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Abstract
Introduction Robot-assisted surgery is becoming increasingly adopted by multiple surgical specialties. There is evidence 
of inherent risks of utilising new technologies that are unfamiliar early in the learning curve. The development of standard-
ised and validated training programmes is crucial to deliver safe introduction. In this review, we aim to evaluate the current 
evidence and opportunities to integrate novel technologies into modern digitalised robotic training curricula.
Methods A systematic literature review of the current evidence for novel technologies in surgical training was conducted 
online and relevant publications and information were identified. Evaluation was made on how these technologies could 
further enable digitalisation of training.
Results Overall, the quality of available studies was found to be low with current available evidence consisting largely of 
expert opinion, consensus statements and small qualitative studies. The review identified that there are several novel technolo-
gies already being utilised in robotic surgery training. There is also a trend towards standardised validated robotic training 
curricula. Currently, the majority of the validated curricula do not incorporate novel technologies and training is delivered 
with more traditional methods that includes centralisation of training services with wet laboratories that have access to 
cadavers and dedicated training robots.
Conclusions Improvements to training standards and understanding performance data have good potential to significantly 
lower complications in patients. Digitalisation automates data collection and brings data together for analysis. Machine 
learning has potential to develop automated performance feedback for trainees. Digitalised training aims to build on the 
current gold standards and to further improve the ‘continuum of training’ by integrating PBP training, 3D-printed models, 
telementoring, telemetry and machine learning.
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Introduction

It is recognised that errors are more common early in the 
surgeons learning curve [1] and the combination of simul-
taneously learning about both technology and technique, 
on patients, has inherent patient safety risks if training is 
not optimised [2, 3].

The first validated robotic training curriculum was 
published in 2015 [4]. This validated curriculum is the 
current gold standard and has been replicated by several 
societies in multiple specialties [5, 6]. The standardised 
structure describes staged training commencing with a 
baseline evaluation, e-learning and operating-room (OR) 
observation. With modules of simulation training, includ-
ing wet-laboratory training in cadavers, pigs and other ani-
mal models. However, centralised wet-laboratory training 
centres are expensive and limit access. Another key issue 
is the level of competence that the trainee has when they 
commence operations on patients. Expertise may not be 
available locally, requiring travelling proctors. Weaknesses 
in individual’s training and subsequent performance can 
be missed if training is not objectively assessed, bench-
marked and quality assured. In the aviation industry, there 
are international training standards that are benchmarked 
and quality assured [7]. Proficiency in performance must 
be shown before the pilot is allowed to fly a plane with 
passengers onboard. The same rigorous approach to surgi-
cal training has not yet been applied [7].

To improve surgical training, we need awareness 
of weaknesses, quality assured standards and access to 
affordable training that are integrated with job planning. 
The combination of systems thinking with a proficiency-
based progression (PBP) approach to training has been 
shown to be highly successful in reducing errors in avia-
tion training [7], whereas surgical training has historically 
been an apprentice model, with variabilities in the trainer’s 
skills as both a surgeon and educator [1]. Ultimately, all 
stages of training will benefit from digitalisation and auto-
mated data collection related to surgeon performance.

Materials and methods

A systematic narrative review was performed with a com-
prehensive computerised search completed using Pub-
Med and Medline databases. We systematically searched 
using medical subject headings including ‘robot-assisted 
surgery training’, ‘robotic surgery training’, ‘curriculum 
development’ and ‘proficiency-based training’, ‘surgical 
education’, ‘3D printed models’, ‘telementoring’, ‘eye 
tracking’, ‘machine learning’ and ‘AI’. Articles of interest 

included reports of novel technologies used in health-care 
and surgical training, prospective studies on the impact 
of robotic simulation training, robotic training curriculum 
development with validation and systematic reviews on 
robotic training published between July 2000, when the 
first robotic systems received FDA approval in the USA 
[7], and March 2020. Other significant studies cited in the 
reference list of selected papers were evaluated, as well as 
studies of interest published before the systematic search. 
Sections of the review were allocated to six researchers 
with expertise in that area and the reviewers independently 
selected papers for detailed review evaluating the abstract 
and, if necessary, the full-text manuscript. Potential dis-
crepancies for inclusion were resolved by open group 
discussion.

Findings

Overall, the quality of available studies was found to be low 
with current available evidence consisting largely of expert 
opinion, consensus statements and small qualitative studies. 
The review identified that there are several novel technolo-
gies already being utilised in robotic surgery training and 
also a trend towards standardised validated robotic train-
ing curricula. Currently, the majority of validated curricula 
follow traditional methods that do not incorporate novel 
technologies.

Establishing surgical performance metrics 
as a starting point

Surgical training has historically been delivered via a mas-
ter-apprentice model, where the trainee observes and learns 
from the experienced trainer, eventually being ‘signed off’ 
as competent. However, subjective assessments of surgical 
performance have been shown to be highly variable with 
poor inter-rater reliability [8]. Skills learning is more effi-
cient when sustained deliberate practice (SDP) is enabled 
[9]. This requires the skills to be defined with objective met-
rics of performance that are agreed by both the trainer and 
student [9]. SDP is an important element of PBP training, 
which has been shown to reduce error rates, early in the 
learning curve, by approximately 50% [8]. SDP states that 
repetition of skills with deliberate practice is key to suc-
cess and that the defined metrics should be able to be repli-
cated in various settings. Objective metrics once established 
should be utilised in multiple training settings to enable a 
continuum of training, from e-learning that describes the 
metrics in key index procedures, to the development of the 
simulation models that reflect the metrics [10], to telemen-
toring protocols, to recording and auditing outcome data. 
There is good evidence that when surgery is standardised, it 
is easier to identify the subtleties of the technique to improve 
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patient outcomes [11], and to identify postoperative compli-
cations related to sub-optimised technique [12].

Various approaches to defining metrics have been defined. 
The process requires task deconstruction and identification of 
key elements. Essential elements within each defined phase 
of the procedure include the tasks to be completed and the 
errors to avoid. To enable SDP, it is important to have agree-
ment between the trainer and trainee. Consensus on the phases, 
tasks and errors can be reached using the Delphi process [13]. 
Strategies to drive standardised training, with a top-down 
approach, include ‘train-the-trainer’ courses, where trainers 
learn about the curriculum structure and content, the metrics to 
assess and how to deliver training safely [1]. An evolving sur-
gical technique is equally likely to be affected by technological 
advancements in surgery and both optimisation of technique 
and technology benefit from standardisation of the fundamen-
tals. This will be increasingly utilised with the development of 
robotic networks and integration of artificial intelligence (AI) 
and machine learning [14], to scale deep learning development 
into a more predictable and efficient practice benefits from 
standardisation. It is a common language or a coordination 
mechanism for industry, academics and clinicians to acceler-
ate the development of both the technology and technique. 
Thus, a standardised approach to a key index procedure could 
be described as a minimal viable product (MVP), rather than 

a defined end product of established optimised performance 
(See Fig. 1).

E‑learning

Online education has potential to deliver both synchronous and 
asynchronous learning. Video content is ‘richer’ than text and 
previous research concludes 1 min of video is worth 1.8 mil-
lion words. The reasoning is: “if ‘a picture is worth a thousand 
words’, then a minute of video with 30 frames per second is 
worth at least 1.8 million words.” [15]. Cost models estimate 
the costs of developing video on demand for education accord-
ing to Levin’s Ingredient, model related to personnel, equip-
ment and consumables [16]. Video content development can 
be planned according to Fig. 2.

Future developments in innovative educational content can 
be broadly considered as platform functionality related and 
approaches to enhance engagement, although there is signifi-
cant overlap. Virtual reality (VR) simulation is already widely 
available and has been shown to improve patient outcomes, 
but is not yet fully integrated into training [17]. Although the 
research concerning the implementation of augmented real-
ity (AR) in surgical education is relatively limited, there are 
promising results regarding the teaching potential [18]. There 
is also evidence that gamification of knowledge acquisition 
is beneficial to learning curves and this is currently being 
explored in surgical training [19]. Further research is needed 
to prove if AR and VR can effectively replace or supplement 
traditional surgical pedagogy methods and whether gamifica-
tion promotes a desire to learn.

Telepresence

In the current robotic training, without telementoring, an 
experienced surgeon usually proctors the trainee in their own 
hospital for their first five to ten operations [4]. If the hospital 
commencing robotic surgery lacks expertise, then this requires 
surgeons from centres of excellence to travel to that hospital. 
Proctorship is therefore expensive and supervision limited to 
an agreed number of operations. With the likely possibility of 
the ‘inexperienced’ surgeon being confronted with unusual 
anatomy or a difficult case after this period of proctorship, 
this is the time that the surgeon and his/her patient are most 
vulnerable to the early learning curve. The introduction of tel-
ementoring, where training and expert support/guidance can 
be continued remotely from centres of excellence, is more 

MVP

Training: 
dissemina�on of 

knowledge

Telementoring: 
Feedback and reflec�on

Data registry 
Pa�ent outcomes

AI and 

machine learning

Fig. 1  Defining standardised objective performance metrics is an 
ideal starting point

Fig. 2  Development of educational video content



 World Journal of Urology

1 3

cost-efficient and accessible [14]. Telementorship consists of 
audio-visual communication where the remote surgeon can 
see the operating field, and additional functionalities to aid 
communication include telestration and image overlay [20].

Several studies have concluded telementoring is an effec-
tive training tool [21]. One study showed that residents in 
the telementoring group performed significantly better com-
pared to non-mentoring group (p < 0.001) [22]. The safety 
of telementoring has also been established. In a systematic 
review of 11 studies, 9 concluded that telementoring did not 
prolong surgery time compared to on-site mentoring; none 
of them reported an elevated complication rate; and only 
3% of the total number of cases reported technical issues 
[23]. Of note, a study of laparoscopic cholecystectomies 
conducted by Byrne et al. [24] concluded that telementor-
ing could be used as bridge between on-site supervision to 
totally unsupervised performance. A telementoring study 
by Pahlsson et al. [25] focused on endoscopic retrograde 
cholangiopancreatography (ERCP) confirmed that telemen-
toring might be delivered from a high-volume endoscopist at 
a tertiary hospital to a low-volume rural hospital, to provide 
a higher success rate which could be maintained without 
telementoring support.

One of the original purposes of telementoring was for 
the battlefield and potentially the biggest advantages may be 
in the management of emergency scenarios [26]. In 1999, 
Cubano and colleagues successfully connected USS Abra-
ham Lincoln aircraft with a land-based surgical mentor and 
completed five laparoscopic hernia repairs under telementor-
ing guidance [27]. Telementoring can currently be delivered 
with different network infrastructure, including wide access 
networks (WANs) and 5G [28]. Project 6 was proposed by 
the Society of American Gastrointestinal and Endoscopic 
Surgeons (SAGES) in 2015, aiming to promote develop-
ment of surgical telementoring [29]. A current limitation 
is surgical telementoring’s requirement for bandwidth and 
rural areas usually lack it. With the development of 5G, this 
barrier would likely be overcome [28].

Eye tracking

In general, the mental workload associated with an easy 
task is low, whereas difficult tasks produce higher men-
tal workload. Mental workload can also be described by 
the difference between task demands and available atten-
tion resources. Thus, a high workload task that is mentally 
demanding leaves little or no spare attention capacity to deal 
with new or unexpected events, and the less likelihood of 
learning. Increased workload during surgery has been asso-
ciated with inferior task performance, a higher likelihood of 
errors and the possibility of an incomplete skill transfer to 
the clinical environment [30, 31]. Until recently, cognitive 
(mental) load measures were limited to subjective ratings 

administrated after the task (NASA-TLX), or performance 
on a secondary-task as opposed to instantaneous load in a 
given moment [32]. While such measures are well suited to 
evaluating the relative differences in cognitive load between 
practice trials, they cannot provide detailed information 
about whether increased or decreased load is experienced 
during the performance of a learning task. Task-evoked 
pupillary responses (TEPRs) that include changes in pupil 
diameter and patterns in eye movement fixation have been 
found to occur shortly after the onset of a task and subside 
quickly after processing is terminated. Studying changes in 
TEPRs traditionally requires complex and limiting labora-
tory infrastructure with non-mobile cameras and onerous 
manual data collection and analysis.

Newly developed portable devices have facilitated this 
process, as they allow digital recording of pupil changes and 
a more convenient means for the quantification of TEPRs in 
dynamic environments. These devices have demonstrated 
that physicians with more training and experience exhibit 
less cognitive load than novices when answering questions 
in their field of expertise [33]. Recently, a publication eval-
uated the relationship between eye-tracking measures and 
perceived workload in robotic surgical tasks. Eight surgi-
cal trainees performed up to 12 simulated exercises. Pupil 
diameter and gaze entropy were found to distinguish differ-
ences in workload between task difficulty levels, and both 
metrics increased as task level difficulty increased. It was 
found that eye-tracking features achieved an accuracy of 
84.7% in predicting workload levels [34]. Causer et al. [35] 
also maintained that gaze training could help trainees lessen 
the negative effects of anxiety by concentrating on continu-
ally relevant information. In future research, we can utilise 
a lightweight, non-obtrusive eye tracker (Pupil Labs) worn 
by the participants to evaluate the impact of various robotic 
training curricula on the trainee’s workload. Owing to the 
fundamental differences of gaze behaviour between experts 
and novices, eye-tracking technology also has potential for 
proficiency assessment [34].

Eye tracking has been shown to be a valuable training 
tool that can impact the learning curve. Chestwood et al. 
demonstrated that the projection of an expert’s gaze pattern 
on a trainee’s laparoscopic screen during a simulation task 
was found to aid trainee performance. The research con-
cluded that, by simultaneously reflecting a supervisor’s gaze 
to a trainee, the completion time of laparoscopic tasks and 
number of errors could be significantly reduced [36]. Addi-
tionally, eye tracking can measure the gaze focusing on an 
area of interest (AOI). One study indicated that as medical 
students became more familiar with anatomical landmarks, 
cognitively salient gaze pattern changes within AOI could 
be observed and so progression of gaze behaviour may be 
expected during active learning and familiarisation [37]. In 
future work assessing telementoring, we could assess the 
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use of the projected eye tracking of a trainer to aid in remote 
proctoring of trainees. Eye tracking can be utilised with both 
an open console and immersive console (Fig. 3).

Fabricating the ideal surgical simulation platform 
utilising 3D printing

One area of simulation that has proven to be difficult is 
the creation of a high-fidelity process that accurately and 
reproducibly simulates an entire procedure including rel-
evant anatomy and pathology (see Table 1). With increased 
awareness of the benefits of standardised training, a novel 
full-immersion simulation using 3D printed models builds 

on the principles of SDP, with integration of defined perfor-
mance metrics [10].

The Simulation Innovation Laboratory at the Univer-
sity of Rochester Medical Centre has successfully merged 
polymer casting and 3D printing technologies to fabricate 
anatomically accurate training platforms permitting realis-
tic dissection, haemostasis and suturing for complex proce-
dures as percutaneous nephrolithotomy [38], robot-assisted 
radical prostatectomy (RARP) [10] and partial nephrectomy 
[39]. Taking the RARP model [10] as an example, the MRI 
of a patient with T1c, Gleason 7 cancer was imported into 
Mimics 20.0 (Mimics; Materialise, Leuven, Belgium)., for 
segmentation of each of the patient’s pelvic organs to form 
a computer-aided design (CAD) anatomical model (Fig. 4a). 

Fig. 3  A telementoring hub could potentially be linked to multiple hospitals, both nationally and internationally

Table 1  Comparison of the different surgical training models

Model Strengths Weaknesses

Task deconstruction models Address metrics and are cost effective, e.g. 
chicken gizzard model for vesico-urethral 
anastmosis

Limited development to comprehensively address metrics, bench-
marks and error management

Porcine model Flexible training model for tissue handling Expensive
Not human anatomy
No human pathology
Limited accessibility

Canine cadaver model Flexible training model for tissue handling Not human anatomy
No human pathology
Limited accessibility

Human cadaver model Flexible training model Expensive
Lacks pathology and does not bleed
Limited accessibility

3D printed models [10] Flexible training model Currently, high development costs (lowered if printed casts rather 
than printed models)Can incorporate pathology and vascularisation

Increasingly realistic tissue handling Models that address specific defined metrics need to be developed
Can incorporate metrics and benchmarks [10]

VR simulation Advanced procedural training models available 
(e.g. robotic prostatectomy, hysterectomy)

Current scope/range/image quality limited

AR simulation Potential to develop Limited development
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Individual injection casts were then designed from the CAD 
and 3D printed using a Fusion3 F400-S 3D printer (Fusion3 
Design, Greensboro, NC, USA) (Fig. 4b). PVA hydrogel was 
injected into these casts based on the desired mechanical 
properties for each organ and cast in series to replicate their 
anatomical relationships between various organs (Fig. 4c). 
The model was perfused through hollow, watertight ves-
sels incorporated into the NVB, dorsal venous complex and 
prostatic pedicle during the casting process. To replicate 
the entire procedure, the prostatectomy organ complex was 
layered in its anatomical configuration within a 3D-printed 
male pelvis that was fitted with pelvic floor muscles, pelvic 
fat, and relevant structures made of PVA (Fig. 4d).

Training and assessment go hand in hand, training 
without formative feedback is reduced to sheer repetition 
[9]. Naturally, the best method of assessment would be 
one of clinical relevance that could be tracked to evaluate 
progress during training. Our casting technique allowed 
incorporation of Clinically-Relevant Metrics Performance 
Metrics of Simulation (CRPMS) pertinent to an RARP 
procedure including key phases of the procedure: nerve 
tension during NVB dissection (measured through cali-
brated analogue stretch sensors, aligned within the NVB 

during the casting process); surgical margins (measured by 
addition of a chemical that exhibits chemiluminescence in 
the prostate cast); and vesico-urethral anastomosis (VUA) 
integrity (that could be tested for any leaks after injecting 
180 cc of saline) (Fig. 5).

Simulations by five experts and nine novices were com-
pleted to validate incorporated CRPMS and correlate them 
to standardised objective assessments, e.g. global evaluative 
assessment of robotic skills (GEARS) and robotic anasto-
mosis competency evaluation (RACE) [10]. Nerve forces 
applied during the simulation were significantly lower for 
experts. Higher force sensitivity (Subcategory of GEARS 
Score) and Total GEARS Score correlated with lower 
nerve forces applied with total energy (J) – 0.66 (0.019) and 
− 0.87 (0.000), respectively, which was significantly differ-
ent between novices and experts (p = 0.003). The VUA leak 
rate highly correlated with total RACE score − 0.86 (0.000), 
which was also significantly different between novices and 
experts (p = 0.003). This study presents a novel method for 
real-time assessment and feedback during robotic surgery 
training utilising incorporated CRPMS. These efforts pro-
vided a platform for reproducing realistic procedural mod-
els with the added capacity to provide objective procedural 

Fig. 4  Construction of nerve-sparing robot-assisted radical prostatectomy (NS-RARP) simulation platform
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metrics that permit real-time feedback and assessment dur-
ing robotic surgery training.

Automated performance metrics

Robotic surgery training curricula aim to objectively assess 
surgical trainee basic robotic surgical skills or specific 
procedures using tools such as global skills assessment, 
robotic-objective structured assessment of technical skills 
(R-OSATS), global operative assessment of laparoscopic 
skills (GOALS) and GEARS. While the majority of these 
tools were utilised for evaluation of basic robotic surgery 
performance, the GEARS assessed selective steps of spe-
cific procedures and associated them with patient outcomes 
[40]. Nevertheless, these tools counted on human rating, 
inevitably mingled with subjective bias. In addition, the 
time and resources of educators or assessors is required. As 
such, automated performance metrics (APMs) have poten-
tial to objectively and analytically evaluate surgical tech-
niques, providing surgical trainees with more equitable and 
quantifiable assessment across disciplines. Heterogeneity 
exists in automated methods of surgical skill assessment. 
Levin et al. [41] identified a pathway of automated methods, 
including three sessions: data extraction (kinetic and com-
puter vision methods), automated methods (motion tracking 
of tools, hands and eyes, and muscle contraction analysis), 
and analysis utilising machine learning, deep learning or 
performance classification. The procedural approaches most 
frequently studied were robotic and laparoscopic minimally 
invasive surgery. The most common utilised method for 
automation was tool motion tracking. Most previous stud-
ies were accomplished in a simulated environment, instead 
of in the OR.

In the laboratory setting or live surgery, APMs can be 
categorised into three sectors, encompassing kinematic 
data (e.g. instrument moving velocity, travelling distance, 
deceleration and acceleration), systems event data (e.g. mas-
ter clutch use, camera movement, energy application and 
third arm swap), and instrument grip force [42]. There are 
a variety of recording devices, such as ProMISTM, trak-
STAR, AcceleGlove, and dVLogger (Intuitive). The most 
frequently investigated and validated APMs are kinematic 
data. Both kinematic and systems events data have shown 
good discrimination between surgeon’s expertise. Although 
instrument grip force was less frequently studied, Gomez 
et al. [43] identified that novice robotic surgeons applied 
higher grip forces than experts when performing laboratory 
exercises. If these surgical activity recognition models could 
assess each phase of a surgical procedure, they could be uti-
lised to compute efficiency metrics. Nevertheless, most mod-
els reported in the literature ranged from around 50–80% 
accuracy [44]. Recognition of anatomical landmarks is a 
current limitation of APMs evaluating surgical skills. Nos-
rati et al. [45] proposed a new technique to localise both 
visible and occluded anatomical structures on an endoscopic 
view of partial nephrectomy. They leveraged both preop-
erative 3D computed tomography scans and intraoperative 
endoscopic visual clues as well as vasculature pulsation in 
order for accurately segmenting the highly fluctuated envi-
ronment in minimally invasive surgeries.

AI and machine learning (ML)

Quantifying and evaluating surgical ability are intensely 
researched topics in the medical community and particu-
larly in minimally invasive surgery. AI driven systems are 
emerging mostly based on vision (endoscopic video), which 

Fig. 5  Demonstration of positive margin (a) and bladder neck (b) in NS-RARP simulation platform
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embeds space–time information about both the instrument 
motion and the surgical site that can provide richer dis-
criminative power. Because video is inherently available in 
many modern surgical procedures and captures a rich log of 
events, it is a promising digital record that can be analysed to 
infer ability, but of course it can also be complemented with 
additional information from integrated ORs or from robot 
kinematics [46]. Crucial to exploiting video or other OR 
data for assessing competence is the automatic analysis of 
the signal, because it is impractical to scale systems relying 
on manual observations of vast volumes of procedures. For 
automation, various computer vision (CV) or ML algorithms 
have been introduced to evaluate surgical performance and 
also to extract higher level information from the surgical 
video stream [47]. Both model-based [48, 49] and data-
driven [39] algorithms have been explored as a means to lift 
skill metrics from video akin to other AI application areas, 
and data-driven and especially deep learning-based methods 
have rapidly emerged as the most effective and robustly per-
forming algorithms for understanding surgical video.

To extract APMs from video, a number of building block 
algorithmic capabilities are important to develop, for exam-
ple: detection of surgical instrument presence [50], deline-
ation of surgical tools’ position and motion [51], segmenta-
tion of surgical site into objects [52] or the video into key 
surgical steps [53, 54], activity or significant event detection 
[55] as well as others like the detection of critical structures 
[56]. Marked progress in each of these building blocks of 
surgical process understanding has taken place in recent 
years, but a significant challenge is still the availability of 
large, well annotated datasets that can be used to evaluate 
systems in a fair and comparable manner. This is particu-
larly lacking for data that combines OR information despite 
recent efforts or on robotic information and video to support 
fused analysis [57] with the only currently available data 
being on phantom environments [58]. The transferability of 
systems across different operating techniques, instrument 
toolsets or even different procedures is also largely unmet 
at present.

With maturity of AI systems a number of other capa-
bilities have also been explored like the estimation of the 
remaining procedural time form the real-time video feed 
[59] or automatic image to video retrieval [60] or potentially 
risk estimation [61]. An important area of work that has 
received limited attention at present is how such AI powered 
technologies for understanding surgical process and perfor-
mance can be utilised in situ with effective user interfaces 
that appropriately support clinical workflow. They reported 
that the RF-50 algorithm provided the best performance, 
delivering 87.2% accuracy in predicting length of stay fol-
lowing RARP. However, there was lack of task-based, effi-
ciency metrics. They demonstrated a better performance for 
surgical activity recognition in RARP, proving the feasibility 

of automated postoperative efficiency reports, especially for 
critical tasks in a clinical procedure. A deep-learning net-
work, an artificial neural network with significant layers, 
has assisted in discovering hidden and abstract implications 
present in data. Despite great performance of deep-learning 
methods in multiple fields, the lack of solid theory explain-
ing how they work would be an important concern. Bagh-
dadi et al. [62] also described ML-based analysis of textural 
and colour visual features on a robotic endoscopic view to 
localise anatomical landmarks during RARP. Nevertheless, 
it is still laborious and time-consuming to label all anatomi-
cal landmarks in a surgical procedure to feed data into ML 
algorithms. How to enable precise automatic annotation by 
AI rather than repetitive manual work remains a fundamental 
issue.

Discussion

It has previously been estimated that 10–15% of surgical 
patients in the UK have adverse events whilst in hospital. 
50% are in the operating room and 50% are preventable [63]. 
A recent study from the USA estimated that a third of all 
medical injuries are due to error [64]. The risk of errors 
has potential to increase with new technologies. In the US 
between 2000 and 2013 10,624 adverse events related to 
robotic procedures were reported [2]. During this period, 
144 deaths (1.4% of the 10,624 reports), 1391 patient inju-
ries (13.1%), and 8061 device malfunctions (75.9%) were 
reported. The USA ‘Agency for healthcare research and 
quality’, estimated that the annual cost to US healthcare 
from medical errors is €17.1 billion. Six of the top ten iden-
tified medical errors are related to surgical procedures [6]. 
Rigorous analysis of surgical errors and training to reduce 
their occurrence will reduce the financial burden to both 
patients and hospitals. However, the majority of surgical 
training remains opportunistic, unstructured and delivered 
in an apprenticeship style.

In 2013, a group of experts expressed concern that robotic 
surgery training is not standardised and insufficient to ensure 
patient safety [3]. Two years later, the ECRI institute pub-
lished their annual independent review on health technology 
hazards, in which a lack of robotic surgical training was 
identified as one of the top ten risks to US patients [65]. 
The ECRI report stated: “Insufficient training of surgeons 
on robotic technologies can result in surgical errors that lead 
to prolonged surgery, substandard operation outcomes early 
in the surgeons’ learning curve, complications that require 
additional treatment and even serious patient injury or death. 
Errors can result if training is insufficient or ineffective e.g. 
if it does not provide an assurance of competency”.

Simulation training, which aims to avoid patients 
being exposed to the trainees’ early learning curve, could 
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be significantly improved by utilising 3D printed mod-
els that bleed and incorporate metrics of surgical perfor-
mance to aid SDP, real-time assessment and feedback [10]. 
These models also do not require wet-laboratory facilities, 
thereby reducing costs and making training more acces-
sible. Novel technologies have potential to support SDP 
in various settings. An evolved digitalised curriculum 
could be monitored from a centralised hub and incorpo-
rate: standardised asynchronous and synchronous e-learn-
ing modules with PBP training [8] that has benchmarks, 
3D-printed models [10], telemetry [66], eye-tracking 
metrics [34] and video performance analysis completed 
with telementoring in real time [29]. All training aspects 
aligned with defined metrics and delivering a continuum 
of training. Incorporating supervised ML algorithms to 
identify and prioritise key elements of training and per-
formance will enable personalised learning and eventually 
automated performance feedback [14, 66].

Conclusions

Improvements to training standards and understanding per-
formance data have huge potential to significantly lower 
complications in patients. Digitalisation automates data 
collection and brings data together for analysis. Digitalised 
training aims to build on the current gold standards and 
to further improve the ‘continuum of training’ by inte-
grating PBP training, 3D-printed models, telementoring, 
telemetry and machine learning. Study and evaluation of 
performance metrics and patient outcomes with machine 
learning have potential to develop automated performance 
feedback for trainees.

Objective performance metrics will help deliver society-
approved and validated robotic surgery curriculums for 
multiple surgical specialities. This will aid credentialing of 
surgeons in new medical technologies and their applications.
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