
Dowrick, T, et al. 2020 EIT-MESHER – Segmented FEM Mesh
Generation and Refinement. Journal of Open Research
Software, 8: 27. DOI: https://doi.org/10.5334/jors.321

Journal of
open research software

SOFTWARE METAPAPER

EIT-MESHER – Segmented FEM Mesh Generation and
Refinement
Thomas Dowrick*, James Avery†, Mayo Faulkner‡, David Holder‡ and Kirill Aristovich‡

* Wellcome/EPSRC Centre for Surgical and Interventional Sciences, University College London, UK
† Department of Surgery and Cancer, Imperial College London, London, UK
‡ Medical Physics and Biomedical Engineering, University College London, UK
Corresponding author: Thomas Dowrick (t.dowrick@ucl.ac.uk)

EIT-MESHER (https://github.com/EIT-team/Mesher) is C++ software, based on the CGAL library, which
generates high quality Finite Element Model tetrahedral meshes from binary masks of 3D volume
segmentations. Originally developed for biomedical applications in Electrical Impedance Tomography (EIT)
to address the need for custom, non-linear refinement in certain areas (e.g. around electrodes), EIT-
MESHER can also be used in other fields where custom FEM refinement is required, such as Diffuse Optical
Tomography (DOT).

Keywords: Finite Element Models; C++; Electrical Impedance Tomography; Diffuse Optical Tomography;
Mesh Generation
Funding statement: This work was supported by an ARCHER eCSE grant (eCSE13-11). James Avery was
supported by the NIHR Imperial BRC.

(1) Introduction
The EIT-MESHER (https://github.com/EIT-team/Mesher)
is a C++ based open source software which generates
stable, good quality meshes (Figure 1) for solving
the EIT forward solution. The software is based on the
CGAL geometry processing kernel (https://www.cgal.
org/) and utilises the extended Delaunay triangulation
over binary domains in combination with a number of
flexible post-triangulation optimisers [1]. In addition,
the software performs user-defined mesh refinement,
specific to the requirements of Electrical Impedance
Tomography. The input to the software is a binary 3D
mask (or segmentation) of the desired object, and the
output is the fully optimised mesh ready for calculation
of the forward problem. The mesh refinement process
includes mesh optimisation near the electrodes, planar,
gradient, cuboid or spherical sizing field refinement as
well as ensuring the mesh quality [2] to be greater than
0.5 for every element, with an average 0.95 as standard.
The combination of the above techniques makes EIT-
MESHER it the best available tool for EIT-specific forward
problems [3].

Comparable software for FEM generation include the
MATLAB package iso2mesh [4], which also includes a
wrapper for a CGAL executable. However, at present this
does not allow for the custom mesh refinement needed

for EIT/DOT applications. Software suites EIDORS [5]
for EIT and TOAST++ [6] for DOT both implement basic
meshing capabilities, either through the gmesh or tetgen
libraries, however it is not possible to mesh from binary
volume data directly.

Implementation and architecture
The main EIT-MESHER source code is organised into
several source files in the src/ directory:

Mesher_plus.cpp – Top level code.
input_paremeters.cpp/h – Load input parameters from
configuration file.
mesh_operations.cpp/h – Common mesh operations used
by other files.
save_dgf.cpp/h – Output mesh in Dune Grid Format (used
for EIT forward solver).
Sizing_fields.cpp/h – implements custom mesh refinement
(spherical, elliptic, linear, cube).
mesh_stretcher.cpp/h – Implements mesh stretching.
deform_volume.cpp/h – Implements mesh deformation.

The EIT-MESHER executable takes three input files, a
3D binary volume in .inr format, a list of x,y,z electrode
locations in CSV format, and a parameter file. A
basic functional test is given in the input/ directory,

https://doi.org/10.5334/jors.321
mailto:t.dowrick@ucl.ac.uk
https://github.com/EIT-team/Mesher
https://github.com/EIT-team/Mesher
https://www.cgal.org/
https://www.cgal.org/

Dowrick et al: EIT-MESHER – Segmented FEM Mesh Generation and RefinementArt. 27, page 2 of 4

with realistic use cases given in examples/, which
demonstrate the process of editing the parameter file,
and the effects on the subsequent output mesh. Upon
calling EIT-MESHER, the input volume is loaded using
CGAL Image IO, and an element size value assigned to
every point in the volume (the sizing field), as specified
by the parameter file. Delaunay Triangulation, using
the CGAL C3T3 class modified to return additional
point data, is then performed to create the initial
tetrahedral mesh. Optimisations of the triangulation
(ODT/Llyod/Perturb/Exude) are then performed to
improve mesh quality, particularly in regions with large
sizing field gradients. Finally, the output tetrahedral
mesh and saved in formats required for EIT or DOT
solvers.

To integrate with existing EIT workflows, code for
interfacing with EIT-MESHER from MATLAB is contained
in the MATLAB/ folder. This folder also contains functions
to convert CAD files into the required .inr format, to
enable meshing of 3D printable phantoms [7].

Features
Variable mesh refinement
CGAL Sizing Fields are used to specify the size of elements
within the FEM in different areas. Typically, this is used
to specify a smaller element size around the surface
electrodes in EIT or the sources and detectors in DOT
applications, where the forward solutions are most
sensitive. Element size within Regions of Interest (ROIs)
internal to the volume can also be specified. These are
commonly used either to create high density regions
surrounding depth electrodes [8] or low density where the
sensitivity is known to be negligible a priori [3] . Analytical
functions for defining sizing fields are defined in sizing_
fields.cpp, and the user can select which sizing field(s) to
use in the parameter file.

Electrode refinement – Set a separate (usually smaller)
element size around the electrodes.

Sphere refinement – A sphere, with specified coordinates,
radius and cell size is placed within the mesh.

Cuboid refinement – A cuboid, with specified coordinates,
dimensions and cell size is placed within the mesh.

Planar refinement – Create a linear gradient of cell size
along a given dimension.

Depth refinement – The mesh size is based on the cartesian
distance from the centre of the mesh. Elements at the
centre have largest cell size, elements at the boundary
have the smallest. User specifies a linear gradient between
the two sizes from the centre.

Mesh deformation/stretching
EIT-MESHER can randomly deform an input volume
to generate unique output meshes. This allows for
multiple output models to be generated from a single
input segmentation. The motivation behind this
approach was to provide sufficient variety in input
meshes to generate a dataset suitable for deep learning
applications of EIT. Due to the mathematical complexity
of the EIT problem, 1000s of segmented CT/MRI scans
would be required to provide enough training data,
which is impractical to collect. By deforming existing
meshes, the required number can be obtained from a
much smaller input set.

The use of HPC resources to rapidly generate multiple
meshes has been investigated, with EIT-MESHER
successfully deployed on UCL’s Myriad HPC service.

Two types of deformation are implemented:

Layer dilation – Where a segmented input has been
provided, EIT-MESHER can dilate layer(s) within the mesh.

Mesh stretching – EIT-MESHER can apply one (or more)
linear stretches, either along a single axis or some
combination of x/y/z directions.

Output data
The output mesh contains the coordinates of each
node and each tetrahedral element is assigned both the
constituent nodes and a material index based on the
value in the input volume domain. This index is used to
assign layers of the mesh e.g. scalp, skull, white and grey
matter different conductivity values during subsequent
calculations. The primary output format is the Dune Grid
Format (DGF) which is required for the EIT solver PEITS [9]
along with accompanying parameter files. The mesh can
also be written to .vtu for quick visualisation in paraview

Figure 1: Example generated meshes for A) neonate skull and B) rat brain with electrode refinement.

Dowrick et al: EIT-MESHER – Segmented FEM Mesh Generation and Refinement Art. 27, page 3 of 4

(Kitware Inc. USA) and to .csv files to read into MATLAB for
use with EIDORS or TOAST++.

Quality control
Unit tests are included in the tests/ folder and are built
by default when compiling the code. The full range of
tests is run on each update to the GitHub repository via
a Travis CI script. The travis.yml script also runs a series
of examples, using data in examples/, which are fully
documented in the examples/ folder with sample input
and output data.

This software has been tested in Linux, both natively
and under Windows Subsystem for Linux. It has also been
deployed on the UCL Myriad HPC service. By running
the tests and examples, as detailed in travis.yml and in
the examples/ folder, a user will be able to confirm that
their build is functioning correctly and understand how to
adapt the parameter files to their own application.

Each of the following examples demonstrates how to
call EIT-MESHER through the Linux command line and
through the relevant MATLAB functions. Examples on
how to use the outputs with common forward solvers are
also given where relevant.

Unit Cube – A simple demonstration with a known target
volume to demonstrate basic functionality.

Brain – Rat brain from MRI segmentation with white and
grey matter layers created using Seg3D (seg3d.org). This
is a typical use case in brain applications, demonstrating
electrode and default refinement [8, 10].

Neonate scalp – A CAD model containing two layers –
scalp and skull – each requiring conversion to .inr format
before use. This is a typical use case to create meshes for
3D printable tanks or phantoms [7].

PEITS – Workflow example showing use of EIT-MESHER
.dgf output in PEITS EIT forward solver [9].

EIDORS – Common MATLAB EIT solver, requires loading
of .csv files and storing in specific structure.

TOAST++ – DOT software suite requires mesh in specific
format and creation of grid basis function from input .inr
file.

(2) Availability
Operating system
Linux – tested on Ubuntu 14, 16, 18; Red Hat Enterprise
Server 7.4 (UCL Myriad HPC); Windows Subsystem for
Linux 1 & 2.

Programming language
C++ 11
MATLAB Runtime v8.3 or later

Additional system requirements
None

Dependencies
C++: CGAL
MATLAB: iso2mesh and MATLAB Image Processing
Toolbox (For .stl to .inr conversion only)

Software location
Name: EIT-MESHER
Persistent identifier: https://github.com/EIT-team/

Mesher
Licence: BSD 3
Date published: 31/01/2020
Code repository: GitHub

Language
C++, MATLAB

(3) Reuse potential
The EIT-MESHER software can be used to create high
quality tetrahedral meshes for solving EIT and DOT
forward problems. Primarily targeting biomedical
applications, the software requires inputs of the form of
3D volume data such as those obtained from CT or MRI
segmentations. However, conversion software from CAD
format is included, thus enabling a much broader range
of applications such as those from the robotics or tactile
sensing fields [11–13]. The wrapper functions detailed
in the provided examples demonstrate how the software
can integrate into common EIT (PEITS, EIDORS) and DOT
(TOAST++) workflows.

Potential extensions to this software are to defining
specific element sizes per input layer, which would
enable arbitrary sizing fields to be defined. This would be
beneficial in applications with either a combination of
depth and surface electrodes, or with an internal volume
with much higher conductivity such as bone. Finally,
CGAL also permits meshing from polyhedral surfaces, so a
logical extension would be to mesh the CAD files directly
instead of converting to volume data.

Support for using this software is obtained by raising
an issue through GitHub or by contacting the authors via
email.

Competing Interests
The authors have no competing interests to declare.

References
1. Gärtner, B, Veltkamp, R, Rineau, L and Yvinec,

M 2007 A generic software design for Delaunay
refinement meshing. Comput. Geom., 38(1): 100–110.
DOI: https://doi.org/10.1016/j.comgeo.2006.11.008

2. Liu, A and Joe, B Jun. 1994 Relationship between
tetrahedron shape measures. BIT, 34(2): 268–287.
DOI: https://doi.org/10.1007/BF01955874

3. Aristovich, K Y, dos Santos, G S, Packham, B C and
Holder, D S Jun. 2014 A method for reconstructing
tomographic images of evoked neural activity with
electrical impedance tomography using intracranial
planar arrays. Physiol. Meas., 35(6): 1095–109. DOI:
https://doi.org/10.1088/0967-3334/35/6/1095

http://seg3d.org
https://github.com/EIT-team/Mesher
https://github.com/EIT-team/Mesher
https://doi.org/10.1016/j.comgeo.2006.11.008
https://doi.org/10.1007/BF01955874
https://doi.org/10.1088/0967-3334/35/6/1095

Dowrick et al: EIT-MESHER – Segmented FEM Mesh Generation and RefinementArt. 27, page 4 of 4

4. Fang, Q and Boas, D A 2009 Tetrahedral mesh
generation from volumetric binary and grayscale
images. In: Proceedings – 2009 IEEE International
Symposium on Biomedical Imaging: From Nano to
Macro, ISBI 2009, 1142–1145.

5. Adler, A and Lionheart, W R B May 2006 Uses and
abuses of EIDORS: an extensible software base for
EIT. Physiol. Meas., 27(5): S25–42. DOI: https://doi.
org/10.1088/0967-3334/27/5/S03

6. Schweiger, M and Arridge, S 2014 The Toast++
software suite for forward and inverse modeling in
optical tomography. J. Biomed. Opt., 19(4): 040801.
DOI: https://doi.org/10.1117/1.JBO.19.4.040801

7. Avery, J, Aristovich, K, Low, B and Holder, D
Jun. 2017 Reproducible 3D printed head tanks for
electrical impedance tomography with realistic shape
and conductivity distribution. Physiol. Meas., 38(6):
1116–1131. DOI: https://doi.org/10.1088/1361-
6579/aa6586

8. Witkowska-Wrobel, A, Aristovich, K, Faulkner,
M, Avery, J and Holder, D Jun. 2018 Feasibility of
imaging epileptic seizure onset with EIT and depth
electrodes. Neuroimage, 173(February): 311–321. DOI:
https://doi.org/10.1016/j.neuroimage.2018.02.056

9. Jehl, M, Dedner, A, Betcke, T, Aristovich, K,
Klofkorn, R and Holder, D Jan. 2015 A Fast

Parallel Solver for the Forward Problem in Electrical
Impedance Tomography. IEEE Trans. Biomed. Eng.,
62(1): 126–137. DOI: https://doi.org/10.1109/
TBME.2014.2342280

10. Faulkner, M, Hannan, S, Aristovich, K, Avery,
J and Holder, D Sep. 2018 Feasibility of imaging
evoked activity throughout the rat brain using
electrical impedance tomography. Neuroimage,
178(February): 1–10. DOI: https://doi.org/10.1016/j.
neuroimage.2018.05.022

11. Avery, J, Runciman, M, Darzi, A and Mylonas,
G P 2019 Shape Sensing of Variable Stiffness Soft
Robots using Electrical Impedance Tomography.
In: IEEE International Conference on Robotics
and Automation. DOI: https://doi.org/10.1109/
ICRA.2019.8793862

12. Silvera-Tawil, D, Rye, D, Soleimani, M and
Velonaki, M 2015 Electrical impedance tomography
for artificial sensitive robotic skin: A review. IEEE Sens.
J., 15(4): 2001–2016. DOI: https://doi.org/10.1109/
JSEN.2014.2375346

13. Coevoet, E, Escande, A and Duriez, C Jul. 2017
Optimization-Based Inverse Model of Soft Robots
With Contact Handling. IEEE Robot. Autom. Lett.,
2(3): 1413–1419. DOI: https://doi.org/10.1109/
LRA.2017.2669367

How to cite this article: Dowrick, T, Avery, J, Faulkner, M, Holder, D and Aristovich, K 2020 EIT-MESHER – Segmented FEM
Mesh Generation and Refinement. Journal of Open Research Software, 8: 27. DOI: https://doi.org/10.5334/jors.321

Submitted: 31 January 2020 Accepted: 16 September 2020 Published: 07 October 2020

Copyright: © 2020 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

OPEN ACCESSJournal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press.

https://doi.org/10.1088/0967-3334/27/5/S03
https://doi.org/10.1088/0967-3334/27/5/S03
https://doi.org/10.1117/1.JBO.19.4.040801
https://doi.org/10.1088/1361-6579/aa6586
https://doi.org/10.1088/1361-6579/aa6586
https://doi.org/10.1016/j.neuroimage.2018.02.056
https://doi.org/10.1109/TBME.2014.2342280
https://doi.org/10.1109/TBME.2014.2342280
https://doi.org/10.1016/j.neuroimage.2018.05.022
https://doi.org/10.1016/j.neuroimage.2018.05.022
https://doi.org/10.1109/ICRA.2019.8793862
https://doi.org/10.1109/ICRA.2019.8793862
https://doi.org/10.1109/JSEN.2014.2375346
https://doi.org/10.1109/JSEN.2014.2375346
https://doi.org/10.1109/LRA.2017.2669367
https://doi.org/10.1109/LRA.2017.2669367
https://doi.org/10.5334/jors.321
http://creativecommons.org/licenses/by/4.0/

	(1) Introduction
	Implementation and architecture
	Features
	Variable mesh refinement
	Mesh deformation/stretching
	Output data

	Quality control

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	Software location
	Language

	(3) Reuse potential
	Competing Interests
	References
	Figure 1

