
52

A Pre-expectation Calculus for Probabilistic Sensitivity

ALEJANDRO AGUIRRE, IMDEA Software Institute, Spain and Universidad Politécnica de Madrid, Spain

GILLES BARTHE,MPI-SP, Germany and IMDEA Software Institute, Spain

JUSTIN HSU, University of WisconsinśMadison, USA

BENJAMIN LUCIEN KAMINSKI, University College London, UK

JOOST-PIETER KATOEN, RWTH Aachen University, Germany

CHRISTOPH MATHEJA, RWTH Aachen University, Germany and ETH Zurich, Switzerland

Sensitivity properties describe how changes to the input of a program affect the output, typically by upper

bounding the distance between the outputs of two runs by a monotone function of the distance between the

corresponding inputs. When programs are probabilistic, the distance between outputs is a distance between

distributions. The Kantorovich lifting provides a general way of defining a distance between distributions

by lifting the distance of the underlying sample space; by choosing an appropriate distance on the base

space, one can recover other usual probabilistic distances, such as the Total Variation distance. We develop

a relational pre-expectation calculus to upper bound the Kantorovich distance between two executions of

a probabilistic program. We illustrate our methods by proving algorithmic stability of a machine learning

algorithm, convergence of a reinforcement learning algorithm, and fast mixing for card shuffling algorithms.

We also consider some extensions: using our calculus to show convergence of Markov chains to the uniform

distribution over states and an asynchronous extension to reason about pairs of program executions with

different control flow.

CCS Concepts: · Mathematics of computing→ Probability and statistics; · Theory of computation→

Logic and verification; Program reasoning.

Additional Key Words and Phrases: probabilistic programming, verification

ACM Reference Format:

Alejandro Aguirre, Gilles Barthe, Justin Hsu, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph

Matheja. 2021. A Pre-expectation Calculus for Probabilistic Sensitivity. Proc. ACM Program. Lang. 5, POPL,

Article 52 (January 2021), 28 pages. https://doi.org/10.1145/3434333

1 INTRODUCTION

Sensitivity properties describe how much a change in a function’s input can affect the corresponding
output, where the degree of change is quantified by a distance function din on inputs and a distance
function dout on outputs. By varying these distances, sensitivity properties appear across many
application areas, including: (i) numerical computations, where functions map from reals to reals,
and the distances on inputs and outputs are the usual distance on real numbers; (ii) numerical
queries, where functions map from a set of records to a number, and the distance between inputs
is the number of differing entries; and (iii) learning algorithms, where functions map from a

Authors’ addresses: Alejandro Aguirre, IMDEA Software Institute, Spain, Universidad Politécnica de Madrid, Spain; Gilles

Barthe, MPI-SP, Germany, IMDEA Software Institute, Spain; Justin Hsu, University of WisconsinśMadison, USA; Benjamin

Lucien Kaminski, University College London, UK; Joost-Pieter Katoen, RWTH Aachen University, Germany; Christoph

Matheja, RWTH Aachen University, Germany, ETH Zurich, Switzerland.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).

2475-1421/2021/1-ART52

https://doi.org/10.1145/3434333

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 52. Publication date: January 2021.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3434333
https://doi.org/10.1145/3434333

52:2 A. Aguirre, G. Barthe, J. Hsu, B. L. Kaminski, J.-P. Katoen, and C. Matheja

training set to a learned model and where the distance between two training sets is the number of
differing examples, and the distance between outputs measures the difference in errors labeling
unseen examples. This paper is concerned with sensitivity properties of probabilistic programs.
Since such programs produce distributions over their output space, the corresponding notions of
sensitivity use distances over distributions. The Total Variation (TV) distance (a.k.a. statistical
distance), for example, is a widely used notion of distance that measures the maximal difference
between probabilities of the same event. One key benefit of the TV distance is that it is defined for
distributions over arbitrary spaces. However, it is often useful to consider distances inherited from
the underlying space. In this setting, the so-called Kantorovich metric gives a generic method to lift
a distance E on a ground set X to a distance E# on distributions over X . The class of Kantorovich
metrics cover many notions of distance. For instance, the TV distance can be obtained by applying
the Kantorovich lifting to the discrete distance, which assigns distance 1 to any pair of distinct
points, and distance 0 to any pair of equal points.

Approach. Wedevelop a relational expectation calculus for reasoning about sensitivity of probabilistic
computations under the Kantorovich metric. Relational expectations are mappings expressing a
quantitative relation (e.g., a distance or metric) between states, and are modelled as maps of the form
State×State→ [0,∞]. The heart of our system is a relational expectation pre-expectation transformer,
which takes as input a probabilistic program c written in a core imperative language, and a relational
expectation E between output states, and produces a relational expectation rpe(c, E) between input
states. The calculus is a sound approximation of sensitivity, in the sense that running the program c

on inputs at distance smaller than rpe(c, E) yields output distributions at distance smaller than E#.
Technically, our calculus draws inspiration from early work on probabilistic dynamic logic due

to Kozen [1985] in which maps E : State→ [0,∞] serve as quantitative counterparts of Boolean
predicates P : State → {0, 1}. McIver and Morgan [2005] later coined the term expectationÐnot
to be confused with expected valuesÐfor such maps E. Moreover, they developed a weakest pre-
expectation calculus for the probabilistic imperative language pGCL. Their calculus was designed
as a generalization of Dijkstra’s weakest pre-conditions that supports both probabilistic and non-
deterministic choice. The basic idea is to define an operatorwpe(c, E) that transforms an expectation
E averaged over the output distribution of a program c into an expectation evaluated over the
input state. In this way, the expectation is transformed by the effects of the probabilistic program
in a backwards fashion, much like how predicates are transformed through Dijkstra’s weakest
pre-conditions. Our pre-expectation calculus operates similarly, butÐas it aims to measure distances
between distributions of outputs in terms of inputsÐmanipulates relational expectations instead.
We next motivate the need for relational expectations, and explain why they are challenging.

Why do we need relational pre-expectations? The classical weakest pre-expectation calculus enjoys
strong theoretical properties: in particular, it is both sound and complete (in an extensional and
intensional sense [Batz et al. 2021]) w.r.t. common program semantics (cf. Gretz et al. [2014]).
Therefore, weakest pre-expectations canÐin principleÐbe applied to reason about bounds on
the Total Variation distance: Given a program c , (i) take a copy c ′ over a fresh set of program
variablesÐe.g. if variable x appears in c , substitute it by x ′ in c ′Ðand (ii) determine the weakest
pre-expectation wpe(c ; c ′, E), where the expectation E measures the distance between variables in
c and their counterparts in c ′.

However, this naïve approach is not practical for analyzing sensitivity: the TV distance, for
example, is defined as a maximum of a difference of probabilities over all events of the output spaceÐ
to compute the TV distance, we would need to compute the probability of every single output event.
Moreover, the above approach pushes the difficulty of reasoning about sensitivity properties into the
task of finding suitable invariants for probabilistic programsÐa highly challenging task on its own. In

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 52. Publication date: January 2021.

A Pre-expectation Calculus for Probabilistic Sensitivity 52:3

particular, finding invariants may involve reasoning about probabilistic independence, which is not
readily available when using weakest pre-expectations. In fact, mathematicians have long observed
that reasoning about the TV distance or the Kantorovich metric directly from their definition is often
intractable. Rather, they rely various approximations to bound the distance between distributions.
One classical method is based on probabilistic couplings [Villani 2008], a mathematical tool for
relating two different distributions. Relational pre-expectations naturally connect with probabilistic
couplings, and capture well-established proof principles used by mathematicians for reasoning
about the TV distance.

Challenges of relational pre-expectations. Relational pre-expectations pose a number of specific
challenges compared to their unary counterpart. First, the Kantorovich distance cannot be defined
inductively on the structure of programs. More specifically, the Kantorovich distance between two
runs of c ; c ′ is not a simple combination of the Kantorovich distances between two runs of c and two
runs of c ′ (we provide a counterexample in Section 3). Instead, we define a pre-expectation calculus
r̃pe(c, E) that gives a compositional upper-bound of the Kantorovich distanceÐthis is sufficient for
proving sensitivity properties.

Second, the proof of soundness for our relational pre-expectation calculus is significantly more
involved than for the usual weakest pre-expectation calculus, and use results from optimal transport
theory. In particular, we are only able to prove soundness for discrete distributions.
Third, relational calculi are naturally better suited to reason about two executions that follow

the same control-flow. We offer useful support for reasoning about executions with different
control-flow, through a careful generalization of the rules for conditionals and loops. While our
rules do not suffice for arbitrary examplesÐit remains an open problem to develop relatively
complete verification approaches for relational properties of probabilistic programsÐthey suffice
for non-trivial examples that exhibit asynchronous behavior.

Applications. We demonstrate our technique on several applications. In our first application, we
formalize an algorithmic stability property of machine-learning algorithms. Informally, algorithmic
stability describes how much the parameters produced by a learning algorithm are affected when
one input training example is changed; this notion of probabilistic sensitivity is known to imply
generalization and prevent overfitting [Bousquet and Elisseeff 2002]. We use our calculus for
proving algorithmic stability of a commonly-used learning algorithm: stochastic gradient descent
(SGD); while this example has been verified in prior work [Barthe et al. 2018], we show how our
approach enables a substantially simpler proof.
Then, we consider a pair of applications showing convergence properties. We first formalize

convergence of a reinforcement learning algorithm [Sutton 1988], inspired by a recent analysis
by Amortila et al. [2020]. For our most challenging examples, we show convergence and rapid
mixing of several card shuffling algorithms [Aldous 1983]. We show that the TV distance between
the outputs of two probabilistic loops decreases to 0 as the number of loop iterations increasesÐthat
is, the output distributions from any two inputs converge to the same distribution. Moreover, our
technique is precise enough to prove quantitative bounds on the rate of convergence; upper bounds
on convergence speed are key properties when analyzing algorithms that generate samples form
complex distributions, such as Markov Chain Monte Carlo.

Extensions: uniformity. Then, we show how to formalize other properties complementing our
bounds on convergence rate. Using our system, we demonstrate how to prove that a probabilistic
program generates a uniform distribution. This relies on showing that for any two final states s1, s2,
the absolute difference of the probability of finishing at s1 and the probability of s2 goes to 0 as the
number of iterations increases.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 52. Publication date: January 2021.

52:4 A. Aguirre, G. Barthe, J. Hsu, B. L. Kaminski, J.-P. Katoen, and C. Matheja

Extensions: asynchronous reasoning. Finally, we describe extensions to our calculus for asynchro-
nous reasoning, allowing us to prove relational properties when pairs of program executions have
different control flow. We demonstrate our asynchronous extensions to reason about a program
generating a binomial distribution.

Contributions and outline. After introducing preliminaries on probability theory and the Kan-
torovich distance (ğ 2), we present our main contributions:

• We define a sound, compositional, relational pre-expectation calculus for determining upper-
bounds on the Kantorovich distance. We introduce convenient proof rules for sampling
commands and loops, andwe show that the core fragment of a previous probabilistic relational
Hoare logic EpRHL [Barthe et al. 2018] can be embedded into our calculus (ğ 3).
• We apply our calculus to three case studies. As a warmup example, we use our calculus
to provide a clean proof of algorithmic stability of stochastic gradient descent [Hardt et al.
2016] (ğ 4). Second, we formalize convergence of TD(0), an algorithm from the Reinforcement
Learning literature [Sutton 1988] (ğ 5). Third, we apply our calculus to show rapid convergence
of random walks and card shuffling algorithms [Aldous 1983] (ğ 6).
• As a complementary extension to the previous examples, we use our calculus to show that
the limiting distribution of a card-shuffling routine is uniform (ğ 7).
• We present proof rules for reasoning about programs with asynchronous control flow (ğ 8).

Finally, we survey related work (ğ 9) and conclude (ğ 10).
This is the proceedings version of the paper. Omitted proofs and details can be found in the full

version: https://arxiv.org/pdf/1901.06540.pdf.

2 MATHEMATICAL PRELIMINARIES

We briefly recap the foundations required for relational reasoning about sensitivity properties:
(1) probability theory, (2) probabilistic programming languages, and (3) distances on probability
distributions. A comprehensive treatment of these topics is found, e.g., in the textbooks [Ash and
Doleans-Dade 2000; McIver and Morgan 2005; Villani 2008].

2.1 Basic Probability Concepts

We will use sub-distributions to model probabilistic behavior. A sub-distribution over a countable
set A is a function µ : A→ [0, 1] assigning a probability to each element of A. Probabilistic events
are subsets B ⊆ A; the probability of B is denoted µ (B) and defined by µ (B) =

∑
b ∈B µ (b). The

support of µ is the set of all events a ∈ A with µ (a) > 0. Moreover, we let |µ | = µ (A). As usual, the
probabilities in any sub-distribution must sum up to at most 1, i.e. |µ | ≤ 1. We call µ a distribution
if |µ | = 1. We let Dist(A) denote the set of sub-distributions over A.

Given a sub-distribution µ ∈ Dist(A1 ×A2) over a product set, its left and right marginals, π1 (µ)
and π2 (µ), are sub-distributions over A1 and A2, respectively, which are given by π1 (µ) (x1) =∑

x2∈X µ (x1,x2), and π2 (µ) (x2) =
∑

x1∈X µ (x1,x2) .

The Dirac distribution δ (a) ∈ Dist(A) is the point distribution at a ∈ A, δ (a) (a′) = [a = a′],
where the right-hand-side is an Iverson-bracket which evaluates to 1 if the formula inside (in this
case, a = a′) evaluates to true, and to 0 otherwise. If f : A → R∞≥0 is a function mapping into
the extended reals, we can take its expected value Eµ [f] with respect to some sub-distribution
µ ∈ Dist(A): Eµ [f] =

∑
a∈A f (a) · µ (a). If the sum diverges, the expected value is defined to be∞.

We assume that addition and multiplication are extended in the natural way, with the convention
0 · ∞ = ∞ · 0 = 0.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 52. Publication date: January 2021.

https://arxiv.org/pdf/1901.06540.pdf

A Pre-expectation Calculus for Probabilistic Sensitivity 52:5

2.2 Programming Language and Semantics

We work with a standard probabilistic imperative language pWhile. This language has commands
defined by the following grammar:

c ≔ skip | x ← e | x $← d | c; c | if e then c else c | while e do c .

Variables x are drawn from an arbitrary but finite setVar of variable names. Expressions e are largely
standard, formed from variables and basic operations (e.g., integer addition, boolean conjunction).
To handle programs with (static) arrays, we assume expressions include basic array operations for
accessing and updating. For instance, when a is an array variable we use the following syntactic
sugar:

a[e] ≜ Lookup(a, e) (expression) and a[e]← e ′ ≜ a ← Update(a, e, e ′) (command)

The random sampling command x $← d takes a sample from some primitive distribution d and
stores it in x . For simplicity, we assume that primitive distributions do not have free program
variables; it is not difficult to remove this limitation. We also assume that primitive distributions can
be interpreted as full distributions ⟦d⟧ : Dist(D) over some countable set D, possibly different for
different distributions. We will often use the uniform distributionU (S) when S is a finite, non-empty
set; for instance, for a positive integer N we will write [N] for the set of integers {0, . . . ,N − 1},
so that x $← U ([N]) samples each number in [N] with probability 1/N and stores it in x . The
distributions can also be parameterized by some more complex expression, for instance in x $← [y]
for a program variable y.
Programs in pWhile transform states, which are finite maps s : Var → D; we write State for

the set of all states. The semantics of a program c is a map ⟦c⟧ : State → Dist(State) assigning
a sub-distribution over possible outputs to each input. For example, for the random sampling
command, we define

(⟦x $← d⟧s) (s ′) ≜

d (s ′(x)) : s (y) = s ′(y) for all y , x

0 : otherwise

The semantics of the remaining language constructs is standard. As we only work with discrete
primitive distributions and states have finitely many variables, output distributions programs
always have countable support.

To express quantitative distance between pairs of states, we use relational expectations, which are
maps of type State × State→ R∞≥0. The set Exp of all relational expectations is equipped with the
pointwise order inherited from the order on R∞≥0, i.e., E ≤ E

′ if and only if E (s1, s2) ≤ E
′(s1, s2) for

all pairs (s1, s2) of states. Since R
∞
≥0 is a complete lattice and Exp has the pointwise order, Exp is also

a complete lattice: the top and bottom elements are the constant relational expectations∞ and 0,
which send all pairs of states to∞ and 0 respectively.

For denoting specific relational expectations, we borrownotation from relational Hoare logic [Ben-
ton 2004]: we tag variables with ⟨1⟩ or ⟨2⟩ to refer to their value in the first or the second
state, respectively. For instance, [x⟨1⟩ = x⟨2⟩] is a relational expectation encoding the predicate
λ⟨s1, s2⟩. [s1 (x) = s2 (x)].

2.3 Distances Between Probability Distributions

Sensitivity properties of probabilistic programs are stated in terms of concrete notions of distances
between distributions. A standard example is the following:

Definition 2.1 (Total Variation distance). The Total Variation (TV) distance between µ1, µ2 ∈

Dist(X) is defined as: TV (µ1, µ2) ≜
1
2

∑
x ∈X

���µ1 (x) − µ2 (x)
��� .

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 52. Publication date: January 2021.

52:6 A. Aguirre, G. Barthe, J. Hsu, B. L. Kaminski, J.-P. Katoen, and C. Matheja

The term łdistancež (or łmetricž) is justified as TV (µ1, µ2) is symmetric, satisfies the triangle
inequality, and maps to zero if and only if µ1 = µ2. The normalization factor of 1

2 ensures that the
TV distance is within [0, 1]. Roughly speaking, the TV distance measures the largest difference in
probabilities of any event between two given distributions.

Note that the TV distance does not require the underlying set X to be equipped with a metric. If
X is a metric space, we can define a more complex distance:

Definition 2.2 (Kantorovich distance). Let X be an (extended) metric space with a distance E : X ×
X → R∞≥0. The Kantorovich distance is a canonical lifting of E to a function E# : Dist(X)×Dist(X) →

R
∞
≥0 that defines a metric on Dist(X). This distance is defined as

E# (µ1, µ2) = inf
µ ∈Γ(µ1,µ2)

Eµ [E],

where Γ(µ1, µ2) is the set of probabilistic couplings of µ1, µ2, given by

Γ(µ1, µ2) = {µ ∈ Dist(X × X) | πi (µ) = µi , for i = 1, 2}.

The set Γ(µ1, µ2) is non-empty provided |µ1 | = |µ2 |. Otherwise, Γ(µ1, µ2) = ∅ and E
(µ1, µ2) = ∞.

The coupling-based definition of the Kantorovich distance is more abstract than other distances
between distributions, but its generality turns out to be a strength. First, we can recover the TV
distance as a lifting of the discrete metric:

Theorem 2.3 (Total variation and Kantorovich distance). Let µ1, µ2 ∈ Dist(X) such that

|µ1 | = |µ2 | = 1. If the discrete metric E : X × X → {0, 1} is given by E (x1,x2) = [x1 , x2], then

TV
(
µ1, µ2

)
= E#

(
µ1, µ2

)
.

Another advantage of the Kantorovich distance is that it is defined as an infimum. For our goal
of proving sensitivity properties, it suffices to compute an upper bound of the distance, which
corresponds to determining Eµ [E] for some particular witness coupling µ.

Traditionally, the definition of E# is restricted to functions E defining a metric on X . However,
the definition of E# extends to arbitrary functions E; we abuse terminology and use the term
Kantorovich distance also in the more general case. For instance, we can use this more general
notion to bound the difference between the expected values of two functions on the outputs of two
program runs:

Theorem 2.4 (Absolute expected difference). Let µ1, µ2 ∈ Dist(X) such that |µ1 | = |µ2 | = 1,
and let f1, f2 : X → R

∞
≥0. Let E : X × X → R

∞
≥0 be defined by E (x1,x2) = | f1 (x1) − f2 (x2) | . Then���Eµ1[f1] − Eµ2[f2]

��� ≤ E#
(
µ1, µ2

)
.

Note that above, the relational expectation E need not be a metric. We can also obtain bounds on
the TV distance when lifting other base distances that assign a minimum, non-zero distance to all
pairs of distinct elements.

Theorem 2.5 (Scaled TV distance). Let µ1, µ2 ∈ Dist(X) with |µ1 | = |µ2 | = 1, let Eρ : X ×
X → [0, 1], and let ρ ∈ R>0 be a strictly positive constant with Eρ (x1,x2) ≥ ρ · [x1 , x2]. Then,

TV
(
µ1, µ2

)
≤ 1

ρ
· E#ρ

(
µ1, µ2

)
.

3 BOUNDING EXPECTED SENSITIVITY WITH RELATIONAL PRE-EXPECTATIONS

As we have seen, the Kantorovich distance encompasses many specific distances on distributions.
To reason about a general class of sensitivity properties for probabilistic programs, we aim to bound
the Kantorovich distance between two output distributions in terms of the distance between two
program inputs. In this section, we develop a relational pre-expectation operation to prove such
bounds.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 52. Publication date: January 2021.

A Pre-expectation Calculus for Probabilistic Sensitivity 52:7

3.1 A First (Unsuccessful) Attempt: a Relational Pre-expectation for Exact Bounds

Since we want to reason about the Kantorovich distance lifting of a relational expectation E : State×
State→ R∞≥0 between output distributions of a program c , an initial idea is to define a relational
pre-expectation operator rpe(c, E) coinciding exactly with the Kantorovich distance:

rpe(c, E) (s1, s2) = E
#
(
⟦c⟧s1, ⟦c⟧s2

)
,

and then prove bounds of the form rpe(c, Eout) ≤ Ein in order to bound the Kantorovich distance
between outputs by some distance between inputs. While this definition is appealing, it turns out to
be inconvenient for formal reasoning because it does not behave well under sequential composition:
the expected sequence rule rpe(c ; c ′, E) = rpe(c, rpe(c ′, E)) does not hold. Roughly, this is because
choosing local infima on each step does not necessarily amount to a global infimum. In fact, in
some cases the global infimum cannot be realized by local choices.

Example 3.1. The Bernoulli distribution B (p) with bias p returns 1 with probability p and 0 with
probability 1−p. Consider the following programs:

c = if b then x $← B (1/2) else y $← B (1/2)

c ′ = if b then y $← B (1/2) else x $← B (1/2) .

Moreover, consider the relational expectation E = [x⟨1⟩ , x⟨2⟩ ∨y⟨1⟩ , y⟨2⟩]. If we fix b⟨1⟩ = true

and b⟨2⟩ = false throughout, then

rpe(c ′, E) (s ′1, s
′
2) = inf

Γ(⟦y $←B (1/2)⟧s ′1,⟦x
$←B (1/2)⟧s ′2)

E[E] .

To compute the above relational pre-expectation, we first need to understand the possible couplings.
The two target marginal distributions are:

µ1 ≜ ⟦y $← B (1/2)⟧s ′1 =

1
2 : x 7→ s ′1 (x),y 7→ 0
1
2 : x 7→ s ′1 (x),y 7→ 1

µ2 ≜ ⟦x $← B (1/2)⟧s ′2 =

1
2 : x 7→ 0,y 7→ s ′2 (y)
1
2 : x 7→ 1,y 7→ s ′2 (y) .

The marginal conditions for couplings (Definition 2.2) imply that any coupling in Γ(µ1, µ2) is of the
form

µρ (s1, s2) = ρ · [s1 (x) = s
′
1 (x) ∧ s1 (y) = 1] · [s2 (x) = 1 ∧ s2 (y) = s

′
2 (y)]

+

(
1
2 − ρ

)
· [s1 (x) = s

′
1 (x) ∧ s1 (y) = 1] · [s2 (x) = 0 ∧ s2 (y) = s

′
2 (y)]

+

(
1
2 − ρ

)
· [s1 (x) = s

′
1 (x) ∧ s1 (y) = 0] · [s2 (x) = 1 ∧ s2 (y) = s

′
2 (y)]

+ ρ · [s1 (x) = s
′
1 (x) ∧ s1 (y) = 0] · [s2 (x) = 0 ∧ s2 (y) = s

′
2 (y)] .

for some 0 ≤ ρ ≤ 1
2 and the previously fixed states s ′1 and s

′
2. Hence,

Eµρ [E] = ρ · [s ′1 (x) , 1 ∨ s ′2 (y) , 1] +
(
1
2 − ρ

)
[s ′1 (x) , 0 ∨ s ′2 (y) , 1]

+

(
1
2 − ρ

)
[s ′1 (x) , 1 ∨ s ′2 (y) , 0] + ρ · [s ′1 (x) , 0 ∨ s ′2 (y) , 0] .

Since rpe(c ′, E) takes the minimum over all couplings, i.e., the minimum over all ρ ∈ [0, 12], by
simple computation we get that rpe(c ′, E) (s ′1, s

′
2) = 1/2, setting ρ = 1/2 if s ′1 (x) = s ′2 (y) and

ρ = 0 otherwise. Since s ′1 (x), s
′
2 (y) are sampled from ⟦c⟧s1 and ⟦c⟧s2, for any way to couple

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 52. Publication date: January 2021.

52:8 A. Aguirre, G. Barthe, J. Hsu, B. L. Kaminski, J.-P. Katoen, and C. Matheja

r̃pe(skip, E) ≜ E

r̃pe(x ← e, E) ≜ E{e⟨1⟩, e⟨2⟩/x⟨1⟩,x⟨2⟩}

≜ λs1s2.E (s1[x 7→ e⟨1⟩], s2[x 7→ e⟨2⟩])

r̃pe(x $← d, E) ≜ λs1s2. E
(⟦x $← d⟧s1, ⟦x $← d⟧s2) ,where E

(µ1, µ2) ≜ inf
µ ∈Γ(µ1,µ2)

Eµ [E]

r̃pe(c; c ′, E) ≜ r̃pe(c, r̃pe(c ′, E))

r̃pe(if e then c else c ′, E) ≜ [e⟨1⟩∧e⟨2⟩] · r̃pe(c, E) + [¬e⟨1⟩∧¬e⟨2⟩] · r̃pe(c ′, E) + [e⟨1⟩,e⟨2⟩] · ∞

r̃pe(while e do c, E) ≜ lfpX .ΦE,c (X),

where ΦE,c (X) ≜ [e⟨1⟩∧e⟨2⟩] · r̃pe(c,X) + [¬e⟨1⟩∧¬e⟨2⟩] · E + [e⟨1⟩,e⟨2⟩] · ∞

Fig. 1. Definition of the relational pre-expectation operator r̃pe(c, E).

them rpe(c, rpe(c ′, E)) (s1, s2) =
1
2 > 0. However, ⟦c; c ′⟧s1 and ⟦c; c

′⟧s2 have the same marginal
distributions for (x ,y) and thus distance 0. Therefore,

0 = rpe(c; c ′, E) (s1, s2) < rpe(c, rpe(c ′, E)) (s1, s2) =
1
2 .

Fortunately, we generally do not need to compute the exact Kantorovich distance to prove sensi-
tivity properties: an upper bound suffices. Since the Kantorovich distance is an infimum over all
couplings, we can establish upper bounds by exhibiting a specific couplingÐof course, the tightness
of these upper bounds will depend on the particular coupling we chose. Crucially, couplings can be
constructed compositionally: a coupling for a sequential composition c ; c ′ can be obtained by com-
bining a coupling for c with a coupling for c ′. We leverage this observation into our compositional
relational pre-expectation calculus, which provides upper bounds on the Kantorovich distance.

3.2 Compositional Upper Bounds by Relational Pre-expectation

To facilitate compositional reasoning, we define an upper bound r̃pe(c, E) of the Kantorovich
distance E with respect to program c . Technically, r̃pe(c, E) is a relational pre-expectation calculus
defined by induction on the structure of c , similarly to the calculus by Morgan et al. [1996]. The
rules of our calculus are shown in Figure 1. We take the indicator expectation [P] to be 1 if P is
true, otherwise 0, and we define addition and multiplication on expectations pointwise. The cases
of skipping, assignments and sequential composition are straightforward and apply the backwards
semantics of commands. The relational pre-expectation of sampling is expressed directly in terms
of the Kantorovich distance, i.e., an infimum is taken over the set of all couplings, which is not
always possible in practice. We give more details on this problem in Section 3.3. The relational
pre-expectation for conditionals assumes the two runs are synchronized. If not, [e⟨1⟩ , e⟨2⟩] = 1
and the distance is (trivially) upper bounded by ∞, since the branches may not terminate with
the same probability, so the set of couplings may be empty. Finally, in the case of while loops,
we take the least fixed point of the characteristic functional ΦE,c of the loop. It is not hard to
show that ΦE,c (−) : Exp → Exp is monotonic, so by the Knaster-Tarski theorem the least fixed
point exists. As in the previous case, the relational pre-expectation returns∞ when runs are not
synchronized, i.e., only one loop guard is true. However, if the loop does not termine on both sides
with probability one, the least fixed point becomes zero, i.e., we measure no distance between two
diverging programs. Computing the exact least fixed point is usually not possible. We present an
invariant-based approximation rule in Section 3.3.

Remark (Synchronous vs. asynchronous control flow). In contrast to the Kantorovich distance
operator rpe(c, E), our compositional relational pre-expectation operator r̃pe(c, E) only gives useful

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 52. Publication date: January 2021.

A Pre-expectation Calculus for Probabilistic Sensitivity 52:9

(i.e., finite) bounds when the control flows in the two executions of c can be synchronized. For
deterministic guards, this means that pairs of related executions always take the same branches;
for randomized guards, this means that we can relate the random samplings so that pairs of related
executions always take the same branches. In Section 8, we will extend our calculus to give more
useful bounds when reasoning asynchronously.

Remark (Tightness of bounds). It is also complicated to estimate the exact loss between r̃pe(c, E)

and rpe(c, E), since lower bounds on rpe(c, E) are not given by a witness coupling. Nonetheless,
in our setting this limitation is not exclusive to our techniqueÐin the statistical literature, lower
bounds for stochastic processes are in general hard to compute and so the exact distance is often
not known.

We now study the metatheory of our calculus. The main result is that our calculus is sound: it
correctly upper bounds the Kantorovich distance.

Theorem 3.2 (Soundness of r̃pe). Let c be a pWhile program and E ∈ Exp be a relational

expectation. Then rpe(c, E) ≤ r̃pe(c, E), i.e., if r̃pe(c, E) (s1, s2) < ∞ for s1, s2 ∈ State then

Eµs1,s2
[E] ≤ r̃pe(c, E) (s1, s2) for some coupling µs1,s2 ∈ Γ(⟦c⟧s1, ⟦c⟧s2) .

Proof Sketch. By induction on c . Note that the theorem requires to show existence of a coupling
that is below the r̃pe. The most challenging cases are the ones for sampling and loops. The case
for sampling follows from the following lemma, which is adapted from the theory of optimal
transport [Villani 2008]:

Lemma 3.3. Let µ1, µ2 ∈ Dist(State) be two sub-distributions of countable support with the same

weight, and let E : State×State→ R∞≥0 be a relational expectation. There exists a coupling µ ∈ Γ(µ1, µ2)
realizing the minimum Kantorovich distance:

Eµ [E] = inf
µ ∈Γ(µ1,µ2)

Eµ [E] = E
(µ1, µ2) .

The case for loops is challenging for another reason: it is not clear how to show that the pre-
expectation operator is continuous in its second argument (but see Theorem 3.4). Instead, our proof
relies on extracting a convergent sequence of couplings. Consider the following loop approximants:

c0 ≜ while tt do skip

ci+1 ≜ if e then c; ci else skip

Each approximant executes at most i iterations of the loop; the zero-th approximant returns the
zero distribution and does not execute any iterations of the loop body. We then define a sequence
of pre-expectations corresponding to the approximants:

E0 ≜ r̃pe(c0, E) = 0

Ei+1 ≜ r̃pe(ci+1, E) = [e⟨1⟩ ∧ e⟨2⟩] · r̃pe(c, Ei) + [¬e⟨1⟩ ∧ ¬e⟨2⟩] · E + [e⟨1⟩ , e⟨2⟩] · ∞

It is not hard to see that also Ei = Φi
E,c

(0), but we cannot apply Kleene’s fixpoint theorem to show

that limi→∞ Φi
E,c

(0) = lfpX .ΦE,c (X), since we do not know if ΦE,c is continuous. With this in mind,

the bulk of the proof consists in showing: (i) For every i , Φi
E,c

(0) ≤ lfpX .ΦE,c (X) (ii) There exists a

sequence of couplings µi,s1,s2 ∈ Γ(⟦ci ⟧s1, ⟦ci ⟧s2) such that

Eµi,s1,s2
[E] ≤ Ei (s1, s2) = r̃pe(ci , E).

(iii) From the sequence µi,s1,s2 we can extract a subsequence µ ′i,s1,s2 that converges monotonically

to a coupling µ̃s1,s2 ∈ Γ(⟦while e do c⟧s1, ⟦while e do c⟧s2) satisfying

E(s ′1,s
′
2)∼µ̃s1,s2

[E (s ′1, s
′
2)] ≤ r̃pe(while e do c, E) (s1, s2).

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 52. Publication date: January 2021.

52:10 A. Aguirre, G. Barthe, J. Hsu, B. L. Kaminski, J.-P. Katoen, and C. Matheja

E ≤ E ′

r̃pe(c, E) ≤ r̃pe(c, E ′)
Mono

FV (E ′) ∩MV (c) = ∅

r̃pe(c, E + E ′) ≤ r̃pe(c, E) + E ′
Const

r̃pe(c, E) + r̃pe(c, E ′) ≤ r̃pe(c, E + E ′)
SupAdd

f : R≥0 → R≥0 linear, with f (∞) ≜ ∞

r̃pe(c, f ◦ E) = f ◦ r̃pe(c, E)
Scale

M : State × State→ Γ(⟦d⟧, ⟦d⟧)

r̃pe(x $← d, E) ≤ E(v1,v2)∼M (−,−)[E{v1,v2/x⟨1⟩,x⟨2⟩}]
Samp

f : State × State→ (D → D) bijection

r̃pe(x $← U (D), E) ≤
1

|D |

∑

v ∈D

E{v, f (−,−) (v)/x⟨1⟩,x⟨2⟩}

Unif

[e⟨1⟩ ∧ e⟨2⟩] · r̃pe(c,I) + [¬e⟨1⟩ ∧ ¬e⟨2⟩] · E + [e⟨1⟩ , e⟨2⟩] · ∞ ≤ I

r̃pe(while e do c, E) ≤ I
Inv

Fig. 2. Properties of relational pre-expectation operator r̃pe(c, E).

□

It is natural to wonder whether our relational pre-expectation operator is continuousÐthis property
is not needed for soundness, but it does hold for similar pre-expectation calculi. While we do not
know whether continuity holds for all programs, it does hold for programs that sample from finite

distributions. Note that such programs can still produce distributions with infinite support by
sampling in a loop.

Theorem 3.4 (Continuity of r̃pe). Let c be a pWhile program where all primitive distributions

have finite support, and let En ∈ Exp for n ∈ N be a monotonically increasing chain of relational

expectations converging pointwise to E ∈ Exp. Then,

r̃pe(c, E) = sup
n∈N

r̃pe(c, En).

Proof Sketch. By induction on the structure of c . The most challenging case is for sampling
instructions, where the proof depends on the following continuity property for the Kantorovich
distance that we establish for distributions with finite support:

Lemma 3.5. Let µ1, µ2 ∈ Dist(State) be two distributions with finite support, and let En : State ×
State→ R∞≥0 be a monotonically increasing chain of relational expectations converging pointwise to

E : State × State→ R∞≥0. Then:

inf
µ ∈Γ(µ1,µ2)

Eµ [E] = inf
µ ∈Γ(µ1,µ2)

Eµ [lim
n→∞

En] = lim
n→∞

inf
µ ∈Γ(µ1,µ2)

Eµ [En].

The proof of this lemma is involved, and extending it to more general distributions is out of
scope. We defer the details to the full version. □

3.3 Reasoning with Relational Pre-expectations

The definition of r̃pe in Fig. 1 is sufficient to prove relational properties of probabilistic programs in
theory, but there are some practical obstacles.

• Comparing different relational pre-expectations for the same program: using the definition
to compute each relational pre-expectation separately is tedious.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 52. Publication date: January 2021.

A Pre-expectation Calculus for Probabilistic Sensitivity 52:11

• Computing the relational pre-expectation for random sampling: it requires computing a
minimum over all couplings.
• Computing the relational pre-expectation for loops: it is often not possible to compute the
least fixed point in closed form.

To make our operator easier to use, we introduce a collection of auxiliary properties in Fig. 2. We
briefly describe the rules below.

Basic properties. The first four rules are basic properties of relational pre-expectations. Rule
Mono states that the r̃pe transformer is monotone, and Const intuitively states that the relational
pre-expectation of E is E if c doesn’t modify E; the rule is carefully stated to behave correctly
when r̃pe(c, E) is infinite.

The next two rules encode linearity-like properties of relational pre-expectations. SupAdd states
that the property is super-additive: the relational pre-expectation of a sum can be greater than the
sum of the relational pre-expectations. Intuitively, this is because r̃pe(c, E) involves an infimum
for random sampling, and the infimum of a sum at least as large as the sum of the infima. Scale
states that the relational pre-expectation is preserved by scaling. The requirement that the scaling
function satisfies f (∞) = ∞ is needed for correctly handling scaling by 0: r̃pe(c, E) may be infinite,
even if E is identically zero.
As expected, these rules are sound.

Theorem 3.6 (Soundness of basic rules). Mono, Const, SupAdd, and Scale are sound.

Proof. Proof sketch By induction on the program c; we defer details to the full verison. □

Bounding the pre-expectation for sampling. Using the Kantorovich distance for defining the
relational pre-expectation of a sampling command x $← d is theoretically clean, but inconvenient
in practice for two reasons. First, the set of couplings Γ(⟦x $← d⟧s1, ⟦x $← d⟧s2) over which the
infimum is computed is a set of distributions over pairs of states. Given denotations of primitive
distributions ⟦d⟧ ∈ Dist(D), it would be more convenient to reason about the set Γ(⟦d⟧, ⟦d⟧)Ðthis
is a set of distributions over pairs of sampled values D × D, rather than pairs of memories. Second,
computing the infimum is often difficult, and moreover unnecessary for establishing upper bounds.
Corresponding to the Samp rule, the following result states that we can actually upper bound

this Kantorovich distance by picking any coupling of the primitive distribution with itself; we call
such a functionM : State × State→ Γ(⟦d⟧, ⟦d⟧) a coupling function (on d).

Proposition 3.7. Let d be a primitive distribution, and letM be a coupling function on d . For any

relational expectation E ∈ Exp, we have:

r̃pe(x $← d, E) ≤ E(v1,v2)∼M (−,−)[E{v1,v2/x⟨1⟩,x⟨2⟩}] .

We can reuse common couplings of primitive distributions across different proofs. For example,
let D be a finite, non-empty set and let f : State× State→ (D → D) map pairs of program states to
bijections on D. Then the bijection coupling Mf , the coupling function on the uniform distribution
U (D) is defined by

f (s1, s2) (x1,x2) =

1/|D | : f (s1, s2) (x1) = x2

0 : otherwise
,

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 52. Publication date: January 2021.

52:12 A. Aguirre, G. Barthe, J. Hsu, B. L. Kaminski, J.-P. Katoen, and C. Matheja

where x1 and x2 are elements in D. Specialized to this case, Proposition 3.7 gives the rule Unif:

r̃pe(x $← U (D), E) ≤ r̃pe(x $← d, E) ≤ E(v1,v2)∼Mf (−,−)[E{v1,v2/x⟨1⟩,x⟨2⟩}]

≤ Ev∼⟦U (D)⟧[E{v, f (−,−) (v)/x⟨1⟩,x⟨2⟩}]

=

1

|D |

∑

v ∈D

E{v, f (−,−) (v)/x⟨1⟩,x⟨2⟩} .

Different coupling functions can give upper bounds of different strengthsÐselecting appropriate
couplings to show the target property is the key part of reasoning by couplings. This technique is
well-known to probability theory, where it is called the coupling method [Aldous 1983].

Bounding the pre-expectation for loops. As in the case of sampling, it may not always be desirable
or possible to compute the fixed point for loops. Instead, we can upper bound the relational
pre-expectation by a relational expectation I, called an invariantÐintuitively, if the relational
pre-expectation of I with respect to the loop body is at most I, then the relational pre-expectation
of the loop is also at most I. Formally, this reasoning is captured by Inv and the following theorem:

Theorem 3.8. Let I ∈ Exp be a relational expectation. If

[e⟨1⟩ ∧ e⟨2⟩] · r̃pe(c,I) + [¬e⟨1⟩ ∧ ¬e⟨2⟩] · E + [e⟨1⟩ , e⟨2⟩] · ∞ ≤ I,

then r̃pe(while e do c, E) ≤ I.

Proof. Let Φ be the characteristic functional of the loop, as defined for the relational pre-
expectation. The hypothesis impliesΦ(I) ≤ I, soI is a prefixed point ofΦ. By Park induction [Park
1969], the least fixed point r̃pe(while e do c, E) is less than or equal to I. □

3.4 Embedding EpRHL

Expectation Probabilistic Relational Hoare Logic (EpRHL) is a quantitative extension of pRHL [Barthe
et al. 2018]. Judgments of EpRHL are of the form: {P ; E} c1 ∼f c2 {Q ; E

′} where P ,Q are boolean-
valued assertions, E, E ′ are relational expectations, f is an affine function of the form ax +b, where
a,b ∈ R≥0, and c1 and c2 are pWhile programs. This judgment states that for every pair of input
states s1, s2 satisfying the pre-condition P , there is a coupling µ of ⟦c1⟧(s1), ⟦c2⟧(s2) whose support
lies within the post-condition Q , and moreover Eµ [E

′] ≤ f (E (s1, s2)). We can embed the core
inference rules of EpRHL in our proof system.

Theorem 3.9 (Embedding EpRHL). Let ⊢ {P ; E} c ∼f c {Q ;E
′} be a valid EpRHL judgmentwith

finite E and E ′. Then:

r̃pe(c, E ′ + [¬Q] · ∞) ≤ f (E) + [¬P] · ∞.

Furthermore, this inequality can be derived using just the definition of r̃pe(c, E) for skip, assignment,

sequence, and conditionals in Figure 1, and the auxiliary proof rules in Figure 2.

Intuitively, the bound on the relational pre-expectation captures the validity of the original
EpRHL judgment. For any pair of states (s1, s2), if (s1, s2) does not satisfy P , then the right-hand side
is infinite and the bound trivially holds. If (s1, s2) satisfies P , then the right-hand side is finite (since
E is finite) and the relational pre-expectation is finite. This implies that Q must be satisfied almost
surely in the coupling and r̃pe(c, E ′) ≤ f (E). This last inequality recovers the EpRHL judgment’s
bound on the output distance in terms of the input distance. Furthermore, the embedding shows that
the bound is derivable in our calculus without computing infimums over couplings for sampling, or
computing least fixed points for loops.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 52. Publication date: January 2021.

A Pre-expectation Calculus for Probabilistic Sensitivity 52:13

sgd(S)

w ← w0;

t ← 0;

while t < T do

s $← [S];

д ← ∇ℓ(s,−) (w);

w ← w − αt · д;

t ← t + 1;

(a) Stochastic Gradient Descent (SGD)

TD0(V)

n ← 0;

while n < N do

i ← 0;

while i < |S| do

a $← π (i); r $← R (i,a); j $← P (i,a);

W [i]← (1 − α) ·V [i] + α · (r + γ ·V [j]);

i ← i + 1

V ←W ;n ← n + 1;

(b) TD(0) learning algorithm

Fig. 3. Example programs: Stability and convergence

4 WARMUP EXAMPLE: STABILITY OF SGD

To demonstrate our relational pre-expectation operator, we analyze the stability of Stochastic
Gradient Descent (SGD) as our warmup example. SGD is a core tool in modern machine learning;
variants of SGD are commonly used in practice for training neural networks. Its stability was
first established in Hardt et al. [2016], and it was later formalized in a relational program logic
EpRHL [Barthe et al. 2018]. While the EpRHL proof involves complex proof rules, our calculus can
establish the same property with significantly cleaner reasoning.

4.1 Background

Let Z be a space of labeled examples, e.g., images annotated with their main subject. A learning algo-

rithmA : S → Rd takes a set S ∈ Zn of examples as input and produces (łlearnsž) parameters w ∈ Rd

as output. The algorithm is tailored to a given loss function ℓ : Z → Rd → [0, 1], which describes
how well an example is labeled by some parameters. The goal is to find parameters that have low
loss on examples.

In machine learning, uniform stability is a useful property for learning algorithms. In a nutshell,
a randomized learning algorithmA is ϵ-uniformly stable if for all pairs S, S ′ of training sets differing
in exactly one example, and for all examples z ∈ Z , the expected losses of z are close:

|EA(S)[ℓ(z)] − EA(S ′)[ℓ(z)]| ≤ ϵ .

Stable learning algorithms generalize: their performance on new, unseen examples is similar to
their performance on the training set [Bousquet and Elisseeff 2002]. In particular, stability controls
how much a learning algorithm can overfit the training set.

4.2 Verifying Stability for Stochastic Gradient Descent

We consider the program sgd in Figure 3a. The gradient ∇ is a higher-order function1 with type
∇ : (Rd → [0, 1]) → (Rd → Rd); we assume that it is well-defined and given. In SGD, the true
gradient of a function is approximated by a gradient д at a single sample s . The step sizes αt (with
t ∈ N) are a sequence of real numbers that control (together with the local gradient д) how to adjust
the parameters in each iteration of SGD. Following Hardt et al. [2016], we make the following
assumptions:

1This makes our states non-discrete, but the distributions over them will still have discrete support, since they are generated

by a composition of discrete samplings.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 52. Publication date: January 2021.

52:14 A. Aguirre, G. Barthe, J. Hsu, B. L. Kaminski, J.-P. Katoen, and C. Matheja

(1) The loss function ℓ is convex and L-Lipschitz in its second argument, i.e., |ℓ(z,w)−ℓ(z,w ′) | ≤

L · ∥w −w ′∥ for all parametersw,w ′ ∈ Rd .
(2) The gradient ∇ℓ(z,−) : Rd → Rd is β-Lipschitz for every z ∈ Z .
(3) The step sizes satisfy 0 ≤ αt ≤ 2/β .

To show uniform stability, for any two training sets S⟨1⟩, S⟨2⟩ differing in one element and every
example z ∈ Z , our proof obligation is

|Esgd(S⟨1⟩)[ℓ(z)] − Esgd(S⟨2⟩)[ℓ(z)]| ≤ γL where γ ≜
2L

n

T−1∑

t=0

αt .

Rather than working with the loss function directly, we will first bound the pre-expectation of the
distance ∥w⟨1⟩ −w⟨2⟩∥ and then use the L-Lipschitz property of ℓ to conclude uniform stability. As
usual, the main part of the proof is bounding the pre-expectation of the loop. We use the following
loop invariant:

I ≜ [t⟨1⟩ , t⟨2⟩] · ∞ + [t⟨1⟩ = t⟨2⟩] ·
*.
,
∥w⟨1⟩ −w⟨2⟩∥ +

2L

n

T−1∑

j=t ⟨1⟩

α j
+/
-
.

By the loop rule (Theorem 3.8), it suffices to show the following invariant condition:

[e⟨1⟩ ∧ e⟨2⟩] · r̃pe(bd,I) + [¬e⟨1⟩ ∧ ¬e⟨2⟩] · ∥w⟨1⟩ −w⟨2⟩∥ + [e⟨1⟩ , e⟨2⟩] · ∞ ≤ I . (1)

The main case corresponds to the first term, where both loop guards e⟨1⟩ and e⟨2⟩ are true. To
bound the pre-expectation r̃pe(bd,I), we consider r̃pe(bd,I) = r̃pe(s $← U (S),I ′) where

I ′ ≜ [t⟨1⟩+1 , t⟨2⟩+1] · ∞ + [t⟨1⟩+1 = t⟨2⟩+1] · P , with

P ≜
2L

n

T−1∑

j=t ⟨1⟩+1

α j +

(w⟨1⟩ − αt ⟨1⟩∇ℓ(s⟨1⟩,−) (w⟨1⟩))

−(w⟨2⟩ − αt ⟨2⟩∇ℓ(s⟨2⟩,−) (w⟨2⟩))

.

To handle the random sampling command, we apply the sampling rule (Proposition 3.7) with the
coupling functionM for the two uniform distributions [S⟨1⟩] and [S⟨2⟩] induced by the bijection
f : S⟨1⟩ → S⟨2⟩mapping the differing example in S⟨1⟩ to its counterpart in S⟨2⟩, and fixing all other
examples. We then have r̃pe(s $← U (S),I ′) ≤ I ′′, where

I ′′ ≜ [t⟨1⟩+1 , t⟨2⟩+1] · ∞ + [t⟨1⟩+1 = t⟨2⟩+1] · P ′, with

P ′ =
2L

n

T−1∑

j=t ⟨1⟩+1

α j +
1

n

n−1∑

s ∈S⟨1⟩

(w⟨1⟩ − αt ⟨1⟩∇ℓ(s,−) (w⟨1⟩))

−(w⟨2⟩ − αt ⟨2⟩∇ℓ(f (s),−) (w⟨2⟩))

We focus on the terms of the last sum. Using the L-Lipschitz property of ℓ, when s is the differing
example, we can bound the absolute difference by ∥w⟨1⟩−w⟨2⟩∥+2αt ⟨1⟩L. When s is not the differing
example, we have s⟨1⟩ = s⟨2⟩. By the β-Lipschitz property of ∇ℓ, convexity, and 0 ≤ αt ≤ 2/β , we
can bound each of the terms by ∥w⟨1⟩ −w⟨2⟩∥. Combining the two cases gives

r̃pe(bd,I) ≤
*.
,
∥w⟨1⟩ −w⟨2⟩∥ +

2L

n

T−1∑

j=t ⟨1⟩

α j
+/
-

for all input states with t⟨1⟩ = t⟨2⟩ and e⟨1⟩ ∧ e⟨2⟩. This establishes (1). Theorem 3.8 gives

r̃pe(while e do bd, ∥w⟨1⟩ −w⟨2⟩∥) ≤ I.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 52. Publication date: January 2021.

A Pre-expectation Calculus for Probabilistic Sensitivity 52:15

Finally, taking the pre-expectations of both sides with respect to the initial assignments yields

r̃pe(sgd(S), ∥w⟨1⟩ −w⟨2⟩∥) ≤
2L

n

T−1∑

j=0

α j = γ ,

when S⟨1⟩ and S⟨2⟩ differ in exactly one training example. Since ℓ is L-Lipschitz, we conclude

r̃pe(sgd(S), |ℓ(z,w)⟨1⟩ − ℓ(z,w)⟨2⟩|) ≤ γL ,

for any example z ∈ Z . By Theorem 2.4, the expected losses are at most γL apart:

|Esgd(S⟨1⟩)[ℓ(z)] − Esgd(S⟨2⟩)[ℓ(z)]| ≤ γL ,

and so SGD satisfies γL-uniform stability.

Remark. This stability bound for SGD was previously verified in the program logic EpRHL [Barthe
et al. 2018], using a complex rule for sequential composition (SeqCase) that required bounding the
probability of selecting two differing examples. Our proof using r̃pe is much simpler, involving just
compositional reasoning for sequencing and a loop invariant.

Remark. While our calculus was designed for probabilistic programs, it is also a useful tool for
proving relational properties of deterministic programs. In the full version, we show how to prove
a sensitivity bound for projected gradient descent, a deterministic version of SGD.

5 EXAMPLE: CONVERGENCE OF REINFORCEMENT LEARNING ALGORITHMS

In the previous section, the stability guarantee weakens as the program progresses: starting from
two initially-equal parameter settings, the learned parameters may drift apart as SGD runs for more
iterations. In the following two sections, we will apply our technique to prove a different style of
guarantee: probabilistic convergence of two outputs, starting from two different inputs. Our first
example shows convergence for a classical algorithm from Reinforcement Learning (RL) [Sutton
1988], guided by a novel analysis by Amortila et al. [2020].

5.1 Background

In the standard reinforcement learning setting, an agent (i.e., the learning algorithm) repeatedly
interacts with the environment, a Markov Decision Process (MDP) with state space S. At each
step, the agent chooses an action from a set A. The MDP draws a numeric reward according to a
function R : S × A → Dist([0,R]), and transitions to a new random state drawn from a transition
function P : S × A → Dist(S). The current state of the process is known to the learnerÐimagine
the current position of a chessboardÐbut the exact reward and transition functions (R,P) are not
known. Given black-box access to R and S, the goal of the learner is to find a policy map π : S → A

that maximizes the learner’s expected reward when interacting with the unknown MDP over an
infinite time horizon; estimated rewards in the future are reduced by a discount factor γ ∈ [0, 1) for
each step into the future.

For many approaches to learning the optimal policy, an important requirement is estimating the
value functionV : S → [0,R] of the MDP, i.e., the expected reward at each state if the agent were to
repeatedly act according to some given policy π . Temporal difference (TD) learning is one approach
to estimating the value function [Sutton 1988]. In brief, a TD learner maintains an estimate of
V and loops through states in S. At each state s , the learner selects an action a ∼ π (s), draws
a reward r ∼ R (s,a), and draws a transition s ′ ∼ P (s,a). Then, the estimate V (s) is updated by
incorporating the observed reward r and the estimated value V (s ′) of the new state.

Figure 3b shows one basic example of TD learning, known as TD(0). We assume that the program
takes only one argument V , the initial estimate of the value function. All other parameters are

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 52. Publication date: January 2021.

52:16 A. Aguirre, G. Barthe, J. Hsu, B. L. Kaminski, J.-P. Katoen, and C. Matheja

assumed to be fixed: the current policy π , the reward and transition functions R and P, the discount
factor γ , the step size α ∈ (0, 1)Ðhigher α allows V to evolve fasterśand the number of iterations
N .

5.2 Verifying Convergence for TD0

Since the true value function is not known, the initial estimate V is chosen with little information.
A natural question is: does the algorithm converge to the same distribution no matter how V is
initialized? If so, how fast does convergence happen, as a function of the number of iterations N ?
To answer these questions, we will verify that TD0 is contractive on V . More specifically, we will
show the quantitative bound

r̃pe(TD0(V), ∥V ⟨1⟩ −V ⟨2⟩∥∞) ≤ kN · ∥V ⟨1⟩ −V ⟨2⟩∥∞, (2)

where k ≜ (1−α +αγ) < 1. Before we describe the verification, we unpack the guarantee. First, the
∞-norms are defined by ∥V ⟨1⟩ −V ⟨2⟩∥∞ ≜ maxi< |S | |V ⟨1⟩[i] −V ⟨2⟩[i]|. By Theorem 3.2, Eq. (2)
implies that for any inputsV1 andV2, there exists a coupling µ of the output distributions µ1 and µ2
from TD0(V ⟨1⟩) and TD0(V ⟨2⟩), such that:

kN · ∥V1 −V2∥∞ ≥ E(s1,s2)∼µ [∥s1 (V) − s2 (V)∥∞]

≥ max
i< |S |

E(s1,s2)∼µ [| s1 (V [i]) − s2 (V [i]) |]

≥ max
i< |S |

���E(s1,s2)∼µ [s1 (V [i]) − s2 (V [i])]
���

= max
i< |S |

���Es1∼µ1[s1 (V [i])] − Es2∼µ2[s2 (V [i])]
��� (by Theorem 2.4)

In words, the right-hand side of the final line is the maximum difference between the average
estimates of V [i] in the two outputs, taking the maximum over all indices i . Since k < 1, both sides
tend to zero exponentially quickly from any pair of starting states V1 and V2.

Inner loop. We start by analyzing the inner loopwin . We first show that

r̃pe(win , ∥W ⟨1⟩ −W ⟨2⟩∥∞) ≤ Iin

for the invariant Iin :

Iin ≜ [i⟨1⟩ , i⟨2⟩] · ∞

+ [i⟨1⟩ = i⟨2⟩] · max
l< |S |

([l < i⟨1⟩] · |W ⟨1⟩[l] −W ⟨2⟩[l]| + [i⟨1⟩ ≤ l] · k · ∥V ⟨1⟩ −V ⟨2⟩∥∞).

Let cin be the body, and csamp be the three sampling statements. Applying Inv, it suffices to show:

[i⟨1⟩ < |S|∧i⟨2⟩ < |S|]·r̃pe(cin ,Iin)+[i⟨1⟩ ≥ |S|∧i⟨2⟩ ≥ |S|]·∥W ⟨1⟩−W ⟨2⟩∥∞+[i⟨1⟩ , i⟨2⟩]·∞ ≤ Iin

The main case is bounding r̃pe(cin ,Iin); the other cases are simpler. We describe the overall idea
here, deferring details to the full version. To bound the relational pre-expectation for the three
sampling instructions, we apply the sampling rule Samp. Since the relational pre-expectation is
computed in reverse order, we must choose a coupling for sampling j first, then choose a coupling
for sampling r , and then finally choose a coupling for sampling a. We aim to take the identity
coupling in each case, ensuring j⟨1⟩ = j⟨2⟩, r ⟨1⟩ = r ⟨2⟩, and a⟨1⟩ = a⟨2⟩, but there is a small problem:
we can only take the identity coupling when samples are taken from the same distributions, i.e.,
R (i⟨1⟩,a⟨1⟩) = R (i⟨2⟩,a⟨2⟩). The invariant assumes i⟨1⟩ = i⟨2⟩, but we can only ensure a⟨1⟩ = a⟨2⟩
after we have specified the couplings for j and r . Accordingly, our coupling functions for Samp will
be of the following form: if a⟨1⟩ = a⟨2⟩ then we take the identity coupling, otherwise we take the
trivial (independent) coupling.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 52. Publication date: January 2021.

A Pre-expectation Calculus for Probabilistic Sensitivity 52:17

Outer loop. We now turn to the analysis of the outer loop. Consider the invariant:

Iout ≜ [n⟨1⟩ , n⟨2⟩] · ∞ + [n⟨1⟩ = n⟨2⟩] · k (N ⊖n⟨1⟩) ∥V ⟨1⟩ −V ⟨2⟩∥∞ ,

where N ⊖ n denotes max(N−n, 0). We compute:

r̃pe(i ← 0;win ;V ←W ;n ← n + 1,Iout)

= r̃pe(i ← 0;win , [n⟨1⟩ , n⟨2⟩] · ∞ + [n⟨1⟩ = n⟨2⟩] · k
(N ⊖(n⟨1⟩+1)) ∥W ⟨1⟩ −W ⟨2⟩∥∞)

≤ r̃pe(i ← 0, [n⟨1⟩ , n⟨2⟩] · ∞ + [n⟨1⟩ = n⟨2⟩] · k (N ⊖(n⟨1⟩+1)) · Iin)

≤ [n⟨1⟩ , n⟨2⟩] · ∞ + [n⟨1⟩ = n⟨2⟩] · k · k (N ⊖(n⟨1⟩+1)) ∥V ⟨1⟩ −V ⟨2⟩∥∞ = Iout

where the last step holds because Iin = k · ∥V ⟨1⟩ −V ⟨2⟩∥∞ when i = 0. This establishes the outer
invariant. Computing the pre-expectation of the first initialization, we conclude:

r̃pe(TD0(V), ∥V ⟨1⟩ −V ⟨2⟩∥∞) ≤ kN · ∥V ⟨1⟩ −V ⟨2⟩∥∞ .

6 EXAMPLE: RANDOMWALKS AND CARD SHUFFLES

In this section, we verify more challenging examples of probabilistic convergence from the theory
of Markov chains, formalizing arguments by Aldous [1983] in his seminal work introducing the
coupling method. Our use of relational pre-expectations is similar in spirit to the previous section,
but there are two key differences: (1) we aim to prove convergence under Total Variation (TV)
distance, which is the standard notion of distance in this field, and (2) our arguments will require
selecting more complex couplings, instead of just the identity coupling.

6.1 Preliminaries: Card Shuffling and Markov Chain Mixing

For instance, consider the uniform distribution over all permutations of a deck of playing cards.
To sample from this distributionÐi.e., perform a perfect shuffleÐwe can implement a card shuffle
algorithm that executes a sequence of simple randomized steps (e.g., swapping pairs of cards) and
hope that after some number of steps, we will produce a shuffle that is close to uniform.
Abstracting a bit, card shuffling algorithms are a representative example of random walks for

approximating complex distributions. This is a technique with a long history, combining elements
of probability theory with statistical physics; and it is the basis of many heuristic algorithms used
today, e.g., Markov Chain Monte Carlo (MCMC). From a theoretical perspective, the central question
is: how fast do these processes converge to their target distribution? How many steps do we need to
get within ϵ distance of the uniform distribution on shuffles?
Random walks and card shuffling algorithms are classical examples of Markov chains. A fi-

nite, discrete-time Markov chain is defined by a finite state space Σ and a transition function
P : Σ → Dist(Σ). Given an initial state σ , the associated Markov process {Xσ

k
}k ∈N is a sequence

of distributions such that Xσ
0 = δ (σ) and Xσ

k+1
(τ ′) =

∑
τ X

σ
k
(τ) · P (τ ,τ ′). For example, the state

space Σ could be the set of all permutations of a deck of cards, and the transition function τ could
describe randomly splitting the deck and interleaving the halves.
Consider the TV distance v (k) between two state distributions after running k steps from two

states σ ,τ , i.e., v (k) ≜ maxσ ,τ TV (Xσ
k
,X τ

k
) . If v (k) tends to 0, then there exists a unique stationary

distribution η such that η(σ) · P (σ ,σ ′) = η(σ ′); typically, η will be the target distribution we are
trying to sample from. Furthermore, v (k) provides an upper bound on the distance between the
state distribution after k steps to the stationary distribution η:

max
σ

TV (Xσ
t ,η) ≤ v (k) .

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 52. Publication date: January 2021.

52:18 A. Aguirre, G. Barthe, J. Hsu, B. L. Kaminski, J.-P. Katoen, and C. Matheja

While it is usually not possible to derive v (k) exactly, we can upper-bound v (k) by constructing
couplings of (Xσ

t ,X
τ
t) and applying Theorems 2.3 and 2.5. In this way, we can prove bounds on the

number of steps needed to get within some distance of the target distribution.

6.2 Warmup: Hypercube Walk

We start off with a simple random process for sampling N uniformly random bits, which serves as
a toy version of the more complex random walks we will see later. Our position is a string of N
bits (which can be regarded as a vertex of an N -dimensional hypercube). On every iteration of the
walk we uniformly sample from {0, . . . ,N }. Note that there are N + 1 possible draws, but only N

coordinates: if we sample 0, then we do not move, otherwise we reverse the sampled coordinate i in
the current position. We will show that starting from any two positions, the process mixes rapidly,
i.e. starting from any position we will quickly reach the uniform distribution over positions.

Let e (i) = (0, . . . , 1, . . . , 0) ∈ {0, 1}N be the position where all coordinates are set to zero except
for coordinate i , which is set to one. We also write ⊕ for xor applied coordinate-wise. We can model
K steps of the random walk with the following simple pWhile program:

hWalk(pos,N ,K)

k ← 0;

while k < K do

i $← U ([N+1]);

if i , 0 then pos ← pos ⊕ e (i);

k ← k + 1

Consider two program runs, started at pos⟨1⟩ and pos⟨2⟩ respectively. Let dH be normalized Ham-
ming distance between the two positions:

dH ≜
1

N

N∑

i=1

[pos⟨1⟩[i] , pos⟨2⟩[i]] .

That is, dH equals the fraction of coordinates where pos⟨1⟩ and pos⟨2⟩ differ. LetC (pos⟨1⟩, pos⟨2⟩) ⊆
[N] be the set of differing coordinates. We specify a coupling onU ([N+1]) by giving a bijection on
[N+1]. There are three cases:

(1) dH ≥ 2/N : Let C (pos⟨1⟩, pos⟨2⟩) = {i0, . . . , im−1}. Take the bijection that behaves like the
identity on [N+1] \C (pos⟨1⟩, pos⟨2⟩) and that, for all 0 ≤ n ≤ m, maps in to in+1, where we
set im = i0.

(2) dH = 1/N : Take the bijection exchanging the differing coordinate and 0.
(3) dH = 0: Take the identity bijection.

The coupling captures the following intuition. When dH ≥ 2/N , the distance decreases by 2/N if
we select a differing coordinate; otherwise, it remains unchanged. Likewise when dH = 1/N , if
we select the differing coordinate or 0, then the distance decreases by 1/N (to 0); otherwise, the
distance remains unchanged.

We can analyze the program hWalk using our relational pre-expectation calculus. Let the target
relational expectation be dH . The main step in the reasoning is to select a relational invariant for
the loop. We define:

I ≜ [k⟨1⟩ , k⟨2⟩] · ∞ + [k⟨1⟩ = k⟨2⟩] · dH ·

(
N − 1

N + 1

)K ⊖k⟨1⟩
.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 52. Publication date: January 2021.

A Pre-expectation Calculus for Probabilistic Sensitivity 52:19

rTop(deck,N ,K)

k ← 0;

while k < K do

p $← U ([N]);

deck ← shiftR(deck,p);

k ← k + 1;

rTrans(deck,N ,K)

k ← 0;

while k < K do

p $← U ([N]);p ′ $← U ([N]);

c ← deck[p]; c ′ ← deck[p ′];

deck[p]← c ′; deck[p ′]← c;

k ← k + 1;

riffle(deck,N ,K)

k ← 0;

while k < K do

b $← U ({0, 1}N);

top ← deck (b̄);

bot ← deck (b);

deck ← cat(top,bot);

k ← k + 1;

Fig. 4. Shuffling algorithms

Then, we can verify for the loop while k < K do bd of program hWalk that

[(k⟨1⟩ < K⟨1⟩) ∧ (k⟨2⟩ < K⟨2⟩)] · r̃pe(bd,I)

+ [(k⟨1⟩ ≥ K⟨1⟩) ∧ (k⟨2⟩ ≥ K⟨2⟩)] · dH
+ [(k⟨1⟩ < K⟨1⟩) , (k⟨2⟩ < K⟨2⟩)] · ∞ ≤ I,

and conclude by the loop rule (Theorem 3.8):

r̃pe(while k < K do bd,dH) ≤ I.

The main step here is showing that

[(k⟨1⟩ < K⟨1⟩) ∧ (k⟨2⟩ < K⟨2⟩)] · r̃pe(bd,I) ≤ [(k⟨1⟩ < K⟨1⟩) ∧ (k⟨2⟩ < K⟨2⟩)] · I ,

where we use the fact that the coupling described above makes dH decrease.
Pushing the invariant past the initialization instruction k ← 0 yields:

r̃pe(hWalk(pos,N ,K),dH) ≤ r̃pe(k ← 0,I) =

(
N − 1

N + 1

)K
.

Since the distance dH takes distance at least 1/N on pairs of distinct positions, by Theorem 2.5 the
TV distance between the distributions over positions satisfies

v (K ,N) = max
p1,p2∈{0,1}N

TV (⟦hWalk⟧(p1,N ,K), ⟦hWalk⟧(p2,N ,K)) ≤ N

(
1 −

2

N+1

)K
.

Plugging in specific values gives concrete bounds between the two output distributions. Let ρ > 1.
To achieve a bound of O (1/ρ) on the right hand side, we need to take K ≥ (1/2)N log(Nρ). The
inequality above also gives useful asymptotic information; if we set ρ = N , and take K ≥ N logN ,
the right-hand side is asymptotically bounded by O (1/N) for large N . We can show that this
converges to the uniform distribution over vectors. We provide more details in Section 7. In
summary, we have shown the following:

Theorem 6.1. Let K = N logN . For any initial position pos,

TV
(
hWalk(pos,N ,K),U ({0, 1})N)

)
∈ O (1/N) .

6.3 Random-to-Top Shuffle

For our shuffling examples, we will need some notation. We view a permutation deck as a map from
positions in p ∈ [N] to names of cards in c ∈ C , and often take C to be [N]. We let deck[p] denote
the card at position p, while deck−1 (c) denotes the position corresponding to card c . Summation
over an empty set of indices is treated as zero, while the product over an empty set of indices is
treated as one. We outline the arguments here.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 52. Publication date: January 2021.

52:20 A. Aguirre, G. Barthe, J. Hsu, B. L. Kaminski, J.-P. Katoen, and C. Matheja

For our first card shuffling algorithm we consider the random-to-top shuffle. In each iteration, it
selects a random position in the deck and moves the card at that position to the top.2 We model
this shuffle with program rTop in Figure 4. For a given input deck of size N , the program repeats K
times the process of selecting a random card and moving it to the top. The operation shiftR(deck, j)

takes the block deck[0], . . . , deck[j] and cycles it one position to the right (thus moving deck[j] to
the top), leaving the rest of the deck intact.
We are interested in bounding the distance between the stationary distributionÐwhich in this

case is the uniform distributionÐand the output distribution after K iterations. We will start with
two decks of size N that are both permutations of [N]. As in the hypercube example, we bound the
relational pre-expectation of the normalized Hamming distance:

dH ≜
1

N

N−1∑

i=0

[deck⟨1⟩[i] , deck⟨2⟩[i]] .

Note that dH takes distance at least 1/N on pairs of distinct permutations. If we can show that the
relational pre-expectation of dH is not too big, then we can apply Theorem 2.5 to conclude that the
final distributions over permutations have a close TV distance. It will be convenient to work with
an auxiliary distance:

dM ≜ (1/N) ·

(
N −max

i
(∀j < i .deck⟨1⟩[j] = deck⟨2⟩[j])

)
.

The idea is that the coupling chooses identical cards on both decks and moves them to the top. This
will form a block of matched cards on the top of both decks. Intuitively, dM measures the fraction
of the deck that is not part of this top block. The target distance dH is upper-bounded by dM , since
dM counts all cards outside the first block as different. Bounds on dH follow from bounds on dM .
To bound the relational pre-expectation of dM , we take the invariant:

I ≜ [k⟨1⟩ , k⟨2⟩] · ∞ + [k⟨1⟩ = k⟨2⟩] · dM ·
(
N − 1

N

)K ⊖k⟨1⟩
.

We can check that it satisfies the inequality

[k⟨1⟩ < K∧k⟨2⟩ < K] · r̃pe(bd,I)+[k⟨1⟩ ≥ K∧k⟨2⟩ ≥ K] ·dH +[(k⟨1⟩ < K) , (k⟨2⟩ < K)] ·∞ ≤ I,

where bd is the loop body. The main case is to show the inequality for the first term when both
loop guards are true: we need to bound the relational pre-expectation of I with respect to bd. We
can bound

r̃pe(bd,I) ≤ dM ·

(
N − 1

N

)K ⊖k⟨1⟩
,

by applying the sampling rule (Proposition 3.7) with the coupling functionM that selects the same
card in both decks:

M (s1, s2) (p1,p2) ≜

1/N : ⟦deck⟧s1[p1] = ⟦deck⟧s2[p2]

0 : otherwise.

The idea is that if we pick two cards in the first matched block, which happens with probability
(1−dM), then the distance will remain the same. Otherwise, we will create at least one newmatched
pair in the first block and the distance will decrease by 1/N . Hence, we can apply the loop rule
(Theorem 3.8) to conclude:

r̃pe(while k < K do bd,dH) ≤ I.

2This algorithm is the time-reversed version of the top-to-random shuffle, where the top card is moved to a random position.

It is known that a Markov chain’s convergence behavior is equivalent to that of its reversed process [Aldous 1983].

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 52. Publication date: January 2021.

A Pre-expectation Calculus for Probabilistic Sensitivity 52:21

Computing the relational pre-expectation of I with respect to the first instruction, we have

r̃pe(rTop(deck,N ,K),dH) ≤

(
N − 1

N

)K
,

noting that the distance dM between the initial decks is at most 1. Since dH assigns pairs of distinct
decks a distance at least 1/N , Theorem 2.5 implies that the TV distance between the distributions
over decks satisfies:

v (K ,N) = max
d1,d2∈[N]

TV (⟦rTop⟧(d1,N ,K), ⟦rTop⟧(d2,N ,K)) ≤ N

(
N − 1

N

)K
.

For example, if we choose K to be N log(Nρ), then the distance between permutation distributions
is bounded by O (1/ρ) for large N and ρ > 1. By setting ρ = N , we have shown the following:

Theorem 6.2. Let K = 2N logN , and Perm([N]) be the set of permutations over N . For any initial

permutation of deck,

TV (rTop (deck,N ,K),U (Perm([N]))) ∈ O (1/N).

6.4 Random Transpositions Shuffle

Our next shuffle (rTrans in Figure 4) repeatedly selects two positions uniformly at random and
swaps the cards, allowing for the possibility of swapping a card with itself. As before, let dH be
the normalized Hamming distance between the two decks. We aim to bound r̃pe(rTrans,dH). As
before, the key of the proof is finding an invariant for the loop. We take:

I ≜ [k⟨1⟩ , k⟨2⟩] · ∞ + [k⟨1⟩ = k⟨2⟩] · dH ·
(
1 −

1

N 2

)K ⊖k⟨1⟩

There are two samplings in the loop body, so we need to provide two couplings. For the first
sampling p, we use the identity coupling. For the second sampling p ′, we couple using the bijection
induced by the two decks deck⟨1⟩ and deck⟨2⟩, i.e., the coupling matches every position p ′⟨1⟩ with
the unique position p ′⟨2⟩ such that deck[p ′]⟨1⟩ = deck[p ′]⟨2⟩. There are three cases: (1) if cards at
p⟨1⟩,p⟨2⟩ are already matched, dH remains unchanged; (2) if positions p ′⟨1⟩,p ′⟨2⟩ are equal, dH
remains unchanged; otherwise (3) dH decreases by 1. This is enough to show that the invariant
decreases. We can conclude:

r̃pe(rTrans(deck,N ,K),dH) ≤
(
1 − 1

N 2

)K

using the fact that dH between the inputs is at most 1. Since dH takes value of at least 1/N for pairs
of distinct decks, by Theorem 2.5

v (K ,N) = max
d1,d2∈[N]

TV (⟦rTrans⟧(d1,N ,K), ⟦rTrans⟧(d2,N ,K)) ≤ N

(
1−

1

N 2

)K
,

so the distance between the deck distribution and the uniform distribution decreases as K increases.
If we take K ≥ N 2 log(Nρ), then the right-hand side is bounded asymptotically byO (1/ρ) for large
N . By setting ρ = N , we conclude:

Theorem 6.3. Let K = 2N 2 logN , and Perm([N]) be the set of permutations over N . For any initial

permutation of deck,

TV (rTrans(deck,N ,K),U (Perm([N]))) ∈ O (1/N).

Remark. Aldous’ [Aldous 1983] bound is slightly sharper: the TV distance between output dis-
tributions is bounded by O (1/N) asymptotically already for K ≥ CN 2 for some constant C . This
discrepancy appears because our proofs are carried out compositionally, while Aldous uses a global

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 52. Publication date: January 2021.

52:22 A. Aguirre, G. Barthe, J. Hsu, B. L. Kaminski, J.-P. Katoen, and C. Matheja

analysis. However, it is possible that a clever choice of coupling or loop invariant could let us match
Aldous’ bound.

6.5 Uniform Riffle Shuffle

In this examplewewill analyze the uniform riffle shuffle, which is amore realistic model of how cards
are shuffled by humans. The shuffle begins by dividing the deck in approximately two halves, and
then merges the two halves in an approximately alternating manner. The reversed process, program
riffle on Figure 4 which we analyze, takes a deck, samples a uniform random bit for each card, and
then places all cards labeled with 0 on top of the deck without altering their relative order. After
repeating this process k times, for every card i we have sampled a string of bits (bi,0, . . . ,bi,k−1),
and card i is on top of card j if, for some m, bi,k = bj,k ,bi,k−1 = bj,k−1, . . . ,bi,m = bj,m and
bi,m−1 < bj,m−1.

The vector b holds N bits, indexed by position; b̄ negates each entry. We use shorthands for
partitioning: deck (b) and deck (b̄) represent the sub-permutations from taking all positions where
b is 0 and 1, respectively. Finally, cat concatenates two permutations.

We will take the coupling that always samples the same bit for the same card on both sides:
b (deck−1 (c))⟨1⟩ = b (deck−1 (c))⟨2⟩ for every c ∈ C . It is not hard to see that this coupling will
eventually make the decks match. However, choosing an appropriate distance takes more care,
since the Hamming distance may not always decrease under this coupling.

We define instead a semidistance (i.e., a function that satisfies all the distance axioms except for
the triangle inequality) dB in terms of a few concepts from the theory of permutations. We omit the
fine details, which can be found in the full version. Assume we have a permutation π : [N]→ [N]

such that, for all n ∈ [N], deck1[n] = deck2[π (n)]. We define a block decomposition of π to be a
partition of the positions B1, . . . ,Bj such that each block is contiguous, and π acts as a permutation
on each Bi . A block decomposition is minimal if no block can be further decomposed; it is not hard
to show that a minimal block decomposition must be unique. When deck1, deck2 are permutations
(denoted perm(deck⟨1⟩,deck⟨2⟩)), there exists a unique π as above, and we write BD (deck1, deck2)

for the block decomposition induced by two decks deck1 and deck2. We define now:

dB (deck1, deck2) ≜
1

N 2

∑

c ∈C

(|BD (deck1, deck2) (c) | − 1).

where |BD (deck1, deck2) (c) | is the size of the block containing card c in deck1 and deck2; both
positions must be in the same block. It is not hard to see that |BD (deck1, deck2) (c) | = 0 implies that
c is at the same position in deck1 and deck2, (but the reverse implication may not hold) and that if
dB is 0, then the decks are equal. Now, we turn to the loop. Let Φ be the boolean assertion

Φ ≜ perm(deck⟨1⟩,deck⟨2⟩) ∧ k⟨1⟩ = k⟨2⟩ ∧ (b ◦ deck−1)⟨1⟩ = (b ◦ deck−1)⟨2⟩

By taking the following invariant expectation:

I = [¬Φ] · ∞ + [Φ] · dB · (1/2)
(K−k⟨1⟩)+

we can conclude

r̃pe(riffle(deck,N ,K),dB) ≤ [¬Φ] + [Φ] · dB · (1/2)
K ≤ [¬Φ] + [Φ] · (1/2)K

since the initial dB is at most 1. Given that dB assigns different decks a distance of at least 1/N 2, by
Theorem 2.5

v (K ,N) = max
d1,d2∈[N]

TV (⟦riffle⟧(d1,N ,K), ⟦riffle⟧(d2,N ,K)) ≤ N 2
(
1

2

)K
,

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 52. Publication date: January 2021.

A Pre-expectation Calculus for Probabilistic Sensitivity 52:23

so the distributions converge to one another and to the uniform distribution exponentially quick.
If we take K ≥ log2 (N

2ρ), v (K) is asymptotically bounded by O (1/ρ) for large N . When setting
ρ = N , we establish the following guarantee.

Theorem 6.4. Let K = 3 logN , and Perm([N]) be the set of permutations over N . For any initial

permutation of deck,

TV (riffle(deck,N ,K),Unif {Perm([N])}) ∈ O (1/N).

7 EXTENSIONS: PROVING UNIFORMITY

In Section 6, we showed that theMarkov chains correspond to each example converge to a stationary
distribution, but we did not shown that this distribution is the uniform distribution over statesÐif
we had made an error in the implementation, the probabilistic program may converge to the wrong
distribution. We can use our relational pre-expectation calculus along with Theorem 2.4 to show
that the limit distribution is indeed uniform.
We illustrate the technique for the random-to-top shuffle, but the idea is applicable to all our

examples. Consider any two permutations of the deck R1,R2, and the unary expectations

S1 (deck) ≜ [deck = R1] and S2 (deck) ≜ [deck = R2].

To show that the shuffle converges to uniform, we need to show that the expected values of S1 and
S2 converge to the same value. Recall that Theorem 2.4 states that for any initial states s1, s2,

���E⟦rTop⟧s1[S1] − E⟦rTop⟧s2[S2]
��� ≤ |S1 − S2 |#

(
⟦rTop⟧s1, ⟦rTop⟧s2

)

so it suffices to show that the right hand side converges to zero.
Computing the relational pre-expectation of |S1−S2 | directly is difficult, sowe define an alternative

distance. We can see R1 and R2 as defining a relation (actually, a permutation π over [N]) of pairs
(R1[i],R2[i]) of cards that are at the same positions. We let d be the distance defined by:

d (deck⟨1⟩, deck⟨2⟩) ≜

N−1∑

i=0

[(deck⟨1⟩[i], deck⟨2⟩[i]) < π] .

We can show that |S1 (deck⟨1⟩) − S2 (deck⟨2⟩) | ≤ d (deck⟨1⟩, deck⟨2⟩), since d takes non-negative
integer values, and whenever d = 0, then S1 and S2 can only be true simultaneously. So it suffices
to show that the right-hand side converges to zero. This bound can also be established by our
relational pre-expectation calculus in much the same way as in our proof for the random-to-top
shuffle, but we use a different coupling. After sampling p⟨1⟩ on the first execution we just need
to pick the p⟨2⟩ on the second such that (deck⟨1⟩[p⟨1⟩], deck⟨2⟩[p⟨2⟩]) ∈ π . This makes d decrease
any time a new match is formed, and once a match is formed and moved to the top, it is never
undone. By starting from the same permutation deck⟨1⟩ = deck⟨2⟩, this analysis shows that the
rate of convergenceÐthis time to the uniform distributionÐis the same as in our previous analysis
of random-to-top: d converges to 0 at rate (1 − 1/N)K .

8 EXTENSIONS: RULES FOR ASYNCHRONOUS REASONING

Our relational pre-expectation operator r̃pe(c, E) can often derive useful upper bounds on the
Kantorovich distance rpe(c, E), but it gives a trivial bound of infinity when the program c can take
different branches on the two inputs. In this section, we develop techniques to give more useful
bounds in the asynchronous case.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 52. Publication date: January 2021.

52:24 A. Aguirre, G. Barthe, J. Hsu, B. L. Kaminski, J.-P. Katoen, and C. Matheja

8.1 Asynchronous Rules for Bounding the Kantorovich Distance

Our asynchronous bounds will use one-sided relational operators wpe⟨1⟩(c, E) (resp. wpe⟨2⟩(c, E))
that transform relational expectations by considering that the variables labeledwith ⟨2⟩ (resp. labeled
with ⟨1⟩) remain unchanged and then computing the unary weakest pre-expectation wpe(c, E) as
defined in Figure 5 (note in particular that wpe⟨1⟩(x ← e, E) replaces only the variable labeled
with ⟨1⟩). We use the following soundness lemma for the left version of the operator, the one for
the right version being analogous.

wpe(skip, E) ≜ E

wpe(x ← e, E) ≜ E{e/x }

wpe(x $← d, E) ≜ λs .Ev∼d [E{v/x }]

wpe(c; c ′, E) ≜ wpe(c, wpe(c ′, E))

wpe(if e then c else c ′, E) ≜ [e] · wpe(c, E) + [¬e] · wpe(c ′, E)

wpe(while e do c, E) ≜ lfpX .[e] · wpe(c, X) + [¬e] · E

wpe⟨1⟩(skip, E) ≜ E

wpe⟨1⟩(x ← e, E) ≜ E{e⟨1⟩/x⟨1⟩}

wpe⟨1⟩(x $← d, E) ≜ λs .Ev∼d [E{v/x⟨1⟩}]

wpe⟨1⟩(c; c ′, E) ≜ wpe⟨1⟩(c, wpe⟨1⟩(c ′, E))

wpe⟨1⟩(if e then c else c ′, E) ≜ [e⟨1⟩] · wpe⟨1⟩(c, E) + [¬e⟨1⟩] · wpe⟨1⟩(c ′, E)

wpe⟨1⟩(while e do c, E) ≜ lfpX .[e⟨1⟩] · wpe⟨1⟩(c, X) + [¬e⟨1⟩] · E

Fig. 5. Definition of the weakest pre-expectation operator wpe(c, E) and the one-sided operator wpe⟨1⟩(c, E)

Lemma 8.1. Let c be a pWhile program that is almost surely terminating, i.e., wpe(c, 1) = 1. Then,

for all s1, s2, Es ′1∼⟦c⟧s1[E (s
′
1, s2)] ≤ wpe⟨1⟩(c, E) (s1, s2).

Now we can present our asynchronous rules for conditionals and loops:

Theorem 8.2. Let c be a program that is almost surely terminating. Then:

• For conditionals with empty else branch, we can show:

rpe(if e then c, E) ≤ [e⟨1⟩ ∧ e⟨2⟩] · r̃pe(c, E) + [e⟨1⟩ ∧ ¬e⟨2⟩] · wpe⟨1⟩(c, E)

+ [¬e⟨1⟩ ∧ e⟨2⟩] · wpe⟨2⟩(c, E) + [¬e⟨1⟩ ∧ ¬e⟨2⟩] · E

• Let while e do c be an almost surely terminating loop, ρi (s) be the probability that the loop

does not terminate after executing the body at most i times starting from state s , and:

Mi (E, s1, s2) = max{E (t1, t2) | t1 ∈ supp(⟦ci ⟧s1), t2 ∈ supp(⟦ci ⟧s2)}

where ci is the first i iterations of the loop. If ρi andMi satisfy:

lim
i→∞

(ρi (s1) + ρi (s2)) ·Mi (E, s1, s2) = 0

for any two states (s1, s2), and if I is an invariant satisfying

[e⟨1⟩ ∧ e⟨2⟩] · r̃pe(c,I) + [e⟨1⟩ ∧ ¬e⟨2⟩] · wpe⟨1⟩(c, I)

+ [¬e⟨1⟩ ∧ e⟨2⟩] · wpe⟨2⟩(c, I) + [¬e⟨1⟩ ∧ ¬e⟨2⟩] · E ≤ I ,

then rpe(while e do c, E) ≤ I.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 52. Publication date: January 2021.

A Pre-expectation Calculus for Probabilistic Sensitivity 52:25

Proof Sketch. The soundness of the conditional rule follows a similar argument as soundness
for the definition of r̃pe for conditionals, using Lemma 8.1 for the asynchronous cases. The soundness
of the loop rule is more intricate, but it follows the same strategy as in Theorem 3.8: we define a
loop characteristic function based on the conditional rule (now asynchronous), show that the least
fixed-point lies above rpeÐthis step relies on the boundedness side-conditionÐand finally show
that the invariant rule implies that I is a pre-fixed-point, so it must be above the fixed point. □

8.2 Example: Bounding the Distance between Binomial Distributions

Consider the following program, which simulates a binomial distribution:

binom(N)

n ← 0;

k ← 0;

while n < N do

b $← Bern(p);

if b then k ← k + 1;

n ← n + 1;

We treat p ∈ [0, 1] as a fixed constant. We will compare the distribution on the output k starting
from two inputs. Since the loops will run for different numbers of iterations if N ⟨1⟩ , N ⟨2⟩, we
will employ our asynchronous rule. We take the following invariant:

I ≜ | k⟨1⟩ − k⟨2⟩ + p · (N ⟨1⟩ ⊖ n⟨1⟩) − p · (N ⟨2⟩ ⊖ n⟨2⟩) | ,

We will show the following invariant bound:

[(n <)⟨1⟩ ∧ (n < N)⟨2⟩] · r̃pe(c,I) + [(n < N)⟨1⟩ ∧ (n ≥ N)⟨2⟩] · wpe⟨1⟩(c, I)

+ [(n ≥ N)⟨1⟩ ∧ (n < N)⟨2⟩] · wpe⟨2⟩(c, I) + [(n ≥ N)⟨1⟩ ∧ (n ≥ N)⟨2⟩] · E ≤ I .

In the synchronous case, we can establish the invariant by applying Sampwith the identity coupling;
the inner conditional can also be analyzed synchronously. In the asynchronous case, computing
the unary weakest pre-expectation establishes the invariant. Thus, the asynchronous loop rule
(Theorem 8.2) gives:

rpe(w, | k⟨1⟩ − k⟨2⟩ |) ≤ I

wherew is the loop. Applying the assignment rule, we have the bound:

rpe(binom(N), | k⟨1⟩ − k⟨2⟩ |) ≤ p · | N ⟨1⟩ − N ⟨2⟩ |.

The side-condition of Theorem 2.4 holds, since for any initial state s , the loop terminates in at most
s (N) iterations. Thus, by Theorem 2.4, this bound implies that the expected values of the output k
differ by at most p · |N ⟨1⟩ − N ⟨2⟩| across the two runs.

9 RELATED WORK

Proving expected sensitivity of probabilistic programs. We have shown that the quantitative logic
EpRHL [Barthe et al. 2018] can be embedded into the framework of this paper (cf. Section 3.4), so
we focus on other work. Wang et al. [2020] propose an alternative method based on martingales for
proving the expected sensitivity of probabilistic programs. Their technique focuses on computing
the expected sensitivity when the (expected) number of iterations for a loop may be different
across two related executions (i.e., loops may be asynchronous); this is similar to our asynchronous
rules from Section 8. However, Wang et al. [2020] also frame their target property in a slightly
weaker way, showing that programs are Lipschitz continuous for some finite Lipschitz constant.
In contrast, our method establishes bounds on this constant, which is an important aspect in

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 52. Publication date: January 2021.

52:26 A. Aguirre, G. Barthe, J. Hsu, B. L. Kaminski, J.-P. Katoen, and C. Matheja

many applications (e.g., it determines the rate of convergence for Markov chains). We are also able
to handle the broader class of expected sensitivity properties arising from Kantorovich metrics,
subsuming the notion considered by Wang et al. [2020] where the output distance is the absolute
difference between two expected values.

Formal reasoning for probabilistic programs. Logics for probabilistic programs has been an active
research area since the 1980s. Seminal work by Kozen [1985] defines a probabilistic propositional
dynamic logic for reasoning about probabilistic programs, using real-valued functions rather
than boolean assertions. Morgan et al. [1996] define a weakest pre-expectation calculus for a
programming language with (demonic) non-determinism and probabilities. Extensions of this
calculus with recursion, conditioning and signed expectations have been considered [Kaminski and
Katoen 2017; Olmedo et al. 2018, 2016]. Kaminski et al. [2016] define a similar calculus for bounding
expected run-times of probabilistic programs. These works do not prove relational properties of
programs, and are unsuitable for verifying sensitivity.

Continuity in programs and process calculi. Formal reasoning about the continuity of deterministic
programs has received some attention. Chaudhuri et al. [2010, 2012] were the first to give a sound,
compositional framework for verifying that a program is continuous. Reed and Pierce [2010] gave
a type system that can verify Lipschitz continuity of functional programs (see also [Azevedo de
Amorim et al. 2014, 2017; Gaboardi et al. 2013; Winograd-Cort et al. 2017]). Recently, Huang et al.
[2018] proposed the tool PSense which can perform sensitivity analysis of probabilistic programs.
Their technique relies on symbolic computation using the symbolic verifier PSI and Mathematica,
and supports, e.g., the Total Variation distance and the expectation distance. PSense cannot reason,
however, about general Kantorovich distances, or unbounded loops.

Finally, in the process-algebra setting, compositional reasoning about metrics has received some
attention. Gebler et al. [2016] used uniform continuity to reason about the distance between recur-
sive processes in a compositional way, while Gebler and Tini [2018] recently defined specification
formats that can check uniform continuity syntactically. syntactic manner. A more general frame-
work for reasoning about metrics has been given by Bacci et al. [2018], who presented an algebraic
axiomatization of Markov processes in quantitative equational logic. Their framework supports
reasoning about various metrics, including the Kantorovich metric.

10 CONCLUSION

We defined a pre-expectation calculus to compute upper bounds for Kantorovich metrics, and
applied it to prove convergence of reinforcement learning and card shuffling algorithms, algorithmic
stability of SGD, and uniformity of limit distributions. Our calculus provides theoretical foundations
for reasoning about quantitative relational properties of probabilistic programs.
There are several natural directions for future work. One possible extension is to lift the re-

quirement that programs terminate with equal probability on pairs of executions, possibly by
leveraging alternative notions of the Kantorovich metric that accommodate distributions of dif-
ferent weight [Piccoli and Rossi 2016]. Other directions include developing a relational version
of quantitative separation logic [Batz et al. 2019], and use it for proving relational properties of
probabilistic heap-manipulating programs.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their close reading and helpful suggestions. This research
was partially supported by the National Science Foundation CCF and SaTC (1943130 and 2023222),
Facebook, and the University of Wisconsin. Part of this research was conducted during the first
author’s visit to RWTH Aachen University.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 52. Publication date: January 2021.

A Pre-expectation Calculus for Probabilistic Sensitivity 52:27

REFERENCES

David Aldous. 1983. Random Walks on Finite Groups and Rapidly Mixing Markov Chains. In Séminaire de Probabilités XVII

1981/82 (Lecture Notes in Mathematics, Vol. 986). Springer-Verlag, 243ś297. https://eudml.org/doc/113445

Philip Amortila, Doina Precup, Prakash Panangaden, and Marc G. Bellemare. 2020. A Distributional Analysis of Sampling-

Based Reinforcement Learning Algorithms. In The 23rd International Conference on Artificial Intelligence and Statistics,

AISTATS 2020, 26-28 August 2020, Online [Palermo, Sicily, Italy] (Proceedings of Machine Learning Research, Vol. 108), Silvia

Chiappa and Roberto Calandra (Eds.). PMLR, 4357ś4366. http://proceedings.mlr.press/v108/amortila20a.html

Robert B. Ash and Catherine A. Doleans-Dade. 2000. Probability and Measure Theory. Academic Press.

Arthur Azevedo de Amorim, Marco Gaboardi, Emilio Jesús Gallego Arias, and Justin Hsu. 2014. Really natural linear indexed

type-checking. In Symposium on Implementation and Application of Functional Programming Languages (IFL), Boston,

Massachusetts. ACM Press, 5:1ś5:12. https://doi.org/10.1145/2746325.2746335

Arthur Azevedo de Amorim, Marco Gaboardi, Justin Hsu, Shin-ya Katsumata, and Ikram Cherigui. 2017. A semantic account

of metric preservation. In ACM SIGPLANśSIGACT Symposium on Principles of Programming Languages (POPL), Paris,

France. 545ś556. https://doi.org/10.1145/3009837.3009890

Giorgio Bacci, Radu Mardare, Prakash Panangaden, and Gordon D. Plotkin. 2018. An Algebraic Theory of Markov Processes.

In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12,

2018, Anuj Dawar and Erich Grädel (Eds.). ACM, 679ś688. https://doi.org/10.1145/3209108.3209177

Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. 2018. Proving expected sensitivity of

probabilistic programs. PACMPL 2, POPL (2018), 57:1ś57:29. https://doi.org/10.1145/3158145

Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Thomas Noll. 2019. Quantitative

Separation Logic: A Logic for Reasoning About Probabilistic Pointer Programs. PACMPL 3, POPL (2019), 34:1ś34:29.

https://doi.org/10.1145/3290347

Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2021. Relatively Complete Verification

of Probabilistic Programs Ð An Expressive Language for Expectation-based Reasoning. Proc. ACM Program. Lang. 5,

POPL (2021).

Nick Benton. 2004. Simple Relational Correctness Proofs for Static Analyses and Program Transformations. In ACM

SIGPLANśSIGACT Symposium on Principles of Programming Languages (POPL), Venice, Italy. 14ś25. https://doi.org/10.

1145/964001.964003

Olivier Bousquet and André Elisseeff. 2002. Stability and Generalization. Journal of Machine Learning Research 2 (2002),

499ś526. http://www.jmlr.org/papers/v2/bousquet02a.html

Swarat Chaudhuri, Sumit Gulwani, and Roberto Lublinerman. 2010. Continuity analysis of programs. In ACM SIGPLANś

SIGACT Symposium on Principles of Programming Languages (POPL), Madrid, Spain. 57ś70. https://doi.org/10.1145/

1706299.1706308

Swarat Chaudhuri, Sumit Gulwani, and Roberto Lublinerman. 2012. Continuity and robustness of programs. Commun.

ACM 55, 8 (2012), 107ś115. https://doi.org/10.1145/2240236.2240262

Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and Benjamin C. Pierce. 2013. Linear dependent types for

differential privacy. In ACM SIGPLANśSIGACT Symposium on Principles of Programming Languages (POPL), Rome, Italy.

357ś370. https://doi.org/10.1145/2429069.2429113

Daniel Gebler, Kim G. Larsen, and Simone Tini. 2016. Compositional bisimulation metric reasoning with probabilistic

process calculi. Logical Methods in Computer Science 12, 4 (2016). https://doi.org/10.2168/LMCS-12(4:12)2016

Daniel Gebler and Simone Tini. 2018. SOS specifications for uniformly continuous operators. J. Comput. Syst. Sci. 92 (2018),

113ś151. https://doi.org/10.1016/j.jcss.2017.09.011

Friedrich Gretz, Joost-Pieter Katoen, and Annabelle McIver. 2014. Operational versus weakest pre-expectation semantics for

the probabilistic guarded command language. Perform. Evaluation 73 (2014), 110ś132. https://doi.org/10.1016/j.peva.

2013.11.004

Moritz Hardt, Ben Recht, and Yoram Singer. 2016. Train faster, generalize better: Stability of stochastic gradient descent.

In International Conference on Machine Learning (ICML), New York, NY (Journal of Machine Learning Research, Vol. 48).

JMLR.org, 1225ś1234. http://jmlr.org/proceedings/papers/v48/hardt16.html

Zixin Huang, Zhenbang Wang, and Sasa Misailovic. 2018. PSense: Automatic Sensitivity Analysis for Probabilistic Programs.

In Automated Technology for Verification and Analysis - 16th International Symposium, ATVA 2018, Los Angeles, CA,

USA, October 7-10, 2018, Proceedings (LNCS, Vol. 11138), Shuvendu K. Lahiri and Chao Wang (Eds.). Springer, 387ś403.

https://doi.org/10.1007/978-3-030-01090-4_23

Benjamin Lucien Kaminski and Joost-Pieter Katoen. 2017. A weakest pre-expectation semantics for mixed-sign expectations.

In LICS. IEEE Computer Society, 1ś12. https://doi.org/10.1109/LICS.2017.8005153

Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo. 2016. Weakest Precondition

Reasoning for Expected Run-Times of Probabilistic Programs. In European Symposium on Programming (ESOP), Eindhoven,

The Netherlands (Lecture Notes in Computer Science, Vol. 9632). Springer-Verlag, 364ś389. https://doi.org/10.1007/978-3-

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 52. Publication date: January 2021.

https://eudml.org/doc/113445
http://proceedings.mlr.press/v108/amortila20a.html
https://doi.org/10.1145/2746325.2746335
https://doi.org/10.1145/3009837.3009890
https://doi.org/10.1145/3209108.3209177
https://doi.org/10.1145/3158145
https://doi.org/10.1145/3290347
https://doi.org/10.1145/964001.964003
https://doi.org/10.1145/964001.964003
http://www.jmlr.org/papers/v2/bousquet02a.html
https://doi.org/10.1145/1706299.1706308
https://doi.org/10.1145/1706299.1706308
https://doi.org/10.1145/2240236.2240262
https://doi.org/10.1145/2429069.2429113
https://doi.org/10.2168/LMCS-12(4:12)2016
https://doi.org/10.1016/j.jcss.2017.09.011
https://doi.org/10.1016/j.peva.2013.11.004
https://doi.org/10.1016/j.peva.2013.11.004
http://jmlr.org/proceedings/papers/v48/hardt16.html
https://doi.org/10.1007/978-3-030-01090-4_23
https://doi.org/10.1109/LICS.2017.8005153
https://doi.org/10.1007/978-3-662-49498-1_15
https://doi.org/10.1007/978-3-662-49498-1_15

52:28 A. Aguirre, G. Barthe, J. Hsu, B. L. Kaminski, J.-P. Katoen, and C. Matheja

662-49498-1_15

Dexter Kozen. 1985. A Probabilistic PDL. J. Comput. System Sci. 30, 2 (1985), 162ś178. https://doi.org/10.1016/0022-

0000(85)90012-1

Annabelle McIver and Carroll Morgan. 2005. Abstraction, Refinement and Proof for Probabilistic Systems. Springer.

Carroll Morgan, Annabelle McIver, and Karen Seidel. 1996. Probabilistic Predicate Transformers. ACM Transactions on

Programming Languages and Systems 18, 3 (1996), 325ś353.

Federico Olmedo, Friedrich Gretz, Nils Jansen, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Annabelle McIver.

2018. Conditioning in Probabilistic Programming. ACM Trans. Program. Lang. Syst. 40, 1 (2018), 4:1ś4:50. https:

//doi.org/10.1145/3156018

Federico Olmedo, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2016. Reasoning about Recursive

Probabilistic Programs. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS

’16, New York, NY, USA, July 5-8, 2016, Martin Grohe, Eric Koskinen, and Natarajan Shankar (Eds.). ACM, 672ś681.

https://doi.org/10.1145/2933575.2935317

David Park. 1969. Fixpoint Induction and Proofs of Program Properties. Machine Intelligence 5 (1969).

Benedetto Piccoli and Francesco Rossi. 2016. On Properties of the Generalized Wasserstein Distance. Archive for Rational

Mechanics and Analysis 222, 3 (01 Dec 2016), 1339ś1365. https://doi.org/10.1007/s00205-016-1026-7

Jason Reed and Benjamin C Pierce. 2010. Distance Makes the Types Grow Stronger: A Calculus for Differential Privacy. In

ACM SIGPLAN International Conference on Functional Programming (ICFP), Baltimore, Maryland. https://doi.org/10.1145/

1863543.1863568

Richard S. Sutton. 1988. Learning to Predict by the Methods of Temporal Differences. Mach. Learn. 3 (1988), 9ś44.

https://doi.org/10.1007/BF00115009

Cédric Villani. 2008. Optimal Transport: Old and New. Springer-Verlag.

Peixin Wang, Hongfei Fu, Krishnendu Chatterjee, Yuxin Deng, and Ming Xu. 2020. Proving expected sensitivity of

probabilistic programs with randomized variable-dependent termination time. Proc. ACM Program. Lang. 4, POPL (2020),

25:1ś25:30. https://doi.org/10.1145/3371093

Daniel Winograd-Cort, Andreas Haeberlen, Aaron Roth, and Benjamin C. Pierce. 2017. A framework for adaptive differential

privacy. In ACM SIGPLAN International Conference on Functional Programming (ICFP), Oxford, England. 10:1ś10:29.

https://doi.org/10.1145/3110254

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 52. Publication date: January 2021.

https://doi.org/10.1007/978-3-662-49498-1_15
https://doi.org/10.1007/978-3-662-49498-1_15
https://doi.org/10.1016/0022-0000(85)90012-1
https://doi.org/10.1016/0022-0000(85)90012-1
https://doi.org/10.1145/3156018
https://doi.org/10.1145/3156018
https://doi.org/10.1145/2933575.2935317
https://doi.org/10.1007/s00205-016-1026-7
https://doi.org/10.1145/1863543.1863568
https://doi.org/10.1145/1863543.1863568
https://doi.org/10.1007/BF00115009
https://doi.org/10.1145/3371093
https://doi.org/10.1145/3110254

	Abstract
	1 Introduction
	2 Mathematical Preliminaries
	2.1 Basic Probability Concepts
	2.2 Programming Language and Semantics
	2.3 Distances Between Probability Distributions

	3 Bounding expected sensitivity with relational pre-expectations
	3.1 A First (Unsuccessful) Attempt: a Relational Pre-expectation for Exact Bounds
	3.2 Compositional Upper Bounds by Relational Pre-expectation
	3.3 Reasoning with Relational Pre-expectations
	3.4 Embedding EpRHL

	4 Warmup Example: Stability of SGD
	4.1 Background
	4.2 Verifying Stability for Stochastic Gradient Descent

	5 Example: Convergence of Reinforcement Learning algorithms
	5.1 Background
	5.2 Verifying Convergence for TD0

	6 Example: Random Walks and Card Shuffles
	6.1 Preliminaries: Card Shuffling and Markov Chain Mixing
	6.2 Warmup: Hypercube Walk
	6.3 Random-to-Top Shuffle
	6.4 Random Transpositions Shuffle
	6.5 Uniform Riffle Shuffle

	7 Extensions: Proving Uniformity
	8 Extensions: Rules for Asynchronous Reasoning
	8.1 Asynchronous Rules for Bounding the Kantorovich Distance
	8.2 Example: Bounding the Distance between Binomial Distributions

	9 Related work
	10 Conclusion
	Acknowledgments
	References

