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Abstract—This letter studies the multiple-input single-output
(MISO) non-orthogonal multiple-access (NOMA) downlink using
regularized zero-forcing (RZF) precoding with imperfect channel
state information (CSI). We first propose a new user scheduling
scheme based on imperfect CSI and a model to characterize the
channel correlation between the weak and strong users. Then we
derive an approximate expression of the ergodic sum-rate using
large-system random matrix theory. This approximation permits
us to derive the optimal power allocation scheme that satisfies
the rate requirement of the weak users. Simulation results are
presented to confirm the accuracy of the approximation and
reveal the relationships between the ergodic sum-rate, the channel
correlation, and other system parameters.

Index Terms—NOMA, imperfect CSI, regularized zero-forcing
precoding, user clustering.

I. INTRODUCTION

Non-orthogonal multiple-access (NOMA) is regarded as the
radio access technique to address the massive connectivity
problem for Internet of Things (IoT) [1, 2]. With successive
interference cancellation (SIC) at the receiver and superposi-
tion coding at the transmitter [3], NOMA has the capability to
deliver greater performance, such as higher user fairness and
improved spectrum efficiency, when compared to orthogonal
multiple access (OMA) methods.

User clustering, scheduling, power allocation, and multiuser
beamforming are among the methods that can further improve
the sum-rate and energy efficiency of the multiple-input single-
output (MISO)-NOMA downlink [4, 5]. To reduce users’ inter-
cluster interferences, [4] applied zero forcing (ZF) precod-
ing and clustering to MISO-NOMA. In [5], user clustering,
beamforming, and power allocation methods were proposed
to minimize the transmit power with rate constraints.

In the above works, it is assumed that the base station (BS)
has perfect channel state information (CSI). Nevertheless, due
to estimation errors, it is impossible to have perfect CSI in
practice. In [6], the authors studied the robust beamforming
design problem for NOMA in MISO channels by maximizing
the worst-case achievable sum-rate. Not only is the knowledge
of CSI an important factor affecting the performance of
NOMA, the correlation between the user channels in each
cluster is another crucial parameter [4, 7]. In [4], the authors
provided a user clustering method based on the correlation
between the user channels of the MISO-NOMA system. It was
shown that the higher the correlation between the channels of
two users, the less the inter-cluster interference of the weak

user. This work was extended to the imperfect CSI scenario
with regularized ZF (RZF) precoding in [7].

The main issue for the two power allocation schemes in [4,
7] is that Monte-Carlo averaging over all channel realizations,
which has high computational complexity, is needed. In this
letter, we consider a downlink MISO-NOMA system with im-
perfect CSI using RZF precoding and aim to obtain a closed-
form expression of the optimal power allocation by maximiz-
ing an approximate expression of the achievable ergodic sum-
rate. However, it is difficult to analyze the achievable ergodic
sum-rate due to the correlation between the user channels. We
tackle this by proposing a model for the channel correlation.
Specifically, our contributions are summarized as follows:
• By proposing a model to characterize the channel correla-

tion, we derive a large-system approximate expression for
the ergodic sum-rate. This approximation permits us to
obtain a closed-form expression for the optimal power
allocation, which depends only on the statistical CSI.
Therefore, the computational complexity of the proposed
method is much lower than that in [4, 7].

• We propose a new user scheduling scheme by exploiting
the correlation between the channels and the knowledge
of imperfect CSI. We also show the significance of this
correlation and reveal that for high correlation between
the channels, NOMA can achieve a higher gain than
OMA; otherwise, OMA is better.

• The optimal regularization scalar in the RZF precoding is
also obtained via a low-complexity linear search method.
The simulation results reveal that the optimal regular-
ization scalar monotonically increases with the channel
correlation, does not depend on the rate requirement
of the weak user, and monotonically increases with the
amount of channel uncertainty.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

A downlink multiuser beamforming system comprising one
BS and 2K users is considered. The BS is equipped with N
antennas and serves 2K(≥ N) single-antenna users. Users are
grouped into K clusters where each cluster is assumed to have
two users, i.e., a weak user and a strong user. Note that our
results can be easily extended to the case with more than two
users per cluster. Let xk =

√
pk,1sk,1 +

√
pk,2sk,2 denote the

superposition coded signal transmitted from the BS to the k-th
cluster, where sk,1 and sk,2 are the signals of strong and weak



2

users, respectively. The signals are assumed independent and
identically distributed (i.i.d.) complex data symbols with zero
mean and unit variance. Also, pk,1 and pk,2 denote the power
allocation parameters for the strong and weak users, and they
satisfy pk,1 + pk,2 = 1, for ∀k.

Using SIC decoding, the strong user in the k-th cluster first
decodes the signal vector of the weak user sk,2 by treating sk,1
as unknown interference since the signal √pk,2sk,2 is stronger
than √pk,1sk,1 [1, 2]. Then the strong user removes it from the
received signal and decodes sk,1 from the remaining part of
the received signal. Meanwhile, the weak user decodes its own
signal sk,2 directly by treating sk,1 as unknown interference.
To do so, the received signals yk,1 and yk,2 of the strong and
weak users in the k-th cluster can be, respectively, given as

yk,1 = hHk,1gk
√
pk,1sk,1 + hHk,1

K∑
j 6=k

gjxj + nk,1, (1)

yk,2 = hHk,2gk(
√
pk,2sk,2 +

√
pk,1sk,1)

+ hHk,2

K∑
j 6=k

gjxj + nk,2, (2)

where gk ∈ CN×1 is the precoding vector between the BS and
the k-th cluster, hHk,1 and hHk,2 ∈ C1×N denote the channel
vectors between BS and the strong/weak users in the k-th
cluster, respectively, nk,1 and nk,2 are i.i.d. complex Gaussian
noises with zero mean and variance of σ2.

We assume that the channels hHk,i for i = 1, 2 and k =

1, 2, . . . ,K are modeled as hHk,i =
√
βk,iz

H
k,i, where βk,1 and

βk,2 denote the large-scale fading coefficients between the BS
and the strong and weak users in the k-th cluster, respectively,
and satisfy βk,1 > βk,2, zHk,i denotes the fast fading channel
vector and has i.i.d. entries with zero-mean and variance of
1
N . We also define β1 = [β1,1, . . . , βK,1]T .

The overall precoding matrix of the BS is denoted by G =
[g1,g2, . . . ,gK ] ∈ CN×K . We assume that the BS meets the
transmit power constraint

tr{GGH} ≤ NP, (3)

where P > 0 is the power budget of the BS.
It is assumed that the imperfect channels ĥk,1 and ĥk,2 are

available at the BS, modeled as

ĥHk,i =
√
βk,i

(
ψk,iz

H
k,i + τk,iq

H
k,i

)
, (4)

where qHk,i has i.i.d. entries with zero-mean and variance of
1
N and is independent from zHk,i, and τk,i ∈ [0, 1] denotes

the amount of uncertainty in ĥHk,i and ψk,i =
√

1− τ2
k,i for

i = 1, 2 and k = 1, 2, . . . ,K. For frequency-division-duplex
(FDD) systems, the model (4) reflects the imperfect channel
knowledge due to the finite-bandwidth feedback links, whereas
for time-division-duplex (TDD) systems, the model (4) reflects
the imperfection due to finite training sequence length [8]. We
employ the RZF precoding with imperfect CSI of the strong
users to reduce the multi-user interference by [8, 9]

G = ξ(ĤH
1 Ĥ1 + αIN )−1ĤH

1 , (5)

where α > 0 represents the regularization scalar, Ĥ1 =

[ĥ1,1, ĥ2,1, . . . , ĥK,1]H ∈ CK×N , and ξ denotes a normaliza-
tion parameter to fulfil the BS transmit power constraint (3),
hence ξ2 = NP

tr(WĤH
1 Ĥ1W)

, where W , (ĤH
1 Ĥ1 + αIN )−1.

Substituting (5) into (1) and (2), the signal-to-interference
plus noise ratios (SINRs) of the strong and weak users in the
k-th cluster are given, respectively, by

γk,1 =
pk,1|hHk,1Wĥk,1|2

hHk,1WĤH
1,[k]Ĥ1,[k]Whk,1 + φ

, (6)

γk,2 =
pk,2|hHk,2Wĥk,1|2

pk,1|hHk,2Wĥk,1|2 + hHk,2WĤH
1,[k]Ĥ1,[k]Whk,2 + φ

,

(7)

where Ĥ1,[k] = [ĥ1,1, . . . , ĥk−1,1, ĥk+1,1, . . . , ĥK,1]H ∈
C(K−1)×N , φ = 1

ρN tr(WĤH
1 Ĥ1W), and ρ = P

σ2 denotes
the signal-to-noise ratio (SNR). We can obtain the rates of
strong and weak users in the k-th cluster as

Rk,1 = EH1,H2
{log(1 + γk,1)}, (8)

Rk,2 = EH1,H2
{log(1 + γk,2)}. (9)

Therefore, the achievable ergodic sum-rate of all users can be
expressed as

Rsum = Rsum1 +Rsum2 , (10)

where Rsum1 =
∑K
k=1Rk,1 and Rsum2 =

∑K
k=1Rk,2.

B. Problem Formulation

In this letter, we aim to maximize the achievable ergodic
sum-rate under the ergodic minimum rate constraint for the
weak users and the transmit power constraint by finding the
optimal power allocation {poptk,1, p

opt
k,2}∀k and the regularization

parameter αopt. This problem can be formulated as

max
{pk,1}∀k,α

Rsum (11)

s.t. Rk,2 ≥ Rk,0, pk,1 + pk,2 = 1, 0 ≤ pk,1, pk,2 ≤ 1,∀k,

where Rk,0 denotes the minimum rate requirement of the
weak user in the k-th cluster to ensure the quality of service.
Notice that the power constraint (3) is absorbed into Rsum

by ξ. However, from (8) and (9), it is required to evaluate the
achievable ergodic sum-rate Rsum using Monte-Carlo methods
averaging over all channel realizations which have very high
computational complexity. To tackle this challenge, we present
an approach to solve the problem (11) in the next section.

III. PERFORMANCE ANALYSIS

A. User Selection and Channel Modeling of Weak Users

In power-domain NOMA, to enhance system performance
and reduce interference, a user-selected scheme is necessary
before signal transmission, which includes the gain-difference
and correlation between the user channels in each cluster.

The high correlation between the channels of users in each
cluster can improve the sum-rate of NOMA systems [4]. In
the k-th cluster, the correlation between the channels of the
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weak and strong users Corrk is expressed by

Corrk =
|hHk,1hk,2|
|hHk,1||hHk,2|

=
|zHk,1zk,2|
|zHk,1||zHk,2|

, (12)

for k = 1, 2, . . . ,K. However, only imperfect channels ĥHk,1
and ĥHk,2 are available at the BS. Therefore, we use the
following approximation

Ĉorrk =
|ĥHk,1ĥk,2|

ψk,1ψk,2|ĥHk,1||ĥHk,2|
. (13)

Thus, a new user scheduling scheme is proposed, i.e., the
selected users in a cluster satisfy the following conditions

Ĉorrk ≥ Corr0 and |βk,1ψ2
k,1 − βk,2ψ2

k,2| ≥ β0, for ∀k,
(14)

where β0 and Corr0 ∈ [0, 1] are the prescribed large-scale and
correlation thresholds, respectively.

It is well known that to deal with the term xHAx using
large dimension random matrix theory, we always require that
x and A are independent [10, Lemma 2.3]. Otherwise, it
would be required to separate the component depending on x
from A [10, Lemma 2.1]. However, it is difficult to separate
the component depending on hk,2 from W in the numerator
and denominator of (7) due to the correlation between hk,1
and hk,2. To tackle this challenge, we propose a model to
characterize the relationship between the fast fading channels
of the weak and strong users in each cluster as

zHk,2 = θkz
H
k,1 +

√
1− θ2

kv
H
k , (15)

where vHk has i.i.d. entries with zero-mean and variance of 1
N

and is independent from zHk,1 and qHk , and θk is a constant.
Substituting (15) into (12), we therefore get the correlation

coefficient

Corrk =
|θkzHk,1zk,1 +

√
1− θ2

kz
H
k,1vk|

|zHk,1||θkzHk,1 +
√

1− θ2
kv

H
k |

. (16)

By applying [10, Lemma 2.3] and the fact that zHk,1 and vHk
are independent, we have

Corrk − θk
a.s.−−→ 0, as N →∞, (17)

where a.s. denotes ‘almost sure’ convergence. Similarly,

Ĉorrk − θk
a.s.−−→ 0, as N →∞. (18)

It is confirmed that the proposed model in (15) can asymptot-
ically characterize the correlation between the channels of the
weak and strong users through the parameter θk and we can
use Ĉorrk to approximate Corrk. Fig. 1 shows the relationship
between the correlation coefficient Corrk (or Ĉorrk) and the
parameter θk for different number of antennas, which is
consistent with our analytical results in (17) and (18).

B. Large System Analysis

Using (15), we aim to obtain an approximate expression of
(10) using large dimensional random matrix theory. First, it is
assumed that N and K →∞ with the ratio c = K

N .

According to [8, Theorem 1] and taking some mathematical
derivations, we can obtain the following theorem.

Theorem 1: As N → ∞, we have γk,1 − γk,1
a.s.−−→ 0 and

γk,2 − γk,2
a.s.−−→ 0, for k = 1, . . . ,K, where

γk,1 =
pk,1ψ

2
k,1ek(

1− 2ψ2
k,1ek

1+ek
+

ψ2
k,1e

2
k

(1+ek)2
+ 1

ρβk,1

)
uk

, (19)

γk,2 =
pk,2θ

2
kψ

2
k,1ek

pk,1θ2
kψ

2
k,1ek +

(
1− 2θ2kψ

2
k,1ek

1+ek
+

θ2kψ
2
k,1e

2
k

(1+ek)2
+ 1

ρβk,2

)
uk

,

(20)

with

uk = (1 + ek)
2

(
1− αek

βk,1
(1− βT1 Θ−1η)

)
, (21a)

[Θ]kl =


−1

N

ekel

(ek + 1)
2 , for k 6= l;

1− 1

N

e2
k

(ek + 1)
2 , for k = l,

(21b)

[η]k = − 1

N

e2
k

(ek + 1)
2 (21c)

and ek’s are the unique solution of the following K equations

ek =
βk,1

1
N

∑K
k=1

βk,1

ek+1 + α
for k = 1, . . . ,K. (22)

Proof: For γk,1 in (6), using [8, Theorem 1] (setting the
number of BSs M = 1 and correlation matrix Tk = βk,1I in
[8]), we can obtain

hHk,1Wĥk,1 −
ψk,1ek
1 + ek

a.s.−−→ 0, (23a)

hHk,1WĤH
1,[k]Ĥ1,[k]Whk,1 −

(
1−

2ψ2
k,1ek

1 + ek
+

ψ2
k,1e

2
k

(1 + ek)2

)
×
(
ek −

αe2
k

βk,1
(1− βT1 Θ−1η)

)
a.s.−−→ 0, (23b)

φ− 1

ρβk,1

(
ek −

αe2
k

βk,1
(1− βT1 Θ−1η)

)
a.s.−−→ 0, (23c)

where Θ, η, and ek are given by (21b), (21c), and (22),
respectively. Substituting (23) into (6), we can obtain (19).

For γk,2 in (7), substituting (15) into (7), we get

hHk,2Wĥk,1 =
√
δkθkh

H
k,1Wĥk,1

+
√
βk,2

√
1− θ2

kv
H
k Wĥk,1 (24)

hHk,2WĤH
1,[k]Ĥ1,[k]Whk,2

= δkθ
2
kh

H
k,1WĤH

1,[k]Ĥ1,[k]Whk,1

+ βk,2(1− θ2
k)vHk WĤH

1,[k]Ĥ1,[k]Wvk, (25)

where δk =
βk,2

βk,1
. Using [10, Lemmas 2.1–2.3], we have

vHk Wĥk,1
a.s.−−→ 0 (26)
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Fig. 1. The relationship between the correlation coefficient Corrk and the
parameter θk .

vHk WĤH
1,[k]Ĥ1,[k]Wvk

a.s.−−→ 1

N
tr
(
WĤH

1 Ĥ1W
)

= ρφ.

(27)

Substituting (23a) and (26) into (24), we get

hHk,2Wĥk,1 −
√
δk
θkψk,1ek
1 + ek

a.s.−−→ 0. (28)

Substituting (23b), (23c), and (27) into (25), we also have

hHk,2WĤH
1,[k]Ĥ1,[k]Whk,2 −

(
1−

2θ2
kψ

2
k,1ek

1 + ek
+
θ2
kψ

2
k,1e

2
k

(1 + ek)2

)

× δk
(
ek −

αe2
k

βk,1
(1− βT1 Θ−1η)

)
a.s.−−→ 0. (29)

Combining (23c), (28), and (29), we establish (20).
The large-system approximation in Theorem 1 provides

accurate estimates for the ergodic sum-rate even for small
numbers of antennas. According to the continuous mapping
theorem [11, Theorem 25.7–Corollary 2], we get a large-
system approximation R̄sum for Rsum in (10), such that
Rsum − R̄sum

a.s.−−→ 0, as N →∞, where

R̄sum =

K∑
k=1

(R̄k,1 + R̄k,2), (30)

R̄k,1 = log(1 + γk,1), and R̄k,2 = log(1 + γk,2). Thus, we
recast the problem (11) into

max
{pk,1}∀k,α

R̄sum (31)

s.t. Rk,2 ≥ Rk,0, pk,1 + pk,2 = 1, 0 ≤ pk,1, pk,2 ≤ 1,∀k,

C. Solving the Optimization Problem

From (30), we see that R̄sum only depends on the statistical
CSI, such as the large-scale fading coefficients {βk,1, βk,2}∀k,
the amount of uncertainty of the channel {τk}∀k, and the
correlation between the channels of the weak and strong users
{θk}∀k. However, the optimal regularization scalar αopt still
does not permit closed-form solutions. Thus, we decompose
the joint optimization problem (31) into two subproblems:

1) Given that {pk,1}∀k is fixed, the optimal regularization
scalar αopt := arg maxR̄k,2≥Rk,0

R̄sum can be obtained effi-
ciently using one-dimensional linear search.

2) For a fixed αopt, {pk,1}opt∀k satisfies the following opti-
mization problem

max
{pk,1}∀k

R̄sum (32)

s.t. Rk,2 ≥ Rk,0, pk,1 + pk,2 = 1, 0 ≤ pk,1, pk,2 ≤ 1,∀k.

According to (32), (19), and (20), we find that pk,1 only
depends on the sum-rate in the k-th cluster. Therefore, the op-
timization problem (31) can be equivalent to the maximization
of the sum-rate in each cluster, separately. That is, for ∀k, poptk,1

can be derived by the following problem

max
pk,1

R̄k,1 + R̄k,2 (33)

s.t. Rk,2 ≥ Rk,0, pk,1 + pk,2 = 1, 0 ≤ pk,1, pk,2 ≤ 1.

By taking the second derivative of R̄k,1 + R̄k,2 with respect to
pk,1, we have ∂2(R̄k,1+R̄k,2)

∂p2k,1
=
(
pk,1 +

((
1+ 1

ρβk,2

)
1

θ2kψ
2
k,1ek

−
2

1+ek
+ ek

(1+ek)2

)
uk
)−2−

(
pk,1 +

((
1 + 1

ρβk,1

)
1

ψ2
k,1ek

− 2
1+ek

+

ek
(1+ek)2

)
uk
)−2

. Since βk,1 > βk,2 and θk ≤ 1, we get
∂2(R̄k,1+R̄k,2)

∂p2k,1
≤ 0. Thus, the above problem is convex. From

the Karush-Kuhn-Tucker (KKT) conditions, we can derive the
optimal power allocation factor poptk,1 as

poptk,1 =
1

2Rk,0
− (2Rk,0 − 1)uk

2Rk,0θ2
kψ

2
k,1ek

×

(
1−

2θ2
kψ

2
k,1ek

1 + ek
+
θ2
kψ

2
k,1e

2
k

(1 + ek)
2 +

1

ρβk,2

)
. (34)

Substituting poptk,1 in (34) and poptk,2 = 1− poptk,1(∀k) into (19)
and (20), we get R̄sum(α) from (30), where R̄sum(α) only
depends on α but does not depends on pk,1 and pk,2 since
poptk,1 in (34) is a closed-form solution. Thus, we can directly
obtain αopt := arg maxR̄sum(α) using one-dimensional linear
search, where the minimum rate constraint for the weak users
vanishes since it is absorbed into poptk,1. Then, the unique
solution {ek}∀k is calculated by substituting αopt into (22).
Finally, we can obtain poptk,1 using (34). Hence, we can obtain
αopt and poptk,1 by using an alternating optimization algorithm.
Since the calculation of α or pk,1 is along the monotonically
increasing direction of R̄sum(α, pk,1) at each step, the alter-
nating algorithm is guaranteed to converge.

IV. NUMERICAL RESULTS

In this section, we provide some simulation results to evalu-
ate the proposed power allocation scheme. In the simulations,
we consider that the number of antennas at the BS is N = 64,
the number of users is 128 (K = 64), and we have the
large-scale fading factors βk,i = 128.1 + 37.6 log 10(rk,i) dB,
where rk,i (km) is the distance between user i in the k-th
cluster and the BS. Also, the transmit power at the BS is
30dBm, the noise density at the users is −169dBm/Hz, and
the bandwidth is 10MHz. All users are randomly located with
uniform distribution in the cell with 1km radius.

In Fig. 2, we illustrate the ergodic sum-rate and the optimal
regularization scalar αopt versus θk with {τ2

k,1 = τ2
k,2 =
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Fig. 2. Achievable ergodic sum-rate and optimal αopt vs θk .
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Fig. 3. Achievable ergodic sum-rate and optimal αopt vs Rk,0.

0, Rk,0 = 0.1}, respectively. It can be seen that the analytical
results (blue curves) almost agree with the simulation results
(red curves) achieved by Monte-Carlo averaging over 104

independent channel realizations of {H1,H2} even with small
numbers of antennas. Fig. 2 also compares the performances of
NOMA and OMA. We see that when the correlation between
the channels of the weak and strong users θk increases, the
ergodic sum-rate of NOMA increases while αopt decreases
monotonically. It means that the ZF procoding is near-optimal
for high correlation. However, the ergodic sum-rate of OMA
is almost unaffected by correlation. It reveals that for high
correlation between the channels of the weak and strong users,
NOMA can achieve a better gain than OMA; otherwise, OMA
is better. This insight is different from the many existing
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Fig. 4. Achievable ergodic sum-rate and optimal αopt vs τ2k,1.

works, which infer that NOMA is always better than OMA.
Fig. 3 depicts the ergodic sum-rate versus Rk,0 with {τ2

k,1 =
τ2
k,2 = 0.1, θk = 0.85}. We can see that with increasing Rk,0,

the sum-rate decreases. This is due to the fact that when Rk,0
increases, more power is allocated to the weak users in order to
satisfy the constraint {R̄k,2 ≥ Rk,0}∀k. It causes the sum-rate
of all strong users to drop even more. Fig. 3 shows that αopt

does not depend on Rk,0 since α only controls the inter-cluster
user interference while does not balance the rates between the
strong user and weak user in each cluster.

Finally, the ergodic sum-rate results versus τ2
k,1 with {τ2

k,1 =
τ2
k,2, θk = 0.85, Rk,0 = 0.1} are illustrated in Fig. 4. We

observe that higher performance is achieved if more CSI is
available at the BS and αopt monotonically increases with
increasing τ2

k,1.

V. CONCLUSION

We addressed the achievable ergodic sum-rate maximization
problem subject to the rate constraint of the weak user in the
MISO-NOMA system with imperfect CSI at the BS employing
RZF precoding. We proposed a model to characterize the
correlation between the fast fading channels of the weak
and strong users and derived a large-system approximate
expression of the achievable ergodic sum-rate. By maximizing
this approximate expression, a closed-form solution of the
optimal power allocation has been derived.
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