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Abstract

X-linked choroideremia (CHM) is a disease characterized by gradual retinal degeneration

caused by loss of the Rab Escort Protein, REP1. Despite partial compensation by REP2 the

disease is characterized by prenylation defects in multiple members of the Rab protein fam-

ily that are master regulators of membrane traffic. Remarkably, the eye is the only organ

affected in CHM patients, possibly because of the huge membrane traffic burden of the post

mitotic photoreceptors, which synthesise outer segments, and the adjacent retinal pigment

epithelium that degrades the spent portions each day. In this study, we aimed to identify

defects in membrane traffic that might lead to photoreceptor cell death in CHM. In a hetero-

zygous null female mouse model of CHM (Chmnull/WT), degeneration of the photoreceptor

layer was clearly evident from increased numbers of TUNEL positive cells compared to age

matched controls, small numbers of cells exhibiting signs of mitochondrial stress and greatly

increased microglial infiltration. However, most rod photoreceptors exhibited remarkably

normal morphology with well-formed outer segments and no discernible accumulation of

transport vesicles in the inner segment. The major evidence of membrane trafficking defects

was a shortening of rod outer segments that was evident at 2 months of age but remained

constant over the period during which the cells die. A decrease in rhodopsin density found in

the outer segment may underlie the outer segment shortening but does not lead to rhodop-

sin accumulation in the inner segment. Our data argue against defects in rhodopsin trans-

port or outer segment renewal as triggers of cell death in CHM.

Introduction

The inherited retinal degenerative diseases that are collectively known as retinitis pigmentosa

(RP) affect about 1 in 4000 people and are characterized by progressive photoreceptor degen-

eration leading to visual loss and in some cases blindness [1]. Although causative mutations in

about 100 genes have been identified [1], it remains unclear why these lead to photoreceptor

death. Some of these mutations affect traffic of components of the phototransduction
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machinery, such as rhodopsin, either through mutation of the protein itself or of components

of the trafficking machinery, raising the possibility that trafficking defects could underlie pho-

toreceptor cell death in some of the most common types of RP. The post mitotic photorecep-

tors are subject to photo-oxidative stress and so their outer segments (OS) that contain the

phototransduction machinery constantly need to be replaced. Every day, the distal 10% of the

photoreceptor OS are phagocytosed by the adjacent retinal pigment epithelium (RPE) and

replaced proximally by newly synthesized discs [2,3]. Transport of newly synthesised OS com-

ponents from the inner segment (IS) through the connecting cilium to the OS, their assembly

into discs, and the degradation of the phagocytosed OS by the RPE places a huge membrane

traffic burden on both photoreceptors and RPE. In the RPE there is a gradual accumulation of

intracellular deposits with age, believed, at least in part, to derive from a failure to fully degrade

the products of daily phagocytosis of OS [4], which likely compromises RPE health and is par-

ticularly marked in age-related macular disease (AMD) (and other diseases). The effect of the

daily membrane traffic burden on the health of the photoreceptors is less clear.

To investigate the relationship between membrane traffic defects and photoreceptor cell

death, we have taken an RP-related disease whose primary cause is membrane traffic dysfunc-

tion. X-linked choroideremia (CHM) is characterized by gradual degeneration of the RPE,

photoreceptors and choriocapillaris and is caused by loss of function of Rab Escort Protein-1

(REP1) [5]. In the UK, we estimate a prevalence of 1 in 110,000 for CHM based on the compre-

hensive study of Pontikos et al [6]. REP1 presents newly synthesized Rab proteins to geranyl-

geranyl transferase to allow Rab prenylation, a lipid modification essential for Rab membrane

association and, hence, Rab function. Rab proteins are low molecular weight GTPases of the

RAS superfamily that, in their GTP bound form, undergo prenylation-dependent membrane

association where they recruit multiple effectors that regulate interaction with the cytoskele-

ton, membrane targeting and membrane fusion [7]. More than 60 Rabs in the human genome

demarcate overlapping membrane domains and are ‘master regulators of membrane traffic’.

In mammals, REP2 partially compensates for loss of REP1 function [8,9]. However, a subset of

Rabs are poorly prenylated in CHM [10,11]. No Rab is completely unprenylated in this disease

and so no membrane traffic pathway is completely dysfunctional which has made it difficult to

establish the underlying causes of photoreceptor and RPE cell death in this disease.

The close relationship between the RPE and photoreceptors raises the possibility that pho-

toreceptor cell death could be secondary to defects in the RPE. However analysis of a photore-

ceptor-restricted knock-out of REP1 (ChmFlox, IRBP-Cre+), led us to conclude that cell death

arises autonomously in photoreceptors although photoreceptor cell death was accelerated

when REP1 was also lost in the RPE [12].

Although defects in secretion of cytokines can be detected in peripheral blood cells from

CHM patients [13], CHM is primarily an ocular disease, indicating either that one or more of

the under prenylated Rabs in CHM is of particular importance to the retina or that the retina

is peculiarly sensitive to partial defects in membrane traffic. Two of the most affected Rabs in

CHM are Rab27a [10,11] and Rab38 [11], but loss of function of these Rabs individually does

not lead to the retinal degeneration characteristic of our CHM models [14,15]. Although there

are other Rabs affected in CHM, one or more of which could have a particularly important

role in the retina, we have found evidence that, at least in the RPE, the traffic burden of these

cells could render them peculiarly sensitive to partial membrane traffic defects [16]. When

REP1 function is lost in the RPE phagosome degradation is delayed, and this likely contributes

to the age-dependent patchy accumulation of intracellular and extracellular deposits and thick-

ening of Bruch’s membrane that occurs in this CHM model [16]. In the current study, we

aimed to identify defective membrane traffic pathways caused by loss of REP1 in the photore-

ceptors, focusing on the daily biogenesis of rod OS. The >2000 molecules/minute of
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rhodopsin that traffic from the IS to the OS to support this biogenesis makes this transport

pathway one potentially sensitive to a partial loss of efficiency. Furthermore, the post Golgi

trafficking of rhodopsin is known to depend on the function of multiple Rab proteins [17] and

rhodopsin mislocalisation caused by rhodopsin mutation in RP [18], or by loss of function of

kinesin II [19], are associated with rapid photoreceptor cell death. We find that from a young

age the OS are shorter in heterozygous null females (Chmnull/WT). Their length remains rela-

tively constant from 2–12 months, during which time the majority of photoreceptor death

occurs, suggesting that OS shortening is due to defect(s) in membrane traffic pathways, rather

than a consequence of retinal degeneration. Despite the shortening, OS structure is largely

normal and is not accompanied by accumulation of rhodopsin or transport vesicles in the IS.

Our data therefore suggest that, although defects in OS degradation may contribute to RPE

cell degeneration, defects in OS biogenesis are not a direct cause of photoreceptor cell death in

CHM.

Material and methods

Animal care

Animals used in this study were treated in accordance with UK Home Office regulations

under project licences 70/6176 and 70/7078 and in strict agreement with the Association for

Research in Vision and Ophthalmology (ARVO) Statement for the Use of Animals in Ophthal-

mic and Vision Research. Animal experiments were approved by the Imperial College’s Ani-

mal Welfare and Ethical Review Body (AWERB). Mice were housed in individually ventilated

cages on 12-hour light/dark cycle with free access to food and water. All animals were sacri-

ficed by dislocation of the neck; death was confirmed by the cessation of the blood circulation.

In accordance with the Home Office guidance, no anaesthesia was required.

Mouse strains

Majority of experiments were performed using heterozygous null female mouse model of

CHM (Chmnull/WT) that was described previously [20] and age- and sex-matched controls

(Chm WT/WT). Mice carrying conditional Chm alleles (Chm Flox and Chm 3lox) with or without

tamoxifen (TM)-inducible MerCreMer (MCM) transgene were described previously [20].

Animals with conditional alleles were used mainly as controls in biochemical studies in mini-

mal numbers (3–5 animals per strain). To generate Chmnull/WT females in this study we devised

a new breeding scheme.Chm Flox/ Y males were crossed with CHMWT/WT females carrying

PGK-Cre transgene, which causes early and uniformal rearrangement of ChmFlox allele into

Chmnull allele. Rearrangement was confirmed by genotyping as described in [20]. Both paren-

tal strains have no adverse ill effects.

Antibodies and reagents

Microglia Iba-1 specific antibody was from MenaPath/A. Menarini Diagnostics Ltd (Win-

nersh, UK); anti-rhodopsin against the C-terminus (1D4) and N-terminus (RetP1) were

from Abcam (Cambridge-UK), secondary antibody conjugated to Alexa Fluor 488 from

Molecular Probes (Eugene, USA); rabbit anti-mouse bridging antibody was from Dako Ltd.

(Ely, UK) and protein-A-gold from University Medical Center (Utrecht-NL). J905 is a rabbit

polyclonal antibody directed against recombinant rat REP-1 which recognises both REP1 and

REP2 [20].
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Tunel assay

Photoreceptor apoptosis was determined by terminal deoxynucleotide transferase nick-end

labelling (TUNEL) assay using the In Situ Cell Death Detection Kit, TMR Red (cat. number

12156792910; Roche Applied Science, Penzberg, Germany). Mouse eyes were fixed for 1h in

4% (wt/vol) paraforaldehyde (PFA) in PBS. The eyes were cut along the ora serrata and the

lens and cornea were removed. Five radial cuts were made to open the eyecup. The neurore-

tina was gently peeled, fixed for another hour in 4% (wt/vol) PFA in PBS, washed three times

in 2X PBS, permeabilised overnight with 3% (vol/vol) TritonX-100 and 0.1% (vol/vol)

Tween20 in 2X PBS and TUNEL staining was performed according to the manufacturer’s

instructions, except that incubation with TUNEL reaction mixture was for 4h at room temper-

ature. An internal positive control was used where neuroretinas were pre-treated with DNAse

after permeabilisation. All specimens were examined on a Zeiss LSM 710 confocal microscope

(Carl Zeiss Meditec AG, Jena, Germany). TUNEL positive cells/mm2 were quantified by

ImageJ.

Immunofluorescence analysis

Mouse eyes were fixed in 4% (wt/vol) PFA in PBS for 2 hours at room temperature. For OCT

sections, eyes were infiltrated overnight in 30% (wt/vol) sucrose in PBS at 4˚ C and embedded

in Tissue Tek1O.C.TTM. 12-μm thick transverse sections, adjacent to the optic nerve, were

cut at −20˚C and dried at room temperature. Sections were immunolabelled with anti-Rho-

dopsin RetP1 antibody overnight at 4˚ C, followed by secondary antibody conjugated to Alexa

Fluor 488 and DAPI for 1h at room temperature. Sections were imaged and analysed using a

Zeiss confocal LSM 710 microscope system (Carl Zeiss Meditec AG, Jena, Germany). For

whole mount microglia Iba-1 staining, after fixation, the eyes were cut along the ora serrata,

cornea and lens were removed, and fixed for another hour at room temperature. Five radial

cuts were made to open the eye cup and neuroretina was gently peeled off. Eye cups were

washed three times in 2X PBS, incubated for 2h at room temperature with blocking buffer (3%

(vol/vol) TritonX-100 and 0.1% (vol/vol) Tween20 in 2X PBS) and stained with Iba-1 antibody

in blocking buffer overnight followed by 2h incubation with Alexa Fluor 488 secondary anti-

body and DAPI at room temperature. Whole mounts were imaged using a Zeiss Axiophot

microscope (Carl Zeiss Meditec AG, Jena, Germany).

Light and electron microscopy of eye cup sections

Mouse eyes were fixed for 1.5h in 2% (wt/vol) PFA, 2% (vol/vol) glutaraldehyde in 0.1M caco-

dylate buffer. The cornea and lens were removed, and the eye cup was postfixed in 1% (wt/vol)

osmium tetroxide, 1.5% (wt/vol) potassium ferrocyanide in 0.1M cacodylate at for 2h at 4˚C.

Eye were dehydrated using increasing concentrations of ethanol (70%, 90% and absolute) and

propylene oxide, transferred to 1:1 propylene oxide:Epon overnight, followed by two changes

of Epon alone before embedding in Epon resin.

To measure OS length, semi-thin 0.75μm sections were cut, collected on glass slides and

dried on a hot plate. Sections were stained with 1% (wt/vol) toluidine blue in 1% (wt/vol)

sodium borate for 30s on a hot plate, quickly washed with a stream of distilled water, rinsed

with 50% ethanol and left to dry on a hot plate. Samples were analysed using a Zeiss LSM 510

microscope (Carl Zeiss Meditec AG, Jena, Germany).

To examine photoreceptor ultrastructure and measure OS width, ultra-thin 70-80nm sec-

tions were cut, collected on Formvar/carbon coated slot grids and stained with lead citrate

before examination on a JEOL 1010 transmission electron microscope (Welwyn Garden City,
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UK). Images were taken with a Gatan Orius SC1000B charge-coupled device camera and ana-

lysed with Gatan Digital Micrograph (Pleasanton, USA).

Immunoblotting and in vitro prenylation assays

Immunoblotting of mouse tissues was performed as previously described [21] using an anti-

REP antibody (J905) which recognises both REP1 and REP2 proteins. The in vitro prenylation

assay was performed as previously described [12].

Cryo-immuno electron microscopy

Mouse eyes were fixed in 4% PFA (wt/vol) in 0.1 M phosphate buffer for 3h, the cornea was

cut off and lens removed. The retina was cut into small pieces, embedded in 12% (wt/vol) gela-

tine and infused with 2.3 M sucrose overnight at 4˚C. 70-90nm sections were cut at −120˚C

and collected in 1:1 mixture of 2.3 M sucrose: 2% (wt/vol) methylcellulose. Sequential double

labelling with different sizes of gold particles was done as previously [22]. Sections were

labelled with antibody against the C-terminus of rhodopsin (1D4) followed by a rabbit-anti-

mouse bridging antibody and protein A gold and then a second round of staining with anti-

body against the N-terminus of rhodopsin (RetP1). Samples were analysed with a JEOL 1010

transmission electron microscope and imaged using Gatan Orius SC1000B charge-coupled

device camera.

Quantification

For quantification of TUNEL positive cells, the area of entire neuroretinal whole mount was

analysed for TUNEL positive cells and the number of cells was divided by the area the whole

mount.

For mitochondrial analysis, low magnification electron microscopy images scanning whole

retina (periphery-central-periphery) were taken and number of photoreceptors containing

swollen mitochondria and damaged OSs were manually counted and divided by the total

length of the retina. For Iba-1 positive cells quantification, the number of positive cells were

counted per eye cup under the microscope.

For analysis of OS length, low magnification images of the whole length of the retina were

montaged and divided into 10 regular intervals (from one periphery to the other) and the

length of the OS was measured in each. The width of the OS was measured from EM images at

random regions along the length of the retina.

For rhodopsin quantification of immunoEM images, the inner segment was divided in 3

equal regions, basal (containing the Golgi), middle and apical, using an ImageJ macro. Gold

particles/unit area were counted in the distal third of the OSs and in each region in the inner

segment.

Results

Small numbers of photoreceptors in Chmnull/WT exhibit signs of apoptosis,

and mitochondrial stress, accompanied by infiltration of inflammatory

cells

We have generated multiple mouse models of CHM but in this manuscript have focused on

heterozygous null females (Chmnull/WT) that show the maximum rate of photoreceptor degen-

eration, as indicated by loss of photoreceptor nuclei. In this model there is a gradual loss of

photoreceptors over >12 months. Apoptosis has been extremely difficult to detect in models

of CHM, most likely because of the slow rate of cell death meaning that very few cells are
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undergoing apoptosis at any one time. We found that to detect significant numbers of TUNEL

positive cells it was necessary to develop a flat mount assay that allowed TUNEL positive pho-

toreceptors to be quantitated on the entire retina of single mouse eyes. This analysis revealed a

15.5-fold increase in numbers of TUNEL positive cells in Chmnull/WT at 6 months of age, com-

pared with age-matched controls (Fig 1). Although most photoreceptors at this age in Chmnull/

WT exhibit normal gross morphology, a small subpopulation exhibited swollen mitochondria

(Fig 2), a recognized sign of mitochondrial stress that could lead to cell death. Consistently, the

majority of cells with swollen mitochondria also exhibited degenerating OS, although it was

not possible to be sure that all cells with swollen mitochondria were degenerating as the entire

photoreceptor was not always in the plane of section. We have previously noted increased

numbers of Iba1 positive glial cells between the RPE and photoreceptors in tissue-restricted

mouse models of CHM, with the highest levels of glial infiltration being seen accompanying

the highest levels of photoreceptor death [12]. Consistently we observed greatly elevated levels

of glial infiltration in retinae from Chmnull/WT (Fig 3).

The majority of photoreceptors in Chmnull/WT have normal ultrastructure

The daily requirement for the multistep process of generating OS components within the IS,

transporting them through the connecting cilium to the OS and assembling the OS discs, led

us to hypothesise that chronic partial defects in the membrane traffic pathways that underlie

OS biogenesis might lead to morphologically identifiable defects in OS structure. However, the

structure of the OSs in the majority of Chmnull/WT photoreceptors was indistinguishable from

age-matched controls (Fig 4). Most OS contained well-ordered stacks of discs. Furthermore,

detailed examination of the IS did not reveal any build-up of transport vesicles and the struc-

ture of the connecting cilium was indistinguishable from age-matched controls (Fig 4).

Shortened photoreceptor outer segments are a constant uniform feature of

Chmnull/WT

Although the ultrastructure of most OS was normal, most OS in Chmnull/WT were shorter than

controls (Fig 5A–5C). Even though CHM is a progressive retinal degenerative disease, the rab

prenylation defects that lead to partial dysfunction in membrane traffic pathways in this dis-

ease are present throughout life. Thus, if the shortening of photoreceptor OS is due to partial

defects in membrane traffic pathways, the OS shortening should be present from an early age

Fig 1. Elevated numbers of TUNEL positive cells in Chmnull/WT. (A, B) TUNEL assays were performed on flat mounted entire retinae from 6- month-old heterozygous

null female mice (Chmnull/WT) and age-matched controls. The boxed region is magnified in the inset to reveal individual nuclei. Scale bars: 500μm (A, B) and 20μm

(insets). C: TUNEL positive cells/mm2 of retina were quantitated. T test: �p< 0.05, n = 3.

https://doi.org/10.1371/journal.pone.0242284.g001
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and remain constant. Accurate measurement of OS length indeed indicates a 27% shortening

of OS that is detectable within the first 2 months of life and remains fairly constant for at least

the next 10 months (Fig 5C), during which the majority of photoreceptor cell death occurs in

this model [20]. Interestingly, OS length is fairly even across the retina despite this being a het-

erozygous model. Western blotting indicated that the amount of REP1 protein was reduced by

approximately 50% in tissues from 6–8 month old mice (S1 Fig). Reduced levels of REP1 pro-

tein would be expected to result in reduced Rab prenylation. This can be tested by performing

in vitro Rab prenylation assays as only underprenylated Rabs are available for in vitro prenyla-

tion. In vitro prenylation was virtually undetectable in the presence of wild type levels of REP1

(S2 Fig). Consistent with a partial loss of REP1 protein, there was a higher level of in vitro Rab

prenylation in Chmnull/WT but not as high as in a tamoxifen-induced knockout of REP1. There

was a small but progressive increase in OS width in Chmnull/WT compared to controls (Fig 5D–

5F), which could be due to reduced spatial constraints as photoreceptors die.

Lower density of rhodopsin in the inner and outer segments without

accumulation of rhodopsin in the inner segment of Chmnull/WT

Rhodopsin staining of retinal sections by immunofluorescence revealed strong staining of the

OS but no detectable staining in the IS of either Chmnull/WT or controls (Fig 6A and 6B). How-

ever, the huge levels of rhodopsin expression could mask subtle changes in rhodopsin trans-

port and so rhodopsin localization was examined by cryo-immunoEM, taking advantage of

the high rate of rhodopsin synthesis that allows the biosynthetic pathway to be readily labelled

and quantified with rhodopsin immunogold. Quantitation of the density of rhodopsin gold

Fig 2. Elevated numbers of rods with swollen mitochondria in Chmnull/WT. Eyes from 6-month-old heterozygous null female mice (Chmnull/WT) were processed for

transmission electron microscopy. (A) Analysis along the full length of the retina (from peripheral through central to peripheral) revealed occasional cells with swollen

mitochondria and degenerating outer segments (OS) in both Chmnull/WT and controls. Scale bars: 1μm. (B) Quantitative analysis revealed a greater number of such

cells in Chmnull/WT. T test: ��p<0.01, n = 8.

https://doi.org/10.1371/journal.pone.0242284.g002
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particles on the OS revealed a 25% reduction in rhodopsin density in Chmnull/WT (Fig 6C–6E

and 6L), suggesting reduced rhodopsin synthesis and/or transport to the OS. Defective trans-

port between the IS and OS would be expected to lead to accumulation of rhodopsin in the IS.

However, photoreceptors of Chmnull/WT exhibited a lower level of rhodopsin staining in the IS

than controls (Fig 6C, 6F–6K, 6M and 6N). Quantitating the distribution of rhodopsin within

the IS showed, in Chmnull/WT, a small reduction in % of rhodopsin in the basal region, that con-

tains the majority of Golgi-associated rhodopsin, but an increase in % of rhodopsin in the mid-

dle region that contains the majority of transport vesicles that shuttle rhodopsin from the

Golgi to the apical IS plasma membrane (Fig 6M and 6N). Thus, subtle defects in rhodopsin

synthesis and transport could contribute to the shortening of photoreceptor OS but do not

lead to accumulation of rhodopsin in the IS.

Discussion

In this study we searched for evidence of defects in membrane traffic pathways that might lead

to photoreceptor cell death, using a heterozygous mouse model of choroideremia (Chmnull/WT)

that shows the maximum rate of cell death of all our CHM mouse models [20]. The rate of cell

death is relatively slow, occurring from 2 to>12 months, making it difficult to identify dying

cells at any single time point in retinal sections. By analyzing entire retinae, we were able to

demonstrate an increase in number of photoreceptors exhibiting DNA fragmentation in our

Fig 3. Elevated numbers of Iba1 positive glia in Chmnull/WT. (A) Flat mounted entire retinae from 6-month-old heterozygous null

female mice were stained for the glial cell marker, Iba1. (B) High magnification of the boxed region in A indicates the stellate

morphology of the glial cells. Scale bars: 500 μm (A) and 100μm (B). (C) Quantitation of glial cell numbers in heterozygous null

female mice and age-matched controls reveals elevated numbers in Chmnull/WT. T-test: ��p<0.01, n = 3.

https://doi.org/10.1371/journal.pone.0242284.g003
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CHM model, as demonstrated by TUNEL staining. DNA fragmentation is a comparatively late

and short stage in cell death and does not distinguish between caspase-dependent, caspase-

independent, autophagic and necrotic cell death mechanisms, all of which have been impli-

cated in photoreceptor degeneration in RP. Electron microscopic analysis allowed us to detect

a small but significantly increased number of photoreceptors with swollen mitochondria in

Chmnull/WT. Mitochondrial swelling is caused by a loss of control of permeability of the inner

mitochondrial membrane and can lead to apoptosis through release of cytochrome C or to

necrosis when ATP levels are low. That we could identify these cells in thin sections indicates

that this is a more prolonged stage in the degenerative process than DNA fragmentation, but

the fragmented OS that frequently accompanied mitochondrial swelling indicates that the lat-

ter is a marker of dying cells. One of the most striking features of the photoreceptor cell layer

in our CHM model was the rise in the number of infiltrating glia. Glial cell infiltration of the

outer retina has been observed in multiple models of RP [23–25] and has been reported to pre-

cede or co-incide with the onset of cell death. Although these cells are phagocytic and so could

have the beneficial effect of clearing debris from apoptotic cells, they may also themselves pro-

mote photoreceptor degeneration through the production of inflammatory cytokines and

Fig 4. Chmnull/WT show normal ultrastructure of the inner segment, outer segment and connecting cilium. Eyes from 6-month-old heterozygous null female mice

(Chmnull/WT) were processed for transmission electron microscopy. High magnification examination of longitudinal sections through the eye cup revealed no

abnormalities of the outer segment structure (OS) or connecting cilium (CC) or the Golgi apparatus (G) or mitochondria (mito) in the inner segment (IS) in the majority

of cells. Scale bars: 500nm.

https://doi.org/10.1371/journal.pone.0242284.g004
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chemokines [26,27], through the overproduction of reactive oxygen species (ROS) or even

through the phagocytosis of living photoreceptors [28]. Consistent with these observations, a

mild T-lymphocytic infiltration was observed in a human post-mortem eye [29].

Although the final mechanism(s) of photoreceptor cell death in CHM has yet to be estab-

lished, it is caused by loss of REP1, implying defective membrane traffic pathway(s). Further-

more, the fact that REP1 is ubiquitously expressed but photoreceptors (and RPE) are

peculiarly affected by its loss, implicates dysfunction in membrane traffic pathway(s) of partic-

ular importance to photoreceptors. The daily renewal of POS places a huge and unique traffic

burden on the biosynthetic and transport machinery of the photoreceptors. Newly synthesized

disc proteins must be trafficked via the Golgi apparatus to the inner segment plasma mem-

brane, before undergoing intraflagellar transport (IFT)-mediated transport via the connecting

cilium to the OS. At the base of the OS, new discs are formed by evagination of the plasma

membrane followed by fusion of the rims of the evaginations [30–33]. We initially focused on

OS disc structure as disc disorganization has been described in other models of retinal degen-

eration, including in heterozygous knock in mice, carrying the most common RP-causing

mutation in rhodopsin, P23H [34]. In these mice disc disorganization, including sagitally orga-

nised discs, has been observed which precedes retinal degeneration and has been proposed to

be a trigger of photoreceptor death, although ER stress caused by aberrant folding of P23H

rhodopsin and consequent saturation of the proteosomal system is another proposed cause

[35]. Our analysis of Chmnull/WT indicates well-ordered photoreceptor discs, except in the

small number of cells with swollen mitochondria and degenerating OS, indicating likely dying

cells. Although subtle defects in the complex process of OS renewal cannot be excluded, we

found no evidence for a defect in OS disc assembly or maintenance that could trigger photore-

ceptor cell death in this model.

Although the morphology of most OS in heterozygous null females was normal, OSs were

shortened. Progressive OS shortening has been reported in aging [36] and in various models

of RP [37], where it has been linked with loss of photoreceptor cell function. However, the

shortening of OS in Chmnull/WT is not progressive, being relatively constant from 2 months of

age to 12 months, indicating that the OS shortening reflects a trafficking defect, rather than a

gradual degenerative process. We previously found that tissue restricted loss of REP1 in the

RPE did not cause shortening of the adjacent wild type photoreceptor OSs [16], suggesting

that OS shortening is a photoreceptor cell intrinsic phenomenon. The uniformity of OS short-

ening across the retina was perhaps surprising given that approximately 50% of photoreceptors

in this heterozygous CHM model would initially be expected to express wild type levels of

REP1. Although REP1 negative photoreceptors might be expected to die preferentially leading

to a higher percentage of wild type cells in older mice, our analysis indicated an approximately

50% reduction of REP1 in the neuroretina, compared to wild type mice, at 6–8 months of age.

Each photoreceptor interacts (directly or through the interphotoreceptor matrix) with multi-

ple neighbouring photoreceptors in the intact retina and these interactions may play a role in

maintaining a relatively uniform OS length despite genetic heterogeneity within the photore-

ceptor layer of our mouse model. The increase in OS width that accompanied photoreceptor

Fig 5. Chmnull/WT have uniformly shortened outer segments. Eyes from 2, 6 and 12 month-old heterozygous null

female mice (Chmnull/WT) were processed for transmission electron microscopy. Low magnification examination of

longitudinal sections throughout the length of the retina (from peripheral through central to peripheral), at 10 uniform

intervals revealed uniform shortening of the OS (A-C). Higher magnification images revealed progressive increases in

OS width (D-F). Scale bars: 20 μm (A,B), 1μm (D,E). T-test: ����p<0.001, n = 6 (C), �p<0.05, ��p<0.01, †† p<0.01

n = 3 (F).

https://doi.org/10.1371/journal.pone.0242284.g005
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cell death is consistent with a need to maintain a close association between the membranes of

neighbouring OSs.

Rhodopsin makes up 50% of OS protein. Rhodopsin null mice do not develop rod OS [38]

but rhodopsinwt/null mice display defects somewhat similar to Chmnull/WT, in that they have

reduced rhodopsin density in the OS [39] or reduced OS size [38,40], although the latter was

more evident in older mice [40]. The lower density of rhodopsin that we found in the OS of

Chmnull/WT, thus provides a potential explanation for the reduced length of the OS, although as

photoreceptors die the increased width of the OS means that changes to total OS volume are

small. Defective rhodopsin transport from the IS to the OS has been linked to photoreceptor

cell death, possibly due to aberrant G protein signalling via rhodopsin accumulated in the IS.

However, we failed to detect rhodopsin accumulation in the IS in Chmnull/WT, in fact, rhodop-

sin levels were reduced in the IS, indicating that in this model the photoreceptors may com-

pensate for a reduction in rhodopsin transport by limiting rhodopsin synthesis or enhancing

its degradation.

The lack of rhodopsin accumulation anywhere in the IS prevented the identification of a

clear rate limiting step in rhodopsin transport but an increase in the proportion of rhodopsin

between the Golgi and the apical region of the IS in Chmnull/WT suggested a possible reduction

in the rate of transport of Golgi-derived carriers to the apical plasma membrane. Rabs 6, 8a

and 11a, which have all been implicated in traffic of rhodopsin carriers from the Golgi to the

IS plasma membrane [17], have not been reported to be majorly affected in CHM [11,22].

However Rabs 8a and 11 appear dispensable for rhodopsin transport in the mouse [41], sug-

gesting some redundancy and/or species differences in Rab requirements.

It is important to note that in this study of mouse retina we have focussed on rod photore-

ceptors, as cones are sparse in the mouse retina. There is considerable evidence for a role of

rod dysfunction in CHM, including the preferential loss of rods in a female CHM carrier [42],

early changes in CHM tending to occur in the peripheral more rod-rich regions [43] and spec-

tral domain-optical coherence tomography evidence of rod OS abnormalities, most likely OS

shortening, that precede retinal remodelling [44]. That loss of REP1 in only 50% of the cells in

our CHM mouse model leads to consistent OS shortening and significant apoptosis in the rod

photoreceptor layer supports an important role of rod dysfunction in the human disease.

In summary, neither OS disruption, nor accumulation of rhodopsin in the IS, are likely trig-

gers of cell death in this CHM model. We cannot exclude the possibility that subtle changes in

the complex process of OS renewal may occur that are undetectable by the experimental

approach used here and REP1 loss in the photoreceptors does lead to OS shortening and

reduced density of rhodopsin in the outer segments. Rods appear to compensate for REP1 loss

by reducing rhodopsin synthesis or enhancing its degradation, thereby, reducing the burden

Fig 6. Reduced rhodopsin in the outer segment is not accompanied by accumulation in the inner segment. (A, B)

Rhodopsin staining (green) of 12μm retinal sections of 6-month-old heterozygous null female mice (Chmnull/WT)

revealed strongly positive outer segments (OS), a small number of rhodopsin positive punctae (phagosomes) in the

retinal pigment epithelium (RPE) but no detectable staining in the inner segment (IS). This was despite evident

photoreceptor loss, as indicated by reduced numbers of DAPI stained (blue) nuclei in the outer nuclear layer (ONL).

(C-K) Eye cup-derived specimens from 6-month-old heterozygous null female mice (Chmnull/WT) and age-matched

controls were stained for rhodopsin by cryo-immunoEM using antibodies to the C-terminus (1D4-5nm gold) and N-

terminus (RetP1-15nm gold). Rhodopsin was concentrated on the outer segment (OS) discs and the limiting

membrane of the connecting cilium (CC). Rhodopsin labelling (examples indicated by white arrowheads in F-I) was

also present on the Golgi and on small vesicles within the inner segment. Scale bars: 20 μm (A,B) and 200nm (D-K). (L,

M) Quantitation of the number of 1D4 rhodopsin gold particles/area of IS and OS revealed that rhodopsin

concentration was reduced to a similar extent in IS and OS of heterozygous null female mice (Chmnull/WT). (N)

Dividing the IS into equal basal (containing the Golgi), middle and apical domains revealed a shift in the distribution

of gold particles in the IS to a greater proportion in the middle region (mainly vesicle-associated). T-test: �p<0.05,
����p<0.0001, n = 3.

https://doi.org/10.1371/journal.pone.0242284.g006

PLOS ONE Photoreceptor death in choroideremia

PLOS ONE | https://doi.org/10.1371/journal.pone.0242284 November 17, 2020 13 / 17

https://doi.org/10.1371/journal.pone.0242284.g006
https://doi.org/10.1371/journal.pone.0242284


of OS renewal. Although on its own this is also unlikely to trigger photoreceptor cell death, it

could reduce the oxygen consumption of the OS, leading to a potential rise in the pro-oxidative

local environment and consequent rise in pro-apoptotic signalling. This may be further exac-

erbated by ROS production by infiltrating microglia and reduced protection from oxidative

stress due to the patchy depigmentation and reduced apical movement of melanosomes in the

RPE that have been previously described in this CHM model [20]. Consistent with its high

energy demand, the IS is rich in mitochondria, which are both a source and target of ROS.

Our finding of swollen mitochondria in photoreceptors that are likely committed to cell death

would be consistent with a model whereby shortened OS, infiltrating microglia and reduced

melanin protection enhance the photoreceptors exposure to oxidative stresses that lead to

mitochondrial dysfunction and increased susceptibility to cell death. It is likely that partial dys-

function of Rabs associated with mitochondrial homeostasis (through the regulation of mito-

chondrial fission, fusion, movement and formation of contacts with the ER) may make

mitochondria within photoreceptors less able to respond to oxidative stress. Perturbations in

mitochondrial homeostasis, rather than in OS renewal, may therefore be key to understanding

photoreceptor cell death in CHM.
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