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Introduction 

Research into the microorganisms that live within our mouths has a long history. In 

1683, Antoni van Leeuwenhoek scraped plaque from his teeth, mixed it with 

rainwater, and examined it under a microscope. Despite what he thought of as a 

rigorous daily tooth-cleaning regime, he was astonished to describe dierken (‘little 

animals’ or ‘animalcules’) ‘very prettily a-moving’, representing the first recorded 

observations of oral bacteria (1).  

 

The oral microbiome is the collection of microorganisms that live in the oral cavity, 

encompassing bacteria, viruses, archaea, and fungi. The content of this review focuses 

mainly on bacteria, its most characterized inhabitants. This characterization is largely 

thanks to recent developments in sequencing techniques, particularly using relatively 

cheap amplicon sequencing to target 16S ribosomal RNA genes shared among 

prokaryotes (2–4). Such culture-free investigation has improved our understanding of 

the diversity of the oral microbiome but there is still much to understand, particularly 

regarding the oral microbiome’s relationship with its host: us.   

Defining and characterising the oral microbiome 

Development and resilience 

The oral microbiome exhibits body-site specificity six weeks after birth (5) and 

undergoes substantial increase in diversity between 0-3 years especially after the 

eruption of teeth (6), followed by a maturation process that continues into adulthood 

(7). Even once established, the oral microbiome is subject to continual perturbation. 

Unlike more internal environments within the body, the mouth experiences daily 

physicochemical fluctuations in temperature, oxygen content, acidity, and 

carbohydrate availability, and yet the oral microbiome exhibits marked stability over 

time. It has been suggested that this need to be robust to multivariate fluctuations may 

explain the salivary microbiome’s greater resilience to antibiotic perturbation when 

compared to the more homogenous gut microbiome (8).  

 

The resilience of the oral microbiome once established causes the phenomenon of 

‘colonization resistance’, where established microorganisms confer protection from 

external pathogens by occupying available surfaces and environmental niches (9). 

Many authors have observed that the normal ‘commensal’ microorganisms that confer 

protection from external pathogens are also responsible for a wide range of oral 

diseases (10,11). This apparent paradox can be resolved by relaxing the distinction 

between the symbiotic and the pathogenic, which can be artificial and misleading in 

the context of human-associated microbiomes. Indeed, the etiology of oral microbial 

diseases such as caries and periodontitis has undergone several paradigm shifts over 

the twentieth century, as molecular techniques have expanded in scope from 

individual pathogens to the entire oral microbiome (12). 

The complex structure of the oral environment 

Referring to ‘the’ oral microbiome might suggest a degree of homogeneity within the 

mouth, but it should be stressed that the biogeography of the oral cavity leads to 

highly structured and differentiated microenvironments with correspondingly 

different microbial populations. Examples of microenvironments within the oral 

cavity include the periodontal sulcus, tongue, hard palate, buccal mucosa, and saliva 



(13), although there is clearly overlap and some degree of mixing between these sites. 

More generally, a broad distinction can be made between hard tissue surfaces (dental 

plaque) and soft tissue surfaces (14), which clearly separate in terms of microbial 

community composition.  

 

The complex nature of oral biofilms is beginning to be explored with new techniques 

that promise to reveal a great deal about their development and progression. A recent 

pioneering study by Welch et al. (15) combined metagenomic sequencing with 

fluorescence in situ hybridization to reveal complex radial structures in supragingival 

plaque, with anaerobic taxa at the centre and aerobes at the edges. Co-localization of 

consumers and producers of metabolites within such structures supports the real 

functional importance of such spatial organization within the oral microbiome. Such 

biofilm structure can also be investigated with in vitro models that allow the culturing 

of previously unculturable oral microbes (16).  

Difficulties in characterizing the oral microbiome 

Marker gene sequencing allows easy characterisation of the oral microbiome, but this 

ease can be misleading. Importantly, it is well-established that many oral microbes 

with highly similar 16S rRNA gene sequences can have different genomic content 

and correspondingly different ecological niches. For example, Eren et al. (17) 

reanalyzed Human Microbiome Project (HMP) data sampled from multiple oral 

locations within the same individual, and found that Neisseria oligotypes varied 

greatly in spatial distribution. An oligotype of N. flavescens/subflava that was 

detected in high abundance in keratinized gingiva, but rare at all other sites sampled, 

had over 99% sequence similarity in the V3-V5 region of the 16S rRNA gene. 

Furthermore, different choices of primers can result in differential PCR amplification 

from different bacterial families because of primer mismatch (18) that can lead to 

biased diversity metrics (19,20), and differences between variable regions can lead to 

reduced specificity depending on the bacterial genus.  

 

While partitioning oral microbes into ecological units based on marker genes is a 

powerful technique, it is important to bear in mind that while high-resolution 

techniques such as oligotyping (21) and minimum entropy decomposition (MED) (22) 

may offer higher resolution and specificity than operational taxonomic unit (OTU) 

clustering, they still may not separate out true ecological differences (23). Indeed, oral 

microbes with identical 16S rRNA can still possess dramatically different gene 

complements due to mobile DNA e.g. highly dynamic integron gene cassette arrays 

(24,25).  

 

The oral ‘mobilome’ and antimicrobial resistance  

The majority of the oral microbiome resides in multi-species biofilms where the 

opportunities for horizontal gene transfer (HGT) are greater than in mixed planktonic 

cultures. Furthermore, increased stress conditions can contribute to increased rates of 

HGT (26), including via bacterial sensing of mediators of acute host stress (27). This 

has important implications for the oral microbiome in terms of its adaptive ability to 

the many stresses of the oral environment.  



The functional role of horizontal gene transfer 

Oral microbiota are repeatedly exposed to a range of natural antimicrobials in our 

diet. These include plant-based essential oils and flavonoids (28,29), as well as 

anthropogenically added antimicrobials used as preservatives (e.g. sodium benzoate) 

and those used for personal hygiene such as chlorhexidine and triclosan (30). In 

addition, exposure of the oral microbiome to antibiotics (whether clinical or 

environmental) is likely to select for HGT events which lead to the acquisition of 

genes that confer an increased tolerance to these compounds. 

 

There is a wealth of information on the presence of antibiotic and antiseptic resistance 

genes within cultivable bacteria and metagenomic DNA isolated from the oral cavity 

(31,32). Such genes are often described in association with mobile genetic elements 

such as plasmids and transposons (33). This has led to the oral microbiome being 

described as a reservoir for antibiotic resistance genes (34). The term “reservoir” 

might be taken to imply these genes are simply inert and waiting to be acquired by a 

transient pathogen i.e. that they are not functional prior to this transfer event. This 

seems highly unlikely, as maintenance over time within their commensal host 

suggests a continued benefit.  

Adaptive potential of the oral microbiome 

Functional metagenomic studies investigating antimicrobial resistance from the oral 

cavity have provided information on novel antibiotic resistance genes; e.g. the 

tetracycline resistance genes tet(37) and tetAB(60) which could not have been 

predicted based on sequence data alone (35,36). Furthermore there is experimental 

evidence that “house-keeping” genes for certain species can confer antimicrobial 

resistance to a range of compounds when expressed in a heterologous host. Resistance 

to the common antiseptics cetyltrimethylammonium bromide and triclosan can be 

conferred when E. coli expresses either an epimerase gene, usually involved in fatty 

acid synthesis during cell wall construction, or one of many Enoyl-[acyl-carrier-

protein] reductase genes (fabI), respectively – both derived from the oral microbiome 

(37). There is evidence that the fabI gene has already made its way onto a transposon 

in Staphylococcus which is now selectable by triclosan (38). It is concerning that 

duplication or repurposing of metabolic genes within heterologous hosts can confer 

resistance to such common compounds. The high adaptive potential of the oral 

microbiome seems to be intrinsically linked to HGT and the mobilome, despite an 

apparent conserved taxonomic composition. 

Taxonomic composition of the oral microbiome 

In general, factors that lead to correlations in taxonomic composition between 

different sites in an individual’s mouth are stronger than those that could cause 

differences via local dispersal in the oral cavity. Thus, it is meaningful to talk about 

general differences in oral microbiome taxonomic composition. Individuals appear to 

have a stable oral microbiome ‘fingerprint’ over timescales of months (39) to a year 

(40), despite rapidly fluctuating proportional abundances on the time-scale of days 

(41). Oral viruses have also been shown to be personalized and persistent over similar 

timescales (42), consistent with known phage-bacteria interactions in the oral 

microbiome (43). The relative importance of all factors that could conceivably lead to 

individual-level differences is difficult to establish due to the complexity of 



performing a comprehensive controlled analysis, although studies of various 

combinations allow some conclusions to be drawn.  

The core oral microbiome 

In line with being the first known human-associated microbiome, the oral microbiome 

has been extensively characterized compared to other microbiomes, as summarized in 

the Human Oral Microbiome Database (HOMD, www.homd.org) (44). HOMD 

provides a curated collection of full-length 16S rRNA gene sequences of common 

oral microbes, together with genome sequences where available. As of 2017 just 32% 

of taxa are estimated to remain uncultivated (44). The characterized oral microbiome 

is dominated by six major phyla making up 96% of the taxa (Firmicutes, 

Proteobacteria, Bacteroidetes, Actinobacteria, Spirochaetes and Fusobacteria) (45). 

These major phyla define the core oral microbiome determined by the common nature 

of the oral cavity across individuals – microbes subsisting on endogenous nutrients 

from the human host – with secondary differences in composition due to other factors. 

Differences between individuals at the sub-genus level do not appear to translate into 

larger-scale geographic differences across global scales (46).  

 

Diet  

The primary source of nutrients for oral microbes is saliva and gingival crevicular 

fluid rather than food ingested by the host (11), suggesting that diet may not be a key 

modulator of the oral microbiome in terms of its healthy composition. However, there 

have been many postulated associations between diet and oral disease, most notably 

dental caries (see below). The higher prevalence of oral disease in industrialized 

countries may be linked to diet-associated dysbioses in the oral microbiome (47). 

Chronic disorders like diabetes and inflammatory bowel disease have been linked to a 

‘Western diet’ (48), and the oral microbiome may play a role in this interaction. 

Further insight into the possible interaction of diet and the oral microbiome over 

evolutionary timescales may come from investigations of ancient dental calculus (49), 

and it has been claimed that major shifts in composition are identifiable that 

correspond to the Neolithic and Industrial Revolutions (50).  

Lifestyle 

Smoking measurably affects the oral microbiome, with a study of 1204 American 

adults finding that current smokers had distinct oral microbiome composition from 

those who had never smoked, with lower levels of Proteobacteria and an increased 

abundance of Streptococcus spp. (51). Smokers experience higher susceptibility, 

severity, and faster progression of periodontal disease, although the mechanisms 

remain underlying the disease progression remain unclear (52). Other lifestyle factors 

may also influence the oral microbiome, whether through general health or indirectly 

through environmental exposure, although these are less well-studied.  

Genetics and the environment 

There are several ways that host genetics could conceivably affect the oral 

microbiome, including salivary composition, immune phenotype, or indirectly 

through gene-diet interactions as observed in the gut microbiome (53). Typically 

genetics is confounded with multiple other factors, most notably environment. 

Understanding the role of these factors in determining the oral microbiome is of 

particular relevance for conditions such as inflammatory bowel disease that show 

familial aggregation that could be driven by either genetics or shared environment 

http://www.homd.org/


(54). While there is a generally observable correlation between human genetics and 

oral microbiome composition, given current limits on the cohorts available for study 

and therefore the ability to distinguish genetic effects on the establishment and 

maintenance of the oral microbiome, the role of genetics is still uncertain. Whatever 

this role, there is currently some evidence to support the conclusion that 

environmental effects are nevertheless dominant. 

 

It is well-established that cohabiting individuals share overlapping oral microbiomes 

(55,56) – including in some cases, with their cohabiting dogs (57) – as is the case in 

other human microbiomes, including for unrelated individuals (58). Stahringer et al. 

(59) performed a longitudinal study of the salivary microbiome of twins over several 

years and concluded that “nurture trumps nature”, with the effect of shared upbringing 

larger than that of genetics. They observed that monozygotic and dizygotic twins did 

not have statistically more similar microbiomes, in agreement with observations on 

the gut microbiome (60), and that oral microbiome similarity decreased over time 

once twins no longer co-habited, pointing to the dominant effect of environment.  

 

It has been suggested that there may be ethnic differences in the oral microbiome, 

possibly linked to differing susceptibilities to periodontitis (61,62). However, 

conclusions reached simply by comparing ethnic groups without any genetic evidence 

based on questionable assumptions of completely shared lifestyles and other 

confounders should be viewed with scepticism. A more rigorous analysis by 

Blekhman et al. (63) explicitly used human genetic information extracted from HMP 

samples from 93 individuals, and did find that host genetic variation correlated with 

the composition of the oral microbiome. Notably, the most significant association was 

between genes involved in the signalling pathway for leptin (64) and taxa in 

keratinized gingiva and subgingival plaque, suggesting a link between immunity and 

the oral microbiome at these sites.  

 

It seems probable that associations with host genetic variation (or the corresponding 

lack thereof) in different oral environments may be due to differing relationships 

between different communities within the oral microbiome and the host immune 

system. For example, a recent study we conducted in a large family of related 

Ashkenazi Jewish individuals found no significant associations between host genetics 

and salivary microbiome composition, and identified shared household as the 

dominant variable (65). This analysis required SNP-based kinships instead of 

pedigree kinships, which can differ substantially from true genetic kinships. However, 

a similar study of the nasopharyngeal microbiome in Hutterite individuals (66) did 

find associations linked to mucosal immunity genes. The diversity of tissue types and 

microbial niches has a direct impact on host defense mechanisms and requires an 

array of immunological adaptations.   

The oral microbiome and mucosal immunity 

The immune system within the oral cavity usually maintains tissue homeostasis in 

combination with a stable microbial community, but in some individuals this balance 

is destabilised leading to a diseased state, or dysbiosis.  

 



Oral immunity in health 

As with almost all tissues the first line of immunity lies with the innate immune 

system, which consists of a number of diverse molecular and cellular components. In 

addition to the physical barrier of the mucous membrane, the mucosal surface and 

oral cavity is also bathed in saliva that contains a myriad of antimicrobial compounds. 

Saliva contains a whole host of antimicrobial peptides and proteins (e.g. defensins, 

histatins, lysozyme, bactericidal/permeability increasing protein (BPI), 

immunoglobulins A and G), as well as enzymes such as lactoperoxidase that generate 

bactericidal agents (e.g. hypothiocyanite (OSCN-)) (67,68).  The importance of saliva 

for oral health is clearly evident in conditions such as primary Sjögren's syndrome 

and Aplasia of Lacrimal and Salivary Glands (ALSG), which are both characterised 

by hyposalivation (69,70). Hyposalivation results in xerostomia (dryness of the 

mouth), increased risk of dental erosion, dental caries, periodontal disease and oral 

infections. 

 

The most prominent innate immune cells within the oral cavity are the tissue 

macrophages and dendritic cells, which act as sentinels for the immune system and 

reside predominately within the lamina propria. These cells express pattern 

recognition receptors (PPRs) such as Toll-like receptors (TLRs), NOD-like receptors 

(NLRs) and RIG-I-like receptors (RLRs), which recognise pathogen specific ligands 

such as lipopolysaccharide, viral RNA and bacterial DNA (collectively termed 

pathogen-associated molecular patterns (PAMPs)) (71). Activation of the PPRs 

results in a rapid and robust inflammatory response that recruits neutrophils and 

monocytes from the circulatory system and initiates the activation of the adaptive 

immune response.  

 

A balance between pro-inflammatory T helper type 17 (Th17) cells and anti-

inflammatory T regulatory (Treg) cells are now thought to play a major role in 

regulating the immune response within mucosal tissue (72). Over activation of the 

Th17 cells or a loss in Treg cells can lead to the development of immunopathology 

and auto-inflammatory disease. In oral inflammatory disease, Th17 cells and 

associated cytokines (IL-17A, -21 and -22) have been reported to play an active 

pathological role in primary Sjögren's Syndrome (73), chronic periodontitis (74) and 

oral lichen planus (75). Th17 cells play a critical role in protection against 

extracellular bacterial and fungal infections within the mucosal tissue, with 

accumulation driven by physiological damage from mastication (76), but 

dysregulation in their activation results in inflammation and autoimmune disease (77). 

Over the coming years the role of Th17 cells within the oral cavity will become 

clearer and may also lead to the development of targeted therapeutics for a range of 

diseases.        

 

Tolerance between the microbiota and host 

In all mucosal surfaces there is a continual balance between immunity and tolerance, 

which results in the development of an environment that supports the development of 

a relatively stable microbiota. This balance also has to enable the host to mount an 

adequate immune response upon infection. How the immune system coordinates this 

complex system and how much influence the microbiota has on this process is still 

poorly understood. In addition to pathogenic bacteria, our oral cavity is also home to 

probiotic bacterial species such as Lactobacilli, Streptococci and Bifidobacterium. 



Probiotic species have been shown to shift the composition of the microbiota and 

directly influence the immune response in host tissue, providing hope that additional 

mucosal inflammatory diseases could be treated through the manipulation of the 

microbiota. There is a growing belief that probiotics have therapeutic potential in oral 

conditions such as gingivitis and periodontitis (78), although more randomized 

control trials are required (79).  

 

Our current understanding of immune tolerance has mainly been developed from 

studies conducted in the gastrointestinal tract. Within this setting T regulatory cells 

(Tregs) form the foundation for tolerance in conjunction with the anti-inflammatory 

cytokines interleukin-10 (IL-10) and transforming growth factor–beta (TGF-

β Alterations in the secretion of IL-10/ TGF-β and/or Treg activation results in a 

loss in tolerance and the initiation of an inflammatory response. Under normal 

circumstances once the threat has been eradicated by the immune response the tissue 

undergoes a resolution phase, which reestablished tolerance. Defects in these 

processes have been identified in a number of mucosal inflammatory diseases. What 

influence the oral microbiota plays in actively driving these diseases is still an area of 

considerable debate (80,81). 

Diseases associated with alterations in the oral microbiome  

There is a greater risk of microbial infection in individuals that are immune 

compromised either through genetic mutations, chronic infection, immunomodulatory 

treatments or pregnancy.  A high proportion of these infections occur in the oral 

cavity. While there is debate about the direction of causation, it is clear that many oral 

diseases can be associated with specific bacterial populations and altered immune 

status. We discuss some prominent examples here.  

Dental caries 

Dental caries refers to tooth decay, which is caused by acids produced by oral bacteria 

(82). These acids are byproducts of the breakdown of oral carbohydrates (83). The 

association between dental caries and carbohydrates was first hypothesised by Miller 

in 1890 (84), and is now supported by extensive evidence (85). Reduced-sugar diets 

have been shown to be associated with lower amounts of dental caries (86), and it is 

known that cooked starches can act as a stimulus that produces elevated acidity and 

aciduric species at caries-prone sites (87). In response to this body of evidence, the 

World Health Organization has issued guidelines that free sugars in diet should 

provide <5% of total energy intake (88). Other important prevention strategies include 

oral hygiene (to prevent the buildup of aciduric biofilms) and dietary fluoride (to 

encourage the remineralisation of tooth enamel) (85).  

Periodontitis 

Periodontal disease involves bacterial derived factors that stimulate the inflammatory 

response in the gingivae (89). In general, after an earlier focus on specific pathogens 

that were identifiable by culture techniques, newer paradigms take a more ecological 

view where microbial communities enter a disrupted alternative stable state. This is 

due to synergistic feedback between bacteria and their environment, tipping the 

balance “from homeostasis to dysbiosis” (90). However, it is undoubtedly true that 

species such as Porphyromonas gingivalis, Porphyromonas intermedia 

and Aggregatibacter actinomycetemcomitans, which reside within plaque, are highly 



important in activating the host immune response and driving a chronic inflammatory 

reaction within the gingivae. Tissue inflammation or gingivitis can lead to a cascade 

of events, resulting in osteoclastogenesis and subsequent local bone loss via the 

receptor activator of nuclear factor-kappa B (RANK)-RANK ligand (RANKL). 

Activation of RANKL drives macrophage differentiation into osteoclasts and bone 

reabsorption, which results in the development of periodontitis. 

 

A recent study has demonstrated that the level of P. gingivalis within the subgingival 

plaque provides the most reliable indicator of the progression of chronic periodontitis 

(91). Interestingly, P. gingivalis expresses a range of virulence factors which facilitate 

survival within the oral cavity and avoidance of the host immune system (92). 

Rubrerythrin, a nonheme iron protein, protects the bacteria from neutrophil mediated 

oxidative killing and exasperates the local and systemic inflammation within the 

gingivae (93). The gingipains Kgp and RgpA are the major proteases involved in 

hemin acquisition, binding, and accumulation. They protect P. gingivalis from 

oxidative damage through the formation of an oxidative sink (92). Gingipains have 

also been shown to play a role in complement and immunoglobulin degradation, 

inactivation of cytokines and their receptors, platelet aggregation, attenuation of 

neutrophil antibacterial activities, and increasing vascular permeability, as well as, 

prevention of blood clotting. 

 

In addition to the local oral inflammation there is a growing body of evidence linking 

the inflammation associated with periodontal disease with the development of 

cardiovascular disease (94). These findings highlight the potential role oral 

inflammation plays on our systemic health.  

 

Oral lichen planus 

Oral lichen planus (OLP) is a T-cell-mediated inflammatory disease of the oral 

mucosa with an unknown aetiology. A number of studies have looked at the 

microbiota composition in patients with OLP and identified evidence of dysbiosis 

(95–97). Wang et al. (96) reported that the overall structure of the salivary 

microbiome was not significantly affected by disease status. However, they did find 

evidence of variation in abundance of several taxonomic groups, observing that levels 

of Porphyromonas correlated with disease scores and salivary levels of IL-17 and IL-

23, which are both associated with the activation of Th17 mediated immunity and 

mucosal inflammation. Porphyromonas has also been identified as a core genus in 

periodontal disease, and an elevation in periodontopathogens observed in OLP 

patients has been predicted to play an important role in its progression (98). 

HIV infection 

HIV infection has been associated with increased prevalence of oral mucosal 

infections and dysregulation of oral microbiota, including the overgrowth of Candida 

albicans and the development of candidiasis as in other immunosuppressed 

populations (99). Candidiasis results from the loss in neutrophil recruitment to the 

oral tissue through a depletion in number of mucosal associated Th17 lymphocytes. 

Oral manifestations have been reported in up to 50% of HIV-infected individuals, and 

up to 80% of those who have progressed to AIDS. Impaired oral immunity 

in HIV infection may predispose patients to periodontal diseases, potentially 

increasing the risk of cardiovascular disease (94). The precise effects HIV infection 

has on the oral microbiome are complicated by potential effects of the anti-retroviral 



treatment. A study comparing HIV-positive individuals to controls found only minor 

differences in the composition of the salivary microbiome, although certain taxa 

including Haemophilus parainfluenzae were significantly associated with HIV-

positive individuals e.g. (100).  

Conclusion 

Our understanding of the oral microbiome has improved significantly since 

Leeuwenhoek’s pioneering work over 350 years ago, with next-generation sequencing 

methods providing us with a much fuller picture of its true taxonomic diversity. 

However, despite great success in establishing its composition and variation across 

different sites in the mouth and associations with various external factors, we still 

have much to discover about the interactions within oral biofilms; both in immune-

associated dysbioses and also in the transfer of antimicrobial resistance genes.  

 

Improving our understanding of this dynamic yet stable array of microbial 

communities will require the integration of information from different approaches as 

we go forward, combining the power of sequencing with imaging and improved 

culture techniques. We can also learn from the past; as experimental recovery of 

ancient DNA from dental calculus continues to improve, we will be able to map the 

large-scale effects of human activities over tens of thousands of years onto our oral 

microbiomes.  

 

We can be certain that the complexity we transport daily within our mouths will 

continue to astonish us. As Leeuwenhoek wrote, “For my part, I judge from my own 

case, although I clean my mouth in the manner heretofore described, that there are not 

living in our United Netherlands so many people as I carry living animals in my 

mouth this very day” (1). 

 

Summary Points 

There is a conserved core human oral microbiome with fine-scale differences at an 

individual level. 

 

Individuals who share an environment (e.g. household) tend to have a more similar 

human oral microbiome.  

 

The adaptability and resilience of the human oral microbiome is likely due to constant 

reseeding from the environment and the adaptive ability of the resident bacteria.  
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