digital platform.

Figure 5: Example of student-selected supports and teacher-released supports for
Problem 1.3 of the Moving Straight Ahead unit.

Figure 6 shows a screenshot of the platform for a student with individual and
collaborative spaces: Figure 4 is embedded in the upper left-hand corner,
collaborative drawing, table, and graph tools are in the middle and the column to
the right allows students to share their work with other students and the teacher.

et trm s b e v -

Jimer e - —
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e
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U T
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Figure 6: Sample student screenshot for Pb 1.3 of the Moving Straight Ahead unit.
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CONCLUSION: NEW DESIGN CONSIDERATIONS

The design considerations that exist for print curriculum are still relevant for digital
curriculum. These include: (a) identifying the important ideas and their related
concepts and procedures; (b) designing a sequence of tasks to develop understanding
of the idea; (c) organizing the sequences into coherent, connected curriculum; (d)
balancing open and closed tasks; making effective transitions among representations
and generalizations; (e) addressing student difficulties and ill-formed conceptions; (f)
deciding when to go for closure of an idea or algorithm; (g) staying with an idea long
enough for long-term retention; (h) balancing skill and concept development; (i)
determining the kinds of practice and reflection needed to ensure a desired degree of
automaticity with algorithms and reasoning; (j) writing for both students and teachers;
and (k) meeting the needs of diverse learners (Lappan & Phillips, 2009).

The move to a digital platform that incorporates collaborative and individual learning
spaces is not without risk, especially when problems are redesigned. New questions on
task design considerations arise for developing digital curriculum:

* Will the nuances of the understandings emerge so that students form solid
conceptual and procedural foundations?

* Does the redesign depend on the location of the problem in the learning
progression? How effective is it?

* How do the “just-in-time” supports vary within and across a sequence of
problems? When are they needed? Who is using them? How often?

* How much and what kind of new teacher support is needed? How does the
teacher customize the environment?

* Does the new digital environment promote learning? When? Under what
settings?

Since we are working with a well-researched and widely implemented print
curriculum, we are building on learning progressions and teacher supports that are
effective across the middle school curriculum. This provides a basis for the research
project to study how use of the redesigned problems and “just-in-time” supports in a
digital platform can promote an inquiry-based classroom environment where students
are engaged in making sense of mathematics.
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Reflection as a mechanism to explain changes in teachers’ identity:
The case of Yosef
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This research, follows a professional-development that encourages the participating
teachers to integrate technology in their lessons. A modified theoretical framework
enables us to identify and explain the changes in the participating teachers’ identity.
This is demonstrated as we focus on the discourse of one participating teacher.

Keywords: Technology, commognition, reflection, identity, professional-development.
INTRODUCTION

For many years the integration of technology in teaching and learning has been the
subject of research in the field of mathematical education. Although, in general, studies
illuminate the integration of technology in a positive light, there is still consensus that
the integration of technology is far from fulfilling its potential. We now understand
that the key factor that can implement or limit the integration of technology in the math
class is the teacher, who is required to change his practice (Hegedus et al., 2016).
Therefore, it seems evident, that to promote technology integration we must first
support teachers.

The research presented in this paper is looking closely at an in-school professional
development tackling the challenge of encouraging teachers to use technology in class.
The PD was planned according to the following guiding principles: (1) The teacher is
an adult-learner; therefore, the PD should be planned to be relevant to the teacher’s
authentic professional needs; (2) Only outcomes emerging from those needs may lead
to long-term changes in her practice of teaching; (3) At present, in the Israeli high
school math education system the teacher is the one that decides which technology to
integrate in her class and in what manner; (4) Integrating technology into teaching is a
process that should encourage the teacher to reflect upon her practice. The uniqueness
of the PD that stems from these principles, is that it gives teachers an opportunity to
define their pedagogical needs, and it also provides them with resources of time and
professional support to find a technological solution that meets these needs. This
research intent to find out whether such a short-term PD may demonstrate detectable
changes in the discourse of the participating teachers regarding their practice.

THEORETICAL FRAMEWORKS

The theoretical components of this work are inserted in two utility levels. At the first
level, we use an adaptation of a section from the “UNESCO ICT Competency
Framework for Teachers” (UNESCO, 2011). This framework focuses on mapping the
three stages of teachers’ development in the six complementary competencies that
teachers should master for supporting their students as they become “collaborative,
problem-solving, creative learners through using ICT so they will be effective citizens
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and members of the workforce” (pp. 3). In addition, the framework elaborates the
operational meaning of each developmental stage regarding each of the six aspects of
the teachers’ work, which are: Understanding ICT in education, Curriculum and
assessment, Pedagogy, ICT, Organization and administration, Teacher professional
learning. In order to perform a preliminary analysis of the teachers’ conduct in the PD,
we chose three of the six aspects stated above (ICT, Pedagogy, Organization and
administration), fine-tuned their definitions and elaborated the three stages in a manner
that is relevant to our research as follows (Table 1):

level
poor basic advanced

category

The teacher is The teacher can use The teacher is able

technologically | basic technology tools | to create various

, illiterate. such as power point technological tools
Literacy of ICT presentations, static using available
visualizations or resources.
ready-made apps.

The teacher is The teacher can The teacher can
Ability to conduct | barely familiar | operate technology conduct a whole
Technology based | with school from the teacher’s lesson with
activities in class | technological position students using

facilities technology

Teaching with Adding technology Performing

no technological | supported activities appropriate mutual

aid in or out-side | without changin adaptation of
Peazigergy GfLC class. pedagogy e technological tools

and teaching
mathematics

Table 1: Revised framework for determining teachers’ developmental level

The commognitive theory of learning (Sfard, 2008) is the second component which our
research relies upon. It is our overarching framework which defines the basic concepts
with which we intend to establish our research. The commognitive paradigm adopts
the Vigotskyan tenet saying that every human skill is a product of a process of
individualization of collective activities. In particular, thinking is a unique human skill
emerging from the collective activity of communication and we refer to thinking as
communicating with oneself. The term commognition is a constant reminder of the
identification of thinking with communication. According to Sfard (2008), a discourse
is a well-defined form of communication characterized by its keywords, visual
mediators, routines and endorsed narratives. In addition, learning is the process of
becoming a proficient interlocutor in an established discourse, and the detection of
learning 1s the detection of changes in one's participation in that discourse. The
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commognitive theory is offering an additional perspective on learning by using the
concept of identity of a person, which is operationally defined as the collection of all
reified, meaningful and endorsable stories that are told about that person (Sfard &
Prusak, 2005). The identity can be either actual, as the stories are told about a person
at present, or, it can be designated, as the stories are told about the expected future of
that person. Those stories, being told about a person, by either first, or a third person,
are according to Sfard and Prusak, the missing link that enable us to reveal the
mechanism through which a community effects the learning of its members. Therefore,
we may look at learning as narrowing the gap between the actual identity and the
designated one.

For the purpose of our present research some adaptations to the commognitive theory
are required, since the object which is in the center of the discourse in the PD is not
mathematics but rather the practice of the participating teachers, and the participating
learners are not young students, but rather adult in-service teachers. Therefore, in this
research we suggest the concept professional-identity as the collection of all reified,
meaningful and endorsable stories told about the practice of a teacher. In addition, we
would like to recruit the concept of reflection to assist us with talking about the way
those stories are created. The concept reflection has few references in the context of
teachers’ professional development, where it is characterized as a tool that helps
teachers turn their experience into knowledge (McAlpine & Weston, 2002; Clarke,
2000) and may or may not have implications for the teachers’ practice (Ricks, 2011).
Converting reflection into the commognitive framework we shall define it as the action
of telling the stories that eventually will constitute a teacher’s professional-identity (in
first, second or third person). Therefore, according to this definition, when teachers in
the PD, are communicating or participating in a discourse about their practice and by
doing that they are telling stories that are, or will become, reified, meaningful and
endorsable, we may say now that they are engaged in the action of reflection.

METHODOLOGY

The research is following a PD that was conducted during the 2016-2017 school year
in a public middle-high school in a major city in central Israel. Seven teachers took part
in the PD, most of them teach mathematics in both middle and high school. In addition,
most of the teachers have significant experience using technology, since teaching
mathematics is their second career after working in high-tech professions for some
time. There were 10 meetings of 90 minutes each, to the PD and they were two weeks
apart to allow teachers to experience the integration of technology in their lessons
between each two meetings. The main idea of the PD, as reported in the introduction,
was to offer the participating teachers resources of time and professional support to
allow them to work with their peers and come-up with technological solutions to their
authentic pedagogical needs, and in addition, to let them have opportunities to share
their experience with their peers and instructor.

Each PD meeting except the opening and closing sessions was conducted according to
the same pattern: At the beginning each participant reported to the group what she
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achieved in the past time since the previous meeting, in addition, she reported what are
her working plans for the present meeting. The main part of the meeting was dedicated
to team work of planning the next lesson, and in the last part of the meeting, again,
each participant or team reported to the group what did they achieve in this meeting.
The teachers’ duties for credit were to attend all the meetings, to enact three lessons
with technology and to submit a written report of a given pattern regarding each lesson.

Having delineated both the theoretical frameworks and the PD being investigated, we
may now translate our research goal to a research question as follows: Can we point at
changes in the stories teachers tell relating to their professional identity in the PD? If
we do report changes, what can we infer from them regarding the teachers’
professional identity?

In order to answer these questions, the following data was collected: The instructor of
the PD (the first author of this paper) took field notes documenting both the planning
and the execution of each PD meeting and the aftermath reflection after each meeting.
All the meetings were audio-recorded. All the written products of the participating
teachers were collected including lesson plans, reflection reports and computer files.
Two of the teachers’ lessons were video-taped, and four of the participating teachers
were interviewed few weeks after the PD ended by an external interviewer that was not
familiar with the details of the PD.

The data analysis is composed of two phases: The first phase was to use the instructor’s
field-notes and the participating-teachers’ written reports in order to form for each of
them two web-diagrams according to the revised three components based on the
UNESCO ICT Competency Framework for Teachers as shown in Table 1. The two
diagrams summarize the initial and final levels of each developmental category. When
the level could not be determined clearly, a middle point was selected. For lack of space
the three categories were marked as “ICT”, “Conduct” and “Pedagogy” as it is ordered
in Table 1. Table 2 presents the initial and final web-diagram of four of the seven
teachers that participated in the PD.

Yosef Simon Dina Sara

Pedagogy Pedagogy Pedagogy Pedagogy

Initial /

& = Sl

Conduct ICT | Conduct T Conduct cT Conduct Ter
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Pedagogy Pedagogy Pedagogy Pedagogy
- . . .

final

- >

- > L k) . - - >
Conduct ICT Conduct ICT Conduct ICT Conduct ICT

Table 2: teachers' initial and final profiles

The second phase of data analysis focused on one of the seven teachers that according
to the profiles depicted above, demonstrated a salient change. We decided that Yosef
was the most promising candidate for this purpose, since he was the only teacher that
moved two levels up in one category. For a deeper analysis of Yosef’s discourse, we
thoroughly reviewed all the audio recording that documented Yosef’s participation in
the discourse of the PD meetings, all Yosef’s written products and his interview. The
findings, reported ahead, are the evidence we selected in order to support our story of
the change we detected in Yosef’s professional identity.

FINDINGS

This chapter presents Yosef’s story, as we see it, throughout the PD. Yosef is a novice
mathematics teacher. He became a teacher after working in the high-tech industry for
many years. His students are low-achieving students in both middle and high-school
grades. In this section we unfold Yosef's professional identity as it appears to us,
supported by evidence from the beginning, middle and the end of the PD.

Beginning

In the beginning of the PD Yosef had several opportunities to share his point of view
regarding his practice of teaching with the assembly. We hereby analyze two of the
episodes, we believe demonstrate in the best manner the stories that Yosef told during
the beginning of the PD and that portray parts of his professional identity at that time.
The following is taken from Y osef's oral report to the assembly in the second meeting:

“I'm teaching the so-called non-calculus this year, “three units” (the lowest level). When I
teach arithmetic sequences a,: ;= a, + d, the students, many of them, have a problem of
comprehension, what is this n? they have no idea. The fact that I'm saying, (they have) a
problem, that does not mean I'm not explaining ... fine, even after two lessons of thorough
explanation to small groups of students, there is still a problem of comprehension.”

In the above quoted episode Yosef is describing the problematic situation of his
students. Not only do they have difficulties understanding mathematics, this difficulty
is persistent even when Yosef is explaining the difficult mathematics with deep
intention. Let us emphasize, that it was Yosef’s choice to share this experience with
his peers and instructor at the PD. Therefore, we believe this story is a significant and
representative story from the collection of stories that form Yosef’s professional
identity. In addition, we suggest that the way Yosef portrays his students, as totally
incompetent, reflects implicitly his sense of impotence as their teacher.
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Yosef’s first written report presents a different angle of what we believe is the same
phenomena. In the first lesson of integrating technology, Yosef decided to let his
students experience an inquiry-based activity, in which they were instructed to infer
the characteristics of each parameter in the linear-function f(x)=ax+b. Yosef reported
that his students failed to accomplish the task, and in the reflection part of his report,
he wrote: “It is a critical problem regarding the aptness of inquiry-based activities to
this specific population”. Yosef chose to refer to his students as “population”, and their
inability to perform as expected, is due to the qualities of the “population”. We interpret
Yosef’s choice of vocabulary as signifying the irrelevance of this “population” being
his students and the irrelevance of any possible action he may take as their teacher, as
if it was a predestination, and there is nothing he can do to better their learning. He
continues his reported reflection: “The attitude in this setting (inquiry-based task) is
totally different and it requires higher level competencies. The question is whether this
is to the benefit of the students, or not”. Yosef presents the question whether inquiry-
based activities are appropriate for low-achieving students, as a theoretical issue that
may have an absolute answer regardless of Yosef's actions. We may infer that although
he is their teacher, he does not feel that he has, or may ever have, a positive impact on
his students’ learning.

Although, this partial depiction of Yosef's professional identity presents him as a
teacher who does not think that he has any true responsibility for his students' learning
nor is he able to change their poor qualities as learners, we must state that he is the one
that chose to join the PD and in addition, he chose to let his students experience an
inquiry-based activity. We believe that those choices are a sign that Yosef was willing
to try and be guided into a new route that will enable him to tell new stories that may
re-define his professional identity.

Middle

In the second technology enactment Yosef planned three consecutive lessons. In the
first two, he decided to use technology from the teacher’s position in order to
demonstrate graphic representations of parabolas and let his students participate by
referring to this demonstration. At the end of the second lesson, Yosef showed a “face”
constructed from parabolas and instructed the students to reconstruct the “face” at
home using their cell-phones. According to the report, the third lesson was
disappointing, since the attendance was low and most of the students failed to complete
their homework. Nevertheless, Yosef reported this whole experience as more
successful than the previous one. He said that now he understands that inquiry-based
approach that lets the students read written instructions and figure out independently
mathematical ideas as they use the computers by themselves, was too demanding for
his students. This reflection is presenting a new and different story that replaces the
one that was told in the beginning of the PD. Now, it is not the students that are
incompetent for learning while participating in an inquiry-based activity, it is the
activity which is unsuitable for the students. This seemingly minor change can open
the door for bigger changes to come, because it shows signs to Yosef's shifting the
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responsibility for the favourable outcome of the lessons from the students to himself.
Looking deeply into Yosef’s second written report, we found some utterances that
support this claim. For example: When he describes one of the moves he conducted
during the first of the three lessons he said: “Maybe here, [ made a slight mistake”. On
the one hand, we may say that this utterance can be interpreted as a critical view of
Yosef towards himself. But, when we broaden our perspective, a story that may make
sense of it, 1s that Yosef sees himself as someone that can make mistakes, therefore he
can also better his performance and do good. Again, the impotency that characterized
Yosef’s view of himself in the beginning, is replaced, after his second report, by a more
optimistic view, as Yosef sees himself as a significant figure to his students’ learning.

Towards the end of the PD

Yosef decided to enact the third technology-implemented lesson in a class of low-
achieving 7th graders. The subject was addition and subtraction of negative-numbers.
In his oral report to the assembly, Yosef explained his choice to integrate an interactive
game played using smart-phones (kahoot): “I needed it, in order to break the...course
of the lesson... so it won't be too long. Letting them know that we are going to play
kahoot at the end, it gives them some kind of motivation to work”. The game is used
here to reach a pedagogical necessity of keeping the students motivated and positively
active for the whole lesson. Looking at all the data, this is the first time, Yosef refers
to the integration of technology as addressing a pedagogical necessity. This may further
support the story Yosef started telling previously: The students have difficulties and it
1s the teacher who helps them to overcome those difficulties. As before Yosef is critical
regarding his decisions. In the reflection part of the third written report he says:

“Although I tried giving very simple exercises in the kahoot, such that are repeating
the principles in their simplest form, even good students, relative to this group, made
mistakes derived from their attempts to give quick answers. It seems that the attempt
to give quick answers, made them overlook the procedure”.

After identifying the problem, Yosef suggest a solution: “Questions about the
procedure should be added to the kahoot”, and he elaborates several possible questions.
In general, it seems that Yosef is looking both on the advantages and disadvantages of
his pedagogical choices, and he is willing to learn from his experience and suggest
solutions to the new problem that arise. Another sign to the change in Yosef's stories
is his referring to some of his students as “good students”. Therefore, we may claim
that the same students, that in the beginning had persistent difficulties, are now
described as good students that may make mistakes.

A new dimension that was not a part of Yosef’s directly told stories, appeared towards
the end of the PD as he started taking an active and meaningful part in the teachers’
discourse in the PD. His oral reports evoke the other teaches to ask questions and to
suggest ideas to answer Yosef’s queries. In the last PD meeting Y osef presented a new
self-made Geogebra applet that visually defines the trigonometric relations in a right
triangle. His applet and presentation were followed by positive and encouraging
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responses from his fellow teachers. We believe that although it is only implicitly
implied, we may add to the stories that constitute Yosef’s professional-identity a story
that describes him as a teacher that contributes to his community of peers and that
community contributes to his practice.

DISCUSSION

The findings depicted above show that participation in this specific PD for the
integration of technology may result in significant changes in the stories that constitute
one teacher’s professional identity. Interpreting Yosef’s stories, we may claim that his
professional identity took a meaningful turn from an impotent teacher that has no
impact on his students’ learning, to a teacher that is sensitive to his students’ needs and
is able to attend those needs with pedagogical and technological means.

Looking back at the PD, we cannot say that specific pedagogical or technological tools
were taught, nevertheless, we showed that the resources of time and support, that let
the participants work and reflect in a supportive community, may yield a significant
change in a teacher’s professional identity.

After looking at the changes that can evolve in a teacher's professional identity it seems
inevitable to ask, how can we explain that while participating in the same PD, Yosef
underwent such impressive progress but looking at Simon (see Table 2) we detected
no change at all. We believe that this query can be answered if we further dwell on the
stories that form all the teachers’ designated identity. As stated in the theoretical
introduction, learning may be looked at, as narrowing the gap between the actual and
designated identities. If there is no such gap, we would expect no learning. Therefore,
explaining the differences between the performance of different teachers will entail
looking at their designated identities, and this is beyond the scope of this paper.
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In this contribution we report on the collaborative design of mathematical digital
resources within a community of interest in a specific socio-technical environment
established in the framework of the MC Squared European project. We bring to the
fore that the design of these resources requires technological, pedagogical and
mathematical knowledge. Through the analysis of the process of design of one such
resource, we show how the professional knowledge, the teachers’ practice and the
socio-technical environment have oriented the design choices.
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INTRODCTION

Collaborative design reported in this paper took place within the MC Squared (MC2)
project (http://www.mc2-project.eu/), in a socio-technical environment, called C-book
technology, enabling to design digital resources for mathematics teaching and learning,
called c-books (c for creative). The c-books were produced within four communities
of interest (Col) (Fischer, 2001), French, Greek, Spanish and British, in order to
develop creative mathematical thinking (CMT) in their users. Through the analysis of
one particular c-book, designed within the French Col, we attempt to enlighten the role
of the designers’ professional knowledge, of practices of the mathematical teachers
involved, and of the digital environment in the resource design. We start by presenting
our theoretical and methodological framework. Then we continue by the presentation
and analysis of a case study constituted of one c-book, before concluding.

THEORETICAL FRAMEWORK

Communities of practice and communities of interest

A community of practice (CoP) (Wenger, 1998) gathers people who share in its core a
common identity, domain of knowledge and practice, whereas communities of interest
(Cols) “bring together stakeholders from different CoPs to solve a particular (design)
problem of common concern” (Fischer, 2001).

According to Fischer, the diversity of members of a Col makes the latter having a
greater creative potential comparing to a CoP. Thus, in the MC2 project, Cols were
constituted for designing c-books; they gathered people from different professional
worlds, such as researchers, teachers, software designers, artists, etc., with different
activity systems (Engestrom, 1987), different identities, knowledge and practice, to
solve a (design) problem.
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Activity theory

Collaborative design is a human activity. The activity theory (Engestrom, 1987) is a
lens for describing and understanding the context of this design.
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Figure 1. The structure of an activity system (Engestrom, 1987, p. 78)

Engestrom’s model of activity structure (Fig. 1) allows us to bring to the fore the
context of the collaborative design through the diverse entities that constitute the
activity: subject, object, community, rules, division of labor, and tools and signs
considered as artefacts.

Nevertheless, the collaborative design is studied from the perspective of the designers’
knowledge and practice to highlight their impact on the design choices. We therefore
chose the TPACK model in order to infer teachers’ professional knowledge informing
the c-book design.

The TPACK model

The TPACK (Technological Pedagogical And Content Knowledge) model (Mishra and
Koehler, 2006) allows to model teachers’ knowledge and to identify more precisely
their knowledge of technology (TK), pedagogy (PK), content (CK), mathematics in
our case, and the intersections of these three areas. One of the interests of this model 1s
the special focus on knowledge related to technology for teaching.

Creative mathematical thinking (CMT)

Let us recall that the MC2 project aimed at the development of a technology enabling
to design resources with a potential to foster creative mathematical thinking. The CMT
was defined within the project as the ability to generate ideas in the process of problem
solving displaying fluency (ability to generate many ideas), flexibility (ability to
generate different categories of ideas), originality (ability to generate new and unique
ideas that others are not likely to generate), and elaboration (ability to redefine a
problem to create others by changing one or more aspects). Social and affective aspects
were deemed as important factors stimulating CMT.

Our research question is: To what extent professional knowledge of the designers
(referring to TPACK), their practice, as well as the socio-technological environment,
have oriented the choice of activities, tasks, feedbacks and artefacts embedded in the
c-book they designed?
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CONTEXT AND METHODOLOGY

Our methodology relies on a case study, i.e., a collaborative design of a particular c-
book that we analyze through the lens of our theoretical framework to answer the above
mentioned research question. We have chosen to study the “Elementary algebra” c-
book. The c-book had been designed in two phases. First, a Col produced a first version
of the c-book within the MC2 project, which was then re-designed by the associated
DEA CoP comprising three secondary school mathematics teachers and one teacher
educator with the aim of using the c-book with their students.

Context of the design within the Col

Referring to the activity system, the design of the “Elementary algebra” c-book took
place within the French Col (community), which was composed of thirteen members
with varied professional background, including researchers, mathematics teachers,
teacher educators, and educational technology developers, and with a convergent
interest in mathematics or mathematics education. The members share a socio-
constructivist vision of mathematics learning rooted in the French didactic tradition of
teaching and learning mathematics (Artigue, 2016). The subject of the c-book design
activity was a group of six Col members, closely related to mathematics education,
engaged in the c-book design (called a sub-Col, Fig. 2).

— Core of the sub-Col

Periphery of the sub-Col

f . ’ {ristod C'oP
| DEA CoP = = .

Figure 2. Sub-Col engaged in the design of the “Elementary algebra” c-book

Four members were at the core of the sub-Col with specific roles assigned from the
beginning of the design: Meg, teacher educator, and Medi, post-doctorate, were the
main designers, Jane, teacher educator and researcher, was moderator and Neil, teacher
and PhD student, was secretary and observer. Two members were at the periphery of
the sub-Col, they intervened on request for a precise task (division of labor): Jo,
developer of educational technology, was asked to collaborate for technical support
and Marc, teacher educator and researcher, intervened to design specific widgets with
GeoGebra. The two associated CoPs were Aristod whose members, including Jo,
develop educational software and the Dynamic elementary algebra (DEA) group whose
members reflect on and develop resources for teaching elementary algebra.

One rule that the sub-Col adopted for the design of this c-book was to use at least two
widgets developed by the Aristod CoP. Indeed, the design of the c-book was an
opportunity to reflect on the use of these widgets in mathematics classes. The artefacts,
namely the C-book technology and widgets developed by Aristod, constituted the
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socio-technical environment in development along the project. The c-book designed to
enhance the CMT potential of the students and develop early algebraic thinking was
the object of the activity.

Methodology

The data were collected mostly via ColCode', a communication tool dedicated to the
design of c-books with one workspace per c-book in the form of a threaded forum and
used by the Col members. Other data come from minutes of manifold meetings (Col,
CoP, etc.), emails and versions of the designed c-book. We have analysed the structure,
some of the activities, tasks, feedback and artefacts embedded in the final version of
the c-book designed by the sub-Col and then seek for the major modifications made by
the mathematics teachers of the DEA CoP before and after the experiment in the
classroom with seven and eight grades’ students. Correlation of the data allowed us to
infer professional knowledge and practice that have oriented the designers’ choices.

ANALYSIS OF SOME DESIGN CHOICES
Structure of the c-book

The c-book content is organized around three activities: ”Pattern and generalisation”,
“Calculation programs”, and “Equations”. The purpose of the activity “Pattern and
generalisation” is to find how to determine the number of cubes composing any figure
of the sequence. The goals of the activity on calculation programs are to enable students
to work on procedural and structural aspects of algebraic expressions and to feel the
limits of calculations in order to show the need of algebra for proving (e.g., proving
that the program A: 5(x + 3) —x — 10 and the program B: 4x + 5 are equivalent). Finally,
the aim of the activity on equations is to allow students to reflect on the transformation
rules used for solving an equation with one unknown using a digital artefact, a balance.

From the collected data we note that the choice of starting the c-book with an activity
on patterns and generalisation was suggested by Meg who considers such an activity
as a first step in the development of algebraic thinking for Grade 5 and 6 students and
the calculation programs as a second step to enable the students to acknowledge the
power of algebra as a tool for proving (PCK). The designers think that the balance
widget embedded in the environment can help some students (Grade 6, 7 and 8) to
better understand the transformation rules of equations (TPACK). In addition, the order
of these three activities is related to the practice of the mathematics teachers of the DEA
CoP.

Tension between constructivism and behaviourism

“Pattern and generalisation” activity starts, page 1, by inviting students to determine
the number of cubes for any figure in the pattern, the first terms of the pattern given

! ColCode is a communication environment; part of the C-book technology, offering a workspace
within which members of a Col engaged in a c-book design can communicate.
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(Fig. 3) and write their answer in a box. The question is open and lets students free to
take initiatives (constructivist approach).

fgoume n't fpwen2 Tgwan')

Figure 3. The first three figures of a sequence (adapted from Mason, 1996, p. 84)

However, the environment does not provide feedback. Hence, on page 2, the designers
invite the students to determine how many cubes are needed for 4™, 5™ and 10th figures
with appropriate feedback.
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Figure 4. Screenshot of “Pattern and generalisation”, page 2

They also provide Building blocks widget, which can enable students to represent all
the figures of the sequence they want, with the automatic display of the number of
squares/cubes (Fig. 4), in order to help them generalising. The students are thus guided
toward the solution and their freedom 1s limited (behaviourist approach).

We note that the open question, intended to propose a problem to solve to students
(constructivist approach) is followed by closed questions that guide the students
(behaviourist approach). This choice is due to the constraints of the environment that
cannot provide appropriate feedback to an open question. Hence, despite the designers’
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constructivist culture, the limits of the technological environment yield a resource
underpinned by a behaviourist approach.

The choice of artefacts and feedback

The analysis of the modifications of the c-book shows that with the time, the designers
employed more widgets and began to diversify the type of feedback that is offered by
the environment such as positive reinforcement, answers or advices (TK and TCK, Fig.
5).

Ecrire laréponse : 17 ¥/ (cliquer sur la touche “entrée” pour vérifier votre réponse)
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X - . : s
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et non le nombre de dépar.
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Ecrire la réponse [12 ‘!, (cliquer sur la touche "entrée” | Ecrire la réponse,i13 ,{! (cliquer sur la touche “entrée” |

I Essaie encore ] C'est la bonne réponse X

-
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Figure 5. Examples of feedback depending of the answers

In the final version of the c-book, we can see that the designers have created new
artefact using GeoGebra and integrated some widgets provided by the environment
(e.g. Balance, Building Blocks, Algebra Trees). For example, a GeoGebra widget was
designed by Marc to enable students to build the first terms of the pattern, which was
then improved by Neil (after a time of appropriation, Fig. 6), or GeoGebra spreadsheets
were embedded for the calculation programs in order to help students to find program
formulae and then to generalise.

v‘u | : 1 1. . - . - 1

O [(TTTTTT] =

Figure 6. The widget designed by Marc (n = 0, 1 square and n = 4, 13 squares), then
adapted by Neil (n =1, 1 square); n the number of the figure

The choice of artefacts was based on the designers’ TPACK. The teachers from the
DEA CoP have chosen to add the Algebra Trees widget in some pages of the
“calculation programs” unit, to enable students to work on the structural aspect of
algebraic expressions. Such a progressive diversification of artefacts used in the c-book
shows that the instrumental genesis (Rabardel, 2002) of the C-book environment by
the designers needed time.

We also note that they have decided to add an introduction to help teachers to use the
c-book, explaining the content of the digital book. Then, after the experiment with the
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students, the teachers added three pages in the introduction to accompany students’
instrumental genesis related to three artefacts (epsilonwriter, spreadsheets, Algebra
Trees) proposed in the c-book.

The development of CMT

Two widgets designed and developed by the Aristod CoP, namely epsilonchat, a chat
tool, and TQuiz, a serious game tool, have been integrated into the c-book. The
designers have also implemented some pictures. These choices show an attempt of the
designers to improve the CMT potential of the c-book by enhancing social aspects via
the epsilonchat widget as well as affective aspects through the integration of pictures
or TQuiz widgets.

CONCLUSION

The analysis of the “Elementary algebra” c-book shows that the teachers’ practice has
influenced the order of the activities and their PCK and TPACK impacted the activities
and artefacts present in the c-book. We showed a tension between the constructivist
background of the designers and the limits of the C-book digital environment, which
did not enable to build a rich (a-didactical) milieu but obliged the designers to guide
students in their solving process through closed questions and feedback thus conferring
behaviourist character to the c-book. We saw that the instrumental genesis related to
the environment is necessary at three stages: first in the designers themselves in order
to better understand the affordances of the C-book environment and take better profit
from it in the design, then in the teachers using the c-book and finally in the students.
We also brought to the fore that the will to develop the CMT in the users led the
designers to embed a serious game and pictures to enhance affective aspects, and a chat
tool to enable social interactions between the users.
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Task design is a central issue in mathematics education, not least in relation to digital
technology. This paper reports how a small but significant change in wording affects
students’ explanatory responses. The study is comparative and involves 229 10th grade
students working on tasks designed for a dynamic mathematics software environment.
The findings indicate that inclusion of the word ‘mathematical’ prompted students to
use algebraic symbols and algebraic arguments, to a higher degree.

Keywords: task design, dynamic mathematics software, explanation task.
INTRODUCTION

Task design within mathematics education has been an important issue for decades,
and the increased availability of different kinds of technology in mathematics
classrooms has made this issue even more important. Designing tasks that utilize the
affordances provided by digital technologies is recognized in the literature as being a
complex and subtle process (Joubert, 2017).

In relation to Dynamic Mathematics Software (DMS), the literature emphasizes the
possibility of visualizing and linking various representations of mathematical objects,
particularly in relation to functions and graphs (Hegedus et al., 2017). With DMS it is
possible to make direct manipulation of dynamically linked representations of
functions, e.g. algebraic and graphic representations (Drijvers, 2003). However, there
is an identified risk that students, while working on a task in a DMS environment, will
only relate to the empirical/visual objects obtained on the screen without reflecting on
the mathematics involved (Drijvers, 2003; Joubert, 2017). Hence, one important issue
to consider in the design of tasks for DMS environments is how to formulate tasks that
encourage students to move from the empirical/visual to the mathematical/systematic
field (Joubert, 2017).

Several studies, focusing on task design in DMS environments, emphasize the
importance of asking students to explain their empirical findings (Leung, 2011).
According to Leung, “A meaningful mathematical explorative task should be one that
involves conjecturing and explanation activities.” (p. 328). The issue of student
explanations in the teaching and learning of mathematics has been a focus of research
literature for several decades (e.g. Dreyfus, 1999; Silver, 1994). Silver (1994)
acknowledge the challenge for students to provide explanations in writing, and
suggests ““...the need for explanations, especially written explanations, to become a
more prevalent feature of school mathematics instruction.” (p. 315).
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Moreover, Sierpinska (2004) discusses the importance of ‘task problematization’, and
pinpoints that small differences in the formulation of tasks might have a significant
impact on students’ responses. In line with this, we found, in a previous study, that the
wording is crucial in the formulation of questions where students are asked for
explanations (Brunstrom & Fahlgren, 2015). Particularly, we found that students’
responses tend to be superficial and more descriptive than explanatory. The result from
the study prompted us to further investigate how small but potentially significant
changes in wording might influence students’ explanatory responses in a DMS
environment.

The change in task wording investigated in the study reported in this paper involves
moving from asking students simply for an explanation to asking them for a
‘mathematical’ explanation. The explanation tasks in question are embedded in a task
sequence developed for a DMS environment with the aim of developing students’
awareness of some of the connections between the standard form of quadratic function
flx) = ax® + bx + ¢ and the corresponding graphical representation and quadratic
equation. The research question will be presented in detail later.

THE PRACTICE OF EXPLANATION

In (digitalized) mathematics classrooms, technology provides feedback in response to
students’ action with the environment (Joubert, 2017). Using the terminology
introduced by Noss and Hoyles, Joubert argues that for students to move from the
‘pragmatic/empirical’ to the ‘mathematical/systematic’ field, the students must go
beyond just reporting what they have seen (Joubert, 2017). The literature suggests
asking students for explanations as a way to encourage students’ movement between
these fields (e.g. Dreyfus, 1999).

However, the literature recognizes the challenge for students to provide mathematical
explanations. According to Dreyfus (1999), students have rarely learned what counts
as a satisfactory explanation. Moreover, Levenson (2013) argues that the properties of
a task as well as the mathematical concepts under consideration affect the features of
the explanations used. In a study investigating students’ conceptions of the qualities of
mathematical explanations, Healy and Hoyles (2000) found that many students
preferred explanations described in everyday narratives. For these students “empirical
data convince whereas words and pictures, but not algebra, explain.” (p. 415).
However, the study showed that although students predominantly used narrative
explanations they were aware of their limitations, and they thought that to receive a
good mark, explanations should include algebraic arguments (Healy & Hoyles, 2000).

Researchers refer to ‘expository writing’ as “writing which is intended to describe and
explain mathematical ideas” (Shield & Galbraith, 1998, p. 29). The main idea is that
by communicating their mathematical thinking in writing, students improve their
mathematical understanding (Santos & Semana, 2015; Shield & Galbraith, 1998). In
the study reported by Santos and Semana (2015), students used several types of
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representations in their written expositions, e.g. verbal language, iconic
representations, numerical and/or algebraic symbols.

These ideas lead us to formulate more precise research questions: What impact, if any,
has inclusion of the word ‘mathematical’ on students’ responses when asked to explain
observations made in a DMS environment on: (a) the forms of representation
employed, and (b) the characteristics of explanations used?

METHOD
Research Setting

In total, 229 tenth grade students at a secondary school in Sweden participated in the
study, conducted during a year-long school development project with the overarching
aim to develop and test sequences of tasks designed for a DMS environment. The aim
of the particular task sequence was to introduce graphical representations of quadratic
functions written in the standard form fix) = ax* + bx + ¢, and the corresponding
quadratic equation. The students had previously worked with linear functions, linear
equations and with solving quadratic equations algebraically. In Sweden, the
predominant method for solving a quadratic equation of the form ax® + bx + ¢ = 0, is
first to reduce it to the equivalent quadratic equation x* + px + ¢ = 0, and then to apply
the so called pg-formula.

Material

In total, the task sequence includes three embedded explanation tasks formulated in the
following two versions: “Explain why...” and “Give a mathematical explanation
why...”. Besides the word ‘mathematical’, these phrases also differ grammatically (i.e.
‘explain’ vs. ‘explanation’). However, we suggest that this has an insignificant impact
on student responses. The two versions are labeled U and M for Unspecified and
Mathematical explanation respectively. Due to limitation of space, this paper only
reports on two of the tasks; Task 1c and Task 3c (see Figure 1).

Task 1
(a) Investigate, by dragging the slider ¢, in what way the value of ¢ alters the graph. Describe in your own
words.

(b) The value of the constant ¢ can be found in the coordinate system. How?

(c) Explain why/Give a mathematical explanation why the value of ¢ can be found in this way.
Task 3

(a) Solve the quadratic equation X —4x+3=0 algebraically (using pen and paper).

(b) Set the sliders so that the graph of the function f(x) = X* — 4x + 3 is shown. The solutions to the
corresponding quadratic equation, x* — 4x + 3 =0, can be found in the coordinate system. How?

(c) Explain why/Give a mathematical explanation why the solutions to the equation can be found in this way.

Figure 1: Two tasks including a request for explanation (subtask c)
Data Collection

The empirical data for each task consist of the written responses from students. Only
the teachers were told that there were two versions of the task sequence. Each student
received one or other version, distributed at random in each class. However, not all
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students provided answers to all of the tasks. The number of student responses on Task
Ic are 109 (version U) and 100 (version M). The corresponding numbers for Task 3c
are 102 (version U) and 99 (version M).

Data Analysis

The analysis process was conducted in several phases. Initially, only Task lc was
analysed, which resulted in preliminary results that were presented as a poster at the
13th International Conference on Technology in Mathematics Teaching (Fahlgren &
Brunstrém, 2017). This analysis provided insights into what kind of results we could
get from the empirical material, and thus, how to continue the analysis process.

The initial analysis was followed by a more structured content analysis. Student
responses were inspected and compared to identify a basic set of elements of
explanation which could be used to summarise the content of any response. This made
it possible to create a manual used to code all responses in terms of the presence or
absence of each of the explanation elements and representation types.

The Coding Manual

While the categories of representation type are the same for all tasks, based on
predefined general patterns of use of verbal and algebraic representation (Santos &
Semana, 2015), most of the categories of explanation elements are task specific (as
suggested in Levenson, 2013). The later ones were developed inductively through
analysis of the substantive content of students’ responses to the specific tasks. To
illustrate and clarify the categorization, exemplars of student responses in each
category, including representation type, are presented for one of the tasks (Task 3c).

Representation type

In this study, the types of representation were divided into four categories. Students’
responses were classified as “Verbal only” (V) even if they included single letter
coefficients or variables. In student responses classified as “Verbal with elements of
Algebraic symbols” (VeA) formulas or other algebraic symbols are just included
without being evaluated or manipulated in some way. Hence, the categories “Algebraic
symbols only” (A) and “Verbal and Algebraic symbols” (VA) are the only categories
where students really use algebraic symbols (even if not always in an appropriate way).
No student responses included a graph, although some made reference to graphs (See
elements B and H in Table 1 below).

Explanation elements

Due to limitation of space, we choose one task (Task 3c) to present as exemplary of
the analysis process in terms of identified elements of explanation (see Table 1)
making up a particular response.

Code | Explanation element
A Express that ‘y = 0’ (where the solutions occur)

B Relates ‘y = 0’ to intersection with the x-axis
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Express that f(x) = 0 corresponds to y =0

Referring to two solutions/values of x

Referring to the pg-formula

Verifying the solution, e.g. inserting the values 1 and 3 in the equation

T O M OO

Referring to the DMS feedback

Table 1: The categories of explanation element in Task 3¢

Below are exemplars of six student responses and the suggested categorization for
each of them is shown in Table 2:

Sl1: “Because that is where y is 0”
S2: “fx) =x"—4x + 3 =0, hence y = 0, where x is the correct answer. That is, where
the line intersects the x-axis (where y = 0)”
S3: “I use the pg-formula. That is the easiest way.”
S4: ax ebxrc=qg
['\rl \_,: -\ ‘—r‘) ‘);\'
X & "" D
q =\l v 5=C
S5: “We inserted the formula x* — 4x + 3, and received the solution”
Se: “Because we have got 2 x values.”
Student Elements of explanation Representation type
response
A B C D F G H V |[VeA| VA | A
S1 1 1
S2 1 1 1 1
S3 1 1
S4 1 1 1
S5 1 1
S6 1 1

Table 2: The categorisation of student responses S1 to S6 on Task 3¢

RESULTS AND ANALYSIS

This section provides the results from the comparison between two groups of students;
Group U and Group M, the ones answering Versions U and M respectively. First, the
results concerning representation type for the two tasks are introduced. Then, the
results related to explanation elements are presented for each task separately.

Representation type

The results indicate that the task formulation including “mathematical” (i.e. Version
M) prompts more students to use algebraic symbols in their explanations (see Table 3).
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In particular, merging the two categories where students really use algebraic symbols
(A and VA) the tendency becomes clear for both tasks, with all differences statistically

significant (Task 1c: p<0.001 and Task 3c: p<0.01).

Task Version A VA A or VA

Task 1c U 0.0% 6.4% 6,4%
M 10.0% 20.0% 30.0%

Task 3c U 1.0% 7.8% 8.8%
M 14.1% 8.1% 22.2%

Table 3: The proportion of student responses using algebraic symbols (A), verbal and
algebraic symbols (VA), and one or the other of these

Explanation elements
Task 1¢

The results indicate some differences between the groups. Compared to Group U,
Group M were, as an element of their explanation:

- less inclined to repeat their answer to the previous subtask (29.0% vs 45.9%)

- less inclined to refer to the feedback from the DMS environment (11.0% vs
26.6%)

- more inclined to use the fact that x = 0 when the graph intersects the y-axis
(14.0% vs 6.4%)

- more inclined to use linear analogy (64.0% vs 44.0%)

Concerning the categories ‘Repeating the answers from the previous subtask’ and
‘Referring to the DMS feedback’, in several cases these elements of explanation were
combined with other more relevant elements. Therefore, it is interesting to investigate
the proportion of student responses using one or both of these explanation elements
only. In this analysis, a significant difference (p<0.001) between the groups emerged
(32.1% for group U vs 6.0% for group M).

The explanation element using the fact that x = 0 when the graph intersects the y-axis
focuses on an algebraic expression, and in this aspect aligns with several other
explanation elements; ‘c is the constant term’, ‘c is independent of x°, ‘c 1s independent
of a and/or b’, and ‘solves for ¢’. A further analysis, looking at responses including one
or several of these categories, revealed a significant difference (p<0.001) between the
groups (50.0% in group M vs 28.4% in group U).

Task 3¢

There are some differences between the groups in Task 3c. Compared to Group U,
Group M were, as an element of explanation:

- more inclined to refer to the pg-formula (Category F; 19.2% vs 2.9%; p<0.001)

- more inclined to verify the solution by inserting the values 1 and 3 into the
equation (Category G; 12.1% vs 2.0%; p<0.01)

- less inclined to refer to DMS feedback (Category H; 7.1% vs 11.8%)
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The first two categories involve, although in different ways, references to the equation
elaborated on in subtask a). That is, students using these explanation elements are
referring back to the algebraic subtask a) rather than the graphical subtask b).
Concerning the category ‘Referring to the DMS feedback’, the tendency is the same as in
Task 1c. The difference between the groups in Task 3¢ appears somewhat clearer when
looking at responses with this element only (10.8% in group U vs 5.1% in group M).

DISCUSSION

As stated in the Introduction, one overarching goal of letting students work in DMS
environments is to encourage their movement from the empirical/visual to the
mathematical/systematic field (Joubert, 2017). One way of doing this, is to prompt
students to explain, in writing, what they notice when interacting with the technology
(e.g. Leung, 2011). By comparing student responses from two versions of explanation
tasks, this study sought to investigate whether a small but significant change in task
wording influences students’ explanatory responses in a DMS environment. The results
show that there were significant differences between the groups, both in relation to type
of representation and explanation elements used.

Students asked for a ‘mathematical’ explanation, used algebraic symbols and algebraic
arguments to a higher degree. Moreover, they were more likely to use linear analogy,
and hence to utilize their prior knowledge in mathematics. In contrast, the other group
of students were more inclined to use the feedback from the DMS environment as an
element of explanation and/or to repeat the answer to the previous subtask. In both
these cases, student responses were descriptive based on reporting visual information
rather than explanatory based on accounting for that information, which indicate that
the students still are in the empirical/visual field.

Taken together, the findings in this study indicate that the word ‘mathematical’ signals
a request for an algebraic explanation. Consequently, this small change in wording
might enhance students’ movement from the empirical/visual to the
mathematical/systematic field.
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Robots as Mathematical Objects- and Actions-to-Think-With
Krista Francis and Brent Davis
University of Calgary, Werklund School of Education, Canada, kfrancis@ucalgary.ca

We investigated how robots might be used to design experiences that support the
development of key mathematical proficiencies. Specifically, we sought to understand
how the situated, movement-focused, and problem-driven spaces opened up by
programming robots might enhance specific core mathematical competencies and
how, in turn, those competencies might enable and amplify general mathematical
understanding. To gain insight we video recorded children in Grades 4-6 as they
engaged in programming robots. We selected three video clips that illustrate aspects
of children using robots as objects and actions-to-think-with about the number line and
a mutable grid. Our data illustrates how well-structured encounters with programming
robots can support developing multiple understandings of the number.

Keywords: Elementary, programming robots, number line, grids, mathematical
understanding

First diagnosed with a learning disability in mathematics in Kindergarten, Sara’s first
five years of mathematics instruction were focused almost entirely on basic
numeration. Despite these efforts, when observed mid-year in Grade 4, Sara was still
struggling with simple arithmetic. Although provided with continuous access to plastic
counters, base-10 blocks, and number charts, we observed that she could not reliably
respond to addition statements such as “9 +2=__ .7

Yet, a few days after that observation, when engaged in building and programming
robots, Sara demonstrated herself fluidly capable of directing a device to trace out
different polygons marked on the classroom floor — an achievement that required
abilities to decompose shapes, interpret movement through number, format instructions
in logical sequences, and systematically analyze relationships between expected and
actual results. Most surprising to her teachers, her approximations and extrapolations
while using robots were consistently precise, suggesting good number sense, strong
estimation skills, and sound proportional reasoning.

Naturally, her teachers were taken aback at the disconnection between Sara’s facility
with mathematical competencies across the two settings, prompting them to wonder if
and how her robotics-based competencies might support her mathematics learning. We
wanted to better understand how robots might be used to design experiences that
support the development of key mathematical proficiencies. Specifically, we
investigated how engaging with programming robots might promote learners’ facility
with general mathematics by focusing on how this technology supports the
development of two specific “objects” and two specific “actions.” That is, we sought
to understand how the situated, movement-focused, and problem-driven spaces opened
up by programming robots might enhance specific core mathematical competencies
and how, in turn, those competencies might enable and amplify general mathematical
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understanding and achievement. Regarding the two “objects” that serve as the foci of
this work, we studied: (1) number line, engaged as a device to develop and connect
diverse interpretations of “number”; (2) mutable grids, utilized to parse space, pinpoint
locations, interpret motion, structure movement, etc. As for the two actions, we
examined: (1) modulating between decomposing and recomposing (of procedures,
operations, concepts, etc.); 2 isolating and systematically varying of elements of
situations that can be mathematically modelled.

We might redescribe the above objects as mathematical constructs and the actions as
mathematical strategies. Each has been selected for its ubiquity in school mathematics
and its “natural” presence in most introductory coding setting. Our thesis is that well-
structured coding tasks, within which learners engage with concepts pragmatically
rather than didactically, can powerfully support mathematics learning if properly
bridged. Thus our novel approach is to target four distinct instances of mathematizing
that underlie and give rise to discrete mathematics topics (e.g., number, geometry,
algebra, measurement, etc.), rather than approaching school mathematics as a
compilation of such topics. We next situate the proposed research historically,
conceptually, and methodologically.

SOME HISTORICAL CONTEXT: AN EVOLUTION OF “MATHEMATICAL
UNDERSTANDING”

Since the inception of modern schooling, elementary-level mathematics has focused
on developing learners’ understandings of number and shape. However, while those
two emphases have remained steady over centuries, perspectives on what it means to
understand them have evolved greatly.

For example, understanding number and shape was originally framed in terms of
mastery of facts and skills, consistent with a newly industrialized society’s need for
efficiency and accuracy in the workplace. This procedural attitude towards
understanding was especially evident in the sorts of examples and illustrations that
were used to support learner sense-making. Where and when conceptual meaning was
explored — through, for example, images, applications, or instantiations — they tended
to be paper based, teacher led, and otherwise structured for a passive learner.

Such structures were heavily criticized by educational reformers in the late
20" century, oriented by a distinction between “instrumental” and “relational”
understandings (Skemp, 1976). Reformers argued that an instrumental or procedural
focus might support automaticity, but it limited capacities for solving problems, linking
concepts, and extending ideas. They thus advocated for an elaborated definition of
understanding, one that was also attentive to the relational and conceptual — that is, to
connections across concepts, big ideas, and so on. The call was soon translated into
such classroom emphases as “active learning,” “problem posing/solving,” and
“manipulatives” (see, e.g., NCTM, 1980).

Use of manipulatives — that is, of artefacts and object-based tasks that are designed to
channel learners’ attentions to key properties of mathematical concepts — proved
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particularly popular, especially in the elementary school classroom. An array of
manipulatives soon appeared, ranging from items that could be used across many topics
(e.g., interlocking cubes for counting, measurement, and making shapes) to tools that
were designed to support specific concepts (e.g., base-10 blocks for place value and
arithmetic operations). Now as an integral part of school culture, they tend to be seen
and used as concrete instantiations of concepts, evidenced by Wikipedia’s
“Manipulative (mathematics education)” entry:

Mathematical manipulatives are frequently used in the first step of teaching mathematical
concepts, that of concrete representation. The second and third steps are representational
and abstract, respectively. (emphasis added; accessed 2017 November 10).

While popular, this tendency to regard manipulatives as concrete representations of
concepts was demonstrated as problematical two decades ago. Uttal, Scudder and
Deloache (1997) reported on a series of experiments that suggested the use of
manipulatives may set up a dual-representation system, one system being the
manipulatives and the other being the symbols or operations intended to be represented.
Students frequently became confident working within the manipulative system, but did
not see the connection to the symbolic system. Furthermore, learners who were able to
translate between systems did more and harder work than those who operated purely
within the symbol system.

These critiques helped to highlight how the popular assumption that manipulatives are
concrete representations of concepts had eclipsed (and continues to overshadow) an
earlier rational for incorporating artefacts into mathematics learning. As articulated by
Piaget (1954), and since elaborated by many mathematics education researchers with
interests in the bodily basis of understanding (see de Freitas & Sinclair, 2014), the main
reason for using manipulatives is not to concretize a concept nor to excavate the ideas
built into objects, but o move. That is, one’s senses of shape, quantity, proportion, and
so on have more to do with structured acts of moving than with acts of moving
structures. From this perspective, the main purpose of a manipulative is not to
(re)present mathematical concepts, but to mould the learner’s motions, in the process
occasioning opportunities for learners to expand and interweave their repertoires of
mathematically relevant structures. Departing even further from the sensibilities
presented in the Wikipedia entry, cited above, the realization that bodily experience is
a basis of mathematical meaning does not entail rigid instructional sequences (e.g.,
from concrete to pictorial to abstract representations). Rather, and as demonstrated by
Sara’s coding, well-structured situations that invite and compel learners to link and
fuse diverse action-, image-, and symbol-based encounters may contribute to profound
competence.

Against this backdrop, devices such as programmable robots could constitute a new
sort of manipulative tool. As Sara’s actions illustrate, they can be used to support
activities that compel learners to integrate and extend diverse representations. We also
see in them possibilities for extending learners’ senses of their own physical beings by
displacing experience in both space and time. Instances of such displacements include
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controlling objects at a distance, receiving immediate feedback on one’s decisions, and
repeating and varying actions with precision.

THEORETICAL FRAMING

We structure our thinking around Papert’s (1980) notion of “objects-to-think-with,” a
term he coined to describe seminal models that learners draw upon when encountering
new situations, particularly when engaged in activities with heavy reasoning demands
such as coding. Papert’s personal objects-to-think-with were gears. He played with
them as a child and they later provided images and dispositions that enabled him to see
mathematical situations in specific structured ways, including conceptions of ratios and
proportions. Unlike a tool with a defined purpose (e.g., a compass that is used to draw
circles), an object-to-think-with is a device that can be applied across many situations
and application as it channels attention, invites comparison, and enables analysis.
Essentially, objects-to-think-with are both spatial and dynamic as they emerge from
human actions (on screens, robots, or with manipulatives). Coupled to the idea of
objects-to-think-with, we propose the notion of actions-to-think-with. We envision
these as strategies that are useful across applications and topics — in effect, means to
engage with situations when suitable actions-to-think-with are either unavailable or
insufficient to the task at hand.

Our first object-to-think-with 1s the number line — which, as cognitive scientists (e.g.,
Lakoff & Nuiiez, 2000) and mathematicians (e.g., Mazur, 2003) alike have argued, is
integral to virtually all arithmetic and algebraic concepts studied at middle and
secondary school levels. It is also a construct that can be used to link multiple
interpretations of number, the four most fundamental of which Lakoff and Nufiez
identified as counts (addressing “How many?”), as sizes (addressing “How big?” or
“How much?”), as lengths (addressing “How far?”), and as locations (addressing
“Where?”). The contrast between Sara’s struggles in math class and her competence
with robots illustrates the importance of the principles at work here. In math class,
number was strictly a count of discrete objects, and for whatever reason it proved
insufficient for her. When she was coding robots, number was used to model counts
(e.g., of wheel turns), sizes (e.g., of angles), lengths (e.g., of polygon sides), and
locations (e.g., starting points), with the last two of these interpretations dominating
across tasks.

The number line is actually a specific instance of mutable grids, our second category
of objects-to-think-with. A grid is much more than a device to parse space; it is a means
to structure perception. Returning to the example of programming robots, when a user
imposes a grid to parse space and track motion, robots become proxies for body-
syntonic knowing, thereby linking the movements of the robot with experiences of the
user’s own body movements. Most coding environments require users to express
elements and relations in terms of an underlying grid, whether that grid is specified
through coordinates or simply used as a navigational device on which objects can be
moved (forward, right turn, etc.). One particular grid, the Cartesian coordinate system,
underlies a significant portion of secondary school mathematics related to functions.
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Similar rectangular grids are also used as models in elementary school contexts such
as multiplication (e.g., array and area models) and measurement (where 1-, 2- and 3-
dimensional grids enable the computation of length, area, and volume). Our hypothesis
is that by engaging in coding experiences in which grids are available as devices to
interpret space, learners may develop more “dynamic” dispositions towards these
objects-to-think-with, engaging with them not just as static forms but as flexible tools
to interpret space and movement.

We further suspect that number lines and mutable grids afford opportunities for
modulating between decomposing and recomposing, the first of our actions-to-
think-with. Much of school mathematics is devoted to acts of decomposing (e.g.,
expressing numbers in expanded form, or as products of prime factors) and
recomposing (e.g., interpreting a function as a completed curve, vs. a collection of
points). In addition to its obvious relevance to geometry (Duval, 2006), decomposing—
recomposing 1s invoked in early number, fractions, proportional reasoning, and
measurement. It also arises centrally as a geometric interpretation of factoring
polynomials, as evident in the algebra tiles model frequently used in secondary school
mathematics. Decomposing—recomposing is especially prominent in the spatial
reasoning literature, where it includes the disposition to see a diagram or other form
either in terms of its parts and as a whole, as suited to the needs of a situation (see
Davis et al., 2015). The focus on parts or on wholes has been described, respectively,
as involving successive processing (integrating things into a temporal or serial order)
and simultaneous processing (integrating things into gestalts) (Madnnamaa, Kikas,
Peets, & Palu, 2012). The former has been associated with higher success in third-grade
children’s success in solving complex mathematics problems (Clements & Sarama,
2011), and those temporal and serial components are main reasons that we hypothesize
that coding settings might present powerful mathematics learning occasions. Coding
is, at its core, about decomposing global processes into elements and recomposing
those elements into global processes.

Our second action-to-think-with, systematic varying, is a powerful complement of
decomposing and recomposing. It arises from Marton’s (2018) Variation Theory of
Learning, the core principle of which is that perception and understanding can be
strongly enabled when difference is experienced against a background of sameness
(versus sameness experienced against a background of difference). In operational
terms, the role and character of one element in a situation can often become more
evident when it is varied systematically while all others are held constant. One
frequently encountered use of this approach is around high-school study of the roles of
coefficients in equations, such as ax’+ bx + ¢ = 0. Varying more than one co-efficient
at once, or varying a single co-efficient haphazardly, is not likely to sponsor much
insight; but focusing on a single co-efficient and being deliberate about how it is varied
can be a powerful route to insight. Every topic in school mathematics can be
approached through systematic varying, but (in our experience at least), it is a rare
strategy in classrooms. Much in contrast, in coding settings, systematic varying is
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common. It can be especially prevalent in early stages of new projects, as users might
begin with quasi-random guessing-and-testing, but typically shift quickly toward more
structured approaches of examining relationships between lines of code and their
consequences.

METHODOLOGY: DESIGN BASED RESEARCH

Our findings presented are mid-way of a three-year design-based research (DBR)
study. DBR (see McKenney & Reeves, 2012) enables us to conduct an emergent,
multifaceted study of an intervention (i.e., teaching coding and mathematics with
robotics) in naturalistic settings (i.e., elementary classrooms). Following Hoadley
(2004), we see DBR as a methodology in which participants attempt to understand the
world by/while working to change it. It entails an adaptive attitude, multiple methods,
and numerous data sources, collected within an iterative structure that enables and
compels participants to be responsive to contingent and emergent circumstances.

For the past 1'% years we participated in and observed the designing, teaching and
learning of weekly robotics classes in Grades 46 in a Calgary school. The site was
chosen for several reasons, the main ones of which are stable student and teacher
populations to facilitate tracking and tracing of varied elements. The school serves
more than 600 students with diverse learning needs across Grades 2—12. The school
has a commitment to flexibility in curricula, scheduling, pedagogy, and student
clustering, as it strives to adapt structures to meet learner needs. Additionally, one
afternoon each week is set aside for collaborative professional learning. Consequently,
it offers an ideal space for implementing and honing novel academic foci, such as
coding.

Our research focused on Grades 46, and involved 6 teachers and approximately 70
students. Most students in these grades have developed the necessary physical dexterity
to construct robots, along with the conceptual understandings of mathematical
elements (e.g., distances, angles, binary operations, logical operators) that are
necessary to engage in reasonably sophisticated modeling and coding activities. We
collected weekly video-recordings of the robotics teaching activities, and the learning
activities of about 20 children in each grade, the equivalent of one full class. Video
data was vital for providing rich illustrative examples and it permits us to ‘slow down’
to identify integrated/nested processes of learning, and to study learning in action.
Using ongoing interpretive video analysis (Knoblauch & Schnettler, 2012), we selected
clips that illustrate aspects of children using robots as objects and actions-to-think-
with.
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FINDINGS
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Figure 2: How many?
How long?

Examples of using robots as ‘objects- and actions-to-think’ about the number line.

In Figure 1, two Grade 4 boys are measuring how far the
robot travels with one rotation of the wheel. Sequential
activities had them measure the distance for various numbers
of wheel rotations (systematic varying). The robot provided
dynamic actions for thinking about number as measurement
of movement along a straight line.

In Figure 2, the Grade 5 children are tasked with racing their
robots to the wall. They have to come as close as possible
without touching the wall. The robot did not travel quite far
enough with 17-wheel rotations. The children played with
numbers between 17 and 17.4. The number of wheel
rotations was not a whole number, so the task required
children to think of number as continuous rather than
discrete. The robot provided dynamic actions for varying
distance travelled with wheel rotations as well as
opportunities for de/recomposing appropriate robot travel.

Example of using robots as ‘objects- and actions- to-think’ about mutable grids

Figure 3: How many?
How long?

SUMMARY

In Figure 3, a Grade 4 boy and girl are programming their
robot to travel around a pentagon. This pair recomposed and
decomposed the robots movements into a series of forward
moves and right turns — e.g. movement along a plane. The
sequential program for the robot indicates that they were not
viewing the pentagon as a whole (5 times a forward and a
turn). Each segment was a dynamic encounter with how
many wheel rotations correspond to how long is the side,
how big is the angle of the turn.

Summing up, each of the above objects- and actions-to-think-with is commonly
encountered in coding tasks. Each can also be used to support efforts to model a range
of significant mathematical phenomena — but, in our experience, it is rare that they are
explicitly encountered as competencies that might be deliberately developed and
exercised across topics. Our data illustrates that (1) well-structured encounters with
programming robots can support these competencies in ways that traditional images,
applications, and manipulatives cannot, and (2) once developed, carefully considered
classroom strategies can make them available for the learning of mathematics.
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Creating examples as a way to examine mathematical concepts’
definitions

Rachel Hess Green and Shai Olsher
University of Haifa, rachely.hg@gmail.com

Using examples supports the construction of concept images and concept definitions
of mathematical concepts. Examples can also serve to examine relationships and
connections between different mathematical concepts that learners sometimes make
during the learning process of different mathematical concepts. This paper focuses on
the interactions between teachers and definitions of mathematical concepts, as they
manifested when working with online mathematical tasks that require learners to
create examples that meet a specified set of conditions. These interactions required the
teachers to re-examine the definitions of mathematical concepts and their boundaries.
We will describe how the automatic formative assessment platform enables, and
sometimes forces, reiteration and fine tuning of mathematical concepts' definitions,
and examine possible impact on the learning process of both teachers and students.

Keywords: definitions, concepts, automatic formative assessment.
BACKGROUND

"I can’t understand anything in general unless I’m carrying along in my mind a specific
example and watching it go" (Feynman, 1985, p. 244). In mathematics, examples are
an essential part of many theories of learning processes. The connection between
examples and concepts was described in Vinner (1983) that conceptualized concept
image as a mental image that is connected to the concepts in the mind, determined by
the examples that are connected to the concept. Examples are also used to illustrate and
communicate concepts between teachers and learners, and offer some insight about
mathematical concepts and relations between concepts. A key feature of examples is
that they are chosen from a range of possibilities (Watson & Mason 2005, p. 238) and
it is vital that learners appreciate that range. Various mathematicians have written about
the importance of examples in appreciating and understanding mathematical ideas and
in solving mathematical problems (e.g. Polya, Hilbert, Halmos, Davis, & Feynman).
Whenever a mathematician encounters a statement that is not immediately obvious, he
thinks of a particular example. When a conjecture arises, one practice is to seek a
counter example or to use an example perceived as generic to see how the conjecture
can be proven. The relationship between definitions and examples in mathematics is
complex. Sometimes an example is given when a concept is used, while on other
occasions a formal definition is required and afterwards the example is given as an
illustration of the definition. Research indicates that students’ comprehension of the
concept is made up of a collection of examples, which form a concept image. Vinner
(1983) indicates the connections between understanding the concept image and the
concept definition. It seems that having a wide variety of examples for a concept allows
for a better understanding of its definition. With the development of technology,
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students have the opportunity to create multiple examples with the aid of dynamic
geometry environments and other types of technological tools. The development of
technology presents new opportunities to exemplify using different means. With
technology we can exemplify quicker and easier and can access the exemplification
automatically (Sweller, 2013). Submissions of various sample sizes to geometrical
questions with multiple solutions were analysed to study the loci constructed by their
solutions (Leung & Lee, 2013). Other studies suggest analyzing mathematical and
didactic characteristics in the presentation of examples by students (Olsher,
Yerushalmy, & Chazan, 2016), suggesting this automatics predefined analysis could
assist teachers in performing real-time decisions in the classroom based upon student
data, thus performing formative assessment (Black & Wiliam, 1998). When we assess
an example, we want to assess if the example fits the conditions of the task. In most
cases, we can assess other features that the student was not explicitly asked to meet.
For example, in geometry tasks, we sometimes want to relate the orientation of the
shapes, or we want to recognize some extreme cases of submissions. With the
development of technology, we can assess this feature automatically (Olsher et al.,
2016). The research questions in this paper are: (1) How does the use of a system for
automatic formative assessment enable and encourage discourse on definitions of
mathematical concepts? And (2) How do tasks invite a discussion about the definitions
of concepts?

METHODOLOGY
Research setting

The setting for this research was a professional development program (PD) for in-
service teachers aimed at instructing and supporting the implementation of the STEP
platform (Olsher et al., 2016) in classrooms. The PD included four face to face
meetings (total of 30 hours), that included theoretical representation of formative
assessment in mathematics, and use of the platform as students and teachers. The
participants were also expected to use the platform in their classrooms between the
meetings. Each classroom enactment was documented with a questionnaire. In
addition, following the first enactments, each teacher had a discussion about their
implementation in the classroom with the PD instructor (first author).

Participants

The participants in the PD were 22 teachers, teaching mathematics in Israeli secondary
and high-schools. The teachers teaching experience ranges between 2 and 25 years.
The teachers are all certified teachers; some hold MA degrees in Mathematics
education, while others studied for BSc. or BEng. Degree in computer engineering or
electrical engineering, worked in that profession for several years, and then participated
in programs for career retraining aimed at enhancing the number and abilities of Israeli
Mathematics teachers.
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Data sources and analysis

The data sources include: (1) the students’ submissions of solutions. (2) Teachers
answers to the questionnaire, (3) Reflections, that were collected in discussions with
the PD instructor post-enactment, (4) Field notes made by the two researchers during
the PD meetings, and (5) Video recordings of the PD meetings. Analysis of the
enactment of the assessment tasks in the classroom focused on discussions about
mathematical definitions. First, we identified the episodes in which mathematical
definitions were addressed by the teacher. These episodes occurred either in the
classroom or during the PD sessions. Next, we categorized the episodes. Trouche
(2004) uses the term "instrumental orchestration" to describe didactic configurations
and the way that they are being exploited in the classroom, and also suggests them as
a construct that could "give birth to new instrument systems" (ibid, p. 304). In the
reflected lessons in this study, this framework is suitable to describe the way the teacher
works with the students' answers, and suggest "new instrument systems" that help to
the teacher and the student to think again about mathematical definitions of concepts.
The “new instrument systems” embodies the practice of mathematical definition and
concepts as they were enacted by the teachers. Our analysis process was iterative,
fitting each relevant episode into a specific category that have specific characteristics
of teachers practice with the definitions of mathematical concepts. The four different
categories that were identified will be described in the following section.

FINDINGS

We identified four different instrumental systems of dealing with mathematical
concepts’ definitions: (1) Addressing the definition of a mathematical concept during
the activity, (2) Resolving conflicts between definitions of a mathematical concept, (3)
Establishing an inclusion relation between mathematical concepts through their
definitions, and (4) Differentiation of characteristics into subcategories. In this section,
we will describe each of these new systems that we categorized, and give an example
of one of the episodes that were identified from this category.

Addressing the definition of a mathematical concept during the activity

Definitions of mathematical concepts lie at the heart of many tasks that require giving
an example that fits certain constraints. Yet, sometimes the definitions that are
available to learners are not appropriate for the task at hand. These cases, in which a
definition that was taught, or the general definition, is not sufficient to determine
whether the examples fits the definitions, requires the teacher to address the definition
of the mathematical concept during the activity. The instrumental system is that of the
teacher revisiting the definition of a concept, which is part of the task at hand. The
learners dealing with the task demonstrate uncertainty in terms of the definition, and
the teacher addresses this uncertainty in referring the students to or leading the student's
way towards the definition of the relevant mathematical concept. For example, the
definition of a tangent is that is parallel to the Y axis. This does not fit to the regular
definition of tangent, since the function has no derivative at the point in which the
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tangent is parallel to Y axis. As manifested during the classwork on the following task
(figure 1). One of the teachers, Sapir (pseudonym) gave this task (Figure 1) to her 12th
grade students as homework. While preparing the next lesson, Sapir encountered a
wide variety of answers submitted by her students (Figure 2), demonstrating various
instances of tangents, not necessarily aligned with the definition (e.g. Figure 2a where
tangent and asymptote might be mixed up by the student).

Task 1

Figure 1. Task requiring student examples of functions and tangents meeting
certain conditions

In the following lesson, Sapir presented the student answers to the class, and initiated
a discussion with the students. One of the students asked, “How we can calculate the
tangent if we cannot find the derivative of the function in this point?” Other students
attempted to think how this could be performed and to find a concrete definition for
this case. Sapir asked the students to find an appropriate definition of a tangent that
would include this case, thus addressing the finer points of the definition, not
necessarily clear before the task addressed them. Later, during the PD, Sapir stated that
she also thought about it when she assigned the task to the students, but she could not
find a good definition and she performed an online search, to be better prepared for
such.

Figure 2. Example of submission of students

This example presents an episode in which the students completed the task, while not
emphasizing whether their constructed tangents fit the familiar definition of the
concept. The definition of the concept at hand, the tangent, was not fully clear to both
the teacher and the students. The collective example space of the students in the class
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as shown by the STEP platform, followed by the description in the following lesson
raised the question about the need for a better, clearer, definition.

Resolving conflicts between definitions of a mathematical concept

Mathematical concepts could sometimes be defined in different ways. Having different
definitions for one mathematical concept, might lead to inconsistencies when students
deal with the concept. These cases, in which there are multiple definitions for a concept,
require the teacher to negotiate between the different definitions in order to clarify the
relevant characteristics of the concept that they wish to emphasize. The instrumental
system is that of the teacher choosing between the different definitions in order to elicit
and treat the inconsistencies that might rise. The learners dealing with the task follow
a certain definition, while not attending to characteristics that derive from a different
definition. For example, the definition of an extremum point of a function. As
manifested in Anna’s classwork on the following task (Figure 3). The task requires
students to draw a graph of a function, which has one line that is tangent to the function
at two different points. Anna, the teacher, focused on examples in which the tangent
was a horizontal line, but the tangency point was not an extremum in her opinion. In
the PD session following the enactment, we discussed this mathematical concept. Anna
said that the red dot (which was asked for in the question as a tangent point (Figure 3)
is not an extremum. The PD instructor asked her to specify the reason for her opinion,

>x, fx)=

and Anna answered that the derivative after the point is zero (for * - ), so for

this point, the function does not have an extremum.

)u think this claim is false, explain why
You think it is false, then sketch a graph

that justifies your explanation. Is the claim correct?
Figure 3: example of concept of extremum point

This led Anna to explore the definition of an extreme point. According to the definition

in one mathematics book local extremum exists if there is an environment of ¢ so that

all X/ () = F ) (F )2 () On the other hand, in the book that Anna taught from
there was an examination of extremum points according to the variance of the
derivative (if the previous derivative rises and then decreases). A closer examination
of the mathematical definition of extremum points in the textbooks revealed an
interesting phenomenon: Different definitions appeared in different books. This could
change the decision that a horizontal line does have extrema points. The first setting
allows a maximum for a fixed function, while the second setting does not allow this.
This example presents an episode in which the students completed a task, but the
constructed mathematical object did not fit with the definition that the teacher was
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familiar with. Furthermore, the constructed object did fit an alternative definition that
appeared in another mathematical textbook. The use of an automatic analysis of student
answers could easily make these conflicting definitions episodes more accessible, as
the technological platform requires an algorithm to automatically categorize the
different answers: and this algorithm would comply with the chosen definition, when
they are conflicting.

Establishing an inclusion relation between mathematical concepts

Inclusion relations between mathematical concepts appears in various mathematical
strands, such as numbers, functions and geometry. These relations lay out the hierarchy
between different mathematical concepts: which concept is a specific, special case of
a more general concept. Unfolding these hierarchies requires the teacher to differentiate
between definitions, clarifying what are the relevant characteristics that induced the
inclusion relation between the concepts. The instrumental system is that of the teacher
choosing tasks that reveal incorrect inclusion relations assumed by the students, and
then sorting out the different concepts and the relations between them. For example,
regarding inclusion relations of special types of quadrilaterals, the teacher Pnina,
assigned the following task to Primary school students. The teacher did not introduce
the task to the students, rather she let the students discuss and ask each other questions
regarding the task.

Here is 8 IS of propees s thare 2 Qua eral st has all the follow 3 Vemes”?

;:J All sides are eQua

Figure 4: a task in inclusion relations between types of quadrilaterals

This task 1s part of a longer activity regarding inclusion relations between
quadrilaterals. The students had to choose as many statements as they could, and drag
the quadrilaterals points so that it matched the chosen statements. Some students began
to ask questions about the relations between the statements in the task and definitions
of types of quadrilaterals. For example, one student asked “if all the sides are equal
than it is square, right?” Pnina did not answer the question and waited until the students
submitted the task. Afterwards she reviewed all the examples in the task and the
students had the opportunity to ask about definitions and the relation between the
definition and the statements that appeared in the task. Some students revealed their
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thinking about some of the mathematical objects, such as “a square is not a
parallelogram”, or “if all the angles are equal it must be a square”. The students
discussed each other's claims, and with subtle guidance of Pnina, concluded the
definitions of these mathematical concepts and the relations between them. This
example presents an episode in which the students completed a task, and in the
discussion after the task, they concentrated on definitions and on inclusion relations.
The use of an automatic analysis of students answers, could easily connect between the
statements 1n the task and the student's’ submissions, the discussion in the class raised
question and statement about inclusion relation between quadrilateral that reflect their
concept images about these concepts.

Differentiation of characteristics into subcategories

Differentiation of characteristics into subcategories is a process that splits a category
into subcategories. In these cases, a general definition or category is too wide and
contains more than one subcategory that emphasizes some important criteria. The
instrumental system is that of the teacher revisiting the category of a concept and
splitting the examples that fit into this category to sub-categories. For example, Alon’s
use of the task “Claim: There are functions that have one line tangent to their graph at
two different points, If you think this claim is true, provide three examples by sketching
a graph of a function and a tangent line at two points If not, explain” (Figure 1). Alon
assigned this task to his students as homework.

8

Figure S: three different submissions that fit the automatic characteristics

This led to a discussion about the difference between the right and left submissions and
between two different types of infinite points of tangent to line. In figure, 5 A, there is
a symbolic function f(x)=sin(x). The tangent line represents the line “y=1". This
tangent has infinite countable points at every point x=/2 +k, k Z. In the figure windows,
only four of them appear. In figure 5 C we can see a linear function in a symbolic
representation in which the function and the tangents converge. In this example, there
are non-countable, infinite tangents points. These three different categories are all
using the filter “more than 2 tangent points”, which is the general category. The
differentiation between them raises two questions about definitions. The first was about
the definition of tangents, in which one student claimed that in figure 5 C this 1s not a
tangent point because the lines (of the function and the tangent line) are convergent
and so they cannot be tangential.
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DISCUSSION

In the findings, we presented some examples of discourse about definitions of concepts
during the use of the formative assessment platform. The focus of the tasks on
examples, and specifically the opportunity to interact with extreme cases facilitates the
opportunity to address the definitions of mathematical concepts, thus enhancing the
concept image (Vinner, 1983). The linkage to automatic assessment of the examples
and the requirement to specifically program an algorithm for the identification of the
mathematical concepts in a precise fashion adds another point of interaction with the
definitions, especially when there are several conflicting definitions for a single
concept. These new instrument systems (Trouche, 2004) enable teachers and students
to communicate and interact with mathematical definitions of concepts. Finally, it is
not enough to address the student answers and define the algorithm for the automatic
assessment. The tasks should also be open ended, enabling different possible correct
and incorrect answers in order show different exemplifications, possibly challenging
the definition, as suggested by Olsher et al. (2016). The tasks included the automatic
assessments in them, i.e. there are characteristics that were used to classify the
submissions. This classification was the basis for discussions challenging or
elaborating about the definitions of the mathematical concepts.
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The work reported in this paper seeks to design online courses for developmental
mathematics students by transforming two existing face-to-face (f2f) courses into
online instructional contexts. Particular consideration has been given to what is
sufficient and necessary with regard to course design and curriculum modification,
and the instructional shifts that address the particular mathematical, socio-emotional,
and institutional needs of developmental mathematics students. This paper reports on
preliminary analysis of instant messaging chat transcripts and interaction within
documents in an online collaborative work space.

Keywords: developmental mathematics, online course design, design-based
implementation research.

INTRODUCTION

In the United States, college-level mathematics 1s a gatekeeper for hundreds of
thousands of students. Every year, nearly 60% of students entering two-year colleges,
and approximately 40% of undergraduates entering four-year universities, are deemed
not ready for college-level mathematics and are placed into remedial, also called
developmental, mathematics (Bailey, Jeong, & Cho, 2010). Approximately 80% of
these students do not successfully complete any college-level mathematics courses
within three years of this placement (Bailey et al., 2010), preventing approximately
half a million U.S. students per cohort from achieving their college and career goals.

Increasing numbers of developmental mathematics students choose to enroll in online
courses, particularly in two-year colleges (Ashby, Sadera, & McNary, 2011); however,
little research has addressed their experiences and outcomes. While characterizing
developmental mathematics students as a monolithic population is problematic,
research suggests that they tend to be older than their college peers, are more likely to
be managing work, family, and school simultaneously, are more underprepared
mathematically, and are more likely to have low self-efficacy with respect to
mathematics learning (Ashby et al., 2011)—all of which are factors that impact student
outcomes in online learning environments. Indeed, recent studies show that failure and
withdrawal rates are sharply higher in online developmental mathematics courses than
in equivalent f2f courses (Jaggars, Edgecomb, & Stacey, 2013). The work reported
here seeks to design online courses for the needs of and conditions impacting online
developmental mathematics students by translating two highly effective f2f
developmental mathematics courses into online instructional contexts.
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Carnegie Math Pathways

The Carnegie Math Pathways (CMP) are alternatives to the traditional developmental
course sequence and are designed to address the needs of developmental-level students
while also reducing a multiple-term course pathway to a single term, streamlining the
course pathway to and through college-level mathematics credit. They include two
course sequences: Statway, which focuses on statistical reasoning, and Quantway,
which focuses on quantitative reasoning. Launched in 2011-12, the CMP network now
includes over 80 colleges and universities in the U.S. that are implementing the CMP
courses, and over 27 000 students have enrolled in either Statway or Quantway. On
average across all six years, approximately 52% of community college students
successfully completed Statway, while Quantway students had a 63% weighted
average success—triple the success of the typical approach (Huang, 2018).

The Statway and Quantway curricula are designed to engage students in context- and
data-rich tasks that are relevant to students’ lives. In the f2f setting, students work in
collaborative groups and instructors employ pedagogical practices that promote
students’ productive struggle with substantive mathematical tasks and make explicit
connections between key mathematical concepts and ideas through discussion of
students’ reasoning on those tasks (Hiebert & Grouws, 2007; Merseth, 2011).
Additionally, research-based interventions that target a growth mindset and other
socio-emotional constructs relevant for mathematics learning and engagement (Dweck,
Walton, & Cohen, 2014) are embedded in the curriculum and pedagogy of the
Pathways courses.

To provide the large population of online developmental mathematics students with a
rich and effective learning experience that produces similar outcomes to the f2f
courses, in 2017 the CMP network launched an effort to develop online versions of
Statway and Quantway. This study focuses on the design process to transition the f2f
CMP courses into the online setting, and seeks to identify what is sufficient and
necessary with regard to course design and curriculum modification, and the
instructional shifts needed to address the particular mathematical, socio-emotional, and
institutional needs of the online student population.

REVIEW OF RELEVANT LITERATURE

To preserve the pedagogical approach of the f2f CMP courses in the online setting, we
drew upon the Community of Inquiry (Col) model by Garrison et al., (2010). The
model proposes three components to help develop critical thinking and inquiry in an
online course: cognitive presence, social presence, and teaching presence.

Cognitive presence is the extent to which students could construct and apply
knowledge as a result of engaging in dialogue in the classroom community. It involves
students engaging in productive struggle and collaborative engagement in problem
solving to optimize learning. The design seeks to provide cognitively challenging tasks
that are related to real life and are a mathematical stretch for students, in a collaborative
environment (Garrison, 2016; Zakaria et al., 2013).
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Course design that supports effective synchronous or asynchronous collaboration is
critical to develop social presence, or a student’s online presence. It is crucial for
promoting a student’s sense of belonging as well as supporting mathematical discourse.
To promote engagement, course design must intentionally include opportunities for
learners to articulate their thinking with others during problem solving in order to help
them make sense of what they are learning and to foster connections with others
(Dejarnette & Gonzalez, 2016; Warren, 2014).

Teaching presence is vital for effectively supporting student engagement in
collaborative inquiry in an online class (Garrison et al., 2010; Warren, 2017). Teaching
presence requires an instructor’s intentional, regular, and reliable presence throughout
the course, supporting stimulating, productive, and safe engagement so that students
achieve high levels of social and cognitive presence.

Research outlining essential design components of online courses more generally was
also considered, particularly with respect to how elements of course design could create
conditions for the Col model to flourish. For example, space in the online course for
discussion and idea exchange needs to be supplemented with high teaching presence
to engender purposeful interaction (Jaggars & Xu, 2016).

Our implementation framework was developed to articulate the core design and
instructional principles of CMP courses. Grounded in the Col model and further
informed by practitioner input, the implementation framework provides instructors and
course designers with statements of the core principles that serve to guide the transition
from f2f to the online space. In this paper, we focus on three of our design and
instructional principles: Always Welcoming, Collaborative, and Interactive.

METHODS AND ANALYTICAL APPROACH

As the goals of this study are both to advance knowledge regarding developmental
mathematics students’ engagement and learning in the online setting and to directly
impact students’ engagement and learning in this context through design, this study
employs a developmental, or design-based implementation research, approach
(Fishman et al., 2013). Specifically, this study is interventionist, iterative, and
improvement-oriented (Akker et al., 2006). This work starts from the premise that the
intervention is accountable to actual users and contexts of use; namely, students,
instructors, and classrooms across the wide variety of institutional settings found in the
CMP network. Additionally, the design process, rooted in theory and research on
students’ online mathematics learning and engagement, is necessarily iterative as we
seek to understand “what works, for whom, and under what conditions” and to apply
that knowledge to continuously improve student and instructor outcomes (Bryk et al.,
2015). We used grounded theory to examine data from the iterative process of design
and implementation, identifying emergent themes (e.g., opportunities for productive
struggle), developing alternate justifiable interpretations of the data, and returning to
the data to develop consensus interpretations of the evidence for and conceptualization
of the emergent themes.
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Study Sites and Data Sources

In Fall 2017 and Spring 2018, multiple versions of CMP online courses were piloted
at different institutions. Such institutions implemented delivery models ranging from
fully asynchronous to a mix of synchronous and asynchronous aspects, across differing
LMSs. This paper reports on preliminary data analysis from instant messaging (IM)
transcripts and student-content and student-teacher interaction from two of these sites
that employed contrasting implementation designs. Site 1 and site 2 are both small 2-
year colleges in the American Midwest that offer f2f and online courses. At site 1, we
looked at data from a Quantway class of 17 students; the instructor was an experienced
mathematics educator who teaches exclusively online. A site 2, we looked at data from
a Statway class of 22 students; the instructor was an experienced mathematics educator
with no online teaching experience. The students in both classes were placed into
developmental mathematics.

In this study, we report only on transcripts of synchronous IM chats (from site 1) and
Google documents (from site 2) that capture asynchronous collaboration on
mathematical tasks. Beyond this report, these data will be supplemented with analysis
of online discussion forums, LMS analytics (e.g., login behavior, page views,
assignment submissions), student course outcomes, brief interviews with instructors
and students, and instructor and student surveys from both of the sites.

Site 1 delivers Quantway with a mix of synchronous and asynchronous aspects; that is,
students work through some parts of the course in groups and with the instructor, while
working individually through other parts. Each IM session involves the instructor and
a small group of students working through a lesson. Transcripts of IM chats are
downloaded by the instructor and made available to the class. In addition to the IM
chat, students further individually and asynchronously engage with content in the form
of two online homework components, one of which is preparatory, while the other is
auxiliary, to a core lesson. Student-student interaction occurs synchronously within the
IM chat and asynchronously within the class’s online discussion space.

Site 2 delivers Statway asynchronously; that is, students in groups and individually
work through course material at different times. Student engagement with the course
content entails working individually through part of a lesson, working collaboratively
with group members through the remainder of that lesson, and working individually
through a series of aligned formative assignments. Student-student interaction took
place asynchronously both within lessons (through the collaboration feature of Google
docs) and in the LMS discussion space.

We analyzed interactions from 20 synchronous IM chats in one online spring 2018
section of Quantway at site 1. The discourse was examined for mathematics discussion
pertaining to productive struggle; that is, identifying both actual and missed productive
struggle opportunities. Additionally, we noted actual and missed instances of both
community development and teaching presence. From site 2, we analyzed three
completed Statway lessons (as enageged with by students collaboratively in Gooogle
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docs) and noted instructor modifications, student-student interaction, and instances of
teaching presence.

PRELIMINARY FINDINGS AND DISCUSSION

Broadly speaking, preliminary analysis indicates that some aspects of core Pathways
pedagogy were effectively translated into the online contexts at both sites.

At site 1, the purpose of the first synchronous IM session is to establish chat norms and
begin developing a community. After the first session, the format is consistent. First,
students were asked if they had questions about past work. In these data, there were no
instances where a student raised a question. Students were then told to read the lesson
text and responded to a series of questions. Students would post an answer in the IM
and the instructor would comment. Most answers were numerical. The mean number
of turns for the instructor (81.1) and students (28.2) over the course of 20 sessions
suggests that the IM chats were primarily instructor led.

At the beginning of most IM chats, students inquired about others or commented about
something previously mentioned. The instructor did not participate in these
interactions. These instances are viewed as missed opportunities to heighten teaching
presence and to strengthen the community of the online class.

At least once a lesson, the instructor noticed a productive struggle opportunity and
broke with the lesson to ask questions to either help clarify what was being learned or
to remedy any mathematical concept not fully understood. For example, in one IM
session, a student is unsure about the difference between relative and absolute changes
and the instructor uses a different example to allow the student to consider the concepts
afresh.

There were also a few instances (about one in ten) in which a productive struggle
opportunity was not exploited by the instructor. For example, in one IM session, a
student had trouble transforming decimals into percentages and the instructor provides
a definition and three examples. A possible explanation is that the instructor was
focused on the lesson and what the next steps were. This may be something that online
instruction training could mitigate. In most instances, such opportunities were noticed
and exploited by the instructor with redirection questions to others, engendering
student-led discovery.

From site 2, we looked for adaptations to lesson content flow as delivered in an
asynchronous Statway class of 22 students. Students engaged with lessons in two
different ways: preparatory content that students worked through individually and
asynchronously, and content that students worked through collaboratively and
asynchronously.

In a f2f environment, a discussion section that begins each lesson allows the instructor
to highlight potential student misconceptions to smooth any struggle surrounding the
ensuing main mathematical concepts. With the transition to the online space, the
instructor at site 2 supplemented such lesson content with screencast tutorials, which
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included calculator use examples. These are embedded in the Google doc lessons, and
their placement was informed by both f2f Pathways teaching experience, and as
suggested in the lesson’s accompanying instructor notes.

In one instance, the instructor embeds a screencast tutorial in the first question of the
lesson. The screencast tutorial intervention comprises a description of a shown normal
curve, conceptual connections to information stated in the preceding lesson
introduction, and an example showing Z-score and region area calculation.

In the collaborative section of a lesson, we note that the instructor has supplemented
the lesson document with comments, question prompts, or reframing statements to
engender fuller student comprehension. In one instance, the instructor prompted a
student to consider any further implications of a stated answer. We also note student-
student interaction in the comment function, a feature present in Google docs. In one
instance, perhaps indicative of a developing sense of group belonging, a student-
student exchange culminates in a sharing of a student-sourced resource.

CONCLUSION

The preliminary data analysis suggests that these early attempts at translating the core
principles of the Pathways f2f courses into online settings were inconsistent with
respect to certain key elements, notably effective support of productive struggle,
teaching presence, and social belonging. However, these findings suggest specific
norms and routines that could improve the effectiveness of the implementation of the
Pathways courses online, as well as improvements regarding professional development
about online instruction and course design.

Specifically, the data from site 1 reveals that the instructor did not consistently notice
and take up the opportunities for productive struggle afforded by the curricular tasks.
However, the instances in which opportunities were taken up indicate that synchronous
IM chat is a format from which rich and effective mathematics struggle can be
leveraged. Professional development that explicitly exposes faculty to examples of
instructor-student interaction that make salient these opportunities, and strategies
necessary to take advantage of them, would support more effective implementation of
the curricular tasks and of students’ productive struggle. From the same data, instructor
noticing of non-mathematical questions at the beginning and throughout the IM chat
sessions is inconsistent. Supporting faculty to implement an instructional routine in
which initial exchanges in IMs, or other instructor-student interactions are not related
to mathematics, could help instructors establish a relational foundation from which
sense of belonging and teaching presence could thrive.

The analysis of site 2 indicates a need for modification of the lesson flow to mitigate
the effects of student misconceptions that would typically be addressed in a f2f class
discussion. Establishing a norm in which video screencasts are used to prepare students
to engage in tasks, i.e., a problem launch, could both heighten teaching presence and
pave the way for productive struggle with mathematical content. An alternative
approach here may be for instructor-facilitated asynchronous discussions to expose and
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address misconceptions. Further, there is indication that student-student asynchronous
interaction is under-utilized. Establishing a norm that encourages students to show
work/thinking in the comments could help build student-student connection.
Additionally, instructor-led asynchronous interaction, either in response to an
answer/question or unprompted, would enhance teaching presence.

In further analyses of the data corpus, we intend to build upon the research and findings
detailed here, extending analyses to include attention to enhanced and specific
instructional strategies surrounding noticing and responding to productive struggle
instances, in addition to supporting both a sense of belonging and teaching presence.
The complete study will inform curricula and instructional considerations when
transitioning into the online space, and by emphasizing productive mathematical
struggle and student sense of belonging, contribute much needed insight into how to
effectively support online developmental mathematics students.
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Authentic tasks require realistic objects and questions, which can for example be re-
alized through outdoor mathematics. MathCityMap takes up this idea of outdoor
mathematics through the creation of math trails, which lead to places where interest-
ing mathematical problems can be observed and solved. MathCityMap bases on an
app and a web portal in which every registered user is allowed to create and publish
own tasks. Through a constantly growing community and the claim of a certain qual-
ity of the published material, the system bases on a multistep review process and
several criteria for published tasks. The paper presents the steps of the review pro-
cess, defines the underlying criteria and how they are communicated, and discusses
the consequences of a review system for users and their professional development.

Keywords: modelling, task design, stepped hints, feedback, mobile devices.
INTRODUCTION

Especially through integrating realistic tasks in mathematics school lessons, modelling
and authentic tasks play an important role in this context (e.g. Borromeo Ferri,
Greefrath & Kaiser, 2013). Modelling means — apart from other processes — to translate
real and authentic contexts into mathematical models and vice versa. Following the
definition of Vos (2015), the authenticity of a task is given if (1) the task is created in
an “out-of-school” origin and (2) the task has a “certification” (p. 108). Nevertheless,
these types of tasks are often proceeded inside the classroom with help of a picture
and/or text information. This means that a mathematical problem referring to an
authentic object is in many cases adapted to the educational context. Here, the
authenticity in the sense of a certification is obviously not guaranteed.

Taking up this issue, one can observe a trend in doing outdoor mathematics through
running so called math trails. The idea of math trails, meaning a route which leads to
special locations where mathematics can be observed, is already some decades old. In
the 1980s, the first documented math trails were created in Melbourne, Australia by
Blane and Clarke (Blane & Clarke, 1984). Nevertheless, the original intention was not
to teach mathematics or modelling competence in the educational context, but to
popularize mathematics in society. In 2012, the MathCityMap (MCM) project was
funded at Goethe University in Frankfurt, Germany and led the idea of math trails into
the educational context with help of new technologies (Ludwig, Jesberg & Weil3,
2013). In the following, we will present the project and focus on the basic review
system, which is an important feature of the project in terms of quality aspects and the
professional development of teachers as task designers.
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THEORETICAL FRAMEWORK
Review Processes

Reviewing process is a common way to guarantee quality in science, literature or
music. Even commercial reviews, often based on user opinions, are getting more
helpful when mixed with expert reviews (Connors, Mudambi, & Schuff, 2011). In
academia, peer or expert review is standard. It “is the process by which experts in some
discipline comment on the quality of the works of others in that discipline.” (Price &
Flach, 2017, p. 70). It is a common way of guaranteeing quality of academic papers
and material produced by different authors (Price & Flach, 2017). Also in growing web
communities, which allow users to produce and publish material, re-viewing processes
are necessary.

Wikipedia is an example of an online platform with over 40 million articles that anyone
can edit (Brandes & Lerner, 2007). This amount of articles and authors does not allow
for a review of every edit and asks for a complex review process. Review and
protection elements used by Wikipedia are the storage of elder pages in case of edits,
and the distribution of roles, e.g. reviewer or administrator, which allow particular
actions on Wikipedia (Ferschke, 2014). This enables experienced users to give
feedback on the edits of “normal” users in so-called flagged revisions (Ferschke, 2014).
Further, “[t]he editorial review was intended to minimize the risk of vandalism and
improve the accuracy and overall quality of the articles by having experienced
Wikipedia authors approve revisions before they go public.” (ibid., p. 33).

GeoGebraTube, a platform with online material for the dynamic mathematics soft-ware
GeoGebra, serves as an example of reviewing material in the context of math-ematics
education. The tool makes it possible to create and access material e.g. worksheets, for
the software. Currently, about one million files are available. In terms of quality,
GeoGebraTube counts on editorial review, which rates excellent materials, and on user
review (Gassner & Hohenwarter, 2012).

These two examples show the conflict of providing quality and quantity in a growing
content creating web community. Especially in the educational context, openness in
terms of the creation of material has to consider “limitations in the verification of
learning outcomes” (Camilleri, Ehlers & Pawlowski, 2014, p. 39).

We take up this issue and bring it into the context of the MathCityMap (MCM) project,
which asks for a review system for mathematical tasks. The problem of quality and
quantity leads to the following research question: Which impact does the MathCityMap
review system have on the quantity and quality of published tasks?

To answer this question, we present the MCM project and its review process on a
theoretical basis. Afterwards, the analysis of a successfully reviewed task will bring
first results on the research question and a basis for further studies.

IMPLEMENTATION
The MathCityMap project
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The MCM project is a digital tool to facilitate the integration of math trails in the
educational context. Through GPS-coordinates on a math trail map, it leads to places
where interesting mathematical problems can be found and solved (Ludwig et al.,
2013). The map and trail data are available in the MCM app, which navigates to these
spots, gives direct feedback on entered solutions, and offers hints. In the MCM web
portal (www.mathcitymap.eu), one can access published MCM tasks and trails, spotted
in many different countries all over the world (Figure 1).

~ Task: Table Mountain’s Monument (Cape Town, South Africa)

1 Definition of the task: Calculate the mass of the stone monument.
| Give the result in kg. 1 cm? of granite weighs 2,6 g.

Figure 1: MCM Task on Table Mountain’s Monument

The web portal also enables to create one’s own tasks and trails. These tasks can either
be used for own purpose, or can be published and shared with all registered MCM
users. Although the MCM project benefits from a growing community and a growing
number of material, the published tasks have to meet the MCM standards. To guarantee
this, all tasks have to go through a review process before publishing.

The MathCityMap review process

The MCM review process, established in Oct 2016 for published tasks, is based on four
steps (see Figure 2).

quality task light

request for
publication

4 . N 7 . N7 Y4 ..
. Create a task in N Direct feedback o Improvement to 1 Individual
8" the MCM portal || @ on technical ' receive green o' feedback
A ' quality through A status and ' through a

reviewer who
either publishes

the task or
suggests
improvement

e ,

Step 1: The registered author creates a task in the MCM portal.

Figure 2: The MCM review process in four steps

Step 2: A task light gives direct feedback (red, yellow and green) on the completeness
and fulfillment of technical criteria. In the example in Figure 3, a task fulfils all
“orange” technical criteria, and all but one *“green” criterion. The task cannot be
submitted into the review process without improvement. Since many review processes
solely included technical issues, to draw attention on didactical feedback, traffic light
system was included, which is helpful and timesaving for users and reviewers.

Step 3: In case all criteria of the green level are fulfilled, it is possible to submit the
task into the review process.
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Figure 3: Example of a feedback given by the task light system

Step 4: In the review process, the task is checked in terms of the appropriateness for a
published MCM task. This is done for each language by selected experts with
experience in the creation of MCM tasks and running of MCM trails. After the review,
the task is either published in the portal, or the author receives feedback on how to
revise the task via e-mail. All review feedback for a task is stored in its review log.

This process guarantees that only appropriate tasks that correspond with the math trail
idea and the MCM concept are published and shared with the community. The MCM
web portal consists of 2289 tasks (Feb 2018), out of which. 956 are public (42%),
wherefrom the newest 651 (68%) went through the described review process.

Nevertheless, through a growing community and number of authors and reviewers, the
system asks for a transparent review guideline in order to avoid arbitrariness.

Criteria for tasks in a MathCityMap math trail

A catalogue of criteria was developed, based on relevant literature and years of
experience enabling authors to comprehend feedback and reviewers to give a
transparent feedback on submitted tasks.

1. Uniqueness. To make clear which object is meant, every task should provide a
picture that helps identify the object of the task and what the task is about.

2. Attendance. A task should be authentic, i.e., leaving the educational context and
having a certification. Thus, the task can only be solved at the object location and
its description should never be enough to solve it (Ludwig et al., 2013).

3. Activity. Physical activity has a positive effect on learning, implying the idea of
embodied mathematics, i.e., mathematics can only be fully comprehended through
an active experience (Tall, 2013). The task solver should therefore become active
and do something in order to solve the task, e.g. measure and count.

4. Multiple solutions. Authentic and modelling tasks are characterized by the fact that
they are solvable in different ways through the choice of a mathematical model.
The task should therefore be solvable in various ways.

5. Reality. An important characteristic in this context is the connection of
mathematics and emotions, interest and relevance for the students — aspects that
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significantly correlate with performance (e.g. Tulis, 2010). The task should have
meaningful relevance and not appear too artificial.

6. Hints. As Jesberg & Ludwig (2012) summarize, several studies come to the
conclusion that stepped aids have a positive impact on learning performance,
experience and communication (Jesberg & Ludwig, 2012). Therefore, every task
should provide at least one hint in terms of solving the task.

7. School math and tags. The task should feature a connection to school math.
Therefore, one can use tags with relevant key words and assign them to a grade.

8. Solution formats. The solution should be representable in one of the solution
formats provided by MCM: interval, exact value and multiple choice.. Especially
for modelling tasks, the interval seems very relevant as it enables to refrain from
minor deviations in the solution, as through measuring differences or different
mathematical models. In this format, one defines a green interval for correct
solutions, and an orange interval for incorrect, but acceptable ones. Solution values
that do not fit into these intervals receive the negative feedback and the player tis
asked to retry.

9. Tools. The task should be solved without special and extraordinary tools apart from
calculator, measuring tape etc.

10.Sample solution. One should provide a sample solution including measured data
(only visible in the portal and in the solution PDF) for teachers in order to talk
about the tasks in the following lessons and analyze typical errors.

The catalogue is formulated for single tasks as they are individually checked within the

review process. Nevertheless, a math trail idea is a combination of different tasks that

should harmonize as a trail. Therefore, the whole trail comes into the review process
after every task of a trail went through it.

Communication

Apart from defining a catalogue of criteria, it obviously has to be communicated to
active and future authors. One way is to present the criteria for MCM tasks during
teacher training before the teachers create their own first tasks. On the MCM website,
one can find a tutorial explaining MCM tasks criteria and best practice examples in the
newsfeed category “Task of the Week” where already published tasks are analyzed in
terms of the MCM criteria. A further step towards facilitation and transparency in the
reviewing process is the idea of generic tasks. Common objects, such as stairs, offer
the chance to easily and quickly transfer existing tasks to other locations.

An important part in the communication of criteria is the individual feedback within
the MCM review process. Figure 4 shows an example of a task which passed through
this process. First, the task was created in the web portal and reached green status in
the task light system according to its technical quality. After the request for publication,
the author received a feedback on the fulfillment of the MCM criteria. Through the
picture, it fulfilled criterion 1. The measurements which have to be done on the object
guarantee criteria 2 and 3. The area of the hexagon can be determined in multiple ways
(criterion 4). Green light in the traffic light system guarantees that hints, school math
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and tags, as well as a sample solution (criteria 6, 7 and 10) are fulfilled. The task does
not require special tools (criterion 9). Some information on the height of the bottom
plate of the flowerpot had to be included (criterion 5 “Reality”). The answer type exact
value initially defined was not adequate for measuring tasks as it does not allow
multiple solutions and minor measuring deviations. Thus, the task needed further
improvement (criterion 8 “Solution format™). After receiving feedback, the author was
able to improve the task and can request for publication again.
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Figure 4: Example of a review process in the MCM web portal

Especially in regard of measuring tasks and solution formats, we can often observe
problems with the definition of an adequate, didactical reflected interval. For example,
a task asks for the determination of the weight of gravel which is needed to fill a circular
area. The author created the task in respect of all criteria, even with an interval as
solution format. Nevertheless, in the review process, the task expert did some errors in
calculations with marginal measuring differences. He came to the conclusion that the
interval might be too to let the students use different methods and to accept minor
measuring errors. Therefore, he rejected the task with the hint to improve the interval.
The author improved the task and afterwards it could be published. Thanks to the
feedback of the task author, we can see in a qualitative way that this kind of feedback
helped the teacher improve the task in terms of an authentic outdoor task:

Thank you! For publishing the task and especially for the hints and corrections. [...]
Especially helpful was the hint in terms of the interval areas for the circular area [...]
(quoted from an e-mail; translated into English).
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Apart from the benefits of a review system, users and reviewers face several
consequences. As the statistics show, more than a half of all created tasks have not
been published. We see two possible reasons. First, not all task creators want to publish
or see a benefit in publishing and sharing own material. They regard MCM as a tool
that they use for their individual needs. Second, the review process may hinder authors
to revise their task after it was rejected. Even though our statistics and experience show
that some authors are willing to revise their tasks up to three times and are thankful for
the received feedback, we observe that 130 out of 743 review processes (17,5%) were
interrupted after feedback was given. This observation is a small limitation of the MCM
web portal in terms of public quantity, which can be accepted in advantage of the
increased quality of published tasks. Nevertheless, the review system is a developing
process to be optimized with the users’ feedback and needs.

The whole process is a new situation for teachers through a definition of new roles.
The teacher 1s not only the task user in this process, but also the task designer who asks
for feedback. Through our dialogue-based review system, a potential contribution
towards professional development can be realized (Jones & Pepin, 2016).

DISCUSSION

The paper gives an overview of the educational web portal of MCM, in which a
growing community participates in creating and sharing material. For this purpose and
in terms of the idea of authentic math trail tasks, a certain quality of the material must
be guaranteed before it can be published. In this context, a review process is introduced
and presented in terms of steps and fundamental criteria that allow transparency. The
implementation shows that the review system can prove itself not only theoretically.
Through an adequate and transparent communication of the underlying steps and
criteria, users are willing to improve their tasks according to the standards. Especially
for the “Solution Formats” criterion, we observe major improvements leading to
adequate outdoor tasks. We also observe that less than every fifth task review does not
end in a published task. The MCM review process is thus a successful example of
quality standards in a digital educational community platform. However, such a system
faces consequences, mostly in terms of quantity of tasks and the higher expenditure for
users and reviewers. A possible future development could be a point-based system
similar to StackOverflow, where users get points for good tasks and can also review as
they have proven their experience within the system.
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This paper focuses on the KOM framework for mathematical competencies and in
particular its aids and tools competency and investigates its application to digital
technologies used for mathematical learning. Very little has been done on networking
the KOM’s mathematics competencies framework to internationally established
theories and theoretical constructs. Through an analysis of an authentic example
involving digital technologies for teaching slope fields, we compare and combine the
aids and tools competency with the approach of instrumental genesis and the notion of
scheme. We claim that the networking of these theoretical perspectives facilitates our
understanding of mathematical competencies in the digital age.

Keywords: competency, digital technology, instrumental genesis, scheme.
INTRODUCTION

Mathematics Education, in its 50-year (or so) life, has been focusing on developing
learning theories and deriving teaching approaches and pedagogies that promote
students’ mathematical thinking and competencies (among various other crucial issues
regarding mathematical learning). Living in the digital age, students are influenced by
digital technologies used for mathematical learning and which are designed to aid their
understanding and mathematical thinking (e.g. Noss & Hoyles, 1996; Monaghan,
Trouche & Borwein, 2016). Students are challenged to use and apply their
mathematical knowledge and competencies in their interactions with such digital
technologies and resources (e.g. Geraniou & Jankvist, in review; Weigand, 2014). In
this paper, we focus on how students’ mathematical competencies relate to
mathematical learning when using digital technologies. To achieve this, we use the
Danish mathematics competencies framework, KOM (Niss & Jensen, 2002; Niss &
Hgjgaard, 2011), which was adopted by OECD in the PISA framework (OECD, 2013;
Lindenskov & Jankvist, 2013), and through a networking of theories approach,
investigate how it compares to and combines with the approach of instrumental genesis
(e.g. Trouche, 2005) embedding Vergnaud’s (2009) notion of scheme.

Instrumental genesis involves the process of transforming digital tools into
mathematical instruments, which become part of students’ cognitive scheme
(Vergnaud, 2009) and can be used to support students’ learning of mathematical
concepts (Artigue, 2002). We use an authentic example concerning the teaching of
slope fields at the Danish master program of mathematics education to make our case.
Namely that augmenting the KOM framework with the instrumental approach and its
embedded heritage to the notion of scheme (Guin & Trouche, 1999) deepens our
understanding of students’ mathematical competencies in the digital era.
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NETWORKING THEORIES

Ideas concerning networking of theories have been around for a decade or so (Prediger,
Bikner-Ahsbahs & Arzarello, 2008). Prediger and colleagues (2008) introduce a
“scale” of networking strategies stretching from “ignoring other theories” to “unifying
globally” (p. 170). We locate ourselves in the spectrum between these two outer poles.
In this spectrum are the strategies for coordinating and combining, i.e. strategies
mostly used for a networked understanding of an empirical phenomenon or piece of
data, and the strategies for synthesizing and integrating (locally), which is when
“theoretical approaches are coordinated carefully and in a reflected way [that] goes
beyond understanding a special empirical phenomenon” (Bikner-Ahsbahs & Prediger,
2010, p. 496). Thus, integrating locally refers to the problem at hand; in our case digital
technologies in relation to mathematical competencies.

The framework of the instrumental approach has proven well-suited for networking
with other theoretical constructs (Drijvers, Godino, Font & Trouche, 2013); an
argument for choosing it in relation to the KOM framework.

THE KOM FRAMEWORK AND ITS AIDS AND TOOLS COMPETENCY

The mathematical competencies framework, referred to as KOM, was published in
Denmark in 2002 (Niss & Jensen, 2002). Since then it has been influential in
mathematics programs at practically all educational levels in Denmark; not least in
primary and secondary school, upper secondary school, and teacher education.

Niss and Hgjgaard (2011) define a mathematical competency as (an individual’s)
“...well-informed readiness to act appropriately in situations involving a certain type
of mathematical challenge” (p. 49). The KOM framework operates with eight distinct,
yet mutually related, mathematical competencies: mathematical thinking; problem
tackling; modelling; reasoning; representing; symbols and formalism; communication;
aids and tools. Each of these competencies consist of a producing side and an analytical
side. The aids and tools competency, “consists of, on the one hand, having knowledge
of the existence and properties of the diverse forms of relevant tools used in
mathematics and having an insight into their possibilities and limitations in different
sorts of contexts, and, on the other hand, being able to reflectively use such aids” (pp.
68-69, italics in original). It continues:

Mathematics has always made use of diverse technical aids, both to represent and maintain
mathematical entities and phenomena, and to deal with them, e.g. in relation to
measurements and calculations. This is not just a reference to ICT, i.e. calculators and
computers (including arithmetic programmes, graphic programmes, computer algebra and
spreadsheets), but also to tables, slide rules, abacuses, rulers, compasses, protractors,
logarithmic and normal distribution paper, etc. The competency is about being able to deal
with and relate to such aids. [...] Since each of these aids involves one or more types of
mathematical representation, the aids and tools competency is closely linked to the
representing competency. Furthermore, since using certain aids often involves submitting
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to rather definite “rules” and rests on particular mathematical assumptions, the aids and
tools competency is also linked to the symbol and formalism competency. [...] (p. 69)

The representing competency firstly comprises being able to understand, i.e. decode,
interpret, and distinguish between, as well as utilize different representations of
mathematical objects, phenomena, problems, or situations (including symbolic,
algebraic, visual, geometric, graphic, diagrammatic, tabular, verbal, or material
representations). Secondly, it includes being able to understand the mutual relations
between different representational forms of the same object, knowing about their
strengths and weaknesses, and being able to choose and switch between them in given
situations. The symbols and formalism competency deals with the ability to decode
symbolic and formal language, translate back and forth between mathematical
symbolism and natural language, and the ability to handle and utilize mathematical
symbolism, including transforming symbolic expressions. Furthermore, it involves
having an insight into the nature of the rules of formal mathematical systems and it
focuses on the nature, role and meaning of symbols.

The prevalence of and the role that digital technologies play in the mathematics
programs at all educational levels in Denmark in 2018 is significantly different than it
was in 2002 when KOM was launched. Dynamic Geometry Software (DGS), such as
GeoGebra, 1s extensively used in both primary and secondary level. Computer Algebra
Systems (CAS), such as Maple, TI-Nspire, WordMath, etc., are an integral part of the
upper secondary school mathematics programs—even mandatory at the final national
written assessments. In relation to the various mathematics programs’ reliance on the
KOM framework and the escalated situation concerning digital technologies, there
seems to be a need for providing a deepening of digital technology aspects of KOM’s
competencies descriptions and in particular the aids and tools competency. And this is
not only from a practice perspective, but also from the perspective of doing research
related to the use of technology in the mathematics programs of the Danish educational
system—or any other educational system relying on competencies descriptions of
mathematics.

THE INSTRUMENTAL APPROACH AND THE NOTION OF SCHEME
Drijvers et al. (2013) present the instrumental approach in terms of three dualities.

Firstly, the artefact-instrument duality describes the lengthy process of an artefact
becoming an instrument in the hands of a user, which is referred to as instrumental
genesis.

Secondly, the instrumentation-instrumentalisation duality concerns the relationship
between the artefact and the user, i1.e. how the user’s knowledge directs the use of an
artefact (instrumentalisation), and how a tool can shape and affect the user’s thinking
and actions (instrumentation). The process of instrumentation is closely connected to
the digital tool serving an epistemic purpose, which means that it is used to create
understanding or support learning within the user’s cognitive system. By contrast,
when a digital tool is to create a difference in the world external to the user, it 1s said
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to serve a pragmatic purpose (Artigue, 2002; Lagrange, 2005; Trouche, 2005). Digital
tools serve of course both pragmatic and epistemic purposes, but any use which is only,
or mainly, pragmatic is according to Artigue (2010) of little—or even negative—
educational value.

Thirdly, the scheme-technique duality concerns “the relationships between thinking
and gesture” (Drijvers et al., p. 26). From a practical perspective, techniques can be
seen as “the observable part of the students’ work on solving a given type of tasks (i.e.
a set of organized gestures) and schemes as the cognitive foundations of these
techniques that are not directly observable, but can be inferred from the regularities
and patterns in students’ activities” (ibid, p. 27). For Vergnaud (2009), concepts are
psychological entities fundamentally related to actions. Vergnaud refers to this relation
as a scheme, and it can be defined as implicit or explicit ways of organising behaviour,
involving also the necessary knowledge to act meaningfully in certain situations.
Hence, a scheme combines intentions and actions with conceptual knowledge.
Furthermore, schemes enable us to understand the conceptualisation process by linking
gestures and thoughts through the encountering of various situations.
Conceptualisation here refers to the process in which learners develop concepts and
make connections in their knowledge. Drijvers et al. (2013) define a scheme as “a more
or less stable way to deal with specific situations or tasks, guided by developing
knowledge” (p. 27). These three dualities can be used as analytical constructs in
exploring how the use of artefacts, such as digital tools, can shape the learning (and
teaching) of mathematics (e.g. Geraniou & Jankvist, in review).

AN AUTHENTIC EXAMPLE OF TWO DIGITAL APPROACHES

The first and third authors have both taught slope fields to the mathematics education
students at the Aarhus University. Although the approach to teaching this topic has
changed over the years, the aids and tools competency in connection to the representing
and symbol and formalism competencies have always been in focus.

In 2009 and 2011 the approach was on learning how to programme a computer to create
slope fields of simple differential equations. This was done both with the free CAS
Wiris and with the DGS GeoGebra. The activities were based in the constructionist
ideas of Papert (1980), i.e. assigning a particular pedagogical value to the development
of one’s own mathematical tools. In 2013, 2015 and 2017 the approach was changed
to use Wolfram Alpha instead to simply call commands that plot the slope fields. The
reason for this change is multi-faceted, but one of the main problems experienced with
the first approach was that it simply was too much work and effort to create the string
of code required to plot a slope field. The amount of knowledge about loops/sequences,
and about how to plot vectors in a lattice that are needed in order to develop one’s own
slope field plot with tools like Wiris or GeoGebra, did not seem to be worthwhile.
Rather it—in this specific case—moved the students’ focus away from the numerical
solutions of differential equations.
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One example showcasing the differences between the two approaches is how to create
a slope field showing solutions to the equation: Z—z = sin(x) sin(y) (figure 1).
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Figure 1. The command line in GeoGebra for a ‘home made’ slope field.

The resulting slope field looked rather coarse. On the contrary, if the differential
equation is typed into Wolfram Alpha, you immediately get the stepwise solution as
well as an illustration of the solution curves. In this case the image from Wolfram Alpha
1s more illustrative and detailed (see figure 2).
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Figure 2. Coarse ‘home made’ GeoGebra slope field vs. smooth Wolfram Alpha plot.
ANALYSIS 1: THE COMPETENCIES FRAMEWORK

From a competencies perspective, the example above calls for students to apply their
aids and tools competency to, firstly, know that there exists digital tools for
constructing slope fields and that this can be beneficial in cases where differential
equations cannot be solved analytically. Secondly, the aids and tools competency may
come in play if students are to choose between the two different approaches laid out
above, 1.e. is it more beneficial, also from a learning point of view, to program your
own plotter, or is it perfectly fine to use the already made app, e.g. that of Wolfram
Alpha, knowing that it will black-box several of the underlying processes? The students
also need to apply their symbol and formalism competency when having to use the
notation and language of the digital tools—and when translating back and forth
between the usual mathematical notation and this—to apply the slope field plotter (in
both approaches). In a similar manner the students will need to activate—and it also
results in a development of their—representing competency when interpreting the
slope field plots of the two approaches. In this respect, the students must also be able
to know what the strengths and weaknesses are of the different representations of the
(family of) solutions to the differential equation in question.
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ANALYSIS 2: INSTRUMENTAL APPROACH AND NOTION OF SCHEME

In terms of the artefact-instrument duality, we see that the choice of technology for
visualising slope fields has consequences reaching further than just this specific task
and topic. The resulting instrumental genesis leads to students’ familiarity and control
over the tool they use. And even though both tools are relevant from a mathematics
education point of view, they are very different, and familiarity with each of these tools
might influence further the learning of mathematics. The instrumentation-
instrumentalisation duality as well as the scheme-technique duality can be used to look
at the details in these differences. The case where GeoGebra is used to create slope
fields clearly brings the tool to a use that might not be directly intended by the creators
of GeoGebra and clearly pushes the software a little bit out of the usual scenario (for
instance by creating a lattice as a sequence of sequences in order to place a line segment
at each lattice point). This means, on the one hand, that the students will be required to
instrumentalise GeoGebra and take control over it (and this can obviously benefit their
future ability to use GeoGebra). On the other hand, the focus of the work with
GeoGebra 1s on creating a lattice, and perhaps on controlling the length of the line
elements (they can get very large or small—making the image incomprehensible).
Hence, this use of GeoGebra is instrumentalising the students to focus more on the
procedure of creating the slope field (deciding on a lattice, and “programming” a
procedure for setting line segments from each point) than on the actual layout of the
slope field. The instrumented techniques obtained might focus on a number of technical
concerns that are of little relevance to understanding the involved mathematics, which
might (this is a hypothetical analysis) pollute the students’ scheme of differential
equations and (numerical) solutions to such. Hence, in this case, the instructor had to
pay special attention to bring in play the students’ schemes of numerical and analytical
solutions to differential equations in relation to the slope field plot.

The work with Wolfram Alpha, however, is focussed directly on the visuals of the slope
fields, black-boxing everything leading to this image. Furthermore, the case of working
with a differential equation and visualising the family of solutions does seem to be
considered by the developers of Wolfram Alpha. Writing the differential equation into
the system automatically gives access to the solution (including—in the premium
version—a stepwise solution replicating a paper-and-pencil solution) as well as
relevant visualisations of families of solutions. The students’ instrumentation of
Wolfram Alpha is thus almost salient. The instrumentalisation might go in different
directions depending on the focus of the teaching and the abilities and preferences of
the students. Wolfram Alpha allows for the development of a completely black-boxed
trial and error technique, where the student simply tries various commands in the
command field and sees if the input is somehow interpretable with regard to the task at
hand. Such a technique might not lead to the development of a strong and relevant
scheme for differential equations (for a related case, see Jankvist and Misfeldt, 2015).
However, the tool allows students to investigate and explore mathematics without the
technical barriers that were experienced when programming in GeoGebra. This may

128 Proceedings of the 5" ERME Topic Conference MEDA 2018 - ISBN 978-87-7078-798-7



lead students more directly to consider families of solutions to differential equations,
which should force them to activate their schemes related to e.g. what it means to be a
solution to a differential equation as well as, say, the difference between numerical and
analytic solutions to differential equations.

CONCLUDING REMARKS

As can be seen from the above analyses, the KOM framework offers a rather limited
analysis in relation to the aids and tools competency, even when taking representing
and symbols and formalism into account. It does, however, articulate students’ needs
to know about the digital tools’ strengths and weaknesses, also in relation to specific
mathematical representations, which the instrumental approach does not do explicitly.
But the instrumental approach focusses more directly on the students’ interactions with
the digital tools, rather than merely addressing students’ knowledge about these. The
embedded notion of scheme, enables us to say something about the students’
conceptual understanding, in this case in relation to differential equations and solutions
of such. Hence, from our perspective, the networking of these perspectives appears
both feasible and quite promising in relation to looking deeper into students’ possession
and development of mathematical competencies in the digital era—which we intend to
do in our future research.
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In this paper, we investigate the use of CAS in Danish upper secondary school from a
norms perspective. The construct of sociomathematical norms is used to understand
the potential influence that CAS may have on the rules (and values) in the mathematics
classroom. We focus on a situation of teacher change, where the different teachers
enact different norm sets related to students’ CAS use in their mathematical work. We
zoom in on one student’s perception of this, and find that the teachers’ CAS policies
have a direct influence on how students’ navigate in their mathematical work. In
particular, the alignment between teachers’ endorsed and enacted norms as well as
the extent to which the norms impose judgement on the students’ behalf in relation to
CAS use play a major role in this respect.

Keywords: CAS, CAS policy, socio-mathematical norms, teacher change.
INTRODUCTION

Computer Algebra Systems (CAS) play an important role in Danish upper secondary
school, as is the case in several other countries. It has been argued for more than 15
years that the challenges posed by CAS to the organization of mathematics teaching is
not one that has been called for by the school topic itself, but rather a consequence of
the development of technologies for non-didactical purposes (Trouche, 2005). The
didactical difficulties and possibilities of CAS use have been widely documented (e.g.
Hoyles & Lagrange, 2010; Jankvist & Misfeldt, 2015; Weigand, 2014), but teachers
are largely left to develop their own ideas and understanding of how to use CAS in
teaching (e.g. Jankvist, Misfeldt & Marcussen, 2016). Hence, different teachers—at
least in Denmark—work with these tools in different ways, enacting different values
and norms about for example the subject of mathematics, its teaching, and the use of
technology, and not least the relation between these.

In this paper, we ask how students experience and make sense of various teachers’
different views on the role of CAS. In order to see this phenomenon more clearly, we
investigate how one student—Emil—experienced and tried to navigate between
various teachers’ different CAS-related norms. More precisely, from a teacher focusing
on the students’ ability to work with paper and pencil to another teacher focusing on
correct and efficient CAS use, and again to a third teacher who believed that the
students should decide themselves when and when not to use CAS. We apply the term
CAS policy to articulate teachers’ expectations about students’ CAS use in their
mathematical work. We use the construct of sociomathematical norms to understand
the influence of such CAS policies on students’ learning and their possibilities to
participate in the mathematical activities.
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SOCIOMATHEMATICAL NORMS

Sociomathematical norms were observed and named by Yackel and Cobb (1996), who
in a teaching situation noticed that aspects which could neither be described as purely
mathematical norms nor purely as classroom social norms were in play. Yackel and
Cobb defined sociomathematical norms as “normative aspects of mathematical
discussions specific to students’ mathematical activity” and describe the difference to
social norms as:

The understanding that students are expected to explain their solutions and their ways of
thinking is a social norm, whereas the understanding of what counts as an acceptable
mathematical explanation is a sociomathematical norm. Likewise, the understanding that
when discussing a problem students should offer solutions different from those already
contributed is a social norm, whereas the understanding of what constitutes mathematical
difference is a sociomathematical norm. (Yackel & Cobb, 1996, p. 461)

Sociomathematical norms are negotiated between the students and the teacher, and may
thus vary from classroom to classroom. This negotiation builds on already “taken-as-
shared” perceptions within the classroom, and as such they are:

... intrinsic aspects of the classroom’s mathematical microculture. Nevertheless, although
they are specific to mathematics, they cut across areas of mathematical content by dealing
with mathematical qualities of solutions, such as their similarities and differences,
sophistication, and efficiency. Additionally, they encompass ways of judging what counts
as an acceptable mathematical explanation. (Yackel & Cobb, 1996, p. 474)

In the study described by Yackel and Cobb, a sociomathematical norm is negotiated
where an acceptable mathematical explanation must describe actions performed on
mathematical objects. Hence, explanations and justifications are themselves made the
objects of reflection. According to Levenson, Tirosh and Tsamir (2009), there are three
kinds—or aspects of—sociomathematical norms that should be taken into account:
teachers’ endorsed norms; teachers’ and students’ enacted norms; and students’
perceived norms. Based on classroom studies, Levenson et al. noticed that even when
the observed enacted norms were in agreement with the teachers’ endorsed norms,
students may not have the same perception of these norms.

EDUCATIONAL SETTING OF THE CASE STUDY

Denmark has three different types of upper secondary school programs: the classical
stream, the technical stream, and the business stream. Danish upper secondary school
is usually three years, and students may take mathematics at one of three levels (C, B
or A), depending on the number of years they follow it, e.g. A-level is mathematics for
all three years. CAS were introduced into the upper secondary streams in 2005 and is
now a mandatory part of the national written assessments. For the technical stream, the
ministerial orders for mathematics A-level state:

The student works with CAS tools and other mathematical software, so that the student
becomes familiar with syntax, terminology and application of at least one mathematical
software. Over the course of the program, the digital tools may be increasingly applied for:
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modelling; visualizations; geometric investigations; repetitive calculations; complex
symbolic manipulations and calculations; numerical calculations; documentation and
communication of results. (UVM, 2013)

In some Danish upper secondary schools, CAS are not introduced until after Christmas
in the first year, i.e. the first semester follows a more traditional paper-and-pencil
approach, while other schools provide students with a license to a given CAS-tool from
day one. Even if schools do offer a CAS license from day one, individual teachers may
still choose to wait until later in the first year. Furthermore, Zow exactly CAS is then
introduced and used is often left entirely up to the individual teachers, subject of course
to equally independent decisions and discourses of a given textbook system.

Our case stems from an A-level mathematics class at the technical stream; one which
experienced four different mathematics teachers within their three years. We focus on
the student Emil (see also Iversen, 2014; Iversen, Misfeldt & Jankvist, accepted) and
his perception of the various teachers’ CAS policies. Our case description and analysis
solely builds on an interview with Emil and excerpts from his hand-in assignments,
corrected and commented by the different teachers.

CASE: THE UPPER SECONDARY SCHOOL STUDENT EMIL

The first of Emil’s four teachers, Teacher 0, was only in the class for a very short time
at the beginning of the first year, for the reason of which we do not—and neither did
our case student, Emil—take her influence on the class into account. Emil provided the
following description of the Teachers 1, 2, and 3, and their approaches to the use of
CAS (all quotations are translated from Danish):

Emil: The first teacher [1] made it very clear that the purpose of using
sketches was that the teacher/reader should be able to see what was
going on in our minds. He “punked” us about that; lots of sketches, and
they had to be good, so he could follow our way of thinking. The next
teacher [2] talked a lot about us using our tool in a correct manner; that
now we were past the point, where we had to explain everything; that
now we had to use it [1.e. CAS] and see that we can come from A to B
faster; and that we had to solve tasks. The third teacher [3] has been a
bit of a mix, saying we had to use the tools more limitedly, and that she
also wanted us to be able to do some mathematics. (Emil, May 9, 2012)

Neither Teacher 0 nor Teacher 1 spend time introducing CAS to the students. Teacher
2 however did, more precisely to Maple. Emil explained:

Emil: Yes, almost immediately we got this new software, Maple, for the computer.
Then we spent a few lessons learning the basics about it. You can say that
Maple can do more compared to the handheld calculator, because when we
deal with stuff like, for example, rotation around a fixed axis, the calculator
can’t sketch this. The big change from the first teacher [1] to the second
teacher [2] was going from doing everything by hand to having to solve
everything on the computer now.
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Iversen: Everything? Like the hand-in assignments, or also during lessons or what?
Emil: I would go so far as to say everything. [...]

Emil: So, while with the first [Teacher 1] it was like, say, if we had to isolate in
relation to something, then we had to do it by hand, then [with Teacher 2] it
was just “Solve” [in CAS]. You still had to write down a little about what
you were doing, but you didn’t need the long steps of calculations, you could
just use the computer now. (Emil, Sept. 9, 2011)

Figure 1 illustrates a hand-in assignment by Emil at the time of the teacher change to
Teacher 2, 1.e. at the beginning of the second year (August, 2010).
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Figure 1: Homework assignment from Emil’s second year of upper secondary school.
Notice the text at the bottom “eller i maple” meaning “or in Maple”.

The task reads: “A particle moves in the plane, so that it at time ¢ is located in the point
with coordinates f{¢), where f(f)=... Find those points of time ¢ for which a)...; b)...;
c)...” We are interested in Emil’s answer to question a), in which he used that the dot
product of the functions f’(¢) and f*’(¢) should be zero. Emil answered question a) of
the task by first doing a rather long and—at least at this level of education—somewhat
complex calculation (bottom, left hand side) and immediately after solving the same
task with one line of Maple code. What is interesting is his need for including both
solutions as his answer to the question. Email elaborated:
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Iversen: Okay, so what did you think about the shift from having to do everything by
hand and then having to use... [CAS]?

Emil: It was very intense. It felt much easier to get the computer to do it. You saved
a lot of time. In a way you felt that you had been ridiculed; that you had to
do so much with the first teacher [1], and then this intense shift... but the
good thing always was—not to jump to the third teacher [3] [...]—yes,
because with the first teacher [1], you always knew what to do. There was no
question that you had to do everything by hand. With the second teacher [2]
I knew that I had to do as much as possible by means of the computer [...] he
didn’t want to see the intermediate results. (Emil, Sept. 9, 2011)

As evident from the above, once Emil had figured out the CAS policy of Teacher 2, it
became equally clear to him what was expected as it was previously with Teacher 1.
But as hinted to with the saying of “not to jump to the third teacher...”, something
about Teacher 3’s CAS policy was less clear to him:

Iversen: If we take the thing with Maple [...] you’ve really taken this to heart and used
it a lot. In the hand-in assignments I’ve looked at, there are a couple of times
where she [Teacher 3] comments something like “phew”, when there are long
expressions or long commands in Maple or something like that...

Emil: I also got some saying “I think I can almost follow what is going on” [...]

Iversen: Yes, and what exactly do you think about that?

Email: I know that my teacher [3] isn’t very... well, I wouldn’t call her old
fashioned. That would be wrong. Maybe she just isn’t very fond of using
Maple. [...]

Iversen: What do you think about the impression it makes on a reader, for example,
that your mathematical texts include these long command sequences? [...]

Emil: My mom thinks it looks advanced...

Iversen: So, not to over interpret, but could it be somewhat the same with your teacher

[3], when she writes “phew” and “I think I can follow it and so on?

b

Emil: It could be that it may seem a bit “overkill”—or with a Danish saying; “to
shoot sparrows with cannons”—to use Maple. (Emil, May 9, 2012)

From lower secondary school, Emil was used to a traditional paper-and-pencil
approach to the teaching and learning of mathematics. The first “shift” for Emil
concerned having to hand in all mathematics assignments in electronic form in upper
secondary school—a rule installed by Teacher 0. With Teacher 1, Emil again
experienced a traditional approach, since the use of technology was limited to a text
editor, e.g. MS Word and its equation functionalities, and software to draw sketches,
e.g. Graph. With Teacher 1, the CAS functionalities of the handheld TI-89 were only
to be used to check results obtained by paper-and-pencil methods.
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With Teacher 2, however, Emil experienced a change in how to apply CAS in the hand-
in assignments. Teacher 2 did not care about intermediate steps and detailed
calculations. Rather he endorsed (or even required) that everything had to be done on
the computer, and he considered correct use of Maple as a key competence for the
students. Hence, the focus for evaluation of the students’ written products changed
from a focus on providing detailed algebraic calculations, to a focus on how to address
the problem with the tool and resources in an efficient and correct manner. According
to Emil, Teacher 2 expressed that the students should not explain every little detail of
the calculations but instead focus on correct application of Maple.

Teacher 3 had a more liberal, balanced and almost unengaged approach to the use of
CAS. Students could choose to use CAS, when they wanted to and when they could
argue for its meaningfulness. Emil described this as a “mix™ of the two previous
teachers’ policies, and he also suggested that Teacher 3 did not possess a deep
knowledge of advanced CAS tools, and that she often considered it to be “overkill” to
apply such tools. Even though this teacher had a liberal approach to CAS, we can see
from her comments to some of Emil’s written assignments that she did consider it
interesting whether certain algebraic steps had been conducted with or without the aid
of CAS (Iversen et al., accepted).

EMIL’S EXPERIENCE OF ENDORSED AND ENACTED NORMS

Overall, the norms, rules and regulations around CAS changed from suppressing CAS
arguments (Teacher 1) to endorsing such arguments (Teacher 2), to a more balanced
approach suggesting openness about whether or not CAS should be applied in a given
situation, and a demand for active argumentation on the students’ behalf as to why they
used CAS for a given task (Teacher 3).

Emil experienced the sociomathematical norms endorsed by Teacher 1 as aligned with
the enacted norms of Teacher 1. Hence, at the time of Teacher 1 there was some
coherence between Emil’s perceived norms and his enacted norms in relation to CAS
use. However, a discrepancy occurred between Emil’s experience of the endorsed
norms of Teacher 1 and Teacher 2, since they appeared to have rather different views
on the role of CAS in the teaching and learning of mathematics. Both Teacher 1 and
Teacher 2, respectively, appeared to have their own endorsed and enacted norms
aligned. For Emil, however, the new norm set of Teacher 2 challenged his perceived
norms due to the teaching of Teacher 1. We see this from his hand-in assignment (cf.
figure 1) at the time when Teacher 2 had recently taken over the class. Here Emil
provided solutions that potentially could satisfy the endorsed and enacted norms of
Teacher 1 as well as those of Teacher 2. While Teacher 1 emphasized cognitive
strategies and algebraic skills, Teacher 2 was much more focused on efficient problem
solving and correct use of Maple. Furthermore, the overall problem solving approach
was highly valued by Teacher 2 who was less focused on detailed aspects of
computation and argumentation.

136 Proceedings of the 5" ERME Topic Conference MEDA 2018 - ISBN 978-87-7078-798-7



In time, Emil aligned the problem solving in his assignments to the new norm set of
Teacher 2. In fact, Emil expressed that although the shift from Teacher 1 to Teacher 2
was very “intense” in relation to the use and role of CAS, it was still clear to him what
was expected of him—both from Teacher 1 and from Teacher 2. This, we believe, has
to do with Emil’s experience of alignment between the endorsed and the enacted norms
of Teacher 1 and Teacher 2, respectively. This appeared to make it easier for Emil to
align his own perceived norms with his enacted norms.

Teacher 3 endorsed yet a new set of norms, which entailed that CAS should be used
when it makes sense to use it in a given mathematical situation. As far as we can tell
Teacher 3 also enacted norms according to this (Iversen, 2014). Still, Emil apparently
found it difficult to decode the norm set of Teacher 3. But why is this, when an
alignment of the endorsed and enacted norms of Teacher 1 and Teacher 2, respectively,
seemed to make this easier for Emil? It appears that such an alignment may be thought
of as a necessary although not sufficient condition. Hence, it makes sense to ask why
the sociomathematical norms that Teacher 3 brought into the classroom were so
difficult for Emil—a high-performing mathematics student—to perceive? One
explanation may be that the norm sets of Teachers 1 and 2 in a sense were rather
binary—never use CAS and always use CAS—while the norm set of Teacher 3
imposed upon the students to make an actual judgement of when it is needed and when
it is not needed to use CAS. Performing such judgement is surely more demanding on
the students and requires them to develop competences to do so. Eventually Emil did
seem to make sense of Teacher 3’s sociomathematical norms as indicated by his
statement that she did not appreciate when you “shoot sparrows with cannons”—which
is Danish for “take not a musket to kill a butterfly”—meaning of course that there is
no need to use a powerful CAS tool to do something which you could equally easy, or
maybe even easier, do by hand.

FINAL REMARKS ON EXPERIENCED CAS POLICIES

We have witnessed how an upper secondary student had to learn to navigate between
different teachers’ varying CAS-related norms. In particular, the alignment between
teachers’ endorsed and enacted norms as well as the extent to which the norms imposed
judgement on the students’ behalf played a major role in this respect.

Due to changing ministerial orders in relation to CAS use in Danish upper secondary
school, and due to lack of alignment between these orders, textbook writes’
interpretations of the orders, local school policies and teachers’ own policies, students
are bound to “feel like a fish out of water”. In order to better understand this problem
of teachers” CAS policies we applied the construct of sociomathematical norms. We
find this construct to have been productive, not least due to the explanatory power of
considering (students’ experiences of) teachers’ endorsed and enacted norms and the
students’ own enacted and perceived norms. Furthermore, established theoretical
constructs, such as that of sociomathematical norms, make up relevant lenses to
understand how different teachers’ different CAS policies shape the experience of
students’ participation in the classroom, not least in a situation of teacher change.
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Finally, we propose that in order to account more deeply for situations regarding
teachers’ CAS policies, the use of sociomathematical norms could be augmented with
theoretical constructs considering teachers’ mathematics-related values and beliefs
related to technology. Such theoretical bricolage considerations shall be part of our
future endeavours.
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This study aims to identify levels of 11" grade students’ conceptualization of function
as covariation. The students worked with modelling tasks involving the use of the
digital environment Casyopée which combines algebraic and geometrical
representations of functions. The results indicated six hierarchical levels of thinking
about function as covariation though the use of learning trajectories.
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THEORETICAL FRAMEWORK

This paper reports classroom based research aiming to identify levels of 1" grade
students’ conceptualization of function as covariation. The students were engaged in
modelling realistic problems through the use of the digital environment Casyopée,
which involves interconnected representations and allows the manipulation of
covarying quantities and the treatment of the corresponding functions.

The notion of function plays a predominant role in secondary education and can be
conceived in two ways: (a) as a correspondence of two variables and (b) as a
covariation, which is related to the understanding of the way in which dependent and
independent variables change as well as to the coordination between these changes
(Carlson et al., 2002). Recent studies connect directly the definition of function with
the idea of covariation:

A function, covariationally, is the conception of two quantities varying simultaneously
such that there is an invariant relationship between their values that has the property that,
in the person’s conception, every value of one quantity determines exactly one value of the
other (Thompson & Carlson, 2017, p. 444).

This definition is based on the person’s conceptualization of function as covariation
emphasizing the ways by which two quantities (corresponding to dependent and
independent variables) covary in relation to each other. Carlson et al. (2002) studied
the development of undergraduate student's thinking about the covariation of quantities
in dynamic situations such as filling a bottle with water. Their research results led to a
framework of five levels of covariation which were described through corresponding
mental processes: Dependence (observation of changes in the two variables); Directed
change (increase or decrease - with changes of the other); Quantitative correlation
(coordination of the amount change of a variable with changes of the other); Average
rate (correlation of the mean rate of change with uniform increases of the independent
variable); and Instantaneous rate of change (correlation of the instantaneous rate with
continuous increases of the independent variable). Therefore, the concept of
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covariation links functional relationships to the rate of change and is essential for
understanding the fundamental concepts of advanced mathematics. The present study
aims to contribute to the research literature related to students’ understanding about
function as covariation at the upper secondary education level since research at this
level is rather limited.

Modelling tasks involving the use of digital tools have been indicated as providing rich
opportunities for students to engage in functional thinking and therefore to interpret
function as covariation (Lagrange & Psycharis, 2014; Psycharis, 2015). Lagrange
(2014) describes the process of modelling a problem in Casyopée through a “modelling
cycle” that includes four settings: (a) a physical object (e.g., paper), allowing students
to experiment; (b) the dynamic figure resulting by modelling the dependencies in a
digital tool (e.g., a dynamic rectangle in a Dynamic Geometry window); (c) the
covarying magnitudes (e.g., the side length and the area of the rectangle); (d) the
algebraic functions that model problem. In this approach, students’ transition from
experimentation with the physical object (quantities) to working with functions
(variables) 1s mediated by working with covarying magnitudes and measurements,
through the use of multiple representations such as algebraic notation, graphs and
tables (Lagrange, 2014). In this study, we use realistic problems and specially designed
digital tools for designing modelling activities to encourage students’ transitions in the
different settings of the modelling cycle.

Another strand of research that influenced this study concerns learning trajectories
(Clements & Sarama, 2009), which include three essential elements: (a) a mathematical
goal, (b) educational activities to achieve the goal, and (c) a description of the
development of students’ thinking as they are engaged with the activities. In this paper,
we use the idea of trajectories to describe the progression of students’ thinking about
function as covariation. The trajectories define different layers of thinking from simple
to more complex understandings. However, these levels do not indicate a unique
sequence of stages from which all students pass in the same way. Students can move
to different levels in both directions as their learning progresses depending on the
difficulties they face (Clements & Sarama, 2014). Furthermore, in order to study the
role of context and available resources in the learning process, we consider
construction of knowledge about function as covariation as an abstraction process and
we use the Abstraction in Context theory (AiC, Hershkowitz et al., 2001). According
to AiC, the construction of mathematical knowledge in a specific context takes place
through three epistemic actions: (a) recognizing a previous construction as relevant to
the situation; (b) building-with: rebuilding existing knowledge to achieve a localized
goal (e.g., the solution of the problem); and (c) constructing a new construct through
the integration and consolidation of previous constructions. In this study, we use
learning trajectories to identify levels of students’ conceptualization of function as
covariation and AiC to highlight the development of students’ thinking within the
learning trajectories.
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THE DIGITAL ENVIRONMENT CASYOPEE

Casyopée combines an Algebra window and a Dynamic Geometry window, which are
interconnected. Students can create in Casyopée free or fixed geometric objects (e.g.,
points), define independent and dependent quantities as magnitudes (e.g., lengths and
areas symbolized as c0, cl, c2, etc.) in “geometric calculations” tab and investigate
their covariation.
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Figure 1: Dynamic Geometry, geometric calculations, table of values and graph.

In addition, through the “automatic modelling” functionality students have the
opportunity to check whether a function can be defined using two covarying
magnitudes (e.g., c0=DC and c1=DC*DA, Fig. 1). If a function can be defined, its
algebraic formula is automatically extracted in the Algebra window, otherwise
appropriate information is provided. Finally, a function can be interpreted using
different representations, such as the table of values and the graph.

METHODOLOGY
Method, framework, tasks and data collection

This research is characterized as a design research (Cobb et al., 2003) since there were
two cycles of implementation, in two secondary schools in Athens. Before the study
the students had been introduced to functions according to the mathematics curriculum,
including the definition of function, monotonicity and extreme points. A series of three
modelling tasks was implemented through the close collaboration between two
mathematics teachers (one in each school) and one researcher who acted as participant
observer in the classroom.

The three tasks were related to realistic optimization problems and their sequence was
such that the covariation appeared from simple to more complex situations according
to the expected learning trajectories. A priori we anticipated students’ transition from
the intuitive approach of covariation by experimenting with manipulatives to deeper
conceptualization of covariation between magnitudes and further between variables.
The first task (Gutter Design) required optimal gutter design to maximize water flow.
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The design followed the modelling cycle including students’ engagement in: (1)
experimenting with the folding of a paper (10 cm X 20 cm), observing the covariations
and expressing the algebraic relationship using a variable, (2) designing and exploring
a dynamic model that models the problem in Casyopée, (3) experimenting with
covarying magnitudes and (4) creating the function that models the problem and
resolving it through the available representations. In the first school, 23 students
worked in eight groups of three for 14 hours over four months. In the second school,
25 students worked in eight groups of three for six hours over three months. The data
collected consists of video recordings and audio recordings (four groups). The data
were fully transcribed for the analysis. In this article we analyze the data from the two
focus groups from two schools (first school: group 1 — S1, S2, S3 and second school:
group 2 — S4, S5) during the implementation of the Gutter Design (three hours at one
occasion in each school).

Method of analysis

In the first phase of the analysis we coded categories of episodes (open coding, Strauss
& Corbin, 1998) based on students’ references to covarying magnitudes in the different
settings of the modelling cycle. Then we analyzed qualitative elements (e.g., use of
symbolism) in students’ thinking about function as covariation, taking into account
existing classifications (e.g., Carlson et al., 2002) and the expected learning trajectories
from the Gutter Design. Using continuous comparisons, we traced the initial
categorization of the episodes, taking into account students’ conceptualizations of
function as covariation from simple to complex ones. This resulted in the identification
of six levels of students’ conceptualization. In the second phase, we analyzed line by
line the transcripts in every category of episodes with the help of AiC (recognizing,
building-with, constructing) in order to describe students’ thinking about function as
covariation as an abstraction process. In this analysis we put our notes in brackets
within the transcripts.

RESULTS
Level 1: Identifying dependencies

In this level, the students recognized the dependencies of the covarying quantities
needed in order to model the problem (e.g., the side length and the cross-sectional area).
In the beginning, the students were able to experiment with a paper model and later to
model the problem in the software by creating a dynamic rectangle referring to the
cross section of the gutter. Level 1 appeared at the first hour of experimentation of the
students with (a) the paper model (physical object) and (b) the dynamic rectangle
constructed in Casyopée, where they recognized the interdependence between the one
side (e.g., DC) and the area of the rectangle ABCD in the Dynamic Geometry window
(Fig. 1). For example, in group 1 (school 1) students were experimenting with the paper
model with appropriate folds and observed the interdependence of the sides in order to
maximize the amount of water passing through the cross-sectional area of the gutter.
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1 S1: In order to maximize the water flow, we need to maximize the base, but up to a
point. The bigger she gets the more water will pass, but the side walls
will become smaller. We need both of them to find the...

2 S2: Aha! We need to maximize the area of this rectangle! [the cross-section area]

In this episode, students’ experimentation with the paper model helped them to
understand the situation. Using the model, S1 recognized the dependence of the two
sides in order to maximize the amount of water and observes that both sides are needed
to identify a new quantity (building-with) to work with for solving the problem.
Finally, S2 constructs the identification of dependencies pointing that the required
quantity is the rectangular area.

Level 2: Conceptualizing covarying quantities as magnitudes

The transition from quantities to magnitudes is a critical step in covariation towards
more abstract conceptualizations. In this level, the students recognized that changing a
magnitude causes a corresponding change to another magnitude. This level also
includes cases where students linked the two magnitudes by recognizing that they are
proportional. Level 2 episodes appeared during the first and the second teaching hours
during an introductory whole class discussion as well as while the students were
working with Casyopée and linked the changes between quantities (Dynamic
Geometry window) to those between magnitudes (Geometric Calculation window, Fig.
1) (“As long as one magnitude changes, the other changes too”).

Level 3: Conceptualizing the direction of change

In this level, the students were able to describe the direction of changes between two
magnitudes. Level 3 episodes appeared during the second hour while the students (a)
were experimenting with specific values while folding the paper to determine the cross-
section area, and (b) were observing the changing values of magnitudes in geometric
calculations tab. Level 3 is more sophisticated than the previous level as the students
emphasized the direction of change (“As long as one magnitude decreases, the other
decreases too”). The selected episode (school 1) refers to the experimentation in the
geometric calculations tab in Casyopée.

1  R: How did you construct the rectangle?

2 Sl:Look at the area here. We see that the maximum area is 50 and as we change this
value... [the value of DC].

3 S2: Ok. We selected point C, we constructed a parallel line and then we created it.
We inserted the coordinates, y-coordinate is equal to zero, but x-
coordinate is equal to AD.

4  S1: Ok. Here we cannot say that it is the maximum. We can see that if we change
point C in this straight line [on the segment DC] the area continuously
decreases and maximizes when it [DC] gets its maximum value.

5  S2: Look here [in the geometric calculations tab] it says 50 and we have the
maximum value of segment DC. While we move down point C, we see
that the area is decreasing too.
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By moving the point C, the students correlated the changes in the length of the segment
DC with the changes in the area of the rectangle ABCD in order to maximize the cross-
section area of the gutter. As we see in the excerpt, the interconnected representations
helped S2 to observe the covariation of measurements. S1 observed that changes on
the length DC change also the area values (line 2, recognizing). Then, he was able to
link specifically the two covarying magnitudes (line 4, building-with) to answer the
problem. Finally, S2 conceptualized the direction of the change of the covarying
magnitudes as an abstraction (line 5, constructing) stating that the area decreases as the
length of DC decreases.

Level 4: Conceptualizing covarying magnitudes as variables

In the beginning of the third hour, students were able to observe that the pair of the
covarying magnitudes can be considered as a pair of covarying variables. In this level,
while the students were creating the function to model the problem (automatic
modelling) they were able to observe that one variable can be considered as an
independent variable and a second one as a dependent. This level is more sophisticated
than the previous one as it emphasizes the functional relationship between the two
variables (“If we say DA*DC as dependent (the area) then the independent must be
DC, because through its movement the area changes”).

Level 5: Formalizing the covariation of variables

In this level, the students described the covariation of variables more formal through
the use of algebraic symbolism. Conceptualizations of that kind emerged gradually
during the third hour. In the beginning, the students conceived the changes of each
variable separately and later they connected these variations formally. For example,
group 1 students modelled the dynamic rectangle ABCD in Casyopée, defined the
independent and dependent variables in automatic modelling and opened the table to
examine the values. In the next excerpt, we see how they conceptualized function as
covariation formally by observing the changes in each column of the table of values.

1 S1: From the table we see the maximum value [of DC], that at 5... [the area is 50]
2 S2: It shows the area for each value that x takes with the restrictions we set.

3 SI: If we change the step it shows us the area in relation to the side DC that changes
by 0.5. We see that 5 remains the value of the side DC so as to have the
maximum area. We notice that for the different values of x the area
changes and reaches its maximum in DC [equal to 5]

4 S3: Wait. For the various values of x, the area changes and finds a maximum for x =

5 with the area equal to f (5) = 50.
The three students observe the variation of the side DC and its value that maximizes
the area ABCD. By linking DC with column x of the table values (line 2), S2 helps S1
to conceptualize the variation of DC as the variation of the independent variable x (line
3, recognizing level 4). Then, S1 experiments with different values in the step of the
table so as to determine the maximum area (line 3, building-with). Finally, S3
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conceptualizes function as covariation by relating the changes in the two columns of
the table as dependent and independent variables (line 3, constructing level 5).

Level 6: Formalizing covarying variables and connecting representations

In this level, the students described the function as covariation using algebraic terms
as well as different representations of function. Level 6 appeared during the last
experimental hour in both schools when the students had already created the required
function in Casyopée using the automatic modelling functionality and answered the
problem. For example, using the graph and the algebraic formula f(x) = 20x — 2x°
provided in the Algebra window the students of group 2 (school 2) observed the
changes of the two variables and identified that the maximum point is (5, 50).
Challenged by the researcher, they were engaged in linking the table of values and the
graph in order to explain how they got to their final answer. In doing so, they used
primarily algebraic terms.

2 R: Using the graphs can you answer the problem? Which is the better folding?

3 S4: We will find out which point on the x axis has the maximum point and we will
identify the coordinates of the peak. Look here, it changes! Look, I
move the point and the area changes.

4 S5: We can get the same result, I mean we can find which x corresponds, which y
corresponds here and we say that in the top, where the highest point
lies, it is the largest and we have found the coordinates from both the
graph and the table of values.

CONCLUSION

We used modelling activities to identify levels of students’ conceptualization of
function as covariation in their transitions in the different settings of the modelling
cycle (Lagrange, 2014). The analysis revealed six original hierarchical levels, which
inform existing research about the evolution of students’ functional thinking in
secondary education while working with digital tools combining algebraic and
geometrical representations. Our study enriches existing levels of covariation by
providing a more subtle categorization of students’ thinking taking into account the
specificities of the learning context and the rich available repertoire of tools and
representations. The crucial role of tools can be highlighted as follows: (a) at level 1
and 2 the transition to the identification of dependencies and the conceptualization of
covariation perceptually at the level of quantities was supported by the manipulation
of the dynamic rectangle ABCD in the Dynamic Geometry window, (b) transition to
levels 3 and 4 where the students moved to describing covariation as the direction of
change and working with covarying magnitudes was facilitated by the use of geometric
calculations functionality, and (c¢) further move to levels 5 and 6 indicated by the formal
use of algebraic terms and the extended use of multiple representations of functions
was promoted through the automatic modelling functionality (i.e. favoring definition
of independent and dependent variables) and the availability of multiple and
interconnected representations of Casyopee.
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Making Connections: Launching a Co-created Digital Mathematics
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In this project we use technology as a tool to make the connections within school
mathematics more visible. Drawing on complexity thinking, participatory curriculum
design and non-linear models of mathematics learning, we re-conceptualize the
curriculum as a dynamic, co-created, web-enabled network of nodes. We describe how
we developed the nodes and connections using video data we gathered from problem
solving forums held with mathematics educators. We share participants’ thinking as
they identify and connect concepts and processes related to algebraic thinking. We also
describe how their building of physical models to relate the concepts enhanced how
they thought about the connections in school mathematics and helped us refine the
digital features of the network.

Keywords: curriculum design, technology, complexity thinking, algebraic thinking.
RATIONALE AND PURPOSE OF THE STUDY

In this project we explore technology as a tool for making and displaying the many
connections among mathematical ideas within mathematics curricula. Connecting
concepts, processes, and representations has been shown to increase awareness of
underlying mathematics structures and concepts for students and teachers (Blomeke &
Delaney, 2012; Johanning, 2010). We have found many curricula align with this
literature in emphasizing the value of making connections. For instance, the
“intertwinement” of concepts within and across mathematics domains is a key principle
of Realistic Mathematics Education (Van den Heuvel-Panhuizen, 2010) and several
provincial curriculum documents in Canada include statements such as “teachers are
expected to weave together related expectations from different strands, as well as the
relevant process expectations” (Ontario Ministry of Education, 2005, p. 8). And yet,
we find the structure of print-based curriculum documents often obscures the
connections that can be made. That is, curriculum documents and related resources
tend to use a hierarchical, linear sequence of chapters organized by strand (i.e.
geometry, algebra etc.). This structure offers little support to educators to connect
mathematical ideas or to help students make these connections. Thus, in this project
we explore ways to leverage technology to create a representation of mathematics
curriculum as a network of connected ideas. This approach goes beyond merely placing
a curriculum resource online but rather uses the affordances of digital technology to
create a dynamic and responsive curriculum.

Working with mathematics educators across Canada, we re-conceptualize the
mathematics curriculum as a dynamic, co-created and web-enabled network that
teachers can use to plan their program. This mathematics curriculum network makes
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the connections within school mathematics highly visible by representing the elements
as layers of interconnected nodes in a digital interface. When complete, the curriculum
network will also include links to resources such as tasks, multiple representations, and
samples of student thinking related to concepts in the network. The network is web-
based so that educators, no matter their role or location, can view the network
connections and contribute ideas. In this way, the network will continually emerge as
nodes, connections and resources are added.

In this paper, which connects to the conference theme of “Mathematics curriculum
development and task design in the digital age”, we outline our theoretical framework
and summarize the process of developing the network. Then, through an analysis of
data gathered in this study, we explore the ways participants identify and connect
concepts and processes related to algebraic thinking and consider how their dialogue
and model building enabled us to enhance the network. A longer version of the paper
with visual images of the network will be distributed at the conference.

THEORETICAL FRAMEWORK

The structure of our curriculum network is based on articulations of complexity
thinking from curriculum studies (Doll, 2008; St. Julien, 2005), educational change
(Lemke & Sabelli, 2008), and mathematics education research (Davis & Simmt, 2003).
Two aspects of complex systems from this literature are central to our project. First, a
complex system is a network of interconnected elements or nodes arranged in multiple,
co-implicated layers (St. Julien, 2005). Networks are inherently more flexible than
linear or hierarchical structures because their structure facilitates movement from node
to node in a non-linear way, including skipping adjacent nodes if desired (Doll, 2008).
Drawing on this aspect of complex systems, we envision school mathematics as a
network of layers of interconnected nodes. An individual node might, for instance,
represent a mathematics concept, which can be connected to other nodes in the
network. A second aspect of complex systems related to our project is that these
systems are generative and adaptive as a result of interactions between elements in the
system (St. Julien, 2005). Similarly, our curriculum network has the capacity to grow
and adapt and to reflect multiple and emergent approaches to mathematics since
unlimited nodes and connections can be proposed. Moreover, the use of a digital
interface means nodes and connections can be added with ease.

Participatory approaches to curriculum design are a second theoretical basis for our
work. We concur with the view that participatory approaches to curriculum design
focused on how teachers enact mandated curricula result in more relevant and robust
teaching (Clandinin & Connelly, 1988; Cochran-Smith & Lytle, 2009). In addition,
researchers who study how curriculum unfolds in mathematics classrooms highlight
the value of teachers working together to create an enacted curriculum in response to
their needs (Boaler, 2002; Breyfogle, McDuffie & Wohlhuter, 2010; Drake & Sherin,
2006). Our curriculum network acknowledges the situated work of teachers and
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enables their insights to be gathered and shared. Educators have contributed to the
development of the initial network and can continue to do so in future iterations.

Non-linear models of mathematics learning also inform our work. These models
recognize that students build their understanding in diverse ways. We are particularly
drawn to learning pathways that are non-linear and that acknowledge that as learning
takes place the anticipated pathway may be altered (e.g. Van den Heuvel-Panhuizen,
2008; Fosnot & Dolk, 2001). For example, Confrey et al. (2012) combine 18 research-
based learning trajectories into a curriculum map for Grades 1 to 8 mathematics
learning. The trajectories are linked to curriculum standards with each standard
represented as a hexagon connected to other standards. This curriculum map provides
guidance to educators without specifying paths to follow. These projects prompted our
thinking in many ways. Do some concepts have more points of connection than others?
In what ways do educators understand concepts and make connections among them?
How can the dynamic nature of connections be displayed?

METHODOLOGY

In the pilot study for this project, we consulted with a technology provider to identify
the digital tools best suited to create the network of nodes we envisioned. Features of
the resulting design include that users/contributors can: start anywhere in the network
and follow an existing path or choose to forge a new path; learn about a connection or
node by clicking on the node or the connecting line to see explanations and resources;
add nodes and connections; upload resources related to elements in the network; and
bookmark paths and resources for future use. The digital interface tracks proposed
changes to the network so researchers can analyse suggested changes before adjusting
the network. Users/contributors can also provide comments about their experience with
the network. During the pilot study we also developed a process, as described below,
for engaging educators and gathering their ideas for nodes and connections.

We chose algebraic thinking as a starting point for the network as algebraic thinking is
taught in elementary and secondary grades and can be viewed in many different ways.
We wanted to ensure that teachers across grades would be able to contribute to the
initial development of the network. In addition, algebra makes use of many
representations and models that connect to one another and to other aspects of
mathematics. We felt this characteristic might be beneficial for developing the features
of the network.

Data Collection and Analysis

In the first phase of data collection, we held four data gathering forums of one to two
hours in length. The forums took place in three Canadian provinces and included 16
mathematics educators. At each forum, after obtaining informed consent, we explained
the project and then asked participants to work in groups of two or three on a problem-
solving task intended to stimulate algebraic thinking. Participants made note of any
mathematics concepts, processes or ideas that seemed salient as they worked on the
task. After 20-30 minutes, we asked each group to use the materials provided (e.g.
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straws, connectors, pipe cleaners, sticky labels, chart paper etc.) to create a physical
model of the noted ideas and the ways the ideas might connect. Participants could
include as many nodes and connections as they wished and name the nodes using their
own terms. We explained that in our analysis of the data, we would bring together
models from all the groups to create an initial set of nodes and connections for the
network website. We video recorded each group in each forum, photographed the
models they created, and gathered their notes and drawings. This process resulted in
the creation of six different models focused on algebraic thinking.

We began our analysis of the data by focusing on the nodes. Because each group had
chosen their own terms, we created codes to use for related participants’ terms. For
instance, we decided on ‘conjecturing and verifying’ to encompass participant node
names such as “conjecture”, “test conjecture”, “trial and error”, “verify”, and “guess
and check”. Next, we listed all of the nodes in the models using these codes. We then
analysed the connections among the nodes in each model. An example of a connection
would be from a node labelled ‘patterns’ to a node labelled ‘algebraic expressions’. We
created a matrix of the proposed connections across the models and determined the
frequency of each connection. This helped us determine the structure of the initial draft
of the web-based network. We also worked with transcripts of the video recordings of
the groups and conducted a content analysis to get a sense of the participants’ algebraic
thinking as they worked on the task, of how they identified mathematics concepts and
processes, and of how they decided to connect the elements in their model.

After the web-based network was populated with the information from these
participants, we entered the next phase of data gathering. In this phase, participants at
a national mathematics education research meeting were invited to access the website
and provide feedback on the nodes, connections and other features of the network.
Participants could use the digital interface to propose new nodes and/or connections,
suggest changes to the descriptions of the nodes and connections, suggest resources
related to a node or connection, and comment on the features and utility of the emerging
network. Information from these phases of the project helped us provide descriptive
text to explain each node and connection. We are in the process of analysing these
responses and will make changes to the network based on the participants’ input. This
will constitute the second iteration of the co-created network.

In the final phase of data collection, we will email a link to the second iteration of the
network to the participants from the first phase of data gathering and asked them to
provide comments and suggestions on the network and the features of the website.

The results from each phase of data collection will be described in the longer version
of the paper and the latest iteration of the curriculum network will also be shared.

INITIAL OBSERVATIONS

In this section, we describe the nodes and connections proposed by the 16 participants
in phase one. We also share some examples of the algebraic thinking of these
participants as they collaborated to build their physical models and we summarize other
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contributions the participants made that helped us more fully use technology to display
the network.

Proposed Nodes and Connections

Analysis of the participants’ models led to the identification of ten initial nodes. Six of
the nodes refer to mathematics concepts (‘mathematical operations’, ‘patterns’, ‘table
of values’, ‘algebraic expressions’, ‘relations/functions’, and ‘probability’) while four
nodes refer to processes (‘communicating & collaborating’; ‘representing’;
‘conjecturing & verifying’; and ‘comparing, connecting, reasoning & analysing’).
Across the models, 31 distinct connections among the ten nodes were proposed, with
many connections proposed by several groups. The most highly connected nodes were
‘mathematical operations’, ‘patterns’, ‘table of values’ and ‘representing’. Analysis of
the transcripts shows that groups chose different starting points for their models though
they had all worked on the same problem-solving task. For instance, this excerpt is
from a group that chose ‘patterns’ as the starting node.

Re: [ feel like something like patterning is something that’s so at the core of any of
these types of problems, so almost like if that is a centre of something, right?

Gi: ... So do we want the little connector of patterns in the middle? And then do
we have things coming out of it?

Th: I think so. That’s our core.

Another group settled on ‘representing’ as their starting node, after some discussion.

Ra: So maybe we should have, maybe we should start with representations. Patterns
can go, can come somewhere else ...

Ja:  Yeah.
Ra: ...because then we can have everything feeding into that a little bit, right?
Ja:  Well, and the way I was thinking about it is that, like, representations . . . are

sort of, like you could, I think you could do representations with everything.
Insights into Mathematical Thinking

Many examples of participants’ mathematical thinking were evident in the data. For
instance, participants spoke about ‘algebraic expressions’ in several different ways.
One group emphasized that ‘algebraic expressions’ was at the centre of things and also
discussed in what ways it connects to ‘patterns’. They came to an agreement that these
concepts went together as parts of the same node as ““algebraic expressions is part of
pattern”. Another group thought about algebraic expressions differently. They
discussed what might be encompassed in the term “algebraic representation” and how
they thought this term might relate to equations. One participant urged “I mean all of
it 1s algebraic representation” not just algebraic expressions or equations.

As another group worked on their model, they discussed the nature of conjecturing and
verifying and, in particular, the role calculating might have in verifying. An excerpt of
this conversation is provided.

Js:  Testing the conjecture takes you back to calculation because that’s how you’re
testing it, right? Okay . . . I’ve got comparing here.
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Ad: Okay. So comparing, ah, so ah, we did that. So the comparing is happening
when we connect.

Am: And it’s connected to the verifying.

Ad: Connected.

Js:  Yes.

Ad: So where was our verifying? I don’t think we put it in here, did we?

Am: Verify —it’s right here. . . .

Js:  Waiting to be placed. That’s my, my question, where does the verify go?

Ad: Oh! Gotcha. Test conjecture, you have to verify, okay.

Js:  And when, did, did the verify come out of the test or did it come out of the
cycling back through the calculation?

Augmenting the Network with Digital Affordances

Our analysis also suggests an intriguing dynamic between participants’ mathematical
thinking, their efforts to build physical models, and the ways their dialogue prompted
our thinking as we refine the network and website. This was evident in several ways.
An example of this dynamic is from the group that discussed the role of calculating in
conjecturing and verifying. They wanted to show the iterative nature of this process in
their model. During their discussion, one person suggested using strands of wire.

Js:  And what I want, because I did jewellery [making] right, what I want is just
flexible wire. And I want to be able to put flexible wire between two nodes
every time we double back, so you’d see, like well there’s one and there’s
another and there’s another and there’s another.

Ad: And another and another.

Js:  And to demonstrate that that’s a really strong link between those two.

Analysis of this passage and a few others, as well as our matrix of connections,
suggested it was important to include the frequency or strength of connections in the
network. To achieve this, we decided to vary the width of the connecting lines between
nodes based on the frequency of the connections that were proposed by participants.

Another example of how the participants prompted our thinking was the way each
group wrestled with how to locate the mathematics processes in their model. One group
wrote seven processes on chart paper and described how they would wrap the paper
around their model so the processes would apply to all elements of the network. A
second group identified three processes they wanted to include throughout their model
and did so by intertwining three different coloured pipe cleaners into a braid wound
around each connection. This prompted us to think of ways to use colour to differentiate
and emphasize mathematics processes in the digital model. Another participant, a
secondary mathematics teacher, suggested using other digital affordances such as
pattern, motion, sound, size, and proximity in order to include and emphasize different
kinds of information in the network. Although we had already considered a few of the
ideas that emerged, several other ideas have encouraged us to think boldly and
creatively and to more fully employ digital affordances in the network. Analysis of the
feedback from participants in the final data collection phase will be included in the
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longer version of the paper and will provide additional insights about the digital
features in use.

CONCLUDING COMMENTS

In keeping with complexity thinking and participatory curriculum design, we have
found the interactions in the data gathering sessions and through our analysis of the
data to be very generative. These interactions and our response to them ensure that the
network develops along dimensions that are meaningful to participants.

We have found that the process of engaging in a mathematics task and of trying to build
a model using limited physical tools pushes the mathematical thinking of our
participants, and creates i1deal conditions for them to suggest ways that their physical
model could exist more robustly in a technology environment. They recognize the
complexity of the representations and see the affordances that technology can add so
that the mathematics curriculum network can capture the complex and multifaceted
connections in school mathematics in a way that is helpful for mathematics educators.
Although aspects of the study may be context specific in that they pertain to the
curriculum and resources in the provinces where the forums took place, we expect the
curriculum network itself to be robust enough to adapt to many contexts and to
contribute to non-linear ways of thinking about mathematics teaching and learning.
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An interactive text in Precalculus: students’ response
Margo Kondratieva
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This paper discusses an implementation of an interactive text on functions’
transformations in a pre-calculus course and students’ feedback on this learning
experience. Students’ perceived ability to make sense of this topic is viewed through
lenses of the media-milieu dialectics. Comparison of results obtained from different
groups suggests that in many cases interactive texts are perceived by students as more
engaging and efficient for learning than ordinary textbooks. Oftentimes, both prior
oral instruction and autonomous study, consisting of going back-and-forth between
interactive diagrams and written text, contribute to the milieu construction. From the
milieu the meaning is derived and problems’ solutions are obtained. Even then, this
experience does not guarantee a development of mathematical curiosity.

Keywords: interactive text, media, milieu, meaning construction, functions’
transformations

INTRODUCTION

Recent decades witness the growth of universities’ enrolment and the increased
diversity in students’ backgrounds and levels of preparedness. Development of new
teaching initiatives is a natural response to this situation. Among the keywords that
describe desirable teaching and learning experiences are engagement, flexibility and
challenge. Engagement includes having active participants, enthusiastic professors,
meaningful material, connection between theory and practice. Flexibility applies to
each scheduling of classes, architecture of learning spaces, teaching styles and
evaluation. Meeting a challenge assumes an environment where it is safe to take a risk
and overcome learning difficulties. Modern technologies allow developing learning
environments that have a potential to support and enhance the above desirable features
in the teaching of mathematics. One such example is the use of interactive tools
embedded in a regular mathematical text in such a way that students can manipulate
and interact with formulas and diagrams. The benefits of the use of interactive software
(e.g. dynamic geometry and computer algebra systems) by itself have been studied by
several researchers. While using interactive software, students find patterns, observe
dynamic invariants and produce their own conjectures and interpretations. These
experiences prepare them for further generalizations, formalizations and more
elaborate mathematical ideas (see e.g. Kondratieva, 2013 and references there). De
Villiers (1990) suggests that “experimental explorations of objects and ideas are
essential for development of mathematical intuition.” According to Freudenthal
(1971), intuition and prior experience constitute an essential basis for growing elements
of formal mathematical thinking, which “cannot be simply imposed on a learner in
their final form”. When the Ilatter happens, the students may ‘“experience
‘epistemological anxiety’ resulting from not being able to understand the meaning and
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purpose of the actions they perform, even if they receive high marks for their
performance” (Wilensky, 1993). Similarly, Sfard (2003) suggests making meaning is
one of the main learners’ needs.

In this respect, it is important to note that “using technology to develop mathematical
textbooks and tasks is an attempt to create new venues for engagement with
mathematical meaning” (Naftaliev & Yerushalmy, 2017). The project described in this
paper is one such recent attempt undertaken at Memorial University.

THEORETICAL FRAMEWORK

An interactive text is a resource for students’ learning. Chevallard (2006, p.29)
distinguishes between two types of resource, namely media and milieu. The media is
defined as “any social system pretending to inform some group of people about natural
and social worlds". In contrast, milieu is regarded as devoid of intention to give any
answers and behaves like a fragment of nature. But it is the students’ interaction with
milieu that is identified as a critical condition for their learning. Wozniak (2017, p.45)
elaborates on media-milieu dialectics in the process of inquiry:

Experiments, observations are then used to create a milieu to test and validate the
information provided by these media. ... The outcome ... is based on a dual assessment of
the reliability level and reception quality of the information provided by a media: “Is it
right?” and “Do I understand?” respectively. Accumulation and testing of resources
contribute to the validation of the produced answer and the construction of a milieu is fed
by the validation of information provided by the consulted media. Thus milieus providing
feedback to media may combine and evolve into a larger milieu of the problem situation.

However, this scenario is not necessarily limited to a problem solving student activity.
Even 1n the situation of lectures,

this dialectics is possible: while the lecturer is of course, basically, acting as a medium, he
may use the blackboard to create a milieu and let the students observe how he interacts
with it... The main problem is ...to what extent do students develop a critical and
autonomous relationship to the “answers” found in the media (Grenbak & Winslew, 2015)

Like Grenbak and Winslew (2015), when designing an interactive text, we intend to

provide students with media, which they could access on their own, and milieus in which
they could both acquire and validate adequate relationships to the subject.

In order to evaluate the implementation of an interactive text, particularly the process
of students’ interactions with embedded technology while solving numerous problems
within the text, we ask the following questions (Wozniak, 2017, p. 46): (1)
Mesogenesis: Did the milieu evolve during the inquiry process? Has the media-milieus
dialectics been used? How has the answer to the problem been validated? (2)
Topogenesis: How and by whom is the milieu made? (3) Chronogenesis: How has the
teacher managed the time of the inquiry process?
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In order to collect students’ feedback on interactive texts one can adapt the
characteristics of effective teaching behaviours most important for students’ learning
and originally identified by Feldman (2007) in the context of face-to-face teaching.
When reformulated in the context of interactive texts, the criteria related to the media
quality are: (1) clarity of the written text explanation, (2) written text organization. The
criteria related to embedded milieu are: (3) the interactive part being engaging, (4) text
ability to lead students to conjectures and to answers to their questions. The criteria
related to media-milieu dynamics are: (5) text usefulness for students’ learning and for
critically reviewing the meaning of the information given by the media, (6) text ability
to motivate and generate further interest in the topic and (7) overall students’
satisfaction with their experience of working with interactive texts.

We now describe a case of implementation of an interactive text and report on its
perceived quality and success in view of the above criteria. The research question is:
what can be said about the milieu-media interplay based on students’ responses?

DESIGN, IMPLEMENTATION AND STUDENTS’ REACTION
The interactive text

The mathematical theme for our interactive text was Functions’ Transformations. This
topic is part of a pre-calculus course offered for first year students at Memorial
University. The course main aim is to prepare students for the calculus sequence and
students are advised to take it based on their results in the mathematics placement test.
About 1000 students take the course each year. The course is diverse in terms of
mathematical topics and dense in terms of the amount of material covered in class in
one semester. Approximately 30% of students enrolled in each semester fail the course.
Many students need more time to study for grasping each topic. Having extra resources
such as interactive texts could potentially improve the success rates.

The unit on Functions’ Transformations is motivated by the following task: given two
curves and knowing that one of the curves can be transformed into another by an
elementary transformation such as translation, reflexion, stretch or a combination of
them identify these transformations. This task could be relatively easy if only one
transformation is involved. However, it could be a challenging task if several
transformation are combined. By working with the interactive text students become
familiar with the action of each elementary transformation. The minimum goal of this
unit is for students to know how the graph of a function y=F(x) will change if the
algebraic formula is altered in the following way y=aF(kx+h)+m for some real

numbers a,k,h and m.

The text includes many interactive diagrams (ID) among which one finds different
types: illustrating, guiding and elaborating (Naftaliev & Yerushalmy, 2017).

[lustrating IDs demonstrate the objective of the activity to the reader, usually by offering
a single representation and relatively simple actions, ... for example, an illustrating 1D
might allow learners to manipulate rather than read a definition. (ibid, p.156)
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For instance, the diagram in Figure 1 (left) shows a point reflected with respect to an
axis of symmetry. The learner can change the slope of the axis as well as the position
of the red point A, observing what happens to the blue point A'. The diagram
emphasizes that the segment AA' 1s always perpendicular to the axis of symmetry that
acts as a mirror in which point A' is a reflexion of A.

can look at the other graphs by clicking the boxes on the left-hand side

5 0s*,
-
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Figure 1: Interactive diagrams: axial reflexion of a point (left) and of a curve (right).

Once the 1dea of a point’s reflexion is understood, the learner is invited to extend this
notion to the case of a curve and observe what happens to graphs of various functions
when they are reflected with respect to either x or y axis. The reflexion can be viewed
point-wise, that is, the image of every point can be identified as a point on the reflected
curve. In this approach the reader is led to the idea that the reflexion in the y-axis of
the graph of y=F(x) is related to the sign change of the x-variable: y=F(-x), while the
reflexion in the x-axis is related to the sign change of the y-variable: (-y)=F(x), which
is equivalent to y=-F(x). The reader is also directed to the idea of symmetry and

invariance of some curves w.r.t. the x-axis reflexion or a composition of two reflexions.
This is achieved by using the guiding diagram which

provides a means for learner exploration, but it is designed to also set boundaries for the
available exploration options in such a way that it narrates the story to be learned by
working on the task. Guiding IDs are designed to point students toward specific actions
intended to support them in developing specific mathematical ideas, (p. 156)

in our case, the symmetry of graphs of even and odd functions (Figure 1, right).

Next, students are invited to solve a quiz involving a greater variety of related
problems. To assist their progress they can use elaborating diagrams, which

present occurrences relevant to the problem being explored while working on the task.
They attempt to provide a means for students to engage in activities that lead to the
formulation of a solution in different ways. (p. 156)

At this point, students could enter a function of their choice and graphically verify the
predictions of prior algebraic analysis. It becomes especially valuable when all three
elementary transformations studied each in a separate section are combined.

As a separate section, we had an entertaining exercise asking students to move the
hands of Mark the Mathematician by using the control panel related to functions’
transformations (Figure 2, left) to achieve one of the positions shown in Figure 2.
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Figure 2: An entertaining exercise on functions’ transformations.

The role of this exercise is to establish the connections between the terminology and
the visual representation of the reflexion, shift, and stretch in either vertical or
horizontal directions in an entertaining form, without any references to algebra.

Next section gives the details on the project implementation and students’ feedback.
Two stages of implementation and students’ reaction

The project involved three groups of students, a total of 355. All students were given
one week to complete their work. They could form study groups or do it individually.
Participation in the project warranted a bonus mark in their course. After completing
all work students were asked to give feedback on the related learning experience. All
students responded to a survey and selected students were also interviewed.

The project included two stages. In Stage One the interactive text was tested with
Group 1 (N=25) and Group 2 (N=30), and in Stage Two — with Group 3 (N=300).
Group 1 consisted of pre-service math teachers who already had a bachelor degree in
mathematics and thus used the text for a review of the topic. Groups 2 and 3 consisted
of pre-calculus students who basically learned the topic for the first time (some of them
could have seen some of these ideas in the high school, but we did not assume that).
Groups 1 and 2 were given very brief description of the project and no explanations of
the mathematical topic. They were asked to read the text and follow all the instructions
within the text to perform all exercises and quizzes. Thus, in Stage One of the project
the students were responsible for building the milieu from reading and interacting with
the software. Table 1 shows the average response for each group of students based on
the Likert scale: 1=strongly disagree, 2=disagree, 3=neutral, 4=agree, S=strongly
agree. We see that students from both Group 1 and Group 2 found the text well-
organized (line 2), however for Group 2 the explanations appeared to be a bit less clear
than for Group 1 (line 1). In both groups the interactive components helped to clarify
the ideas (line 6), however again Group 1 gave a bit higher mark than Group 2. Looking
at these responses we may propose that in the case of students in Group 1, the milieu
was constructed from the media presented in the text but was also informed by their
previous experiences with mathematics. The interactive component helped them to
make sense of the ideas that they once were familiar with in the past but perhaps forgot
some of them and now tried to recall and upgrade their knowledge using the interactive
text. Based on students’ feedback this experience was more satisfactory for Group 1
than for Group 2 (line 8).
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Statement Group 1| Group 2| Group 3
(N=25) (N=30) (N=300)

1. The topics are well explained 4.29 3.6 4.08
2. The text is well organized 4.29 4.4 4.18
3. The interactive part is engaging 4.54 3.7 4.09
4. This interactive text helps me to answer some | 4.7 3.2 4.19

questions that would be harder to answer from just
reading a book

5. This text is useful for study and understanding 4.33 3.5 4.27
6. The interactive components help to clarify ideas 4.58 4.1 4.08
7. This text made me curious about mathematics 3.41 2.8 3.31
8. Overall I am satisfied with the experience 4.25 3.4 4.20

Table 1: Students’ feedback on their experience with interactive text.

Our philosophy in constructing the first version of the interactive text was the primacy
of the written text over the interaction part. We assumed that students would read the
discussion first and use the interactive part only when they felt it was necessary to
clarify and make sense of some information. However we found that many students
from Group 1 actually jumped ahead and played with the interactive components first.
In doing that, they found the interactions more engaging (line 3) and praised the
interactive text more in comparison with a textbook (line 4) in terms of finding answers
to their questions. We also learned that students do not like to read long explanations,
especially on the screen and they generally prefer to receive the information in a variety
of modes besides the written one.

Based on the analysis of students’ feedback in Stage One, we made the following
changes: (1) We put more actions up front before discussion of theory in the interactive
text. In particular, the activity in Figure 2 had been moved to the introduction. (2) We
created videos to replace several written explanations. (3) We asked the instructor to
give a brief mathematical introduction to the topic. These modifications were tested in
Stage Two with a bigger group of pre-calculus students, Group 3 (N=300). The results
are shown 1in last column of Table 1. In this scenario, the milieu was constructed from
the information given by the instructor and some experimentations with interactive
components before students read the text or watched videos. This seems to improve
students’ perception of the clarity and the quality of explanations (line 1). We also saw
an improvement in students’ opinion about the interactive text as being engaging (line
3), useful for study (line 5) and overall satisfaction (line §).

CONCLUDING REMARKS

A positive outcome of this project is that 91% of students in Group 3 agreed with that
the interactive text is useful for their study and understanding of the topic. This figure
1s almost the same (92%) for Group 1, but is an improvement compared to 67% of such
responses in Group 2. We partly attribute this improvement to the three changes we
made before working with Group 3. From students’ responses we derive tentative
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answers to the questions such as how, when and by whom the milieu is created allowing
students to interpret the information given in the media.

The following freshman’s response confirms that milieu construction is a gradual
process requiring both the instruction given in class and autonomous study at home:

I have had moments like ‘oh, this is related to that’. For example, I am in a lecture and I
kind of understand what’s happening; then maybe a couple of days later a lecture on the
same topic, and I kind of understand what’s going on; and then I get home and I apply
myself what I have learned, and I really have time to compare and absorb it, then I have
this aha moment; (...) or the next day in class, ‘oh, yeh, I did it last night when I did my
practice problem or my reading, it completely makes sense, I have it!’

An autonomous study from an interactive text may not be sufficient for a freshman;
prior instruction significantly contributes in the milieu construction for this student:

The instructor definitely has a big impact. Having somebody to walk you through the
material is very useful. With this piece, it was some limited instruction before we used the
product, but it was important for me.

Many students confirm that interactive diagrams help to clarify the meaning:

In a book I do not see what exactly happens, here I can manipulate as much as I like.
Through the interaction, I can find some answers if [ got a question when I read the text.
It helped to create the base knowledge (...) greater return than from reading the book.

We also find that students have different requirements and expectations about the
interactive text compare to a book. For example, “reading on the screen is different
from reading in a book. I would prefer a bullets list format. Especially on a tablet.”

Finally, because interactive texts give students an opportunity to engage with
mathematical meaning, to progress at own pace and to meet challenges “in the comfort
of your own home”, we were hoping that this experience would generate some curiosity
and interest in the study of mathematics. And indeed, about 39% of students in each
group agreed with that proposition. But although some students found that “it made it
interesting as I got to play around with the questions to help me better understand the
topics”, this item received the overall lowest mark (see also line 7 in Table 1). As stated
by an interviewed student, “It did not made me crazy curious, but it was somewhat
interesting; and being a non-math person I thought, ‘this is not bad!” ... I guess,
everybody has their own preferences and inclinations”. This situation shows that even
if students are engaged and extract mathematical meaning from the created milieu, they
still could remain indifferent towards further exploration of the subject. However, this
issue might be a topic for a different paper.
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Teachers who encounter difficulties when implementing technology in their classes
often hesitate to give it another try. They expect too many technical problems to
emerge, reducing time spent on learning mathematics. Still, if a task requires only short
class-time they might try. Four mathematics teachers in different upper sec-ondary
schools in Iceland assigned a silent video task in their classes in fall 2017. Such tasks
consist of asking students to record their commentary to a short silent mathematics
film. Teachers were positively surprised by their students’ technologi-cal abilities.
Nevertheless, because the task was not directly related to final test preparation, they
expressed that they would unlikely use it again. In this paper, a review of technology
and silent video activities and related research will be outlined.

Keywords: silent video task, upper secondary school, in-service mathematics teachers,
use of new technologies in class, formative assessment.

INTRODUCTION

Leung and Bolite-Frant (2015) ask for the design of tasks that encourage discourses for
mathematical knowledge mediated by tools in the classroom. Silent video tasks are an
example of such tasks. Not only do they encourage classroom discussions about
mathematics, they also seem to open teachers’ eyes to the fact that students are capable
of using technology and that the intended use of technology in mathematics class must
not necessarily evoke worries or anxiety for the teacher. This article aims at offering
some answers to the question: What are Icelandic upper secondary school mathematics
teachers’ expectations of and experiences with using silent video tasks in their classes?
Some preliminary results will be presented regarding three particular issues connected
to teachers’ anxiety when it comes to using new technology in class.

Silent video tasks

Silent video tasks were developed and tested in a Nordic and Baltic collaboration
project in 2014. Silent videos are animated, short films without any text or sound that
show mathematics dynamically, each video focusing on one mathematical concept. In
a silent video task, students get the assignment to watch a silent video as often as they
like, discuss it in groups of two, and add their commentary to it, i.e. to record a voice-
over to the video.

This activity can be implemented as an introduction to a new mathematical concept or
as a summary of a topic; the former serves as a tool for collecting preconceptions and
initial ideas and the latter helps assessing pupils’ understanding of previously studied
concepts and to overview possible misconceptions and misunderstandings. In both
cases, problems can arise from imprecise language use and it can be addressed to clarify

Proceedings of the 5" ERME Topic Conference MEDA 2018 - ISBN 978-87-7078-798-7 163



concepts. Ideally, students should receive feedback on their solutions and in a follow-
up lesson some student solutions can be chosen for viewing to initiate a group
discussion.

Silent video tasks as formative assessment

Suurtamm et al. (2016) claim that the primary purpose of an assessment is to improve
student learning of mathematics. One cognitive aspect designed to improve student
learning is when students get the opportunity to explain to others and/or to receive
explanations from their classmates. Silent video tasks not only offer students an
opportunity to do so, but also that they become aware of the fact that once they are able
to explain to others what they have learnt, they also improve their understanding. One
of the students who completed the silent video task commented the following in an
online survey: “You don’t know the material well enough if you cannot explain it to
others in a good [understandable] way.”

Teacher feedback to silent video task solutions can be used to suggest what can be
worked on further and not only to measure the students’ current ability. In other words,
silent video tasks can be used as formative assessment, supporting students’ learning
of mathematics.

THE STORY BEHIND SILENT VIDEO TASKS

The idea of silent video tasks emerged in the winter 2013-14 in a Nordic and Baltic
GeoGebra Network teachers’ and teacher educators’ collaboration project. After
developing the task, teachers in four countries participated in a teaching experiment
and tried out silent video tasks with their pupils in grade 5-13. They divided their pupils
into groups of 2-4 to work on and record their commentaries. In some exceptional cases
only one pupil worked on a solution. In total, approximately 450 pupils and 21 teachers
participated in the teaching experiment. Teachers answered an online survey with two
open questions regarding their pupils’ results in general and five Likert-scale questions
each for every group of pupils regarding their reactions to the task. The teachers
reported that 94% of their pupils’ groups reacted positively to the task and their pupils’
groups communicated more than in usual class.

As one of the teachers who participated in the teaching experiment, 1 felt sceptical
before assigning the task. Listening to my pupils’ solutions | had an “aha!-moment”
realising the potential of the task to offer insight into my pupils’ conceptual
understanding. I wondered what expectations and experiences other teachers had and
that 1s the key topic in my ongoing PhD study.

MOTIVATION

The Icelandic mathematics curriculum for upper secondary schools lists several goals
regarding students’ mathematical understanding and their ability to apply mathematical
methods to tackle various cognitive demands. Still, according to a report written for
the Ministry of Education, Science and Culture in Iceland, mathematics teaching
practice in Icelandic upper secondary schools is mainly limited to standardized
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calculation methods and running down lists of things to cover (Jonsdéttir et al., 2014).
This resonates with the international TIMSS study that revealed at least 80% of the
lesson time in 8" grade mathematics class was used for solving problems and that on
average in all countries but Japan most problems (between 63% and 77%) were
problems of low procedural complexity (Hiebert, 2003). To reverse this trend, I was
interested in seeing whether silent video tasks might be used to break up the common
teaching practice routine and awaken teachers’ interest in practices more related to idea
of the thinking classroom described by Peter Liljedahl (2016). Namely, a thinking
classroom 1s organised in a way that students are expected to think and given
opportunities to think through activities through continuous discussions (Liljedahl,
2016).

As a teacher with only two years teaching experience in upper secondary school, 1
made small steps towards becoming the teacher that [ wanted to be. Participating in the
silent video teaching experiment reminded me that I wanted to change my teaching
practice. When I started my PhD studies, three years later, this experience still stuck
with me. I came to realize that the experience that [ saw happening with my students,
as they perceived knowledge in the process of communication resonated with Anna
Sfard’s (2010) idea of commognition. That idea, in fact, requires us to think of
cognition as a process of communication (Sfard, 2010). In an earlier paper Sfard
explains two equally important ‘metaphors’ for learning: individual, cognitively
oriented knowledge acquisition conceptualisations, and social and participatory
conceptualisations of learning (Sfard, 1998). The latter one being what I experienced
in my classroom in 2014 with the silent video task.

Last but not least, what I experienced from the teaching experiment in 2014 was that
even teachers who were not used to using technology in their classes seemed to find
the silent video task to be a reasonably easy start when it came to trying out something
new in their teaching.

METHODOLOGY

The research question initiated from my motivation: What are Icelandic upper
secondary school mathematics teachers’ expectations of and experiences with using
silent video tasks in their classes?

In total, there are 30 upper secondary schools in Iceland that prepare pupils for studies
at university. Ten of these upper secondary schools were randomly selected, and out of
them six schools accepted the offer to participate. One teacher in each school assigned
a silent video task to their 17-years-old pupils. The research design included two short
online questionnaires for students and three semi-structured interviews with the
teachers:

The first teacher interview aimed at collecting background information (e.g. teaching
experience, working atmosphere) and expectations, discussing the task in advance. The
second interview revolved around the experience so far, the student solutions and
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planning the follow-up lesson, and the third interview focused on the overall
experience of working with a silent video task.

The silent video task chosen for this study

For many students in Iceland, the first new mathematical concept that they encounter
in upper secondary schools is the unit circle and therefore it was chosen to be the theme
of the silent video selected to use in this study [1]. The two minutes long video shows
a circle getting parted into four quadrants before a coordinate system appears, defining
the circle to be a unit circle. All the time, a dot moves around the circle in a positive
direction. Line segments point to the coordinates of the point and at the same time can
be interpreted to denote the sine and cosine values. The video was made with GeoGebra
and was based on an idea from Alf Coles, a senior lecturer at the University of Bristol
School of Education. According to Coles, he got the idea from Dick Tahta and Caleb
Gattegno, and the original idea probably came from the Nicolet [2] films (Coles, 2008).

The silent video task was introduced to the participating teachers via phone calls, in
email communication, and on a webpage before the first interview took place. Four
teachers completed all three interviews, one only participated in the first interview and
one in none of them. The teacher quitting after the first interview reported lack of both
time and student interest. That, however, contradicts the fact that most participants
found the task interesting. The other teacher quit because only six students signed up
for the course. All interviews were made in meeting rooms or teacher offices in the
schools. Principals and teachers received information about the purpose of research
and signed informed consent regarding their participation.

Students received information about the research project and were asked for a permit
to collect their silent video task solutions, which was accepted by all students. Links to
short feedback questionnaires, each with five Likert-scale questions and one open
commentary field, were sent by email to students before (86% answer rate) and after
(70% answer rate) the follow-up lesson. Results from the student questionnaires were
partly used as a reference in the second and third interview with each teacher.

After transcribing the interview data, I first viewed it through the theoretical lens that
[ used in the preparation phase. This leads into a cul-de-sac. Then I coded and analysed
the data using a Grounded Theory approach (Charmaz, 2006). Based on the findings, |
will be using a top-down approach in the next step of analysis.

PRELIMINARY RESULTS

In this section, I will give some preliminary results and I focus on the first three
interesting issues related to technology that emerged during coding. Further results will
be outlined in future publications.

The first issue that I would like to address is that teachers are not aware of the
technological reality of their students. In Iceland, youth and young adults use social
media such as Snapchat and Instagram to share video recordings from their daily lives
with friends as well as strangers (Gallup, 2017). This is not a specific Icelandic
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phenomenon and the same trend is apparent for teens in the US and in numerous other
countries. According to surveys by the Pew Research Center on American teens’ social
media use, 92% of American teens used the Internet daily in 2015, 71% used Facebook,
50% used Instagram, and 41% used Snapchat (Lenhart, 2015). As of 2017 social media
use amongst teens and young adults in the US has increased to 79% using Snapchat,
76% using Facebook and 73% using Instagram (Edison Research, 2018). Most teens,
therefore, are quite used to hearing their voice in a recorded form and are not shy of
sharing such recordings with others. Despite this fact, three of the four teachers were
very hesitant to play their students’ silent video commentary recordings in the follow-
up lessons.

Teacher G: [...] If you say “And then I am going to play the recording for everybody”
then I think that it immediately has a certain influence on how they solve
the task so I decided not to tell them that I was going to play their
recordings and afterwards I thought “Can I really play the recordings or
not?” so I ended up not playing any recording [...] one has to ask them for
permit to play the recording [...] it is a fragile age and even though you
don’t hear anything wrong with it yourself then somehow they spot
something and that can be risky [...] they can freak out.

In the example above, the teacher did not introduce the task to students such that they
would expect some selected solutions to be shown in the follow-up lesson. Another
teacher who had announced that some selected solutions would be shown in a follow-
up lesson, backed out and ended up not showing any student results despite his
announcement. The idea that most students somehow feel ashamed when their
solutions are picked to discuss in the follow-up lesson is not necessarily always valid
and must be cleared, i.e. the teachers need information on their students’ reality.

A second issue is the fact that some teachers fear technology will fail in their
classrooms and are therefore anxious about using it. Before assigning the task,
technology other than calculators was not used by students in class on a regular basis.
All five of the teachers that participated in the first interview expected their students to
have difficulties with technology. This expectation was partly based on former
experience with slow computers or failing software. Whilst one of them looked forward
to seeing the students struggle with technological problems before succeeding, others
were anxious and over-protective, taking full responsibility themselves for solving
technological issues.

Teacher S: [...] I was rather surprised [...] I had expected that something like that
[refers to problems with technology] would come up, but there was nothing.

Teachers assigned the silent video task in a manner depending on their own beliefs and
ranging from giving very short verbal instructions asking the students to solve the
technological part of the task themselves to handing out a long and detailed instruction
sheet. Only one of the teachers experienced that students needed help with technology:

Teacher M: As it goes then it was quite diverse [refers to how it went to deal with
technology] and maybe they described that in their — I asked them to
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explain it clearly — in the online survey [...] I feel it is quite a hurdle for
this task in order to let the energy — I wish that more — a larger part of the
energy would go into thinking about the mathematics rather than fighting
the technology.

This teacher was very positive towards trying out new methods in his teaching, but it
was apparent from the interview data that he did not trust his students with
understanding a task without getting detailed instructions. Since his students are not
very different from the other participating teachers’ students, it is quite likely that
without the detailed instructions, the students would have had no problems in dealing
with technology. Nonetheless, his reaction to whether he would change something next
time was:

Teacher M: Yes, somehow because my instructions said [...] and if I think about it in
retrospect [...] I should maybe rather add an extra step into [the
instructions].

This brings us to the third issue that I would like to address; the transition from
transmission-oriented teacher to an organizer or facilitator of learning. The teacher in
the group that had most experience with using technology in class said:

Teacher L: Then there was one who said “As soon as I checked all the buttons in the
browser I realized that there is one for recording” [...] did you know that
this was possible? [asking if the interviewer had realized this possibility].

This teacher was the only teacher who transferred the responsibility to solve possible
technological issues completely to the students themselves.

Teacher L: They found it unbelievable to have figured out by themselves how to send
me a sound recording from their phone [...] it was so nice to hear how
anxious they were (before starting the task) “Shall we figure out the
technological issues ourselves?!” “Yes, you are so clever, you can do this”
Then they just “But wait a minute, aren’t you going to help us?”” “No, you
will figure this out,” then they said “That will take us the whole time
(referring to the length of the lesson) just to figure out the technological
issues” [...] and then when they finished (and they did so well within the
lesson time) it was as if they had won the Olympics or world cup or
something.

What this teacher experienced is that students can also teach teachers to use technology
and that this is something that ought to be welcomed in the classroom. Also, underlying
was this teacher’s opinion that teachers in general should trust their students to get
through the struggle and in doing so give them an opportunity to experience the good
feeling of having succeeded.

DISCUSSION AND CONCLUSIONS

Teachers 1n this study reported having constantly limited time to devote to other things
than preparation for the final test. They all (separately) agreed that the reason why they
reacted positively to participating and trying out a silent video task in their class was
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that it only required a maximum two lessons and some preparation time. They noticed
that the task helped to break up their normal teaching routines. Even if all but one
teacher found it rather unlikely that they would use a silent video task in their class
again, still, by participating, they were given insights into that most students are fully
capable of solving possible technological issues themselves. Hopefully, this can
encourage them to do more experiments utilizing technology in the classroom.

It was interesting to see how all but one of the teachers expected their students to be
shy about their solutions being presented in class in the follow-up lessons. Possibly
their memories of their own adolescent years affected their decision. However, two of
the teachers did show examples of their students’ solutions in the follow-up lesson, and
the respective students showed no signs of timidity because of that.

Looking into the teaching practice of the teachers participating in this study, they all
focused on preparing their students for a final test; more or less using transmission-
oriented teaching methods. It might be interesting to ask teachers who use other more
modern teaching methods for their view of the silent video task. At least, the teacher
who was using less transmission-oriented methods than the others was the only one
giving the impression to intend to use silent video task again in the classroom.

NOTES
1. The silent video task used in this study can be found here: https://ggbm.at/BfRqGSKq

2. Jean-Louis Nicolet was a Swiss mathematics teacher. He made some black and white animated
silent mathematics films without any text called Animated Geometry in the 1930's that are still used
in mathematics classrooms today (Tahta, 1981).
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Since the introduction of the first iPad in 2010, the overall number of apps and,
consequently the number of apps intended to support mathematical learning, have
increased exponentially. This observation results in the need for quality information
about apps and also on the various possibilities for teachers to evaluate apps in an
efficient and reliable way. Artifact-Centric Activity Theory (ACAT) is a model
developed to capture complex situations that arise when digital technology is
introduced in classroom situations. Furthermore, ACAT provides a framework to help
teachers to evaluate apps. In this article we show how to use the ACAT framework for
the evaluation of mathematics apps.

Keywords: Activity Theory. Apps. Primary Education. Geometry. Review.
TECHNOLOGY AND APPLICATIONS IN PRIMARY MATH EDUCATION

Digitization is both one of the most significant challenges, and also one of the most
significant opportunities in today’s world. This is also the case in educational contexts.
When technology is used in a useful and goal-oriented way, it can help people to
simplify everyday life as well as support various occupational routines. In the field of
education, digitization can also help children to learn mathematics, a discipline that is
often seen as difficult by many students (Larkin & Jorgensen, 2016). As in the broader
societal context, the usefulness of technology in mathematics classrooms depends upon
whether teachers are willing and able to take advantage of the potential of technology
to support student learning.

The introduction and use of desktop computers in primary school has more or less
failed for several reasons: one reason identified is that the hand-eye-coordination of
young children is often insufficiently developed. That is why young children often have
problems moving the mouse and coordinating the movements of their hands with their
eyes and what happens on the screen (Ertmer, 1999; Kortenkamp & Dohrmann 2010;
Ladel, 2017). This problem is exacerbated by the fact that the scale of the movements
with the hand does not correspond to the scale of the appropriate movements on the
screen (Ladel, 2017). With the introduction of the first iPad in 2010, these detrimental
factors to student use of technology diminished or disappeared entirely. iPad
technology allows the user to interact directly with the screen using their fingers and
hence with the objects visually represented there. Thus, the obstacles of the
insufficiently developed hand-eye-coordination of young children, as well as the
different scales of mouse and screen, are no longer present. The haptic technology of
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the 1Pad (and similar tablets) is very suitable in supporting the learning of young
children (See Alade et al., 2016; Sinclair & Bruce, 2015).

In addition to developments with iPad hardware, the software (Apps) has also
developed rapidly in recent years. Whereas the software for personal computers was
(and still is) very often restricted to drill-and-practice (especially in the field of
arithmetic), many current iPad apps offer increased interactivity and a broader range
of possibilities for discovery learning, particularly when used in authentic contexts with
young children (Arnott, 2016). Although the rapid increase in the availability of apps
is a potentially positive outcome for education, the negative aspect of this equation is
that amongst the rapidly increasing number of apps, there is an overwhelming
prevalence of inadequate or unsuitable mathematics apps (Larkin, 2016). As the need
to identify good apps that support mathematical learning is therefore critically
important; researchers, developers, as well as teachers require an efficient and reliable
instrument to evaluate apps in an easy, yet thorough, way. One such instrument to do
so, presented in this conference paper, is a review guide based on Artifact-Centric
Activity Theory (ACAT) (Ladel & Kortenkamp, 2016).

THE ARTIFACT-CENTRIC ACTIVITY THEORY (ACAT)

Vygotsky and Leont’ev developed Activity Theory and this theory is based on the
cultural-historical conception of human beings and their development. The interaction
(activity) between human beings and the world (subject-object) is the primary focus of
this theoretical framework and it is assumed that human beings are shaped in particular
by their activities in the world (Nerdinger, Blickle & Schaper, 2014). In this way,
activity is a process characterized by a constant transformation (Leont’ev, 1982) (see
Fig.1).

A

‘\

—_—

Figure 1. Ring structure of activity according to Leont'ev (In Nerdinger et al., 2014, p.
341)

It 1s understood that subjects (in this case children) have needs or objects (in this case
learning about mathematics). In order to meet those needs they carry out activities and
they achieve their object in an active way through object-oriented, changing and
productive impacts. Thus, the activity is related to, and controlled by, the motive and
is realized through object-oriented activities.

Vygotsky (1980) attributes an important role to mental tools in the interaction between
subject and object. In the “so called” instrumental act (see Fig. 2), the mental tool
mediates between the subject and the object.
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tool

| subject | object |

Figure 2. instrumental act

ACAT is a further development of Activity Theory and Activity Systems (where
Community, Division of Labour and Rules are added to the initial Activity Theory
triangle (Engestrom, 1987) and is a methodological tool to understand the complex
network of relationships in the interacting activity system of teaching and learning. The
causal network of ACAT comprises five components (subject, artifact, object, rules,
group), which interact with, and influence, each other in such a way that a change in
any one of these components provokes a change in all other components. Central to
ACAT is the artifact - a tool, an instrument or a mediating object - in this paper this
artifact is the iPad or the 1Pad app. The main axis of subject-artifact-object includes the
theoretical underpinnings of both Leont’ev’s notion of activity as well as Vygotsky’s
instrumental act (see Fig. 3).
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Figure 3. Artifact-Centric Activity Theory (Ladel & Kortenkamp, 2011, 2013).

The mediating artifact replaces the direct connection of subject and object with two
connections, subject-artifact and artifact-object, as all interaction between subject and
object is understood to be mediated by the artifact. This highlights the importance of
the design and the analysis of the artifact for the activity (upper right triangle: artifact-
object-rules).

The rules are primarily a result of the mathematical object itself, but they are also
related to disciplines such as psychology, didactics of mathematics, or media didactics.
The artifact represents the object itself, but simultaneously the object is encoded in the
artifact and the properties and the aspects of the object limit the artifact.
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The lower left triangle (artifact-subject-group) reflects the observation that the artifact
does not only connect a human being with the object but also connects each individual
with other human beings - the group. In this way the individual actions of the subject
also include the experiences of other individuals in interacting with the artifact — in the
case here this could include other students and also the teacher.

REVIEW OF APPS

ACAT is, therefore, a methodological tool to assist our understanding of the complex
network of relationships in the interacting activity system of teaching and learning.
Based on the assumption that ACAT could also help researchers and teachers to
analyse and evaluate apps, we designed a review guide that should help them to easily
evaluate apps and hence find the right ones to support their teaching and learning goals.
The resulting review guide is organized into a sequence of five steps, following the
main aspects of ACAT and principles of Activity Theory (Kaptelinin, 1996). This is
similar to the approach of Kaptelinin et al. (1999), but differs in three ways: (1) The
underlying model is specialised for analysing and designing artefacts and instruments;
(2) The purpose of the guide is to help teachers without special training to judge
whether a certain app can be useful for their pedagogical needs and thus includes
specific instructions on how to answer the questions; (3) The guide is focused on
education and not on Human Computer Interaction (HCI).

For each step, we formulated a key question that needs to be answered. In order to aid
teachers in answering, we provide remarks and lead questions to consider, as well as
possible data sources to find information regarding the five steps. The full development
of the review guide is detailed in Larkin, Kortenkamp, Ladel and Etzold (2018, under
review), whereas the review guide itself is available as an open educational resource at
http://dlgs.uni-potsdam.de/oer.

Object orientation is a central principle of Activity Theory. All activities are directed
towards an object. Hence it is important to know the object of the actions of students
within an app precisely:

Step 1: What is the mathematical object of the app?

Remarks The reviewer identifies the mathematical object, i.e. the concept,
content or mathematics process that is targeted by the app. Each app
can address one or several mathematical objects.

Sources Title and official description at iTunes Store; Additional material
provided, e.g. downloadable worksheets; External references, e.g.
recommendations by peers who have used the app; trials of app

In the process of designing an app, once the mathematical object has been established,
the interaction design would be the next consideration. In the process of analysing an
existing app, step 2 is used to examine the design of the user interaction:
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Step 2: How do students interact with the mathematical object, mediated by the app?

Remarks What are the concepts that students have of the mathematical
content? How do these concepts influence the use of the app? What
possibilities and what limitations does the app have?

Sources Own systematic testing of the app

Step 3 focuses on the hierarchy of activities, actions and operations, as well as
conclusions about possible developments of students’ interactions that influence their
learning:

Step 3: How does the interaction develop?

Remarks What are the activities, the actions and the operations of the
interactions?

Sources Discussion of hypothetical scenarios; Empirical tests

The design of an app is guided by rules which in turn are guided by designer knowledge
e.g. from mathematics education, HCI design, etc. Following those rules maximizes
opportunities for the app to support learning of the targeted mathematical content:

Step 4: Is the app suitable for teaching and learning the mathematical object?

Remarks What insights do we have from mathematics specific pedagogy, the
discipline of mathematics, and psychology? Do the previously
analysed interactions support the desired or needed concepts,
experiences and competencies?

Sources Syntheses of the discussion above; Scientific background literature
and references

Within ACAT, learning is never a purely individual activity of one single student. It
must always be seen in a social and corporate context, in which learning content occurs
by working together (group):

Step 5: How can the app be used in classroom instruction?

Remarks Is the app suitable for individual work, partner work or group work?
What are possible impulses and tasks? What kind of differentiations
and levels are possible? Is the goal of the app to train already
understood content or is it intended to develop new concepts? Is the
app based on an instructive or on a constructive paradigm? What are
the competencies that the students need to work with the app?

Sources Additional teacher’s material; Trials with students; Imagination

In the appendix, we give an abridged example of an ACAT-based app review that was
created by two teacher students following the above steps. Another in-depth example
is available in Larkin et al. (2018, under review) and online." In all these examples we
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can find conclusions that show how the reviewers come to deep conclusions based on
their normal teaching skills. Also, we could see how the reviewers came up with
suggestions for task design. They included suggestions for classroom integration of the
app for students with special needs as well (in Step 5), which shows how the structure
of the review guide helped them to come up with ideas for better teaching.

CONCLUSION AND FURTHER WORK

We propose an app review guideline that is based on the ACAT model. So far, this
framework has been used for several reviews by German teacher students and proved
useful for a theory-based approach without requiring in-depth training of the reviewers
in ACAT. This is a welcome addition to more technical approaches that try to review
apps based on non-pedagogic criteria such as number of features, configurability or
technical soundness, or ad-hoc approaches that base the assessment on personal
opinion or number of downloads. As an outcome of the project Digitales Lernen
Grundschule, funded by Deutsche Telekom Stiftung, a German and English review
guide and template were created and published as an Open Educational Resource.’
Besides a platform to collect and publish ACAT based reviews, further work will
include a systematic meta-evaluation of these reviews and the translation of the review
guide and template to other languages.

APPENDIX: ACAT REVIEW FOR THE APP SHAPES 3D — GEOMETRY
LEARNING

(Abridged translation of the original review Def3loch, L. & Hoffmann, L.-M., 2018)

App: Shapes 3D — Geometry Learning, Version 2.2.2. (Published 30" of June, 2017).
At the App-Store intended users can find a lengthy description of the app, information
regarding additional material to support its use, as well as rewards the app has won.
Due to space limitations we have not included this information here and have only
provided an abridged version of the teacher student review.

Step 1: What is the mathematical object of the app? The mathematical object of the
app 1s to identify the spatial imagination in relation to geometric solids. The focus lies
on the connection between the three-dimensional solid and the two-dimensional solid-
net.

Step 2: How do students interact with the mathematical object, mediated by the app?
Students choose one of the 27 solids offered by the app to explore them. They can
move and scale them as well as rotate them using touch gestures. Using a swipe gesture
or touches the solid can be unfolded dynamically or step-by-step into a net. Several
nets for each solid are offered and more can be created by the student. Nets can be
printed, with additional glue flaps added. Furthermore, the faces, vertices and edges of
the nets can be colored.

? http://dlgs.uni-potsdam.de/oer
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Step 3: How does the interaction develop? The students' actions manifest themselves
as goal-directed, individual interactions on physical and virtual manipulatives. The
combination of physical and virtual manipulatives leads to a (further) development of
the spatial imagination, which results in the fact that the concrete actions gradually pass
into operations and thus into internalized actions.

Step 4: Is the app suitable for teaching and learning the mathematical object? The
consistent representation of the user interface is self-explanatory and intuitive for the
learner as well as the symbolic representation. Dynamic elements for representing
interactions also serve to intuitively interact with the touch device. In terms of
mathematic didactics, it should also be emphasized that the principle of the spiral
curriculum can be applied to the app, in particular due to the high number of geometric
solids and the varying complexity. In this way, more and more geometric solids can be
explored.

Step 5: How can the app be used in classroom instruction? For a meaningful use of the
app in primary school, the students should have basic experience with and basic
knowledge of geometric solids. Regarding knowledge transfer, the app supports the
acquisition of conceptual knowledge related to the properties of geometric solids or
solid groups as well as the nature of solid-nets. Regarding procedural knowledge, the
app promotes knowledge about the composition of a solid’s net, the relationship
between two-dimensional solid-nets and the corresponding three-dimensional solids,
and the relationships between the properties of a geometric solid.
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Minecraft in mathematics classrooms: A teacher’s perspective
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In this paper, one teacher’s experiences of using Minecraft in her mathematics
classroom over several years is explored to determine the professional knowledge she
drew on. The Technological Pedagogical Content Knowledge (TPACK) model is used
to describe the different professional knowledges that the teacher used in bringing a
digital game into her mathematics teaching. Insights from this teacher can inform other
educators about the types of knowledge that need to be blended if digital games are to
be used to support students’ learning of mathematics.

Keywords: Minecraft, digital games, measurement, differentiated teaching.
INTRODUCTION

In this paper, we use the Technological Pedagogical Content Knowledge (TPACK)
model (Mishra and Koehler, 2006) to unpack Ruzica’s expertise. Ruzica, the second
author on this paper, is an experienced teacher, who has used Minecraft in her
mathematics teaching over several years. We use TPACK to better understand the sorts
of professional knowledges that Ruzica used for incorporating digital games into her
mathematics teaching. We consider that this information 1s useful for teacher educators
and professional development facilitators in determining how to support other teachers
to incorporate digital games into their mathematics teaching.

In many countries, there have been suggestions to include digital games in mathematics
teaching (Holden & Williams, 2014). Although mathematics education research has
been slow to investigate them, digital games have become more prominent in the last
decade, coinciding with the introduction of Minecraft into mathematics classrooms
(Xolocotzin & Pretelin-Ricardez, 2015). Minecraft (https://minecraft.net/nb-no/) is a
sandbox game in which players create their own environment with a set of tools,
allowing them to both create and solve their own problems (Williams, 2010; Seventko,
Panorkou & Greenstein, 2017). Yet the newness of Minecraft means there is limited
research into the kinds of professional knowledge that teachers need for incorporating
sandbox games successfully into mathematics lessons.

What research there has been on Minecraft in mathematics classrooms has focused on
geometrical understandings, such as moving from 2-D drawings to 3-D constructions,
measurement conce