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Abstract 

 

A key consequence of the presence of void space within rock is their significant influence upon 

fluid transport properties. In this study, we measure changes in elastic wave velocities (P and S) 

contemporaneously with changes in permeability and porosity at elevated pressure for three rock types 

with widely different void space geometries: a high-porosity sandstone (Bentheim), a tight sandstone 

(Crab Orchard), and a microcracked granodiorite (Takidani). Laboratory data is then used with the 

permeability models of Guéguen and Dienes and Kozeny-Carman to investigate the characteristics that 

different void space geometries impart to measured permeabilities. Using the Kachanov effective 

medium theory, elastic-wave velocities are inverted, permitting the recovery of crack density evolution 

with increasing effective pressure. The crack densities are then used as input to the microcrack-

permeability model of Guéguen and Dienes. The classic Kozeny-Carman approach of Walsh and Brace 

is also applied to the measured permeability data via a least squares fit in order to extract tortuosity 

data. We successfully predict the evolution of permeability with increasing effective pressure, as 

directly measured in experiments, and report the contrast between permeability changes observed in 

rock where microcracks or equant pores dominate the microstructure. Additionally, we show how these 

properties are affected by anisotropy of the rock types via the measured anisotropic fabrics in each 

rock. The combined experimental and modeling results illustrate the importance of understanding the 

details of how rock microstructure changes in response to an external stimulus in predicting the 

simultaneous evolution of different rock physical properties. 
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1. Introduction 

 

Data from deep seismic soundings, borehole logging and laboratory measurements all indicate 

that porosity is a ubiquitous feature of most crustal rocks. This observation is fundamental to our 

understanding of crustal evolution and energy resource management, for example the efficient recovery 

of hydrocarbon and water resources, and the safe disposal of hazardous waste. This is because the 

transport and mechanical properties of crustal rocks are heavily influenced by porosity and its 

geometry; for example, the proportion of high aspect ratio pores to low aspect ratio cracks, and their 

connectivity. However, the processes responsible for porosity formation are diverse, ranging from 

depositional processes such as sorting and grain alignment, through diagenetic processes such as 

compaction and cementation, to deformational processes such as microcracking (e.g. Brace, 1980; 

Bourbie and Zinszner, 1985; Benson et al., 2003; Benson et al., 2005). The porosity that evolves from 

the superposition of these processes over time may therefore have a complex geometry or fabric. In 

addition, many of these processes have an inherent directionality which may lead to anisotropy of the 

void space, and all have been shown to play important roles in influencing the fluid transport properties 

of rock (Lo et al., 1986; Jones and Meredith, 1998; Rasolofosaon and Zinszner, 2002). 

 

The measurement of permeability at elevated pressure and the calculation of permeability from 

other data (such as elastic wave velocities) remains non-trivial. In particular, in order to test models that 

attempt to predict such relations, both elastic wave velocities and permeability should ideally be 

measured simultaneously. We have done this in the study reported here. We then employ the simple 

Kozeny-Carman permeability model (Carman, 1961; Scheidegger, 1974; Guéguen and Palciauskas, 

1994). This model was one of the first which attempted theoretically to derive an expression linking 

bulk porosity to permeability; via simplified key parameters of porosity, internal surface area, and an 

idealised pore/crack geometry representing either by an array of cylindrical capillaries or an array of 
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penny-shaped cracks (Brace et al., 1968). Additionally, we include the critical porosity modification of 

Mavko and Nur (1997) which introduces a porosity below which no fluid flow is possible. We then 

apply the modified model to our experimentally measured porosity and permeability data, and extract 

information on tortuosity for comparison to measured principal anisotropy axes and the observed pore 

fabric.  

 

Elastic wave velocity measurement is a commonly used tool for studying both low and high 

aspect ratio void space in rock. However, low aspect ratio voids (e.g. microcracks) are known to exert a 

disproportionate influence on wave velocities (Bourbie and Zinszner 1985; Klimentos, 1991; Benson et 

al., 2003), and their anisotropy. We have used P and S-wave velocities to evaluate the decrease in crack 

density with increasing effective pressure. The Kachanov (1994) effective medium model has been 

employed to calculate crack densities (Guéguen and Schubnel, 2003; Benson et al., 2005). The 

calculated crack densities can be directly related to pore space connectivity, and thus to fluid 

permeability, using the statistical approach of Guéguen and Dienes (1989) which assumes a network of 

penny-shaped cracks embedded in an impermeable matrix. Using statistical physics together with a 

connectivity probability factor (percolation factor), the model calculates the equivalent effective area 

(and hence permeability) based upon the fluid movement through the network of linked cracks. The 

theoretically determined permeabilities are then directly compared to the actual steady-state flow 

permeabilities measured simultaneously with the elastic wave velocities. This combined approach is 

applied to three rocks with contrasting void space geometries in order to explore the differing roles that 

microcracks, equant pores and a mixture of the two exert on fluid permeability. 

 

 

2. Sample Characteristics 
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In order to study the key influence of microstructural variation, we have chosen three rock types 

with strongly contrasting void space geometries. (1) Bentheim sandstone (BHS) from the Lower 

Saxony Basin, north-west Germany, is an off-white sandstone with a porosity of 23.0% (Klein et al., 

2001; Benson, 2004). Mineralogically, it is a fairly pure quartzite (>97% quartz), with dominantly sub-

rounded quartz grains approximately 0.25mm in diameter, cemented by siliceous cement. Only minor 

amounts of accessory minerals are present, including variably altered orthoclase feldspars, sparse 

grains of plagioclase (exhibiting multiple twinning) and microcline. The void space is comprised of 

predominantly near-equant pores. (2) Crab Orchard sandstone (COS) from the Cumberland Plateau, 

Tennessee (USA), is a red, fine-grained, cross-bedded fluvial sandstone. Grains are generally subhedral 

to sub-rounded, exhibit no preferred alignment (Benson et al., 2003), and have a mean size of 

approximately 0.25 mm. Porosity is 4.7%. Compositionally the rock is 85% quartz with numerous 

accessory minerals, including;  10 to 12% orthoclase feldspar (variably altered to sericite), 1 -2% lithic 

clasts and polycrystalline quartz, 5% clay minerals (predominantly iron rich clays with some sericite 

and a small amount of chlorite),  and 1 to 2% muscovite with some phengite mica. Cementation is 

thought to have occurred early on in diagenesis, as nearly all grains show triple junctions, with few 

point contacts. The rock is compositionally and texturally mature, with a reasonable degree of 

compaction.  There is definite alignment of mica flakes parallel to the bedding, and some micas also 

show kinking along the same direction, i.e. they have aligned preferentially with their long axes parallel 

to the bedding and have then been deformed along that direction, as a likely result of compaction, flow 

or flocculation (Stearns, 1954). A cement comprising sericitic clay, calcite, iron oxide and mica is 

abundant. The cement appears to have destroyed much of the original porosity, which is now 

characterized by a mixture of cracks and pores. (3) Takidani ‘granite’ (TDG) is a coarse grained 

granodiorite from the Japan Alps. Mineralogically, the rock is 30% quartz, 55% feldspar and ~10% 

amphibole, with between 5 and 8% biotite. Quartz grains are anhedral, roughly equi-granular, and 

generally in the size the range 0.5mm to 1mm. Some crystals contain fluid inclusions, and there is also 
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some evidence of magma mixing. TDG was formed at depth, where the relatively slow cooling rate 

under tectonic stress resulted in a void space that predominantly comprises aligned microcracks. This, 

in turn, has led to anisotropy in the physical and transport properties (Benson, 2004).  

 

The 3-D geometry of all three pore fabrics were verified through measurements of the 

anisotropy of magnetic susceptibility of samples saturated with magnetic ferrofluid (pAMS; Benson et 

al., 2003). In the case of TDG, which contains a high natural matrix susceptibility, the dry matrix AMS 

measurements were subtracted from the ferrofluid-saturated rock measurements in order to obtain the 

void space AMS (pAMS). This method produces results that are entirely consistent with ultrasonic Vp 

and Vs measurements (Benson, 2004). The pAMS technique enabled the principal anisotropy axes to 

be determined for each rock, and these are shown in Figure 1. The minimum principal anisotropy 

directions were aligned normal or sub-normal to large scale bedding, cross-bedding, and the dominant 

microcrack plane for BHS, COS and TDG respectively (Benson et al., 2003; Benson, 2004; Benson et 

al., 2005).  

 

 

3. Experimental Equipment and Methods 

 

In order to eliminate potential errors caused by sample variability, we would ideally like to 

measure all the parameters of interest at the same time on the same sample under the same conditions. 

We therefore use an apparatus with the capability of measuring contemporaneous changes in elastic 

wave velocities (P and S), porosity, and permeability at elevated pressure (Jones & Meredith, 1998; 

Benson 2004; Benson et al., 2005). The apparatus comprises a 300 MPa hydrostatic pressure vessel 

equipped with dual 70 MPa servo-controlled pore fluid intensifiers. The intensifiers provide high 

pressure pore fluid (distilled water in this study) to each end of the test sample, and are fitted with 
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integral displacement transducers which enable them also to act as pore volumometers. Permeability 

measurements were made using the steady-state flow technique. A small, constant, pressure difference 

is imposed across the sample and, once steady-state flow is established, permeability can be calculated 

simply from the flow rate and the sample dimensions via direct application of Darcy’s law. For all the 

experiments reported here, the pressure difference across the sample was 0.5 MPa and the mean pore 

fluid pressure was 2.5 MPa. All samples comprise cores that are 38.1mm in diameter and 40mm in 

length. Since all of the rocks used are known to be more or less anisotropic from pAMS measurements 

(Benson et al., 2003; Benson, 2004), cores samples were taken along the three known principal 

anisotropy directions (Figure 1). 

 

 

4.  Modeling Permeability 

 

Permeability is one of the most important properties of porous rock, but is also one of the most 

difficult to examine theoretically. Although a trend is frequently observed between bulk porosity and 

permeability of sandstones (e.g. Brace, 1968; Bourbie and Zinszner, 1985; Guéguen and Palciauskas, 

1994), there exists, in general, no simple relationship between permeability and commonly measured 

petrophysical parameters of porous media, such as porosity and elastic wave velocity (Guéguen and 

Palciauskas, 1994). Where such relationships have been established, they are often specific to the 

particular rock under investigation, and apply only over a limited range of conditions (e.g. Dullien, 

1979; Bourbie and Zinzner, 1985; Klimentos, 1991; Bernabe et al., 2003). In addition, the range of pore 

fabric geometries over which such models can produce reasonable predictions is poorly known, due to 

the many ways in which pore fabric geometry, and hence connectivity, can be arranged. Two widely 

used permeability models are examined in this study, in order to explore the role which known, but 

different, pore fabrics play in permeability evolution at elevated pressure. 
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4.1 Kozeny-Carman Relation 

One of the oldest and simplest attempts at deriving an expression linking bulk porosity to 

permeability is based upon hydraulic radius approximations, and gives rise to the Kozeny-Carman 

relation (e.g. Carman, 1961; Scheidegger, 1974; Guéguen and Palciauskas, 1994). An estimate of the 

permeability is made using simplified key parameters of porosity, internal pore space surface area, and 

an idealized pore fabric geometry represented by an array of intersecting cylindrical capillaries: 



k 
 3

S2
 

where, k is permeability and  is porosity. S is the ratio of internal pore space surface area to rock 

volume, given by:



S 
Spore

Vsolid


3

2

1 
d

, where d is a characteristic pore dimension (pore diameter in this 

case), Spore is the internal pore surface area and Vsolid is the volume of the solid sample, calculated using 

a simple packing of spherical grains (e.g. Mavko et al., 1998). 

 

Substituting for S gives: 



k 
 3

1 
2

d2
 

 

However, no flow is possible below some critical porosity, also known as the percolation 

threshold, which is denoted c (Mavko and Nur, 1997). This notion is also consistent with many crack 

models (e.g. Brace et al., 1968; Brace, 1980). Mavko and Nur (1997) show that this assumption 

modifies the basic Kozeny-Carman relation, above, to: 



k 
 c 

3

1   c  
2

d 2
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Finally, the constant of proportionality which relates permeability to porosity is evaluated using 

the simple derivation of Walsh and Brace (1984), which then gives: 



k 
c

b

 c 
3

 2

d2

1  c  
2

            (1) 

 

Where c is a constant which depends upon the pore geometry (for spherical grains, c=9/4), and b is a 

crack parameter which varies between 2 for capillaries to 3 for penny-shaped cracks (Walsh and Brace, 

1984). Therefore, in this work, we use b = 2 for BHS, and b = 3 for TDG. For COS, where the voids 

comprise a mixture of capillaries and cracks, we use b = 2.5. The tortuosity parameter   is commonly 

visualized as the ratio of the total fluid flow path L length to the length of the sample L0.  This is strictly 

incorrect, since  is not a geometrical factor, but is mathematically related to the pore phase percolation 

factor, fpores ≈ 1/2. Despite this technical limitation, in this work the former representation is used since 

it provides a useful qualitative indication of the changing geometry of the void space with increasing 

pressure. 

 

Equation (1) can now be applied directly to experimental data (described below) under elevated 

effective pressures, using the measured rock porosity and permeability, with average pore diameter  

determined from mercury porosimetry (Figure 2A) and image analysis. Equation (1) is then inverted by 

means of experimental porosity-permeability data using a least square method in order to recover both 

the percolation threshold (c) and the tortuosity (). 

 

However, as noted previously, the experimental study presented here uses effective pressure as 

a primary control, rather than porosity. As the Kozeny-Carman model uses porosity as the primary 
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input for permeability calculation (Equation 1), then a method for relating the experimentally measured 

porosity data with the effective pressure must be established. This relation is available in the form of 

the measured porosity-pressure data for each rock (Figure 2B), which are fit with either polynomial or 

exponential regressions. These mathematical relationships are then used for calculation of effective 

pressure from the Kozeny-Carman calculated porosity/permeability model, thus allowing easy 

comparison of Kozeny-Carman predicted data to the measured laboratory data. 

 

4.2 Pore and Crack Models 

Simple capillary and pore based permeability models, as typically applied to highly porous 

rocks, have been around for many years (e.g. Guéguen and Palciauskas, 1994). By considering a 

connected network of capillaries, as formed by a close packing of rock grains, the following expression 

can be derived linking pore permeability (kpores) to porosity (Guéguen and Palciauskas, 1994): 

 

2

32

1
rfk porespores          (2) 

 

where, fpores is the percolation factor, 



r  is the average capillary radius and  is the porosity. 

Theoretically, the percolation factor is intrinsically linked to the tortuosity by fpores ≈ 1/2 (Guéguen and 

Palciauskas 1994). In the following discussion, however, we assume that fpores ≈ 1 for BHS, due to its 

open and interconnected equant pore structure (Benson et al., 2005). 

 

In contrast, the Guéguen and Dienes (1989) crack permeability model primarily takes into 

account low aspect ratio void space, or cracks, and proceeds in the following manner. Any crack 

represents a void space of non-zero size, with the aperture being defined as the maximum width. If the 

cracks intersect, this will produce a crack permeability based on the fluid movement through the 
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network of linked crack elements. Guéguen and Dienes (1989) quantify the effect of penny shaped 

cracks on the permeability of an otherwise impermeable host matrix, and derive the following relation: 

 



kcracks 
2

15
fcracks w2          (3) 

Where,  is the crack density, w and  are the crack aperture and average aspect ratio (ratio of crack 

aperture to crack length), respectively, and fcracks is the percolation factor (Guéguen and Dienes, 1989), 

approximated via: 

2
2

3

1

44

9








 


cracksf , and valid for 1/3 < 2/4 < 1. In essence, fcracks describes the 

probability of two cracks intersecting (2/4), in which case the volume element created by the 

intersecting cracks is discounted in the method (an excluded volume). In all cases, 0fcracks1. 

 

 In the most simple case, the crack and near-equant porosity evolutions with pressure are 

decoupled. Indeed, the first is very compliant while the second is not. The simplest assumption for a 

rock containing both pores and cracks is therefore to assume that the total permeability (k) is the 

volume averaged sum of the crack and pore permeabilities: 

 

   



k  kpores  kcracks    (4) 

 

Obviously, such a concept is an oversimplification since it neglects connectivity issues between the two 

kinds of porosity. It is obviously possible to arrange the connectivity in porous rock in an almost 

infinite number of ways, and in a 3-D rock volume it is likely such connectivity is manifested as an 

array of pore/crack elements arranged in series with strings of such elements connected in parallel (or 

vice-versa). However, to avoid getting into a potentially long and protracted argument discussing the 
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complexities of pore connectivity (which is beyond the scope of the present work), we thus concentrate 

on the simplified model above. As we shall see later, even a simple model can provide useful insight in 

helping estimate which factors dominate the bulk permeability and the permeability changes. 

 

 

5. Experimental Results 

5.1 Elastic Wave Velocity Measurements to Infer Crack Parameters 

  

 The evolution of crack permeability with increasing effective pressure is evaluated using an 

effective pressure – crack density () relationship for each rock type. As shown by equation (3), the 

crack-related permeability depends on the crack density and the crack aspect ratio, as first order 

parameters. These in turn can be determined from the inversion of elastic wave velocity measurements 

using a least square method via effective medium theories of solids containing penny shaped cracks. 

We used experimentally measured P-wave and S-wave velocity data (Figures 3, 4 and 5 and Tables 1, 

3, 5 for BHS, COS and TDG respectively) and equation (3) to invert the data for crack density 

evolution with pressure. We use the Kachanov (1994) model (Kachanov, 1980; Sayers and Kachanov, 

1995; Schubnel and Guéguen, 2003, Schubnel et al., 2005, Benson et al. 2006) which assumes that 

water-saturated, non-interacting microcracks, with a transversely isotropic alignment, are responsible 

for producing the measured elastic anisotropy change with effective pressure (see Kachanov 1994; 

Sayers and Kachanov, 1995; Schubnel and Guéguen, 2003, Schubnel et al., 2005).  

 

 To ensure stability in the Kachanov inversion, appropriate initial values of aspect ratio ‘i‘ were 

assigned to each rock type, as follows: 0.0012 for BHS; 0.00068 and 0.00058 for COS, parallel and 

normal to the transverse isotropy (TI) plane respectively; and 0.00047 and 0.00042 for TDG, parallel 
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and normal to the TI plane respectively. For this estimation, the method of Morlier (1971) was 

employed, as described by Zimmerman (1991). Briefly, the laboratory Vp and Vs data are used to 

calculate the compressibility of the rock at each pressure step. These data are fit to an exponential 

decay, the exponent of which can be used to determine an aspect ratio distribution function c() as a 

function of aspect ratio, taking the form 



c  Cexp( /A) , where  is aspect ratio, and A and C 

are constants calculated from the Morlier (1971) method (Zimmerman, 1991). The same values of rock 

(matrix) Young’s modulus E0 and Poisson’s ratio 0 are used for this calculation and for the Kachanov 

crack density inversion (Tables 2, 4, 6). With knowledge of both the aspect ratio and the crack density, 

equation (3) may then be evaluated at each effective pressure for a given crack aperture. 

 

 

5.2 Permeability Measurements 

  

  Figure 6A shows permeability data for Bentheim sandstone as a function of effective pressure 

in three orthogonal directions (labeled X, Y, and Z). Permeability does not change significantly with 

either flow direction or effective pressure. These experimental observations are consistent with the 

BHS microstructure and our pAMS data reported earlier. When modelling the permeability of BHS, the 

Kozeny-Carman approach fits the data reasonably well with a critical porosity of 0% and a tortuosity in 

the range 4.1 to 4.5. This appears entirely reasonable, given that the simple case of a cubic lattice of 

cylindrical pores yields a tortuosity of 3. Using the contemporaneous elastic wave velocity data, which 

is highly sensitive to microcracks, crack density decrease with increasing effective pressure is 

computed via the Kachanov model, as described above (Schubnel and Guéguen, 2003; Benson, 2004; 

Benson et al., 2006). The decrease in crack density with pressure can be interpreted as a decrease in the 

average apparent crack radius, due to an increase of contacts on the crack surfaces (Schubnel et al., 
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2005). Due to the make-up of BHS, it is likely that this represents intergranular microcracking. By 

empirically assigning a family of crack apertures to this data, the effect of microcracks on permeability 

evolution is calculated for comparison with the experimentally measured data using the Guéguen and 

Dienes model (Figure 6B).  In order to compare the small permeability changes due to crack closure to 

the measured data, a constant offset of kpores = 0.81x10-12 m2 needs to be added to the crack 

permeability. Assuming fpores ≈ 1 (approximating a fully connected pore space), equation (2) may then 

be used to estimate an average capillary diameter of ≈23 m. This approach suggests that the crack 

permeability does not contribute significantly to the overall bulk permeability, but does contribute 

significantly to its small variation with pressure. As expected, the near-equant porosity dominates the 

overall permeability, while crack closure dominates the permeability change. This result agrees well 

with the crack aperture range of between 5 and 30 m derived from the Kachanov/Guéguen and Dienes 

microcrack permeability approach, and fits the experimentally measured permeability data over the 

entire effective pressure range. This is further supported by mercury porosimetry data, which yields an 

average pore diameter of approximately 32 m (Figure 2A). 

 

Unlike BHS, Crab Orchard sandstone displays a high level of permeability anisotropy, with 

permeability measured sub-parallel to the cross-bedding (XY plane) more than twice that measured 

sub-normal to cross-bedding (Z axis), as shown in Figure 7A. In addition, the permeability decreases 

by more than an order of magnitude over the effective pressure range studied. In general, the Kozeny-

Carman model provides a good fit to the experimental data. Using a least squares fit, a tortuosity of 

0.012 (X) and 0.014 (Y) is calculated for fluid flow sub-parallel to the cross-bedding, whilst for 

permeability sub-normal to the cross-bedding (Z) the tortuosity is 0.028. These results are as intuitively 

expected, with a lower tortuosity corresponding to higher permeability along the cross-bedding layers, 

and vice versa. The average critical porosity is calculated as c = 4.2%. 
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Figure 7B shows the results of the Guéguen and Dienes model fits for COS. In order to fit the 

permeability anisotropy, two separate populations of crack apertures are needed; from 0.8 m - 1.2 m 

sub-normal to the cross-bedding (i = 0.00058) , and 1.3 m - 1.9 m sub-parallel to the cross-bedding 

(i = 0.00068). As for the BHS results, a constant permeability offset is added (kpores ≈ 4x10-18 m2) to 

the model data, so as to permit the direct evaluation of the Guéguen and Dienes model permeability 

from the measured data. This method also provides an estimate of the permeability that is influenced by 

microcrack closure (i.e. the model crack permeability) rather than permeability due to near-equant 

porosity that is largely unaffected by effective pressure changes (i.e. the bulk permeability offset). A 

good fit to the experimental data is obtained with crack apertures of 0.8 m sub-normal and 1.4 m 

sub-parallel to the cross-bedding. Using equations (1) and (2), we calculate capillary radii of 0.06 m 

to 0.29 m sub-normal to cross-bedding and 0.04 m to 0.18 m sub-parallel to cross-bedding. This is 

less than the crack apertures as calculated from the Guéguen and Dienes model, but compares well with 

the average pore diameter calculated from mercury porosimetry (0.34 m) (Figure 2), illustrating that 

COS contains a high proportion of crack-like porosity that dominated fluid flow and connectivity (in 

contrast to BHS). 

 

 Finally, TDG also exhibits considerable permeability anisotropy (Figure 8A), with permeability 

measured parallel to the microcrack fabric some three times higher than that normal to the microcrack 

plane. The application of the Kozeny-Carman approach to the dataset yields tortuosities  within the TI 

plane of 0.0034 (X direction) and 0.0017 (Z direction) and a tortuosity normal to this plane (Y 

direction) of 1.0854. The average critical porosity is calculated as 0.71%. Thus, these data show similar 

trends to those seen for COS, but with a higher relative change in tortuosity parallel and normal to the 

TI plane.  When modeling these permeability data via the Guéguen and Dienes model (Figure 8B), no 
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bulk offset is needed as the void space in this rock is composed purely of microcracks.  The best model 

fit to the experimental data is obtained with an upper bound crack aperture of approximately 0.85 m 

and a lower bound of approximately 0.45 m. Thus, the permeability evolution sub-normal to the 

microcrack plane is modeled using a much lower crack aperture than for fluid flow sub-parallel to the 

microcrack plane. This is an artefact of our modeling, as we would expect the lower permeability 

normal to the crack plane to be due to the lower crack density in that orientation rather than a lower 

crack aperture. This may be expected intuitively if the permeability is treated in the form of microcrack 

density tensor, averaged over the plane of investigation. Alternatively, this could be taken into account 

in a more formal way, using the anisotropic formulation of the permeability equation (3) in the form of 

microcrack density tensor, rather than a scalar averaged value (Simpson et al., 2001).   

 

6.  Discussion 

 

At one end of the spectrum of void space geometries studied, BHS is a well-sorted sandstone 

with predominantly near-equant porosity. Thus, any cracks are likely to be in the form of intergranular 

microcracks. The rock exhibits a P-wave velocity anisotropy of approximately 8% (Figure 3 and 

Benson et al., 2005). At the other end of the spectrum, TDG is a crystalline, microcracked granodiorite 

from a very young pluton (1.2 Ma) in the Japanese age (Kano and Tsuchiya, 2002). It  has been 

suggested that both large scale joints and these microcracks were formed parallel to the cooling surface 

during cooling of the pluton (Kano and Tsuchiya, 2001). The result is an aligned crack fabric and a P-

wave velocity anisotropy of approximately 10% (Figure 5) that is essentially co-incident at both the 

laboratory scale and the outcrop scale (Kano and Tsuchiya, 2002; Benson, 2004). The TI plane of these 

larger scale joints occurs at N4W/46W in the geographic reference frame, giving a Vp minimum (pole) 

in the direction of 94/44 (trend/plunge). Finally, COS is a mature sandstone, containing microstructural 
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features intermediate between the BHS and TDG end members, i.e. a mixture of near-equant pores and 

microcracks. This combination of different void space types is reflected in a room-pressure P-wave 

velocity anisotropy of 20% (Benson et al., 2003) 

 

In all cases, results from the Kachanov (1994) model suggest a predominantly transversely 

isotropic fabric consistent with SEM, elastic wave velocity, and optical observations (Benson, 2004).  

Although all the rock types investigated here contain both cracks and pores, the rationale behind 

modeling permeability via a transversely isotropic crack model is to study the effect of microcrack-

induced permeability variations where such cracks are solely responsible for transport property 

changes. We consider this to be a good approximation, given that many studies show how hydrostatic 

confinement is a key factor in microcrack closure (e.g. Dullien, 1979; Mavko et al., 1998), with a 

concomitant effect on fluid permeability.  

 

The classic approach of Kozeny-Carman has been applied to all three rocks. When modelling 

the permeability-porosity variation (in this case, with effective pressure), the Kozeny-Carman method 

uses the concept of tortuosity. In this study, this is modified (Mavko and Nur, 1997) to take account of 

the non-zero ‘threshold’ porosity below which no flow is possible. For BHS, the Kozeny-Carman 

model requires a tortuosity of 4.1-4.5 in order fit the measured data. This is reasonable, given the high 

porosity (23%) and the SEM observations of its open and near-equant pore structure. For COS the 

Kozeny-Carman model also works well. Since the internal void fabric comprises a mixture of cracks 

and pores with an abundant cement, it is not unreasonable that the pore fabric resembles the tube-like 

structure modeled by Kozeny-Carman. COS exhibits a high degree of permeability anisotropy, giving 

rise to a higher tortuosity for fluid flow normal to the cross-bedding than for flow parallel to the cross-

bedding. For TDG, a similar overall pattern as that for COS emerges, suggesting that although these 

two rocks are substantially different, fluid flow is controlled via the same fundamental processes. In 
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general, permeability values are lower for TDG, as might be expected for a crystalline rock of low 

porosity. In addition, TDG also exhibits a much lower tortuosity within its TI plane than the equivalent 

TI plane tortuosity in the case of COS. Taken together, these data suggest that tortuosity is linked to 

crack/pore connectivity whilst critical porosity reflects percolation. However, it should be noted that 

these fits are specific to both the rock type and also to the particular sample measured, i.e. this is a 

heuristic approach. 

 

We have also applied the permeability model of Guéguen and Dienes (1989). This makes use of 

the crack density data as a function of effective pressure, as derived from the transverse isotropy 

implementation of the Kachanov (1994) model (Schubnel and Guéguen, 2003; Benson et al., 2006). 

This combined approach allows fluid permeability to be calculated as a function of crack density, for 

any desired crack aperture / aspect ratio. To allow the different rock types to be compared easily, the 

initial crack aspect ratio is set using the Morlier (1971) method which calculates an aspect ratio 

distribution function (Zimmerman, 1991). For the rocks studied here the aspect ratio ranges from 

0.00042 for TDG to 0.0012 for BHS. As hydrostatic pressure is increased it is likely that crack closure 

is a key contributor to the decreasing permeability, primarily as a result of aperture reduction. In 

addition, however, increasing crack aspect ratio also plays a role, as thin cracks become progressively 

more ‘pinched out’. This may result in, for example, a number of cracks with a relatively high aspect 

ratio where a single crack of low aspect ratio was previously located, as opposing crack sides come into 

contact with each other due to surface roughness (Ayling et al., 1995). 

 

Alternatively, equation (3) may be used to directly calculate crack aspect ratio via the measured 

permeability and the calculated crack density at each pressure step. In performing this calculation, 

however, we also apply the logic that crack aperture may only decrease with increasing pressure. This 

results in the necessity of increasing the aspect ratio with increasing effective pressure (which starts out 
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at its initial value, as calculated via the Morlier (1971) method).  Thus we are able to recover the 

increase in crack aspect ratio with pressure via this iterative process (Figure 9A, Figure 10A, and 

Tables 2, 4 and 6). Whilst only an approximate method, this represents a good first order 

approximation in evaluating the changing crack parameters with effective pressure. A threshold of 

approximately 50 MPa is often cited (e.g. Mavko et al., 1998) as the pressure at which the majority of 

thin cracks are closed or pinched. This is consistent with our findings, which show a rapidly increasing 

aperture above this pressure (Figure 4, Figure 5). The forward solution (permeability) to the aperture 

and aspect ratio for COS and TDG, deduced via this method, is shown in Figure 9B (COS) and Figure 

10B (TDG) which produces an excellent fit to the measured permeability data. This process was not 

performed for BHS, as no obvious permeability anisotropy or change with pressure is measured (figure 

6A). 

 

For BHS, our results show that crack permeability constitutes only 8% of the total permeability, 

but it this small proportion that is responsible for the change in permeability with increasing effective 

pressure. This is demonstrated via the Guéguen and Dienes approach, which shows that the small 

decrease in permeability is modeled well for crack apertures of approximately 5 m to 30 m, 

consistent with mercury porosimetry data (Figure 2). By contrast, for TDG all of the permeability is 

crack permeability. Finally, COS provides an intermediate case, with crack permeability providing 

95% of the total permeability at 5 MPa but only 3 to 4% of the total permeability at 90 MPa. This 

demonstrates clearly how crack closure dominates the permeability decreases observed with increasing 

effective pressure. 

 

 However, it should be stressed once again that using isotropic models to fit data measured on 

anisotropic rock samples requires an element of caution. To mitigate any inaccuracies, we have 

therefore (1) calculated the crack density via the TI regression of elastic wave velocities, (2) calculated 
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and applied initial aspect ratios from data in known (orthogonal) directions to the Kozeny-Carman 

equation, and (3) used pAMS data as a guide in order to prepare samples along principal anisotropy 

axes. Previous work, investigating the accuracy of pore network models as compared to more simple 

permeability modeling strategies, has found that, if the microstructural data in a known direction is 

used, then isotropic models can produce data just as accurate as considerably more complicated 

strategies (e.g. Lock et al., 2004). 

 

7. Conclusions 

 

 This study has explored the interplay between rock microstructure and permeability evolution 

for three rocks with contrasting microstructures at effective hydrostatic pressures up to 90 MPa. In 

order to measure the required parameters, an experimental apparatus was employed which is capable of 

measuring contemporaneous P-wave velocity, S-wave velocity, porosity and permeability under such 

conditions. The Kozeny-Carman and Guéguen and Dienes (1989) permeability relations, together with 

aspect ratio and crack density data from the Morlier (1971) and Kachanov (1994) methods, were used 

to investigate the contribution that microcrack closure has on permeability evolution in terms of crack 

aperture and aspect ratio. We successfully demonstrate that the change of permeability with pressure 

can be qualitatively related to the damage level of microcracked rock (crack aperture / aspect ratio) and 

that this general dependency holds even for rocks of high porosity and high bulk permeability. 

 

The concept of tortuosity, as introduced via the Kozeny-Carman relation in equation (1), can be 

linked to a percolation threshold through the approximate relation f ≈ 1/2. Despite calculation via a 

relatively simple model, both tortuosity and percolation produce useful insights when applied to the 

known anisotropic fabric of Crab Orchard sandstone and TDG. When applied along the principal 

permeability axes of Crab Orchard sandstone, a relatively high tortuosity is calculated for fluid flow 



 21 

sub-normal to cross-bedding, with a low tortuosity obtained sub-parallel to cross-bedding. The 

goodness of fit further suggests that COS may have an internal pore structure which is well modeled by 

a network of capillaries, perhaps due to the diagenetic processes to which it has been subjected. For 

TDG, a similar pattern is seen, with high tortuosity calculated for flow normal to the TI plane. The 

relative change in tortuosity with increasing effective pressure, both parallel and normal to the TI plane 

(x 500), is much greater than for COS (x 2); this is consistent with its crystalline, microcracked fabric. 

For Bentheim sandstone, however, the Kozeny-Carman approach does not produce meaningful results, 

due to the open and near-equant pore fabric in this rock. Using the model of Guéguen and Dienes 

(1989), however, we show that, even for this highly permeable rock, the permeability change with 

increasing effective pressure may be predicted from microcrack permeability alone. We further show 

that, up to approximately 40 MPa, the permeability of all rocks tested in this study may be represented 

via a single crack aperture; within the limits of anisotropy. 

 

In general, studies of the physical properties of rocks often focus on the measurement of a 

single parameter, and its changes. In this study, this has been expanded to an experimental investigation 

of permeability evolution at elevated pressures with simultaneous measurement of changes in 

complementary physical properties that allows the application of permeability models to the problem. 

We are thus able to conclude that microcracks are the dominant feature influencing permeability 

decrease with increasing effective pressure; that crack aperture variations may be used to explain such 

permeability changes; and that a constant, background permeability level is inherent in all of these 

rocks. We also conclude that, whilst the procedure of applying microstructural parameters taken in 

known orthogonal directions can indeed be used in isotropic models and applied to anisotropic rocks, 

this is probably at the limit of such strategies. For the rocks tested in this study, permeability anisotropy 

is dominated by void space anisotropy, whether this is as a result of a well sorted grain matrix; a mature 

cemented and altered matrix; or a predominantly micro-fractured matrix. 
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Figure Captions 

Figure 1. Top: SEM pictures of freshly broken surfaces of each rock type. From left to right, Bentheim 

sandstone, Crab Orchard sandstone and Takidani granite. Bottom: principal void space directions 

determined via the use of pore space anisotropy of magnetic susceptibility (pAMS), for (A): 

Bentheim sandstone, (B): Crab Orchard sandstone, and (C): Takidani granite. Open circles denote 

pore anisotropy minima, open squares denote anisotropy maximum values, with open triangles 

denoting the statistically-derived ‘intermediate’ orientation of the average void space ellipsoid. Solid 

symbols denote each mean of these data, with 95% confidence ellipses (after Benson, 2004). 

 

Figure 2. Left: Mercury porosimetry data for BHS, COS and TDG, yielding average pipe radii of 

approximately 15.6m, 0.17m and 0.04m  respectively. Right: The experimentally derived porosity 

– effective pressure (Peff=Pc-Pp) evolution for each rock type. 

 

Figure 3. Left: The measured Vp increase with effective pressure for Bentheim sandstone. To test for 

permeability anisotropy, measurements were made in three orthogonal directions (X, Y, and Z) with 

respect to the same common co-ordinate system illustrated  in figure 1.  Right: Using the Vp and Vs 

data (not shown, see table 1) with increasing Peff, initial aspect ratio ‘’ was calculated via the method 

of Morlier (1971). Crack density was then computed using this data (Vp, Vs, ) input to the model of 

Kachanov (1994). See text for detail. 

 

Figure 4. Left: The measured Vp increase with effective pressure for Crab Orchard sandstone. To test 

for permeability anisotropy, measurements were made in three orthogonal directions (X, Y, and Z) with 

respect to the same common co-ordinate system illustrated  in figure 1.  Right: Using the Vp and Vs 

data (not shown, see table 2) with increasing Peff, initial aspect ratio ‘’ was calculated via the method 
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of Morlier (1971). Crack density was then computed using this data (Vp, Vs, ) input to the model of 

Kachanov (1994). See text for detail. 

 

Figure 5. Left: The measured Vp increase with effective pressure for Takidani granite. To test for 

permeability anisotropy, measurements were made in three orthogonal directions (X, Y, and Z) with 

respect to the same common co-ordinate system illustrated  in figure 1. Right: Using the Vp and Vs 

data (not shown, see table 2) with increasing Peff, initial aspect ratio ‘’ was calculated via the method 

of Morlier (1971). Crack density was then computed using this data (Vp, Vs, ) input to the model of 

Kachanov (1994). See text for details. 

 

Figure  6. Left: Experimentally measured permeability evolution with increasing effective pressure for 

Bentheim sandstone. Lines denote the tortuosity fit calculated via the Kozeny-Carman relation. Right: 

The same experimental permeability data; this time compared to a theoretical evolution of permeability 

due to cracks only, calculated via the Guéguen and Dienes (1989) model. Guéguen and Dienes model 

values are normalized to the ‘pores only’ measurement (8.1 x10-13), to illustrate the effect of changing 

crack aperture size upon the permeability decrease with pressure. 

 

Figure 7. Left: Crab Orchard sandstone experimental permeability (symbols) and Kozeny-Carman 

least-square fit (lines) as a function of effective pressure. In this case, ‘X’ and ‘Y’ directional 

permeability (XY plane) is coincident to the visible crossbedding. Permeability sub-normal to 

crossbedding is approximately half of that sub-parallel to crossbedding. Tortuosities of 0.013 and 0.028 

were derived for fluid flow parallel and normal to bedding respectively. Right: Comparison between 

experimental permeability (symbols) and theoretical Guéguen and Dienes crack permeability (dashed 

lines) with increasing effective pressure for Crab orchard sandstone. The calculated Guéguen and 
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Dienes values are again normalized to the ‘pores only’ permeability value of 4 x10-18 to highlight the 

comparison between experimental bulk permeability decrease, and theoretical permeability decrease 

due to microcracks. 

 

Figure 8. Caption (revised): Left: Takidani granite experimental permeability (symbols) and Kozeny-

Carman least-square fit (lines) as a function of effective pressure. Permeability sub-parallel to the 

microcrack orientation is approximately three times that sub-normal to crack orientation. Tortuosities 

of 0.0034, 0.0017 and 1.0854 were derived for fluid flow in the X, Z and Y directions respectively. 

Right: Comparison between experimental permeability (symbols) and theoretical Guéguen and Dienes 

crack permeability (dashed lines) with increasing effective pressure for Takidani granite. As this rock 

type is purely cracked, no normalization process is required to compare the variation of theoretical 

permeability to experimental permeability. 

 

Figure 9. Left: The calculated aperture for COS as a function of effective pressure. The working 

assumption that the aperture may only decrease was used with the computed (fixed) crack density 

evolution. To avoid breaking this assumption, aspect ratio increases with increasing pressure, as 

presented earlier in figure 4.  Right: the forward model (permeability) due to the changing crack 

parameters, compared to experimental data (symbols).   

 

Figure 10. Left: The calculated aperture for TDG as a function of effective pressure. The working 

assumption that the aperture may only decrease was used with the computed (fixed) crack density 

evolution. To avoid breaking this assumption, aspect ratio increases with increasing pressure, as 

presented earlier in figure 5.  Right: the forward model (permeability) due to the changing crack 

parameters, compared to experimental data (symbols).   
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Tables 

Table 1.  BHS Laboratory data 

Measurement 

axis 

Pc-Pp, MPa K, m2 Vp, m/s Vs, m/s Porosity, fractional 

X 

5.63 8.65E-13 3983.67 2253.91 0.2215 

10.15 8.54E-13 4037.89 2278.16 0.2205 

14.98 8.75E-13 4100.75 2305.53 0.2197 

20.36 8.63E-13 4153.53 2328.22 0.2192 

29.55 8.26E-13 4187.63 2353.92 0.2183 

39.91 8.35E-13 4216.77 2369.14 0.2173 

49.85 8.52E-13 4248.44 2379.52 0.2167 

60.15 8.32E-13 4262.21 2388.59 0.2160 

69.85 8.38E-13 4281.09 2396.23 0.2154 

79.67 8.60E-13 4289.14 2401.99 0.2147 

90.23 8.48E-13 4299.61 2405.95 0.2142 

Y 

5.25 8.33E-13 3877.35 2162.40 0.2296 

10.53 8.05E-13 3963.81 2241.00 0.2283 

15.37 8.32E-13 4004.53 2258.69 0.2277 

20.11 8.67E-13 4033.75 2272.36 0.2271 

29.91 8.16E-13 4058.17 2287.08 0.2261 

39.93 8.09E-13 4086.23 2295.11 0.2253 

49.94 8.08E-13 4097.50 2300.54 0.2247 

59.99 8.03E-13 4109.05 2306.68 0.2241 

69.79 8.06E-13 4130.39 2314.02 0.2234 

79.60 7.91E-13 4131.59 2318.77 0.2228 

89.81 8.14E-13 4143.98 2322.48 0.2220 

Z 

5.10 7.52E-13 3719.80 2124.89 0.2181 

10.34 7.96E-13 3858.35 2163.77 0.2169 

15.41 8.03E-13 3906.37 2194.83 0.2161 

20.34 8.09E-13 3950.25 2210.99 0.2154 

29.84 8.46E-13 3981.02 2230.51 0.2144 

39.51 8.33E-13 4008.40 2248.60 0.2137 

50.03 8.13E-13 4037.88 2266.31 0.2128 

59.81 8.13E-13 4053.06 2274.15 0.2122 

69.97 8.37E-13 4061.63 2280.53 0.2115 

80.01 7.82E-13 4067.83 2285.11 0.2108 

90.02 8.07E-13 4077.23 2289.22 0.2101 

 

 
Table 2.  BHS model parameters (E0=32.7 GPa, 0=0.271) 

Pc-Pp, MPa Crack density (no unit) Aspect ratio (no unit) 

5.33 0.37 0.0012 

10.34 0.27 0.0012 

15.25 0.23 0.0012 

20.27 0.2 0.0012 

29.77 0.17 0.0012 

39.78 0.15 0.0012 

49.94 0.13 0.0012 

59.98 0.12 0.0012 

69.87 0.1 0.0012 

79.76 0.1 0.0012 

90.02 0.09 0.0012 
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Table 3.  COS Laboratory data 

Measurement 

axis 

Pc-Pp, MPa K, m2 Vp, m/s Vs, m/s Porosity, fractional 

X 

5.19 1.27E-16 4489.26 2540.74 0.0480 

10.17 8.63E-17 4567.68 2642.54 0.0473 

16.06 5.72E-17 4664.80 2672.65 0.0467 

20.65 4.18E-17 4750.89 2704.93 0.0464 

29.30 2.97E-17 4841.13 2727.31 0.0458 

39.56 2.32E-17 4902.48 2768.13 0.0455 

49.77 1.65E-17 4976.20 2820.41 0.0452 

59.31 1.25E-17 5018.51 2861.46 0.0450 

69.78 9.89E-18 5060.83 2900.53 0.0447 

79.21 6.26E-18 5090.30 2934.99 0.0445 

90.53 4.30E-18 5136.25 2965.62 0.0444 

Y 

5.19 1.00E-16 4489.17 2526.47 0.0506 

10.12 6.82E-17 4578.03 2594.80 0.0498 

15.09 4.51E-17 4665.80 2627.88 0.0492 

20.08 3.60E-17 4720.97 2659.34 0.0487 

29.42 2.63E-17 4842.03 2695.54 0.0481 

39.30 1.87E-17 4921.21 2772.32 0.0477 

49.58 1.11E-17 4979.99 2828.83 0.0473 

59.76 8.54E-18 5041.06 2873.48 0.0471 

69.97 6.91E-18 5088.20 2926.16 0.0469 

79.57 4.88E-18 5126.31 2943.80 0.0467 

90.10 3.24E-18 5150.39 2967.14 0.0466 

Z 

4.63 4.95E-17 4337.27 2489.71 0.0470 

10.20 3.48E-17 4451.85 2539.60 0.0462 

14.81 2.41E-17 4541.23 2584.04 0.0457 

20.43 1.73E-17 4621.27 2626.48 0.0454 

30.02 1.24E-17 4715.60 2671.54 0.0448 

40.46 7.32E-18 4828.07 2751.10 0.0444 

50.14 5.91E-18 4871.62 2809.89 0.0442 

60.25 4.08E-18 4947.87 2852.04 0.0440 

70.29 3.83E-18 4974.54 2892.33 0.0438 

80.08 2.72E-18 5029.58 2934.20 0.0436 

89.64 2.63E-18 5061.67 2962.19 0.0435 

 

 
Table 4.  COS model parameters (E0=55.28 GPa, 0=0.197) 

Pc-Pp, MPa Parallel Normal 

Crack density Aspect ratio Aperture, m Crack density Aspect ratio Aperture 

4.9 0.43 0.00068 1.69 0.43 0.00058 1.19 

10.2 0.33 0.00068 1.58 0.34 0.00058 1.11 

14.9 0.27 0.00068 1.41 0.27 0.00058 1.02 

20.3 0.21 0.00068 1.38 0.21 0.00058 0.96 

29.7 0.15 0.00068 1.37 0.15 0.00058 0.94 

39.9 0.09 0.00082 1.37 0.09 0.00058 0.86 

49.9 0.06 0.00082 1.32 0.06 0.00063 0.85 

60.0 0.05 0.00082 1.22 0.05 0.00063 0.66 

70.1 0.03 0.00100 1.22 0.03 0.00091 0.66 

79.8 0.02 0.00100 1.09 0.02 0.00091 0.45 

89.9 0.01 0.00100 1.01 0.01 0.00148 0.45 
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Table 5.  TDG Laboratory data 

Measurement 

axis 

Pc-Pp, MPa K, m2 Vp, m/s Vs, m/s Porosity, fractional 

X 

4.58 2.11E-17 5783.03 3023.73 0.00926 

10.49 1.65E-17 5829.57 3042.37 0.00896 

14.76 1.49E-17 5879.33 3060.48 0.00876 

21.11 1.37E-17 5912.12 3077.03 0.00861 

29.56 9.97E-18 5940.75 3101.30 0.00840 

40.33 7.87E-18 6005.65 3125.92 0.00826 

50.24 5.52E-18 6026.65 3150.59 0.00815 

60.88 5.23E-18 6052.43 3172.42 0.00798 

70.14 3.19E-18 6081.59 3189.42 0.00792 

80.63 5.03E-18 6102.12 3203.95 0.00777 

89.50 4.84E-18 6129.30 3207.50 0.00771 

Y 

5.07 1.12E-17 5693.76 2933.98 0.00898 

9.65 9.00E-18 5806.15 2955.47 0.00882 

15.08 6.86E-18 5858.21 2971.22 0.00868 

20.25 4.78E-18 5888.42 2980.47 0.00856 

30.19 3.80E-18 5908.71 3000.99 0.00844 

39.90 3.60E-18 5935.37 3019.35 0.00833 

50.04 1.51E-18 5961.65 3042.46 0.00818 

59.80 1.84E-18 5985.85 3064.53 0.00809 

69.89 1.76E-18 6045.14 3088.78 0.00805 

79.87 1.34E-18 6068.38 3106.59 0.00798 

90.03 1.54E-18 6085.57 3119.12 0.00794 

Z 

4.91 3.11E-17 5787.70 2963.11 0.00922 

9.70 2.27E-17 5844.06 2983.41 0.00900 

14.92 1.63E-17 5888.73 3001.15 0.00884 

20.03 1.10E-17 5936.95 3015.63 0.00876 

29.61 9.27E-18 5989.45 3037.41 0.00856 

39.84 7.50E-18 6024.61 3055.43 0.00842 

49.60 7.22E-18 6064.50 3069.12 0.00831 

59.74 3.90E-18 6117.30 3092.69 0.00822 

69.50 5.38E-18 6146.74 3103.93 0.00818 

79.85 4.02E-18 6171.19 3114.49 0.00811 

89.22 2.84E-18 6190.38 3121.13 0.00806 

 

 
Table 6.  TDG model parameters (E0=81.88 GPa, 0=0.32) 

Pc-Pp, MPa Parallel Normal 

Crack density Aspect ratio Aperture, m Crack density Aspect ratio Aperture 

4.75 0.47 0.00047 0.94 0.49 0.00042 0.64 

10.10 0.43 0.00047 0.85 0.45 0.00042 0.60 

14.84 0.39 0.00047 0.85 0.42 0.00042 0.54 

20.57 0.38 0.00047 0.79 0.4 0.00042 0.47 

29.58 0.35 0.00052 0.79 0.37 0.00046 0.47 

40.09 0.33 0.00054 0.79 0.34 0.00062 0.47 

49.92 0.31 0.00059 0.79 0.32 0.00062 0.35 

60.31 0.28 0.00068 0.79 0.3 0.00099 0.35 

69.82 0.26 0.00092 0.79 0.27 0.0016 0.35 

80.24 0.25 0.0012 0.79 0.26 0.0016 0.34 

89.36 0.23 0.00163 0.79 0.24 0.0028 0.34 
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