
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XXX, NO. XXX, MONTH YEAR 1

Learning From Mistakes: Machine Learning
Enhanced Human Expert Effort Estimates

Federica Sarro, Rebecca Moussa, Alessio Petrozziello and Mark Harman

Abstract—In this paper, we introduce a novel approach to predictive modeling for software engineering, named Learning From
Mistakes (LFM). The core idea underlying our proposal is to automatically learn from past estimation errors made by human experts, in
order to predict the characteristics of their future misestimates, therefore resulting in improved future estimates. We show the feasibility
of LFM by investigating whether it is possible to predict the type, severity and magnitude of errors made by human experts when
estimating the development effort of software projects, and whether it is possible to use these predictions to enhance future
estimations. To this end we conduct a thorough empirical study investigating 402 maintenance and new development industrial
software projects. The results of our study reveal that the type, severity and magnitude of errors are all, indeed, predictable. Moreover,
we find that by exploiting these predictions, we can obtain significantly better estimates than those provided by random guessing,
human experts and traditional machine learners in 31 out of the 36 cases considered (86%), with large and very large effect sizes in
the majority of these cases (81%). This empirical evidence opens the door to the development of techniques that use the power of
machine learning, coupled with the observation that human errors are predictable, to support engineers in estimation tasks rather than
replacing them with machine-provided estimates.

Index Terms—Software Effort Estimation, Estimate errors, Human expert estimates, Human Bias, Human-competitive results.

F

1 INTRODUCTION

SOFTWARE development effort estimation is a crucial
activity for project planning and monitoring, specifically

for ensuring that the product is delivered on time and
within budget [1], [2]. Studies have shown that engineers
make inaccurate effort estimations [3], [4], [5], [6], which can
negatively affect the outcome of software projects leading to
great losses [2], [7].

To support engineers in obtaining more accurate esti-
mates, researchers and practitioners have attempted to de-
vise various automated methods over the last three decades
[1], [8]. However, despite the rise of automated predic-
tive modeling, human expert judgement is still the most
commonly applied strategy for software effort estimation
[6], [9] and their expertise has not been fully exploited in
combination with automated approaches [10], [11].

This observation motivates us to depart from received
wisdom and current research practice in the predictive
modeling community. In this work, we shift the focus from
creating automated models able to predict software effort to
creating automated models able to predict the errors made
by human experts when estimating effort and using this to
adjust their estimates. Rather than seeking solely to compete
with (or even replace) human experts, our approach learns,
not only from traditional past projects cost drivers, but
also from past expert judgements, essentially building into
the predictive model the ability to learn from their past
estimation errors (i.e. misestimates). We name this approach
Learning From Mistakes (LFM) as it argues that:

1) it is possible to predict the type, severity and mag-
nitude of human experts misestimates by learning

• E-mail: f.sarro@ucl.ac.uk, rebecca.moussa.18@ucl.ac.uk,
a.petrozziello@ucl.ac.uk, mark.harman@ucl.ac.uk

Manuscript received xxx; revised xxx.

from the estimation errors they have made in the
past;

2) these predictions can be usefully exploited in order
to enhance future effort estimates.

In order to evaluate the feasibility and effectiveness of
LFM, we carry out a thorough empirical study following
best practice for the evaluation of prediction models in
Software Engineering [12], [13], [14].

To address the first claim, we study the predictability
of 402 human expert misestimates in terms of their type
(i.e. under-/over- estimates), severity (i.e. low, medium,
high), and magnitude (i.e. estimation error relative to
the true effort value). If we can show that these mis-
estimate characteristics are indeed predictable, then we
can investigate whether their prediction can be used to
improve future effort estimates. In particular, to address
the second claim, we adjust the original human expert
estimates with the predicted magnitude errors and com-
pare the two (i.e. originalestimate vs. originalestimate −
predictedmisestimate).

The results of our empirical study show that:

1) Human expert misestimates are predictable. The
average classification accuracy, measured in Area
Under the ROC Curve, for both the type of mis-
estimation and its level of severity of all techniques
over all datasets, is 71% and 70%, respectively. Also,
the prediction of the amount of misestimation made
by human experts is very close to the true amount
of misestimation (i.e. the average median absolute
error of all classifiers across all datasets is 0.28).

2) This predictability can be usefully exploited. That
is, LFM enhances human experts’ effort predictions
obtaining estimates that are significantly better than

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XXX, NO. XXX, MONTH YEAR 2

those provided by random guessing, human experts
and traditional automated learners in 32 out of 36
cases (89%) (with large and very large effect sizes
observed in 81% of these cases), and never worse in
the remaining 11% cases.

The scientific contribution of these findings is the em-
pirical evidence to support the claim that human estimation
errors are, indeed, predictable and can be used to improve
human experts’ effort estimates. This is the first time this
question has been investigated in the software engineering
literature. The finding is important because it provides
an entirely orthogonal deployment route for estimation
technology: Instead of replacing human estimators with
machine learnt estimations, it advocates for techniques that
support humans in the necessary task of software develop-
ment effort estimation.

In the remainder of the paper we first explain the details
of our LFM approach for software effort estimation (Section
2) and then the empirical study we carried out to assess its
feasibility and effectiveness (Section 3). The results of the
study are discussed (Section 4) together with their relation
with existing work (Section 5) and future studies (Section 6).

2 LFM FOR SOFTWARE EFFORT ESTIMATION

In this section we explain how LFM can be used in prac-
tice, by software companies, to estimate/predict the effort
needed for realising software projects. LFM is useful in any
scenario where the target project for which the effort is
unknown but has been estimated by the expert. The aim
of LFM is to support the human expert in acknowledging
possible errors in their estimations and use this information
to improve their estimates. In order to do that, LFM looks at
past software projects and learns the errors that experts had
committed when estimating the effort. This is divided into
three phases that are shown in Figure 1 and are described in
details below.
Phase 1. Deriving Type, Severity and Magnitude of Past
Estimate Errors:

This step gathers information about historical software
projects realised by the same company or by different
ones (usually referred to as single-company data or cross-
company data, respectively). Each of these projects is de-
scribed by a set of cost drivers, such as functional size,
team experience, programming languages and the actual
effort (e.g. person-hours) required to realise the project, as
recorded by the company employers1. Part of the novelty of
LFM is to augment these cost drivers by adding informa-
tion about human expert past misestimates. In particular,
LFM computes the type, the severity and the magnitude of
past misestimates by using both the human expert effort
estimates and the actual effort.

More formally, given a set of past software projects Π,
each project p ∈ Π, is characterised by the actual effort,
ActualEffp, which was required to complete p and by the
estimated effort, EstEffp, which was originally estimated

1. More details about the cost drivers used in our experiments are
provided in Section 3.2.

by the expert2. Based on this, the type of error estimate
(MisestimationTypep) of a project p is given by

MisestimationTypep =

{
over-estimate, if EstEffp > ActualEffp
under-estimate, if EstEffp < ActualEffp

The severity of the error estimate of a project p
(MisestimationSeverityp) is computed by ranking the past
projects with respect to the Magnitude of Relative Error
(MRE) and grouping these MRE calculations into different
severity levels (i.e. low, medium, high), according to given
thresholds as follows:

MisestimationSeverityp =

low, if MREp < α

med, if α ≤ MREp < β

high, if MREp ≥ β

where MREp measures, for a given project p, the absolute
difference between the actual effort and the estimated effort
(i.e. absolute residual error) relative to the actual effort:

MREp =
|EstEffp −ActualEffp|

ActualEffp

The number of severity levels and the associated thresh-
olds are parameters to our approach determined by the
procedures in place in a given company. In this paper we
experimented with three levels of severity (i.e. low, med,
high) according to the following thresholds: the first 33th

percentile for the low level (i.e. 33% of projects with the
lowest MRE), the 34th to 66th percentile for the med severity
level, and the remaining projects for the high one (i.e. 33%
of projects with highest MRE). Of course, different settings
can be used without altering the formulation of LFM.

The magnitude of the misestimation (Misestimation-
Magnitude) for a given project p is computed as the relative
error:

MisestimationMagnitudep =
EstEffp −ActualEffp

ActualEffp

These misestimation characteristics, together with
company-specific cost drivers, will be exploited in Phase 2.
Phase 2. Predicting The Characteristics of Future Estima-
tion Errors:

The second phase, starts with a software project for
which the development effort is unknown and needs to
be estimated (i.e. Target Software Project). LFM exploits the
information gathered in Phase 1, in order to find similar-
ities between the target project and past projects. It uses
this knowledge in order to predict the characteristic of the
estimate error for the target project.

Specifically, from the information gathered in Phase
1 we are able to predict the type, the severity and the
magnitude of the errors that might occur when predicting
the effort of a target project (tp) (i.e. MisestimationTypetp,
MisestimationSeveritytp, MisestimationMagnitudetp).

In order to predict MisestimationTypetp, we can use
a two-class (i.e. binary) classifier since MisestimationType
can assume only two values (i.e. under-/over- esti-
mates), while to predict the severity of the error (i.e.

2. Such an effort in our study is provided for each project by the
software company and it is measured as person hours.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XXX, NO. XXX, MONTH YEAR 3

(1)

MisestimationType
(under-/-over estimate)

MisestimationSeverity
(low, med, high)

Cost Drivers
(e.g. functional size, team, ...)

Expert Estimate of Effort

Actual Effort
MisestimationMagnitude

(magnitude of error)

Compute	Past	Misestimate
Characteristics

Past
Software Projects

Input	to	Learn	Past	Misestimate	Characteristics

Target
Software Project

Cost Drivers
(e.g. functional size, team, ...)

Engineer

Expert Estimate of
Target Project Effort

Predict	Future	Misestimate
Characteristics

MisestimationType
(under-/-over estimate)

MisestimationSeverity
(low, med, high)

MisestimationMagnititude
(magnitude of error)

Improved Estimate of
Target Project EffortOutput

(1)

(2)(2)

(2)

(3)

(3)

(3)

Fig. 1: The Learning From Mistakes Approach (LFM). The numbers on the arrows correspond to each of the phases
described in Section 2.

MisestimationSeveritytp), a multiclass (i.e. multinomial)
classifier3 is necessary, given the severity levels defined in
Phase 1. In order to predict the magnitude of the misesti-
mates for the target project (i.e. MisestimationMagnitudetp),
and given the regression nature of the problem, any
automated estimator ranging from simple regression- or
analogy- based learners [16], [17] to more sophisticated ones
such as those based on search-based approaches [18], [19],
[20], [21] or deep-learning [22] can be applied. Obviously,
different learners may exhibit different performance for
different scenarios. Ultimately, the choice of the learner is
a parameter of our approach.

Phase 3. Exploiting Predicted Misestimations:
The third and final phase of our approach involves ex-

ploiting the misestimations predicted for the target project.
The early identification of potential under-/over- estimates
and their severity can better guide human experts in under-
standing their predictions. On the other hand, the predicted
misestimation magnitude can be used to automatically ad-
just human expert estimates. In the empirical study pre-
sented in this paper, we show that we can enhance the effort
estimate produced by a human expert for a target project by
adjusting it using the misestimation magnitude predicted
during Phase 2 (EstEfftp−MisestimationMagnitudetp).

3 EMPIRICAL STUDY DESIGN

In this section we explain the design of the empirical study
we carried out to asses the feasibility and effectiveness of
LFM. Our study follows the most recent best practices for
the evaluation of prediction models in software engineering
[12], [23], [24], [25], [26].

3.1 Research Questions
Our first two research questions investigate the predictabil-
ity of the error made by human experts when estimating

3. Multiclass classification is the problem of classifying instances into
one of the more than two classes [15]. Classifying instances into one of
the two classes is called binary classification. Multiclass classification
should not be confused with multi-label classification, where multiple
labels are to be predicted for each instance.

software project effort. The first research question tackles
this as a classification problem, whereas the second re-
search question treats it as a regression task. Specifically,
RQ1 investigates whether we can classify the misestimation
type and severity (i.e. MisestimationType and Misestima-
tionSeverity as defined in Section 2 Phase 2), while RQ2
investigates whether we can estimate the magnitude of
the error (MisestimationMagnitude as defined in Section 2
Phase 2). Our third and final research question focuses on
the use of the predicted misestimations in order to adjust
future human expert estimates as explained in Section 2
Phase 3. In the following we describe the way they are
addressed.

RQ1. Predicting Type/Severity of Human Expert Mis-
estimations: Can we predict the type and severity of the
errors made by human experts when estimating software
effort?

To address this question, we use four different machine
learning techniques, namely CART, KNN, NB and RF (for
more details, see Section 3.3) to classify the type and severity
of human expert misestimates. In particular, we answer the
following sub-questions:

RQ1.1 To what extent is the type of human expert mises-
timation predictable?

RQ1.2 To what extent is the severity of human expert
misestimation predictable?

RQ2. Predicting the Magnitude of Human Expert Mis-
estimations: Can we predict the magnitude of the misesti-
mations made by human experts?
To answer this question we assess the effectiveness of four
machine learners (i.e. CART, KNN, LP, RF). As a sanity
check, we compare them with Random Guessing (RG).

RQ3. Enhancing Software Effort Estimates via LFM:
Can software effort predictions be improved by learning
from previous misestimations?

In order to address this question, we compare the pre-
diction produced by LFM against human estimations of
software development effort. For completeness, we also
compare LFM with estimations obtained using traditional
machine learning approaches alone. As sanity check, we

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XXX, NO. XXX, MONTH YEAR 4

Dataset Misestimation
Type (RQ1.1)

Misestimation
Severity (RQ1.2)

Misestimation
Magnitude (RQ2)

Actual
Effort (RQ3)

Under Over Low Med High Min Max Mean Std. Dev. Min Max Mean Std. Dev
ISBSG-C 63% 37% 33% 33% 34% -0.93 29.49 0.54 4.26 207 46787 6574.22 10641.24
ISBSG-FP 65% 35% 33% 33% 34% -0.96 10.83 -0.02 0.88 207 63732 5827.29 7550.27
KD 41% 59% 34% 31% 35% -0.40 3.59 0.23 0.72 286 113930 5450.00 17723.16
KP 35% 65% 33% 33% 34% -0.65 1.31 0.15 0.35 219 8656 2046.30 1927.96
Medical 52% 48% 32% 34% 34% -0.83 0.07 0.46 1.42 60 10060 1530.00 1785.98
Telecom 59% 41% 35% 30% 35% -0.49 0.61 -0.09 0.26 279 10244 2403.29 2707.80

TABLE 1: Descriptive statistics of the target variables used for each research question.

also compare LFM against RG. Therefore, we answer the
following sub-questions:

RQ3.1: Does LFM provide better effort estimates than
RG?

RQ3.2: Does LFM provide better effort estimates than
traditional machine learners?

RQ3.3: Does LFM provide better effort estimates than
human experts?

In the following we describe in detail the data (Section
3.2), the techniques (Section 3.3), the validation approach
(Section 3.4), and the evaluation criteria and statistical tests
(Section 3.5) used to address the above RQs. We also dis-
cuss possible threats to the validity of our empirical study
(Section 3.6).

3.2 Datasets

To answer the RQs outlined in Section 3.1 we carry out a
thorough empirical study using six real-world industrial
datasets containing a total of 402 software projects de-
veloped by different software companies world-wide and
collected up to 2018.

These datasets cover a variety of application domains
(ranging from telecommunications to medical information
systems), exhibit different project characteristics (e.g. tech-
nologies, tools and programming languages) and also vary
in size (17 to 190 projects, 4 to 17 cost drivers depending on
the dataset).

Table 2 summarises the descriptive statistics of the fea-
tures of each of the datasets. We can observe that five
datasets contain cost drivers based on the Function Point
Analysis (FPA) [27] or COSMIC [28] functional size mea-
surement (FSM) methods4, which are widely used as inde-
pendent variables to derive effort estimation models [36].
The Medical dataset instead contains features computed
based on data models (e.g. number of entities), which have
been shown to be useful cost drivers in previous work [35].
Moreover, all datasets contain two more features: the hours
to complete a software project as estimated by a human
expert (i.e. Expert Estimated Effort) and the number of
hours actually required to complete it as recorded at the end

4. FSM methods have obtained world-wide acceptance [1] and allow
software size measurement in terms of the functionality with which
users are provided. The first FSM method was FPA [27], and several
variants have since been defined (e.g. MarkII and NESMA) with the aim
of improving size measurement or extending the applicability domain
[29]. These are all referred to as the first generation of FSM methods.
COSMIC is instead a second generation FSM method having distin-
guishing characteristics, including its applicability to business, real-
time, and infrastructure software (or their hybrids) [28], and possibility
to extend its usage to other kinds of software such as Web and Mobile
applications [30], [31], [32], [33], [34], [35].

of the project by the company (i.e. Actual Effort). These two
features are used to compute the MisestimationType, Mis-
estimationSeverity and the MisestimationMagnitude which
are used as prediction target (i.e. dependent variable) for
RQ1 and RQ2 as explained in Section 2, while the Actual
Effort is used as a prediction target for RQ3. In our ex-
periments we use both datasets consisting of projects that
have been estimated by one expert (e.g., Medical) and others
where the effort of different projects has been estimated by
different experts (e.g., ISBSG). Descriptive statistics of the
targets of each RQ are provided in Table 1.

Further details for each of the datasets are provided
below to allow readers to assess whether the results we have
gathered may apply to their own context.

The ISBSG-C and ISBSG-FP datasets have been ex-
tracted from the International Software Benchmarking Stan-
dards Group (ISBSG) repository release June 2018 R2 [37].
This repository contains software projects submitted by
leading IT and metrics companies from around the world
and has been widely used by practitioners as well as
researchers for software project effort estimation studies
[38]. The ISBSG-C dataset contains 49 projects charac-
terised by four independent variables based on COSMIC
[28] (i.e. Cosmic Entry, Cosmic Exit, Cosmic Read, Cosmic
Write), Expert Estimated Effort and Actual Effort. While the
ISBSG-FP dataset contains 190 projects characterised by six
independent variables based on FP [27] (i.e. Input Count,
Output Count, Enquiry Count, File Count, Interface Count,
Added Count), Expert Estimated Effort and Actual Effort.
We cannot disclose more details about this dataset due to a
non-disclosure agreement (NDA).

The Kitchenham dataset contains data from both main-
tenance and new development software projects curated
by the Computer Sciences Corporation on behalf of sev-
eral client organisations [39]. This dataset contains projects
spanning different products from different sources. All the
projects are characterised by five independent variables
based on the Function Point counts (i.e. External Input, Ex-
ternal Output, Logical Internal, External Intergace, External
Inquiry), the Expert Estimation and the Actual Effort. The
effort estimates were made as part of the company’s stan-
dard estimating process. In our study we considered only
those software projects for which the effort estimate was
made solely based on human experts’ judgement for a total
of 69 projects. Since these projects include both perfective
maintenance and development projects, we analyse them
separately, thereby obtaining two disjoint sets, namely KD
and KP which contain 29 and 40 projects, respectively. More
details about this dataset and its raw data can be found
elsewhere [39].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XXX, NO. XXX, MONTH YEAR 5

The Medical dataset provides a set of 24 cost drivers
(see Table 2 for the the full list) and effort data recorded
for 77 modules of a single software system (i.e. a medical
records database system built and implemented over a
period of five months) [11]. Each of the modules implements
a data entry/edit or reporting functionality and has associ-
ated 24 cost drivers. Since all this data was available during
the module specification phase it can be used as input to
a prediction system [11]. For each of the modules a single
project manager’s estimate of the effort, and the actual effort
(both expressed in person-hours) are available.

The Telecom dataset contains 17 software projects de-
veloping typical administrative software, internal software
development for a telecommunication company. All projects
are characterised by four independent variables (i.e. Input
Types, Entities, Output Types, Transactions), each represent-
ing an FP basic component [27], Expert Estimated Effort and
Actual Effort. We cannot disclose more details about this
dataset due to an NDA.

Dataset Feature Min Max Mean Std. Dev.

ISBSG-C
(49 projects)

Cosmic Entry 4 447 86.51 107.63
Cosmic Exit 2 594 107.31 130.75
Cosmic Read 0 545 83.88 109.24
Cosmic Write 0 542 55.49 93.62
Expert Estimated Effort 90 53774 7349.02 10641.24
Actual Effort 207 46787 6574.22 9338.89

ISBSG-FP
(190 projects)

Input count 0 2014 128.34 196.70
Output Count 0 2760 77.34 213.85
Enquiry Count 0 2356 105.85 189.40
File Count 0 3196 93.69 254.20
Interface Count 0 261 18.25 38.39
Added Count 0 10571 331.92 815.44
Expert Estimated Effort 80 58800 5082.94 7407.87
Actual Effort 207 63732 5827.29 7550.27

KD
(29 projects)

External Input 0 4701 263 731.69
External Output 6 5265 241.40 812.53
Logical Internal 0 1724 113.90 276.95
External Interface 0 92 6.73 15.51
External Inquiry 0 2925 152.40 454.82
Expert Estimated Effort 337 79870 4586.00 12417.53
Actual Effort 286 113930 5450.00 17723.16

KP
(40 projects)

External Input 0 789 125.82 147.63
External Output 0 360 81.00 95.71
Logical Internal 0 402 61.02 89.45
External Interface 0 614 25.52 89.72
External Inquiry 0 618 80.50 125.81
Expert Estimated Effort 200 8690 2038.70 1736.68
Actual Effort 219 8656 2046.30 1927.96

Medical
(77 projects)

Create Transactions 0 3 0.85 0.74
Read Transactions 0 25 5.19 4.57
Update Transactions 0 16 1.47 2.20
Delete Transactions 0 2 0.26 0.59
Reports Called 0 2 0.23 0.60
Reports Produced 0 2 0.27 0.50
Elements Reported 0 24 3.26 6.46
Fields Calculated 0 14 0.77 2.45
Fields Entered 0 19 5.26 3.82
Screens Called 0 10 0.79 1.89
Screens Displayed 0 6 1.04 0.90
Elements Displayed 0 78 11.64 14.04
Entities 0 22 4.27 3.72
Entities Providing Data 0 14 4.13 3.25
Entities Consuming Data 0 16 1.20 1.90
Attributes 0 19 5.26 3.82
Attributes Updated 0 69 9.42 13.26
Attributes Consumed 0 83.00 19.81 18.69
Links (1.1) 0 2 0.30 0.49
Links (1.m) 0 13 3.09 3.32
Optional Links 0 12 3.13 3.30
Mandatory Links 0 3 0.25 0.54
Entity Provisions 0 25 5.20 4.57
Entity Consumptions 0 16 1.52 2.20
Expert Estimated Effort 228 9450 1120.00 1278.82
Actual Effort 60 10060 1530.00 1785.98

Telecom
(17 projects)

Input types 4 858 201.71 242.15
Entities 15 444 124.53 110.53
Output Types 10 2322 484.88 640.69
Transactions 7 265 51.18 59.54
Expert Estimated Effort 450 9595 1967.29 2284.26
Actual Effort 279 10244 2403.29 2707.80

TABLE 2: Descriptive statistics of the datasets used.

3.3 Classification and Regression Techniques
The concept of LFM is not defined by the machine learning
approach used to classify the estimate errors. Therefore any
technique can be used to this end and the choice is left to
the practitioner.

In our empirical study, we experiment with five publicly
available machine learners, namely Classification and Re-
gression Trees (CART) [40], k-Nearest Neighhbours (KNN)
[41], Naı̈ve Bayes (NB) [42], Linear Programming (LP) [43]
and Random Forest (RF) [44], all of which are well-known
and widely-used by software engineering researchers and
practitioners. Using such approaches avoids the risk that
LFM benefits from some special or sophisticated ML tech-
nique. The results achieved with these traditional tech-
niques can be considered as a lower bound to any more
advanced technique, while their public availability supports
and promotes replicability and extension of our work.

In order to address RQ1 (which involves a classification
task), we use four machine learning approaches, namely
CART, KNN, NB, RF, which are able to handle both binary
and multiclass problems [15]. To address RQ2 and RQ3,
which involve a regression task, instead, we use LP4EE (as
it has been recently proposed as a robust baseline approach
for prediction studies [13]) and three traditional and widely
used estimation methods, namely CART, RF and KNN,
which are representative of regression-based and analogy-
based estimators, respectively. Moreover, as a sanity check
we always compare all the approaches to RG for all RQs.
For each of these techniques we use the R tool5 version
3.4.1. For CART, KNN, NB and RF, we build and tune
a model for each LOO training set within each dataset,
and use it to predict the effort of the target observation.
We use the function trainControl available from the R
package Caret6 version 6.0.84, which performs a search to
identify machine learning settings that generalise best on
the training set7, as recommended in recent work [25], [47].
In the following we briefly describe each of the techniques.

Random Guessing (RG) is a worst case lower bound
benchmark suggested to assess the usefulness of a predic-
tion system [12]. It randomly assigns the y value of another
case to the target case. More formally, it is defined as: predict
a y for the target case t by randomly sampling (with equal
probability) over all the remaining n − 1 cases and take
y = r where r is drawn randomly from 1...nr = t [12]. Any
prediction system should outperform RG since an inability
to predict better than random implies that the prediction
system is not using any target case information.

Classification and Regression Trees (CART) are machine
learning methods used to build prediction models by recur-
sively partitioning the data and fitting a simple prediction
model within each partition [48]. The partitioning can be
represented graphically with a decision tree. Decision trees
where the dependent variable takes a finite set of values are
called classification trees, while those where the dependent
variable takes continuous values are called regression trees.

5. https://www.r-project.org
6. http://topepo.github.io/caret/index.html
7. Specifically, we used the setting method=repeatedcv,

repeats=30 (and tuneLength = 10 for KNN). Since more
advanced tuning techniques can be used [20], [45], [46], the results
provided herein can be considered as a lower bound.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XXX, NO. XXX, MONTH YEAR 6

K-Nearest Neighbor (KNN) is an analogy-based approach
that, given a target instance (i.e. a software project char-
acterized by a vector of n features), retrieves from a case
base of past projects, those instances which are relevant
to the target one [49]. These relevant cases are identified
by using the Euclidean distance as a similarity function,
which measures the distance between the target case and
the other cases based on the values for the n features of
these projects. The average of the effort values of the k most
similar past projects is then used as the effort predicted for
the target project. If there are ties for the k-th nearest vectors,
all candidates are used to compute the average. The choice
of k is left to the user, in this work we experiment with
different values of k = 1, ..., 10.

Linear Programming for Effort Estimation (LP4EE) is a
baseline prediction model recently proposed to provide a
robust yet easy-to-use approach for effort estimation8 [13].
The model takes advantage of the Simplex algorithm, which
deterministically minimizes an error function on a training
set, and applies the learnt weights on a test set to make
predictions [13]. In this paper we extend the original formu-
lation of LP4EE [13] to handle negative-values predictions
(see Appendix A). The original version is used in RQ3 (to
predict the effort) whereas, the modified version is used in
RQ2 (to predict the MisestimationMagnitude which can take
the form of both positive and negative values).

Naı̈ve Bayes (NB) is a statistical technique that uses the
combined probabilities of the different attributes to predict
the target variable, based on the principle of Maximum A
Posteriori [50]. This approach is naturally extensible to the
case of having more than two classes, and was shown to per-
form well in spite of the underlying simplifying assumption
of conditional independence.

Random Forest (RF) is an ensemble technique which ag-
gregates the predictions made by a collection of decision
trees (each with a subset of the original set of attributes) [51].
Each tree infers a split of the training data based on feature
values to produce a good generalization. RF can naturally
handle binary or multiclass classification problems. The leaf
nodes refer to either of the classes concerned.

3.4 Validation Approach
For each of the datasets in our study, we perform a Leave-
One-Out (LOO) cross-validation for all RQs. Given a dataset
containing n observation, one observation at time is used as
target and the remaining n − 1 instances are used to train
the model; the process is repeated n times. Thus, for each
dataset, we obtained n pairs of training data and test data,
and we report the results obtained on the test data by using
boxplots, summary statistics, and statistical tests as detailed
in Section 3.5. LOO is a deterministic approach that, unlike
other cross validation techniques, does not rely on any
random selection to create the training and testing sets. Ac-
cording to recent work [14], assessment via LOO eliminates
conclusion instability caused by random sampling, making
evaluations that use it more easily reproducible. However,
if chronological information about the projects is available
it would be preferable to adopt a time-based validation
approach, because LOO may give more optimistic results

8. The source code is available at https://github.com/fedsar/LP4EE

than those that might realistically be achieved in practice
[52]. In our study we use LOO because start and completion
dates are not available for all projects.

3.5 Evaluation Criteria and Statistical Tests

In order to evaluate the performance of the techniques con-
sidered in RQ1 (i.e. CART, KNN, NB and RF) to classify mis-
estimation types and severity we used the Area Under the
ROC Curve (AUC-ROC) [53], which value ranges between
0 and 1. For a two-class problem (such as classifying error
types) an AUC-ROC value of 1 represents a perfect classifier,
while an area of 0.5 represents a Random (i.e. worthless)
one. To evaluate the performance for a multi-class problem
(such as the classifying errors’ severity) we exploited the
generalization to n-class classification proposed by Hand
and Till [54] which extends the AUC definition to the case of
more than two classes by averaging pairwise comparisons.
In this case a value of 1 still represents a perfect classifier,
while an area of 1/n represents a Random classifier, where
n is the number of classes considered.

In order to compare the performance of the estimation
methods analysed for RQ2 and RQ3 (i.e. CART, KNN, LP,
LFM and Expert), we measured the Absolute Error (i.e.
|PredictedV alue − RealV alue|), where the RealV alue is
our target prediction variable. This target prediction vari-
able is equal to MisestimationMagnitude for RQ2 and it is
equal to ActualEffort for RQ3. Thus, for RQ2 we measure the
Absolute Error between the human expert Misestimation-
Magnitude and the one predicted by LFM; while to answer
RQ3 we compute the absolute error between the actual effort
and the effort predicted by LFM, human expert, and the
considered ML. We use boxplots to visualise the difference
in performance among different prediction methods and
also use significance statistical tests. Both the boxplots and
the statistical tests are based on these distributions.

In order to evaluate whether the differences in perfor-
mance of the classifiers used in RQ1 are significant, we
use the Friedman Test9 [55]. This is a non-parametric test
which works with the ranks of the techniques rather than
their actual performance values, making it less susceptible
to the distribution of the performance of these parametric
values. The null hypothesis that is tested in our work is the
following: ”There is no significant difference in the AUC-
ROC values obtained by the approaches compared”, at a
confidence limit, α, of 0.05. If the null-hypothesis is rejected,
then it can be concluded that at least two of the techniques
are significantly different from each other. When a signifi-
cant difference is found, the Nemenyi test [56] is often rec-
ommended as a post-hoc test to identify the techniques with
a statistically significant difference9 [57]. The performance of
two classifiers is thought to be significantly different if the
corresponding average ranks differ by at least the critical
distance (CD) [57]. The results of this test are presented in
a diagram which is used to compare the performance of
multiple techniques by ranking them. It consists of an axis,
on which the average ranks of the methods are plotted and

9. The R package stats (version 3.6.1) was used for the Friedman
and the Wilcoxon Signed-Rank tests, the R package PMCMRplus (ver-
sion 1.4.2) was used for the Nemenyi Test.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XXX, NO. XXX, MONTH YEAR 7

of the CD bar. The groups of classifiers whose values are
significantly different, are not connected by a line.

To establish if the estimates of one method are statis-
tically significantly better than the estimates provided by
another method (RQ2 and RQ3), we compare the absolute
errors they achieved for each of the datasets. In particular,
to check for statistical significance, we use the Wilcoxon
Signed-Rank Test [58]9, which is a safer test to apply than
parametric tests, since it raises the bar for significance, by
making no assumptions about underlying data distribu-
tions. In particular, we test the following Null Hypothesis:
”The absolute errors provided by the prediction model
Pi are not significantly lower than those provided by the
prediction model Pj .”, set the confidence limit, α, at 0.05
and applied the Bonferroni correction (α/K, where K is
the number of hypotheses) when multiple hypotheses were
tested. The Bonferroni correction is the most conservatively
cautious of all corrections and its usage allows us to avoid
the risk of Type I errors (i.e. incorrectly rejecting the Null
Hypothesis and claiming predictability without strong evi-
dence). In order to investigate the effect size of the Wilcoxon
Signed-Rank Test results, we compute the correlation coeffi-
cient r = Z√

N
, where Z is the standard score of the Wilcoxon

test and N is the number of pair observations. Indeed, r
is recommended as an effect size measure for paired non-
parametric statistical significance tests [59]. The r effect is
considered small ≥0.10, medium ≥0.30, large ≥ 0.50 and
very large ≥ 0.70 [60], [61].

3.6 Threats to Validity
In this section we discuss the construct, conclusion, and
external threats to the validity of our empirical study.

To satisfy construct validity, a study has “to establish
correct operational measures for the concepts being stud-
ied” [62]. This means that the study should represent to
what extent the predictor and response variables precisely
measure the concepts they claim to measure [63]. Thus, the
choice of the features and how to collect them represents
a crucial aspect. We tried to mitigate such a threat by
using real-world data previously used to empirically eval-
uate effort estimation methods. We mitigate threats arising
from unrealistic or incorrect data usage by only considering
software projects for which the cost-drivers were collected
and measured before human experts made the predictions,
and were never modified afterwards, so that they can be
correctly used as independent variables in machine learning
prediction systems. Moreover, we considered only those
projects for which the human-estimated efforts were made
solely based on human expert judgement (i.e. no other
technique was used to support experts in their estimation).
Given that our approach aims to adjust and enhance the
expert’s final estimate, we need to use projects where the
expert’s estimation is provided. However, not all projects
contain also chronological information and we had to use
the LOO validation, which may lead to more optimistic
results with respect to a time-based validation [52].

With regards to the conclusion validity, we carefully
applied the statistical tests, verifying all the required as-
sumptions and correcting for multiple hypotheses statis-
tical testing. We also followed recent best practice to as-
sess prediction systems [12], [13], [64]. Moreover, we used

datasets of different sizes to mitigate the threats related to
the number of observations. We also used traditional ML
techniques implemented in publicly available tools to allow
for replications and comparisons.

To mitigate threats to external validity we used six
real-world industrial datasets containing software projects
related to different application domains and companies,
which are thus characterised by various project and human
factors such as development process, developer experience,
tools and technologies used, cost drivers, time and budget
constraints [65]. Although we used a set of subjects that
has such a degree of diversity, we cannot claim that our
results generalise beyond the subjects studied. It is worth
noting that the formulation of the approach is independent
from the nature of the projects. That is, the approach could
potentially work with any kind of project as long as they
can be characterised in terms of the same (or a subset of)
cost drivers used for describing the past projects stored
in the database. In our empirical study we experimented
with both new development and maintenance projects, and
we study both the effort of realizing entire projects and
specific software modules, in order to assess the feasibility
of LFM for a wide range of projects type. While we observe
that LFM performs generally well with different techniques,
some of them might be preferable depending on the size
of the dataset. Also, results obtained with datasets of small
size should be taken with caution as the number of projects
might not yield to a relevant statistical analysis, as in the
case of the Telecom dataset.

4 EMPIRICAL STUDY RESULTS

In this section we report and discuss the results we obtained
carrying out the empirical study described in Section 3.

4.1 RQ1. Predicting Type/Severity of Human Expert
Misestimations

To address RQ1 we compare the performance of CART,
KNN, NB and RF for predicting the type and the severity
of human expert estimate errors. The accuracy results, mea-
sured by the AUC-ROC, are summarised in Table 3.

RQ1.1-Predicting human expert misestimation type:
From Table 3 we can observe that all techniques outperform
the random classifier (i.e. AUC-ROC< 0.5) in all of the cases
studied with an average AUC-ROC across all techniques
and datasets equal to 0.71. Moreover, results show that RF
obtains the highest AUC-ROC values on three out of the six
datasets under study (i.e. ISBSG-FP, KP, Medical) with
AUC-ROC values ranging from 0.65 to 0.92. This conclusion
is reinforced by the Friedman Test as it shows statistically
significant difference (p-value < 0.001) between the per-
formance of the techniques studied (CART, KNN, NB, RF,
RG). Nemenyi’s Critical-Difference (shown in Figure 2a)
also supports this, ranking RF first and Random last with
a statistically significant difference (p-value < 0.001).

RQ1.2-Predicting human expert misestimation sever-
ity: Similar observations hold when we consider the pre-
diction of MisestimationSeverity. Results show that all tech-
niques always provide better AUC-ROC values than ran-
dom classification (i.e. AUC-ROC > 0.33), with an average

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XXX, NO. XXX, MONTH YEAR 8

(a) MisestimationType (b) MisestimationSeverity

Fig. 2: RQ1: Critical Difference (CD) diagram of the post-hoc Nemenyi test with α = 0.05. The difference between two
methods is significant if the gap between their ranks is larger than the critical distance. There is a line between two
methods if the rank gap between them is smaller than the critical distance.

Target Variable Dataset CART KNN NB RF

MisestimationType
(binary class)

ISBSG-C 0.75 0.63 0.62 0.56
ISBSG-FP 0.61 0.59 0.61 0.65
KD 0.71 0.85 0.62 0.63
KP 0.59 0.68 0.71 0.82
Medical 0.86 0.88 0.91 0.92
Telecom 1.00 0.64 0.57 0.65

MisestimationSeverity
(multi-class)

ISBSG-C 0.95 0.54 0.66 0.65
ISBSG-FP 0.53 0.57 0.53 0.56
KD 0.86 0.69 0.79 0.72
KP 0.64 0.68 0.62 0.60
Medical 0.64 0.65 0.73 0.67
Telecom 1.00 0.93 0.83 0.83

TABLE 3: RQ1: AUC-ROC values obtained by CART, KNN,
NB and RF when predicting the type and the severity of
human expert misestimations.

AUC-ROC value of 0.70 of all techniques across all datasets.
Results also show that CART obtains the highest AUC-
ROC values on three out of six datasets (ISBSG-C, KD
and Telecom), whereas KNN performs best on two of the
remaining datasets (ISBSG-FP and KP) and NB performs
best on the remaining dataset. The Friedman Test also
concludes a difference in the predictors’ performance (p-
value <0.001) with Nemenyi’s Critical-Difference Diagram
(shown in Figure 2b) ranking CART first and Random last
with a statistically significant difference when comparing
the two. On the other end, KNN, NB and RF rank second,
third and fourth, respectively, with the gap between their
ranks and Random not being larger than CD.

Therefore, in answering to RQ1 we can state that:

Answer to RQ1: The type and severity of human
expert misestimations are predictable with an average
AUC-ROC value of all techniques (over all datasets)
being equal to 0.71 for type and 0.70 for severity.

4.2 RQ2. Predicting the Magnitude of Human Expert
Misestimations
To answer RQ2, we investigate the capability of traditional
regression- and analogy- based estimation approaches (i.e.
CART, KNN, LP and RF) to predict the MisestimationMag-
nitude of human expert misestimates.

Figure 3 shows the boxplots of the distribution of the
absolute prediction errors produced by CART, KNN, LP and
RF as well as the sanity check, RG.

We can observe that all techniques are able to predict,
with a low absolute error, the magnitude of the error com-

mitted by human experts when estimating software effort.
This can be seen from the boxplots of each dataset where the
median of the best technique does not exceed an absolute
error of 0.25 on all datasets. Results also show that the
median absolute error of all ML techniques over all datasets
is also low, with an average equal to 0.28.

Figure 3 shows that all techniques outperform RG on
four (out of six) datasets. Whereas, on the remaining two
datasets (ISBSG-C and KD), at least two of the machine
learners (namely KNN and LP) achieve better results than
RG, with no technique being worse. The Wilcoxon test
results (reported in Table 4) also support this conclusion as
they show that all techniques are statistically significantly
better than RG on four out of six datasets (i.e. ISBSG-FP,
KP, Medical, Telecom), with 13% of these cases having a
very large effect size, 31% having a large effect size, 50%
having a medium and 6% small effect sizes. Whereas, on
the ISBSG-C dataset KNN and LP significantly outperform
RG, and for the other two techniques, the null hypothesis
cannot be rejected as well as for the KD dataset.

These results highlight that the magnitude of misesti-
mations is indeed predictable for all datasets considered.
Moreover, for each of the datasets we can identify the best
performing approach based on its median absolute errors
(as shown by the bar in the boxplots - Figure 3) and the
number of times it is statistically significantly better than
the other ones according to the Wilcoxon test and effect size
(Table 4). In RQ3 we will refer to this approach as LFM.

Based on the results above we can conclude that:

Answer to RQ2: The misestimate magnitude is highly
predictable with an average value of the median
absolute errors (MedAE) obtained by all techniques,
across all datasets, being equal to 0.28.

4.3 RQ3. Enhancing Software Effort Estimates via LFM
To address RQ3, we investigate the capability of LFM to
improve human expert estimates. Figure 4 shows the box-
plots of the distributions of absolute error values obtained
by LFM, human experts and the automated estimators (i.e.
CART, KNN, LP and RF) when predicting the effort of
software projects.

RQ3.1 LFM vs. Random Guessing (RG): The improve-
ments achieved by LFM over RG (as shown in Figure 4)
are always statistically significant (p < 0.001) with five very
large (r ≥ 0.7) effect sizes and a large one (r ≥ 0.5) (see

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XXX, NO. XXX, MONTH YEAR 9

●

●

●

●

●

●

●

●

0.0

0.5

1.0

1.5

2.0

2.5

CART
KNN LP RF RG

Ab
so

lu
te

 E
rro

r

(a) ISBSG-C

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●
●●

●

●

●

●

●

●

●

0.0

0.5

1.0

1.5

2.0

2.5

CART
KNN LP RF RG

Ab
so

lu
te

 E
rro

r

(b) ISBSG-FP

●

●●

●

●

●

0.0

0.5

1.0

1.5

2.0

2.5

CART
KNN LP RF RG

Ab
so

lu
te

 E
rro

r

(c) KD

●

● ●●

●

●

●

●

0.0

0.5

1.0

1.5

2.0

2.5

CART
KNN LP RF RG

Ab
so

lu
te

 E
rro

r

(d) KP

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

0

2

4

6

8

CART
KNN LP RF RG

Ab
so

lu
te

 E
rro

r

(e) Medical

●

● ●

●

0.0

0.5

1.0

1.5

2.0

2.5

CART
KNN LP RF RG

Ab
so

lu
te

 E
rro

r

(f) Telecom

Fig. 3: RQ2. Boxplots of the absolute errors achieved by CART, KNN, LP, RF and RG when predicting the magnitude of
human expert misestimations.

Table 5). Thereby LFM successfully passes our sanity check
of beating Random Guessing.

RQ3.2 LFM vs. Traditional ML Estimators: The analysis
of the boxplots of the absolute errors (see Figure 4) reveals
that our proposed algorithm, LFM, not only outperforms
RG, but it also performs better than all the other machine
learning methods against which we compare it, on five
(out of the six) datasets. That is, the absolute error values
provided by LFM are lower than those provided by CART,
KNN, LP and RF in 21 out of the 24 cases considered.
These observations are confirmed by inferential statistical
analysis, the results of which are presented in Table 5; the
improvement of our algorithm over these four techniques
is statistically significant and the effect size is very large
(r ≥ 0.7) in six of these comparisons, large (r ≥ 0.5) in 13,
medium (r ≥ 0.3) in one and small (r ≥ 0.1) in two of them.
As for the remaining dataset (Medical), LFM performs
statistically significantly better than CART (as shown by the
statistical test), with effect size equal to 0.29.

Therefore, we can positively answer to RQ3.2: The use
of LBM allows us to obtain significantly more accurate
estimates than traditional ML techniques for 88% of the
cases.

RQ3.3 LFM vs. Human Expert Judgement: From the
boxplots in Figure 4 we observe that LFM enhances the orig-
inal human expert estimates for all the datasets by providing
the lowest absolute errors. Results of the Wilcoxon test (see
Table 5) reveal that it achieves statistically significant better
estimations (all p-values being less than 0.035) on four out
of the six datasets with two of them having a medium
effect size (r ≥ 0.3) and the other two having a small one
(r ≥ 0.1). For the other two datasets (i.e. KD and Telecom),

LFM obtains lower absolute error values than human ex-
pert estimates (see Figure 4), however the difference is not
statistically significant on these datasets, which contain the
smallest number of observation (17 and 29, respectively).
Moreover, the average relative errors across all datasets
obtained by LFM are up to 33% lower than those resulting
from the estimations made by the human expert10.

These results show that LFM is not only better than
alternative automated techniques, but that it also has an
edge over purely human expertise alone. Therefore, we can
positively answer to RQ3.3: The use of LFM allows us to
improve human expert estimates.

Based on the results above, we can conclude that:

Answer to RQ3: LFM improves expert judgement on
all datasets with improvements that are statistically
significant on four out of the six datasets studied.

5 RELATED WORK

Previous research has been carried out to support engineers
in estimating software development effort, focusing on the
following aspects:

– Improving the accuracy of software effort estimates
by proposing and comparing a large number of tech-
niques such as regression and analogy-based [68],

10. MMRE should not be used as the only indicator to compare
prediction models as it can be misleading (see e.g. [66], [67]), we use it
only to provide a notion of the error with respect to the actual effort.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XXX, NO. XXX, MONTH YEAR 10

Dataset Technique vs. CART vs. KNN vs. LP vs. RF vs. RG
ISBSG-C CART - 1.000 (0.00) 1.000 (0.00) 0.862 (0.02) 0.905 (0.02)

KNN <0.001 (0.51) - 0.201 (0.18) 0.001 (0.47) 0.001 (0.49)
LP <0.001 (0.73) 0.802 (0.04) - 0.003 (0.43) 0.036 (0.30)
RF 0.140 (0.21) 0.999 (0.00) 0.997 (0.00) - 0.547 (0.09)

ISBSG-FP CART - 0.126 (0.11) 0.996 (0.00) 0.755 (0.02) <0.001 (0.37)
KNN 0.874 (0.01) - 0.964 (0.00) 0.951 (0.00) <0.001 (0.29)
LP 0.004 (0.21) 0.036 (0.15) - 0.382 (0.06) <0.001 (0.39)
RF 0.245 (0.08) 0.049 (0.14) 0.619 (0.04) - <0.001 (0.38)

KD CART - <0.001 (0.74) 0.517 (0.12) 0.007 (0.50) 0.111 (0.30)
KNN 0.999 (0.00) - 0.710 (0.07) 0.088 (0.32) 0.221 (0.23)
LP 0.492 (0.13) 0.297 (0.19) - 0.008 (0.49) 0.078 (0.33)
RF 0.994 (0.00) 0.916 (0.02) 0.992 (0.00) - 0.703 (0.07)

KP CART - 0.999 (0.00) 0.032 (0.34) 0.969 (0.01) 0.005 (0.44)
KNN 0.001 (0.53) - 0.001 (0.54) 0.049 (0.31) <0.001 (0.70)
LP 0.969 (0.01) 0.999 (0.00) - 0.999 (0.00) 0.020 (0.37)
RF 0.032 (0.34) 0.953 (0.01) 0.001 (0.51) - <0.001(0.62)

Medical CART - 0.790 (0.03) 0.320 (0.12) 0.999 (0.00) <0.001 (0.46)
KNN 0.211 (0.15) - 0.461 (0.09) 0.987 (0.00) <0.001 (0.45)
LP 0.682 (0.05) 0.542 (0.07) - 0.987 (0.00) <0.001 (0.47)
RF 0.001 (0.39) 0.014 (0.29) 0.013 (0.29) - <0.001 (0.56)

Telecom CART - 0.663 (0.11) 0.482 (0.17) 0.897 (0.03) 0.010 (0.62)
KNN 0.363 (0.22) - 0.373 (0.22) 0.824 (0.05) 0.010 (0.62)
LP 0.537 (0.15) 0.644 (0.11) - 0.785 (0.07) 0.005 (0.67)
RF 0.112 (0.39) 0.189 (0.32) 0.229 (0.29) - <0.001 (0.96)

TABLE 4: RQ2: Results of the Wilcoxon test (p-value and r effect size) comparing the absolute errors provided by CART,
KNN, LP and RF vs. each other and vs. RG when predicting the human expert MisestimationMagnitude.

vs. Expert vs. CART vs. KNN vs. LP vs. RF vs. RG
ISBSG-C 0.002 (0.44) <0.001 (0.66) <0.001 (0.66) <0.001 (0.58) <0.001 (0.62) <0.001 (0.75)
ISBSG-FP 0.011 (0.19) <0.001 (0.65) <0.001 (0.62) <0.001 (0.55) <0.001 (0.61) <0.001 (0.71)
KD 0.449 (0.14) <0.001 (0.72) 0.001 (0.60) 0.002 (0.57) 0.003 (0.55) <0.001 (0.97)
KP 0.035 (0.33) <0.001 (0.82) 0.001 (0.55) 0.005 (0.44) <0.001 (0.65) <0.001 (0.91)
Medical 0.013 (0.29) 0.014 (0.29) 0.963 (0.01) 0.971 (0.00) 0.988 (0.00) <0.001 (0.60)
Telecom 0.132 (0.37) <0.001 (0.96) <0.001 (0.96) 0.002 (0.74) <0.001 (0.96) <0.001 (0.94)

TABLE 5: RQ3: Results of the Wilcoxon test (p-value and r effect size) comparing the absolute errors obtained by LFM vs.
those obtained by human experts and traditional automatic learners (i.e. CART, KNN, LP, RF) when predicting software
projects’ effort.

[69], machine learning [70], ensemble [71], search-
based [8], [72].

– Experimenting with, and comparing, different size
measures as cost drivers (e.g. [36], [73], [74], [75],
[76]).

– Experimenting with, and comparing, within- vs. -
cross company data (e.g [77], [78], [79], [80]).

– Investigating estimate uncertainty (e.g. [3], [11], [21],
[81]) and prediction intervals (e.g. [82], [83], [84], [85],
[86], [87], [88]).

– Studying human bias in effort estimates (e.g. [89],
[90], [91], [92], [93]).

A comprehensive review on the use of expert judgement,
formal models and their combination can be found else-
where [10]. In the following, we focus on those studies that
have investigated human bias in predicting task duration,
and specifically in predicting software development effort.

Predicting task duration has been the focus of a lot of
research in different fields. Despite the different nature of
tasks under examination, previous studies almost univer-
sally show that human predictions tend to be biased. For
example, studies in psychology and human cognition show
that humans might be subject to the phenomenon of the cen-
tral tendency of judgement, which describes the tendency
for humans to over-estimate small tasks and under-estimate
large ones [94], as well as to the phenomenon of planning
fallacy, which is the human tendency to underestimate fu-
ture task duration despite knowing that previous similar

tasks could not be completed on time [95]. This kind of
bias has been later attributed to misremembering previous
task duration (i.e. memory-bias) and using such a duration
as a basis for future predictions. For example, Roy and
Christenfeld [96] studied whether a systematic memory-bias
has an effect, or could explain, a similar systematic bias in
prediction, and showed that people tend to underestimate
the duration of future events because they based their
estimation on the perceived duration rather than actual
duration of similar events that had occurred in the past.
Subsequent studies have shown that this prediction bias can
be reduced when feedback about previous task duration
is provided, thus refreshing and ultimately correcting the
memory (see e.g. [97]).

The principle of human bias in predictions has also been
studied, from different perspectives, for the task of software
effort estimation, as detailed below.

Surveys on estimation practice in the software industry
found that human effort estimates are over-optimistic [3], [4]
and there is a strong over-confidence in their accuracy [5]. A
recent survey on agile practice also revealed that half of the
respondents believe that their effort estimates on average
are under/over estimated by an error of 25% or more [6].

Other studies have looked into possible reasons for bias
mainly basing their investigation on statistical analysis of
project characteristics and questionnaires posed to project
managers [89], [91], [92], [93], [98]. Lederer and Prasad
[89] found that the main cause of misestimates was from

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XXX, NO. XXX, MONTH YEAR 11

0

5000

10000

LB
M

Exp
er

t

CART
KNN LP RF

RG

A
bs

ol
ut

e
E

rr
or

(a) ISBSG-C

0

5000

10000

15000

LB
M

Exp
er

t

CART
KNN LP RF

RG

A
bs

ol
ut

e
E

rr
or

(b) ISBSG-FP

0

5000

10000

15000

LB
M

Exp
er

t

CART
KNN LP RF

RG

A
bs

ol
ut

e
E

rr
or

(c) KD

0

1000

2000

3000

4000

LB
M

Exp
er

t

CART
KNN LP RF

RG

A
bs

ol
ut

e
E

rr
or

(d) KP

0

1000

2000

3000

4000

5000

LB
M

Exp
er

t

CART
KNN LP RF

RG

A
bs

ol
ut

e
E

rr
or

(e) Medical

0

1000

2000

3000

4000

LB
M

Exp
er

t

CART
KNN LP RF

RG

A
bs

ol
ut

e
E

rr
or

(f) Telecom

Fig. 4: RQ3. Boxplots of absolute errors obtained by LFM, Human Experts and traditional automatic estimators (i.e. CART,
KNN, LP, RF) when predicting software projects’ effort.

the management control side. Specifically, the lack of tasks
like consideration in performance reviews as to whether
estimates were met, project control comparing estimates
and actual performance, and careful examination of the
estimate by the management of the information system
department resulted in inaccurate estimates. Whereas Gray
et al. [91] used contingency table analysis, logistic regression
and log-linear modeling to prove that the expert-derived
effort prediction used to develop a collection of modules
from a large health-care system showed systematic biases
involving the size and type of the modules understudy.
Jørgensen [92] investigated the accuracy and bias variation
of effort estimates through the use of a regression analysis-
based model. The study analyses 49 software tasks from a
single organisation using collected information about vari-
ables that were believed to have an effect on accuracy or
the bias of the estimates. The results highlight that several
factors influence the increase of error in estimates, such
as the estimates being provided by a software developer
rather than a project leader or the customer prioritizing
time-to-delivery as opposed to quality or cost. Jørgensen
and Moløkken-Østvold [98] also studied differences in types
of reasons for estimation error depending on the role of the
estimators, data collection approach, and analysis technique
with results showing that all three types of reasons play a
major role in estimate inaccuracies. In a more recent study,
Jørgensen and Grimstad [93] examined the relationship
between biases resulting from effort estimates produced
by software developers, and developer cultural dimensions
such as the way one sees oneself, the thinking style, nation-
ality, experience, skill, education, sex, and organizational
role. Results showed that estimation bias was present along

most of the studied dimensions and that there was a strong
correlation between estimation bias and the developer level
of interdependence.

While the aforementioned work has focused on reasons
for human bias to support experts in making more accurate
and realistic estimates, our study uses machine learning pre-
dictions of human bias to automatically adjust and enhance
the expert’s final estimate of the overall effort which, to
the best of our knowledge, has not been explored yet. This
concept of using error to adjust future estimates has been
used by Kultur et al. [99], however it has been applied to
adjust for errors resulting from machine estimates of effort.
Their work propose an ensemble of neural networks with
associative memory (ENNA) and take the machine learner’s
estimation bias into account by using KNN to retrieve past
projects that are similar to the new one. The estimated
bias of the nearest neighbors ensemble is calculated as
the average of the differences between the actual and the
estimated values for those projects. This bias is then added
to the estimated effort of the new project. Results show that
ENNA provides estimates that are significantly better than
neural networks and regression trees. On the other hand,
we propose the use of automated models in order to predict
the errors made by human experts (rather than predicting
the effort) when estimating effort and exploiting this infor-
mation to adjust their final estimates. Rather than seeking
solely to compete with (or even replace) human experts,
our approach aims to use machine learners to learn, from
both traditional past projects cost drivers and from past
expert judgements, essentially building into the predictive
model the ability to learn from their past estimation errors.
Although a part of our work also proposes to adjust the final

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XXX, NO. XXX, MONTH YEAR 12

estimates by taking into account or adding an error/bias
(Phase 3), the main idea behind our proposed approach is
to automatically learn from and predict human expert error,
and to show that these predictions can be exploited to help
experts improve their final estimates.

6 CONCLUSIONS AND FUTURE WORK

In this paper we showed that we can learn from past
misestimations in order to improve future estimates; the
Learning From Mistakes (LFM) approach.

We demonstrated the effectiveness of LFM with an em-
pirical study involving human expert effort estimates (and
related errors) from 402 industrial software projects devel-
oped by several different companies. Our results reveal
that it is possible to predict the type, the severity, and the
magnitude of the mistakes made by human experts when
estimating software effort, and that we can successfully ex-
ploit this information to significantly improve future human
expert-based estimates.

The LFM approach proposed in this paper can be applied
by following these three steps:

1) Maintain a database of projects for which both
the effort estimated and the one actually needed
to realise the project have been recorded, together
with the cost drivers characterising the project (e.g.
functional size measures);

2) For any target project: use LFM to classify the type
and severity of the errors human experts are likely
to make when estimating the effort needed for target
projects based on the information stored in the
database (our findings from RQ1 show that this is
possible); use LFM to quantify the estimate error for
target projects based on the magnitude of human
expert past misestimations (our findings from RQ2
show that this is possible);

3) Enhance the human expert effort estimates based
on the past errors learned from Step 2 (our findings
from RQ3 show that such an enhancement can be
statistically significant as in the case of the projects
we considered herein).

Our LFM approach provides two routes to support
human experts. One of these is the more traditional, and
widely-studied route of improved effort estimation, but
the other is the less explored one of providing automatic
feedback on the experts’ own judgements, rather than seek-
ing to second-guess them. For example, one can investi-
gate whether using information gathered from past mis-
estimations as a cost driver can enhance the accuracy of
traditional automated predictive models. While, following
the second route, one could investigate the way in which
machine learners model human expert misestimates (e.g. do
bias models exhibit similar bias trends as those observed
in human predictions when estimating effort?) to further
provide useful insights to the experts. Once adopted in
practice, one could also observe how the use of LFM can
affect human expert judgement, over time, in estimating
effort, and how often LFM would need to be re-trained
to promptly reflect potential difference in behaviour and to
prevent model staleness.

Future work can also explore the applicability of LFM to
other Software Engineering predictive tasks (e.g. bug fixing
time prediction [100], customer ratings prediction [101],
code review recommendation [102], software vulnerabilities
predictions [103]).

ACKNOWLEDGMENTS

This research is supported by the ERC Advanced fellow-
ship grant EPIC (741278). The authors would like to thank
Barbara Kitchenham, Magne Jørgensen, and Stephen G.
MacDonell for providing part of the data used in this study.

APPENDIX

In this appendix we explain the mathematical formulation
of the Linear Programming model we used in RQ2 to predict
the MisestimationMagnitude.

Linear Programming (LP) [104] aims to achieve the best
outcome from a mathematical model with a linear objective
function subject to linear equality and inequality constraints.
The feasible region is given by the intersection of the con-
straints and the Simplex (linear programming algorithm) is
able to find a point in the polyhedron where the function
has the smallest value (minimisation) in polynomial time.

Here, we generalize the model proposed for the effort
estimation by Sarro and Petrozziello [13]. In the original
implementation, the model is subject to an inequality con-
straint imposing that the value estimated for each of the
observations in the training set has to fall in R+

0 . Here,
we remove the inequality constraints allowing the model to
use both positive and negative feature values as well as to
optimize for both positive and negative values, as follows:

minimise
n∑

i=1

|
m∑
j=1

aijxj − ActualValuei|

xjfree, j = 1, ...,m
(1)

where aij represents the coefficient of the jth feature for the
ith project, xj is the value of the jth feature, and ActualValuei
is the actual effort of the ith project.

Due to the non-linearity of the absolute value function,
the above model has been linearised as follows:

minimise
n∑

i=1

ti

subject to
n∑

i=1

m∑
j=1

aijxj − ActualValuei − ti ≤ 0

n∑
i=1

m∑
j=1

aijxj − ActualValuei + ti ≥ 0

xj free, j = 1, ...,m
ti free, i = 1, ..., n

(2)
Let Xi,∀i be the part of Eq. (1) wrapped in the abso-
lute value. ∀i, the slack variable ti and the following two
constraints have been added to the model: Xi ≤ ti and
−Xi ≤ ti. Therefore we can have one of the following cases:

Xi > 0 The second constraint, −Xi ≤ ti, is always fulfilled
as−Xi is negative and ti is implicitly≥ 0. Since ti is

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XXX, NO. XXX, MONTH YEAR 13

minimised by the objective function and 0 ≤ Xi ≤
ti, the first constraint, Xi ≤ ti, is satisfied and ti is
abs(X).

Xi < 0 The first constraint, Xi ≤ ti, is always fulfilled as
Xi is negative and ti is implicitly ≥ 0. Since ti is
minimised by the objective function and 0 ≤ −Xi ≤
ti, the second constraint, −Xi ≤ ti, is satisfied and
ti is abs(X).

Xi = 0 Both constraints are always fulfilled since ti is im-
plicitly ≥ 0. Since ti is minimised by the objective
function, 0 = Xi = ti. So ti is abs(X).

REFERENCES

[1] L. C. Briand and I. Wieczorek, “Resource estimation in software
engineering,” Encyclopedia of software engineering, 2002.

[2] A. Trendowicz and R. Jeffery, “Software project effort estima-
tion,” Foundations and Best Practice Guidelines for Success, Construc-
tive Cost Model, COCOMO, pp. 277–293, 2014.

[3] K. Molkken and M. Jörgensen, “A review of surveys on software
effort estimation,” in Proc. of ISESE’03, 2003, pp. 223–230.

[4] M. Jørgensen, “A review of studies on expert estimation of
software development effort,” Journal of Systems and Software,
vol. 70, no. 1-2, pp. 37–60, 2004.

[5] T. M. Gruschke and M. Jørgensen, “The role of outcome feedback
in improving the uncertainty assessment of software develop-
ment effort estimates,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 17, no. 4, pp. 1–35, 2008.

[6] M. Usman, E. Mendes, and J. Börstler, “Effort estimation in agile
software development: a survey on the state of the practice,” in
Proceedings of the 19th international conference on Evaluation and
Assessment in Software Engineering, 2015, pp. 1–10.

[7] S. McConnell, Software estimation: demystifying the black art. Mi-
crosoft press, 2006.

[8] F. Ferrucci, M. Harman, and F. Sarro, Search-Based Software Project
Management. Berlin, Heidelberg: Springer Berlin Heidelberg,
2014, pp. 373–399.

[9] M. Jørgensen and T. Halkjelsvik, “Sequence effects in the esti-
mation of software development effort,” Journal of Systems and
Software, vol. 159, p. 110448, 2020.

[10] M. Jørgensen, “Forecasting of software development work effort:
Evidence on expert judgement and formal models,” International
Journal of Forecasting, vol. 23, no. 3, pp. 449–462, 2007.

[11] S. G. MacDonell and M. J. Shepperd, “Combining techniques
to optimize effort predictions in software project management,”
Journal of Systems and Software, vol. 66, no. 2, pp. 91 – 98, 2003.

[12] M. J. Shepperd and S. G. MacDonell, “Evaluating prediction
systems in software project estimation,” Information and Software
Technology, vol. 54, no. 8, pp. 820–827, 2012.

[13] F. Sarro and A. Petrozziello, “Linear programming as a baseline
for software effort estimation,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 27, no. 3, pp. 12:1–
12:28, 2018.

[14] E. Kocaguneli and T. Menzies, “Software effort models should
be assessed via leave-one-out validation,” Journal of Systems and
Software, vol. 86, no. 7, pp. 1879–1890, 2013.

[15] M. Aly, “Survey on multiclass classification methods,” 2005.
[16] F. Walkerden and R. Jeffery, “An empirical study of analogy-

based software effort estimation,” Empirical software engineering,
vol. 4, no. 2, pp. 135–158, 1999.

[17] E. Kocaguneli, T. Menzies, A. Bener, and J. W. Keung, “Exploiting
the essential assumptions of analogy-based effort estimation,”
IEEE Transactions on Software Engineering, vol. 38, no. 2, pp. 425–
438, 2011.

[18] F. Ferrucci, C. Gravino, R. Oliveto, and F. Sarro, “Using tabu
search to estimate software development effort,” in Proc. of MEN-
SURA. LNCS 5891, Springer, 2009, pp. 307–320.

[19] F. Ferrucci, C. Gravino, R. Oliveto, F. Sarro, and E. Mendes,
“Investigating tabu search for web effort estimation,” in Proc. of
EUROMICRO-SEAA’10, 2010, pp. 350–357.

[20] A. Corazza, S. D. Martino, F. Ferrucci, C. Gravino, F. Sarro,
and E. Mendes, “Using tabu search to configure support vector
regression for effort estimation,” EMSE, vol. 18, no. 3, pp. 506–
546, 2013.

[21] F. Sarro, A. Petrozziello, and M. Harman, “Multi-objective soft-
ware effort estimation,” in Proc. of the 38th International Conference
on Software Engineering ICSE, 2016, pp. 619–630.

[22] M. Choetkiertikul, H. K. Dam, T. Tran, T. T. M. Pham, A. Ghose,
and T. Menzies, “A deep learning model for estimating story
points,” IEEE Transactions on Software Engineering, vol. PP, no. 99,
pp. 1–1, 2018.

[23] A. Arcuri and L. C. Briand, “A hitchhiker’s guide to statistical
tests for assessing randomized algorithms in software engineer-
ing,” STVR, vol. 24, no. 3, pp. 219–250, 2014.

[24] W. B. Langdon, J. J. Dolado, F. Sarro, and M. Harman, “Exact
mean absolute error of baseline predictor, MARP0,” Information
and Software Technology, vol. 73, pp. 16–18, 2016.

[25] W. Fu, T. Menzies, and X. Shen, “Tuning for software analytics: Is
it really necessary?” Information and Software Technology, vol. 76,
pp. 135–146, 2016.

[26] C. Tantithamthavorn and A. E. Hassan, “An experience report
on defect modelling in practice: Pitfalls and challenges,” in Pro-
ceedings of the 40th International Conference on Software Engineering:
Software Engineering in Practice, 2018, pp. 286–295.

[27] A. J. Albrecht and J. E. Gaffney, “Software function, source lines
of code, and development effort prediction: A software science
validation,” IEEE Transactions on Software Engineering, vol. SE-9,
no. 6, pp. 639–648, 1983.

[28] A. Abran, J. Desharnais, A. Lesterhuis, B. Londeix, R. Meli,
P. Morris, S. Oligny, M. O’Neil, T. Rollo, G. Rule, L. Santillo,
C. Symons, and H. Toivonen. (2015) The COSMIC Functional
Size Measurement Method – Measurement Manual, version 4.0.1
In http://www.cosmicon.com/portal/public/MMv4.0.1.pdf.

[29] Ç. Gencel and O. Demirörs, “Functional size measurement revis-
ited,” ACM Trans. Softw. Eng. Methodol., vol. 17, no. 3, 2008.

[30] H. van Heeringen and E. Van Gorp, “Measure the functional size
of a mobile app: Using the cosmic functional size measurement
method,” in 2014 Joint Conference of the International Workshop on
Software Measurement and the International Conference on Software
Process and Product Measurement. IEEE, 2014, pp. 11–16.

[31] F. Ferrucci, C. Gravino, P. Salza, and F. Sarro, “Investigating func-
tional and code size measures for mobile applications,” in 2015
41st Euromicro Conference on Software Engineering and Advanced
Applications, 2015, pp. 365–368.

[32] ——, “Investigating functional and code size measures for mobile
applications: A replicated study,” in International Conference on
Product-Focused Software Process Improvement. Springer, 2015, pp.
271–287.

[33] L. De Marco, F. Ferrucci, C. Gravino, F. Sarro, S. Abrahão, and
J. Gómez, “Functional versus design measures for model-driven
web applications: a case study in the context of web effort
estimation,” in Proceedings of the 3rd International Workshop on
Emerging Trends in Software Metric (WETSoM), 2012, pp. 21–27.

[34] B. Marı́n, O. Pastor, and A. Abran, “Towards an accurate func-
tional size measurement procedure for conceptual models in an
MDA environment,” Data Knowl. Eng., vol. 69, no. 5, pp. 472–490,
2010.

[35] S. Abrahão, L. D. Marco, F. Ferrucci, J. Gómez, C. Gravino, and
F. Sarro, “Definition and evaluation of a COSMIC measurement
procedure for sizing web applications in a model-driven devel-
opment environment,” Information and Software Technology, vol.
104, pp. 144–161, 2018.

[36] S. Di Martino, F. Ferrucci, C. Gravino, and F. Sarro, “Web effort
estimation: Function point analysis vs. COSMIC,” Information and
Software Technology, vol. 72, pp. 90–109, 2016.

[37] ISBSG. (2019) The international software benchmarking
standards group. [Online]. Available: http://www.isbsg.org

[38] M. Fernández-Diego and F. G. L. Guevara, “Potential and lim-
itations of the isbsg dataset in enhancing software engineering
research: A mapping review,” Information and Software Technology,
vol. 56, 2014.

[39] B. Kitchenham, S. Lawrence Pfleeger, B. McColl, and S. Eagan,
“An empirical study of maintenance and development estimation
accuracy,” Journal of Systems and Software, vol. 64, no. 1, pp. 57–77,
2002.

[40] L. Breiman, Classification and regression trees. Routledge, 2017.
[41] T. Cover and P. Hart, “Nearest neighbor pattern classification,”

IEEE Transactions on Information Theory, vol. 13, no. 1, pp. 21–27,
1967.

[42] P. Langley, W. Iba, K. Thompson et al., “An analysis of bayesian
classifiers,” in Aaai, vol. 90, 1992, pp. 223–228.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XXX, NO. XXX, MONTH YEAR 14

[43] A. Charnes and W. W. Cooper, “Programming with linear frac-
tional functionals,” Naval Research logistics quarterly, vol. 9, no.
3-4, pp. 181–186, 1962.

[44] A. Liaw, M. Wiener et al., “Classification and regression by
randomforest,” R news, vol. 2, no. 3, pp. 18–22, 2002.

[45] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Mat-
sumoto, “The impact of automated parameter optimization on
defect prediction models,” IEEE Transactions on Software Engineer-
ing, vol. PP, no. 99, pp. 1–1, 2018.

[46] A. Corazza, S. Di Martino, F. Ferrucci, C. Gravino, F. Sarro, and
E. Mendes, “How effective is tabu search to configure support
vector regression for effort estimation?” in Proc. of PROMISE’10,
2010, pp. 4:1–4:10.

[47] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Mat-
sumoto, “Automated parameter optimization of classification
techniques for defect prediction models,” in Proceedings of the
38th International Conference on Software Engineering, ser. ICSE ’16.
ACM, 2016, pp. 321–332.

[48] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone,
Classification and Regression Trees, ser. Statistics/Probability Series.
Belmont, California, U.S.A.: Wadsworth Publishing Company,
1984.

[49] B. D. Ripley, Pattern recognition and neural networks. Cambridge
university press, 2007.

[50] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, Second Edition (Morgan Kaufmann Series in
Data Management Systems). Morgan Kaufmann Publishers Inc.,
2005.

[51] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[52] B. Sigweni, M. Shepperd, and T. Turchi, “Realistic assessment
of software effort estimation models,” in Proceedings of the 20th
International Conference on Evaluation and Assessment in Software
Engineering, 2016, pp. 1–6.

[53] T. Fawcett, “An introduction to ROC analysis,” Pattern Recogni-
tion Letters, vol. 27, no. 8, pp. 861–874, 2006.

[54] D. J. Hand and R. J. Till, “A simple generalisation of the area
under the roc curve for multiple class classification problems,”
Machine Learning, vol. 45, no. 2, pp. 171–186, 2001.

[55] M. Friedman, “The use of ranks to avoid the assumption of
normality implicit in the analysis of variance,” Journal of the
american statistical association, vol. 32, no. 200, pp. 675–701, 1937.

[56] P. Nemenyi, “Distribution-free multiple comparisons (doctoral
dissertation, princeton university, 1963),” Dissertation Abstracts
International, vol. 25, no. 2, p. 1233, 1963.

[57] J. Demšar, “Statistical comparisons of classifiers over multiple
data sets,” Journal of Machine learning research, vol. 7, no. Jan, pp.
1–30, 2006.

[58] J. Cohen, Statistical power analysis for the behavioral sciences, 2nd ed.
Lawrence Earlbaum Associates, 1988.

[59] R. Rosenthal, H. Cooper, and L. Hedges, “Parametric measures
of effect size,” The handbook of research synthesis, vol. 621, pp. 231–
244, 1994.

[60] J. Cohen, Statistical power analysis for the behavioral sciences. Aca-
demic press, 2013.

[61] J. A. Rosenthal, “Qualitative descriptors of strength of association
and effect size,” Journal of social service Research, vol. 21, no. 4, pp.
37–59, 1996.

[62] B. Kitchenham, L. Pickard, and S. Pfleeger, “Case studies for
method and tool evaluation,” IEEE Software, vol. 12, no. 4, pp.
52–62, 1995.

[63] E. Mendes, S. Counsell, N. Mosley, C. Triggs, and I. Watson, “A
comparative study of cost estimation models for web hyperme-
dia applications,” EMSE, vol. 8, no. 23, pp. 163–196, 2003.

[64] P. A. Whigham, C. A. Owen, and S. G. Macdonell, “A baseline
model for software effort estimation,” ACM TOSEM, vol. 24,
no. 3, pp. 20:1–20:11, 2015.

[65] L. C. Briand and J. Wüst, “Modeling development effort in object-
oriented systems using design properties,” IEEE TSE, vol. 27,
no. 11, pp. 963–986, 2001.

[66] T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit, “A sim-
ulation study of the model evaluation criterion mmre,” IEEE
Transactions on Software Engineering, vol. 29, no. 11, pp. 985–995,
2003.

[67] B. Kitchenham and E. Mendes, “Why comparative effort predic-
tion studies may be invalid,” in Proceedings of the 5th Interna-

tional Conference on Predictor Models in Software Engineering, ser.
PROMISE. New York, NY, USA: ACM, 2009.

[68] L. C. Briand and I. Wieczorek, “Software resource estimation,”
Encyclopedia of Software Engineering, pp. 1160–1196, 2002.

[69] M. Shepperd and C. Schofield, “Estimating software project effort
using analogies,” IEEE TSE, vol. 23, no. 11, pp. 736–743, 2000.

[70] J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang, “Systematic literature
review of machine learning based software development effort
estimation models,” Inf. Softw. Technol., vol. 54, no. 1, pp. 41–59,
2012.

[71] A. Idri, M. Hosni, and A. Abran, “Systematic literature review of
ensemble effort estimation,” Journal of Systems and Software, vol.
118, no. C, pp. 151–175, 2016.

[72] F. Sarro, “Search-based predictive modelling for software engi-
neering: How far have we gone?” in Proceedings of the 11th Inter-
national Symposium on Search-Based Software Engineering (SSBSE),
ser. Lecture Notes in Computer Science, S. Nejati and G. Gay,
Eds., vol. 11664. Springer, 2019, pp. 3–7.

[73] C. Gencel, “How to use cosmic functional size in effort estimation
models?” in Software Process and Product Measurement. Springer,
2008, pp. 196–207.

[74] M. de Freitas Junior, M. Fantinato, and V. Sun, “Improvements
to the function point analysis method: A systematic literature
review,” IEEE Transactions on Engineering Management, vol. 62,
no. 4, pp. 495–506, 2015.

[75] F. Ferrucci, C. Gravino, and F. Sarro, “Conversion from ifpug fpa
to cosmic: within-vs without-company equations,” in Proceedings
of the 40th EUROMICRO Conference on Software Engineering and
Advanced Applications (SEAA). IEEE, 2014, pp. 293–300.

[76] S. Di Martino, F. Ferrucci, C. Gravino, and F. Sarro, “Assessing
the effectiveness of approximate functional sizing approaches for
effort estimation,” Information and Software Technology, vol. 123,
p. 106308, 2020. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0950584920300604

[77] E. Mendes, M. Kalinowski, D. Martins, F. Ferrucci, and F. Sarro,
“Cross- vs. within-company cost estimation studies revisited: an
extended systematic review,” in 18th International Conference on
Evaluation and Assessment in Software Engineering, EASE, 2014, pp.
12:1–12:10.

[78] T. Menzies, A. Butcher, D. Cok, A. Marcus, L. Layman, F. Shull,
B. Turhan, and T. Zimmermann, “Local versus global lessons
for defect prediction and effort estimation,” IEEE Transactions on
software engineering, vol. 39, no. 6, pp. 822–834, 2013.

[79] E. Kocaguneli, T. Menzies, and E. Mendes, “Transfer learning in
effort estimation,” Empirical Software Engineering, vol. 20, no. 3,
pp. 813–843, 2015.

[80] L. Minku, F. Sarro, E. Mendes, and F. Ferrucci, “How to make
best use of cross-company data for web effort estimation?” in
Empirical Software Engineering and Measurement (ESEM), 2015
ACM/IEEE International Symposium on. IEEE, 2015, pp. 1–10.

[81] M. Jorgensen, “Realism in assessment of effort estimation un-
certainty: It matters how you ask,” IEEE Transactions on Software
Engineering, vol. 30, no. 4, pp. 209–217, 2004.

[82] M. Jørgensen and D. Sjöberg, “An effort prediction interval ap-
proach based on the empirical distribution of previous estimation
accuracy,” Information and Software Technology, vol. 45, no. 3, pp.
123 – 136, 2003.

[83] M. Jørgensen and D. I. K. Sjoeberg, “An effort prediction interval
approach based on the empirical distribution of previous estima-
tion accuracy,” Information and software Technology, vol. 45, no. 3,
pp. 123–136, 2003.

[84] M. Jørgensen, “Looking back on previous estimation error as a
method to improve the uncertainty assessment of benefits and
costs of software development projects,” in 2018 9th International
Workshop on Empirical Software Engineering in Practice (IWESEP).
IEEE, 2018, pp. 19–24.

[85] K. H. Teigen and M. JØrgensen, “When 90% confidence intervals
are 50% certain: On the credibility of credible intervals,” Applied
Cognitive Psychology: The Official Journal of the Society for Applied
Research in Memory and Cognition, vol. 19, no. 4, pp. 455–475, 2005.

[86] M. Jørgensen and K. Moløkken, “Combination of software de-
velopment effort prediction intervals: Why, when and how?” in
Proc. of SEKE’02, 2002, pp. 425–428.

[87] M. Jørgensen, K. H. Teigen, and K. MoløKken, “Better sure than
safe? over-confidence in judgement based software development
effort prediction intervals,” Journal of Systems and Software, vol. 70,
no. 1-2, pp. 79–93, 2004.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XXX, NO. XXX, MONTH YEAR 15

[88] M. Jørgensen, “The ignorance of confidence levels in minimum-
maximum software development effort intervals,” Lecture Notes
on Software Engineering, vol. 2, no. 4, p. 327, 2014.

[89] A. L. Lederer and J. Prasad, “Causes of inaccurate software de-
velopment cost estimates,” Journal of systems and software, vol. 31,
no. 2, pp. 125–134, 1995.

[90] T. Connolly and D. Dean, “Decomposed versus holistic estimates
of effort required for software writing tasks,” Management Science,
vol. 43, no. 7, pp. 1029–1045, 1997.

[91] A. R. Gray, S. G. MacDonell, and M. J. Shepperd, “Factors
systematically associated with errors in subjective estimates of
software development effort: the stability of expert judgment,”
in Proceedings Sixth International Software Metrics Symposium (Cat.
No. PR00403). IEEE, 1999, pp. 216–227.

[92] M. Jørgensen, “Regression models of software development ef-
fort estimation accuracy and bias,” Empirical Software Engineering,
vol. 9, no. 4, pp. 297–314, 2004.

[93] M. Jorgensen and S. Grimstad, “Software development estima-
tion biases: The role of interdependence,” IEEE Transactions on
Software Engineering, vol. 38, no. 3, pp. 677–693, 2012.

[94] H. L. Hollingworth, “The central tendency of judgment,” The
Journal of Philosophy, Psychology and Scientific Methods, vol. 7,
no. 17, pp. 461–469, 1910.

[95] D. Kahneman and A. Tversky, “Intuitive prediction: Biases and
corrective procedures,” Decisions and Designs Inc Mclean Va,
Tech. Rep., 1977.

[96] M. M. Roy and N. J. Christenfeld, “Bias in memory predicts
bias in estimation of future task duration,” Memory & Cognition,
vol. 35, no. 3, pp. 557–564, 2007.

[97] M. M. Roy, S. T. Mitten, and N. J. Christenfeld, “Correcting
memory improves accuracy of predicted task duration.” Journal
of Experimental Psychology: Applied, vol. 14, no. 3, p. 266, 2008.

[98] M. Jorgensen and K. Molokken-Ostvold, “Reasons for software
effort estimation error: impact of respondent role, information
collection approach, and data analysis method,” IEEE Transac-
tions on Software engineering, vol. 30, no. 12, pp. 993–1007, 2004.

[99] Y. Kultur, B. Turhan, and A. B. Bener, “Enna: software effort
estimation using ensemble of neural networks with associative
memory,” in Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering, 2008, pp. 330–
338.

[100] S. Akbarinasaji, B. Caglayan, and A. Bener, “Predicting bug-fixing
time,” Journal of Systems and Software, vol. 136, no. C, p. 173–186,
2018.

[101] F. Sarro, M. Harman, Y. Jia, and Y. Zhang, “Customer rating reac-
tions can be predicted purely using app features,” in Proceedings
of the 26th IEEE International Requirements Engineering Conference,
RE. IEEE Computer Society, 2018, pp. 76–87.

[102] P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida,
H. Iida, and K. Matsumoto, “Who should review my code? a
file location-based code-reviewer recommendation approach for
modern code review,” in 2015 IEEE 22nd International Conference
on Software Analysis, Evolution, and Reengineering (SANER), 2015,
pp. 141–150.

[103] M. Jimenez, R. Rwemalika, M. Papadakis, F. Sarro, Y. L. Traon,
and M. Harman, “The importance of accounting for real-world
labelling when predicting software vulnerabilities,” in Proceed-
ings of the ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineer-
ing, ESEC/SIGSOFT FSE. ACM, 2019, pp. 695–705.

[104] J. C. Nash, “The (dantzig) simplex method for linear program-
ming,” Computing in Science and Engineering, vol. 2, no. 1, pp.
29–31, 2000.

Federica Sarro is Professor of Software Engi-
neering at University College London. Her re-
search covers Predictive Analytics for Software
Engineering (SE), Empirical SE and Search-
Based SE, with a focus on software effort es-
timation, software sizing, software testing, and
mobile app store analysis. On these topics she
has published over 70 papers in peer-reviewed
international venues including ICSE, FSE, TSE,
TOSEM, EMSE. She has also received several
international awards, including the FSE’19 ACM

distinguished paper award, the GECCO’16-HUMIES award, and the
ICSE’18 and ICSE’20 ACM distinguished reviewer award. She is an
active member of the SE community, having served on several steering,
organisation, programme committees, programme and editorial boards
of well-renowned venues such as ICSE, FSE, ACM TOSEM, IEEE
TEVC. Web page: http://www0.cs.ucl.ac.uk/staff/F.Sarro/

Rebecca Moussa is a PhD student in Soft-
ware Engineering (SE) at University College
London, under the supervision of Prof. Fed-
erica Sarro, and Prof. Mark Harman. Her re-
search interests lie in the areas of Predic-
tive Analytics for SE and Search-Based Soft-
ware Engineering with a focus on software ef-
fort estimation and defect prediction. Web page:
http://www0.cs.ucl.ac.uk/people/R.Moussa.html

Alessio Petrozziello works as Senior Data Sci-
entist & Data Science Manager at Expedia
Group in the Recommender Systems space. He
also holds an Honorary Senior Research Fellow
position at UCL. Before that, Alessio has been
a Visiting Researcher at the University of Ox-
ford and a co-founder member of the Geoinfor-
matics and Earth Observation Laboratory at the
Penn State University. He was awarded a PhD
in Computational Intelligence at the University of
Portsmouth (UK) and his main research interest

is in Machine Learning, with a focus in the Recommendation Systems
and Optimization fields. He specializes in building complex Distributed
Machine Learning Frameworks & Pipelines, solving business needs at
scale through custom Machine Learning solutions (from prototypes to
fully fledged production-ready models). Moreover, he has experience in
working in the areas of Learn-to-Rank, Deep Learning and Time Series
Forecasting. Web page: http://alessiopetrozziello.altervista.org

Mark Harman works full time at Facebook Lon-
don as a Research Scientist in a team focusing
on AI for scalable software engineering. He also
holds a part-time professorship at UCL. Previ-
ously, Mark was the manager of the Facebook
team that deployed Sapienz to test mobile apps,
which grew out of Majicke, a start up co-founded
by Mark and acquired by Facebook in 2017. In
his more purely scientific work, Mark co-founded
the field Search Based Software Engineering
(SBSE), and is also known for scientific research

on source code analysis, software testing, app store analysis and em-
pirical software engineering. He received the IEEE Harlan Mills Award
and the ACM Outstanding Research Award in 2019 for this work. In
addition to Facebook itself, Mark’s scientific work is also supported by
the European Research Council (ERC), with an advanced fellowship
grant, and has also been regularly and generously supported by the
UK Engineering and Physical Sciences Research Council (EPSRC),
with regular grants, a platform and a programme grant. Web page:
http://www0.cs.ucl.ac.uk/staff/M.Harman/

