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Abstract. We introduce a novel methodology for pricing options which uses 
a particle swarm trained neural network to approximate the solution of a stochastic 
pricing model. The performance of the network is compared to the analytical 
solution for European call options and the errors shown statistically comparable to 
Monte Carlo pricing. The work provides a proof of concept that can be extended to 
more complex options for which no analytical solutions exist, the pricing method 
presented here delivering results several orders of magnitude faster than the Monte 
Carlo pricing method used by default in the financial industry.  

1 Introduction 

Option contracts have been bought and sold for hundreds of years. They originated in 
the agricultural sector as a means by which farmers could fix a price for the sale of 
commodities such as corn and wheat, in advance of a harvest which might be 
unpredictably affected by the weather. Options are nowadays used not only for the 
hedging of risk but also as vehicles for speculative investment, and their pricing is an 
important problem to which machine learning methods, including neural networks 
(see for example [1] and references therein), are being increasingly applied. 
 In this work we use neural networks (NNs), trained with a form of particle 
swarm optimisation, Breeding PSO (BrPSO), which has shown itself in previous work 
[2] to be adept for this purpose, to produce an approximate pseudo-analytical solution 
for stochastic options pricing models. Once trained, such a network can be used for all 
parameter settings to generate the corresponding option price estimate with O(1) 
complexity, compared to the thousands of simulation runs required for a single Monte 
Carlo pricing result. Similar techniques have been used in other domains, for example 
in [3] neural networks learn the effect of design parameters on simulated bridge 
designs. 

2 Financial background 

An option gives its owner the right, but not obligation, to trade a certain amount of an 
underlying asset at some future time. A call option gives its owner the right to buy 
that amount of the asset, a put option the right to sell. In the simplest case, referred to 
as a European option, the time in question is the date on which the contract matures; 
however many more complex financial derivative products have been devised. 



 In the case of a European call option there is a well-known analytical solution to 
the pricing problem, known as the Black-Scholes (B-S) model [4]. The inputs to this 
model are the risk-free interest rate, r; the volatility in the price of the underlying 
asset, σ; the strike price (agreed price at maturity), k, and the current asset price, s; the 
output of the model is a value for the price of the option at a time t to maturity. 
 However, as mentioned in the introduction, for more complex derivative 
products such an analytical solution for the stochastic model that describes the pricing 
process does not exist. In this case it is necessary to employ Monte Carlo (MC) 
simulation [5] or some equivalent stochastic modelling process. Such processes 
demand thousands of time-consuming runs in order to get a reliable estimate of a fair 
price for the option, which is why we here aim to use PSO-trained neural networks to 
replace the use of Monte Carlo simulation. 
 Much work has been carried out in the application of machine learning 
methodologies to options pricing. However in most cases the training is based on 
market data (as for example in [6], [7]) which may not work for illiquid exotic 
derivative products where there is not enough data. In addition models trained on 
market data are 'black box' solutions with no knowledge of the underlying market 
models and dynamics, and as such may be less attractive to financial institutions in 
the current regulatory climate. In contrast the approach to be taken here seeks to use a 
neural network to approximate the behaviour of a well defined stochastic model, and 
to our knowledge is the first deployment of such an approach in the financial domain. 

3 Methodology 

We first generate the options pricing training and validation data via Monte-Carlo 
simulations over a range of parameter values. A PSO-trained neural network then 
learns the option pricing model from these data. K=30 independently trained neural 
networks are combined to produce an aggregated neural network model; it was found 
that using the median output produced the most robust results, and it is from such an 
aggregated model that the out-of-sample test prices are generated. 

3.1 Data generation  

As mentioned earlier the training data for these experiments is generated using Monte 
Carlo simulation; this method is very flexible and can be used to price exotic 
derivatives, but the methodology presented here is not limited to data generated via 
MC and other numerical methods may be used. The MC pricing data is produced 
using the Monte-Carlo Longstaff-Schwarz model built into the MatLab Finance 
toolbox [8]; for each run 1000 simulations and 500 periods are used. We sample over 
the 4D parameter space defined earlier for the B-S model, in the ranges r ∈ [0.01, 
0.1]; σ ∈ [0.1, 0.5]; and k, s ∈ [0, 100]. Three independent sets of data are generated: 
2000 samples for training, and 1000 samples for each of validation and out-of sample 
testing. Latin hypercube sampling (LHS) [9] is used in preference to either grid or 
naïve random sampling as LHS scales less badly than the former while giving a better 
distributed representation of the parameter space than the latter. 



3.2 I/O data transformations 

It was found that some data transformations were required to make the task of training 
the neural network tractable. The asset price and strike price input parameters are 
multiplied by 0.01 so they are similar to the magnitudes of the interest rate and 
volatility. The training target values have a more complex transform applied that aims 
to better separate otherwise overly-close targets. First, to reduce the range, we apply a 
minimum resolution by adding a small constant, res, to all the target values, limiting 
the network to distinguishing values no smaller than res; we test two values of res,  
10-6 and 10-8. Second, we further aid learning by transforming the target values, which 
could otherwise differ by many orders of magnitude, to approximately similar 
magnitudes via the introduction of a novel transform,   Tsp10 x =log10 10

x-1 ,    x≠0,   
dubbed by us a softplus-base10 (sp10) transform due to its similarity to the softplus 
function used in the nets' hidden layers. Softplus-base10 is bijective provided x > 0 
and hence is applicable in the case of options pricing as this does not involve negative 
numbers. The network learns to output the transformed prices; to recover the price the 
inverse transform is applied to the network output. It is important to note that without 
the sp10 transformation the problem would be intractable; many alternative output 
transforms were considered but our sp10 transform was by far the most effective. 

3.3 Neural network architecture  

The neural network architecture consists of two connected networks, both with two 
hidden layers of ten neurons, in which the output of the first network and the original 
inputs are passed on as inputs to the second network. This second network then acts 
as a corrector for errors generated by the first network; a similar network construction 
was used, for example, in the successful PSIPRED protein structure predictor [10], 
and provides superior results compared to the use of only a single network. The 
hidden layer activation function for both networks is softplus, defined as 
fsoftplus(x)=log(1+exp(x)); this function is commonly used in deep learning applications 
and was the most effective of the activation functions considered here. 

3.4 Training method  

The neural networks are trained using Breeding Particle Swarm Optimisation 
(BrPSO) [2], a new form of PSO developed by one of us (SP) which displays 
enhanced search capabilities via the use of a particle swarm that evolves via natural 
selection in a way inspired by the Comprehensive Learning Particle Swarm Optimizer 
(CLPSO) [11] and Global-Local Differential Evolution (GLDE) [12] algorithms. 
BrPSO was picked here because of its performance in [2] when benchmarked against 
competitor neural network training algorithms. The current work uses a swarm of 100 
particles, the PSO algorithms being run for 5000 iterations. Social and cognitive 
learning contributions are weighted equally at 2.05, with a constriction factor equal to 
0.7289. These are default parameter choices in the PSO literature; experimentally it 
has been found that their manipulation produces little benefit and introduces an 
unnecessary additional risk of overfitting. All BrPSO-specific parameter settings as in 
[2], 10 runs being performed under each set of experimental conditions. In any form 



of PSO the quality of the position for each particle i must be evaluated to give a 
fitness value which is used to guide the progress of the particles toward the optimum 
parameter settings (NN weights Wi). Fitness is here given by 
 
             fit Wi =EMAE N Wi, Y0 ,Tsp10 V +EMRE Tsp10

  -1 N(Wi, Y
0 ),V ,           

  
where Wi is the matrix of neural network weights represented by particle i, Y0 is the 
matrix whose rows are the four-dimensional training input parameter vectors, V is the 
corresponding vector of target prices for those input parameter sets, N(Wi,Y0) is the 
vector of neural network-approximated outputs, and where EMAE(x,y) and EMRE(x,y) 
are the mean absolute and mean relative errors, respectively, of the numerical 
approximations x compared to targets y, given by 
 
                       EMAE x, y = 1

N
|xi-yi|

N
i=1  ,     EMRE x, y = 1

N
|xi-yi|

N
i=1 /yi . 

  
This sum of mean absolute and mean relative errors encourages the network to output 
a wide magnitude range of prices while at the same time minimising the errors that 
would otherwise occur during the inverse transform to a final price.   

4 Results 

The out-of-sample test results for European call options are shown in Table 1. For 
such options, as discussed above, there is an analytical solution (the Black-Scholes 
model) to which both the Monte Carlo and NN/PSO pricing methodologies can be 
compared, for two settings of the input value resolution bound res. 
 
res method MAE±StDev MedAE MRE±StDev MedRE PRE(<10%) PRE(<10%) 
    0.185    10-6 MC 0.295±0.446 0.130  0.128±0.616 0.023  0.765 0.370 
 NN/PSO 0.160±0.168 0.116  0.204±0.361 0.014  0.740 0.441 
    0.717    10-8 MC 0.295±0.446 0.130  0.159±0.717 0.019 0.742  0.348 
 NN/PSO 0.165±0.176 0.115  0.228±0.381 0.017 0.716 0.410 
Table 1: Mean absolute (MAE), median absolute (MedAE), mean relative (MRE), 
and median relative (MedRE) test errors, and the probabilities of the relative error 

being less than 10% (PRE(< 10%) and less than 1% PRE(< 1%)). Results are 
presented for both the BrPSO-trained aggregated neural network model with K=30 

(PSO/NN) and Monte-Carlo (MC) price approximations. 

As can be seen above in all cases the MAE for the NN/PSO model is significantly 
better than the Monte-Carlo result, being up to two times smaller. On the other hand 
the MREs are slightly larger than could be obtained from an MC simulation; from 
this, combined with the lower MAEs, it can be inferred that the NN/PSO method is 
less accurate for estimating the price of options which have a larger magnitude, i.e. 
are out-of-the-money options (in the case of call options, ones for which the strike 
price is above the market price). The reason MREs in such cases are higher is 
connected to the necessary transform applied to target values during training; the 



output range compression means that small training errors can result in larger errors 
when the inverse transform is applied during use. Though precautions were taken to 
minimise this effect by using a two component fitness function (Eq. 2) the effect is 
still observable and further improvements to the methodology will be sought. 
 In addition we have looked at the probability of the relative test error being less 
than 10%, PRE (< 10%), and less than1%, PRE(<1%). We can see that compared to MC 
the NN/PSO PRE (<10%) is only slightly lower, but that our method displays a 
sizeably higher PRE (<1%). This can also be observed in Figure 1 which shows the 
distribution of the magnitudes of the relative test errors. It can be seen in this figure 
that in addition to offering a speed-up, in online post-training use, of at least three 
orders of magnitude in comparison to running Monte Carlo simulations, the NN/PSO 
method also compares well in terms of accuracy, displaying considerably fewer errors 
than MC with magnitudes in the range from 10-3 to 10-2 (this range corresponding to a 
percentage error of around 1%). It should also be noted that while the Monte Carlo 
model occasionally generates relative errors greater than 100%, the NN/PSO results 
include no instances of such unacceptable performance. We note finally that the 
results here use an aggregation of only K=30 independent neural networks; it is hoped 
that results can be further improved by using more networks in the committee. 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1: Histogram showing magnitude distribution of the mean relative errors for 
European call options with res=10-8 (dark: Monte Carlo; light: NN/PSO). 

5 Discussion 

This work has presented a novel hybrid methodology that uses both traditional 
numerical methods and neural networks to produce a pseudo-analytical solution for 
stochastic options pricing models. This work provides a proof of concept, in a case for 
which an analytical solution (the Black-Scholes equation) is available, and to which 
both the NN/PSO and Monte Carlo results can be compared, that an NN/PSO method 
could be used as a faster alternative method for the pricing of derivative products for 
which no closed form solutions are available and for which the only recourse would 
otherwise be to the use of time consuming Monte Carlo simulations.  
 More detailed analysis of the results shows that for deep-in-the-money options 
(in the case of call options, ones for which the strike price is significantly below the 



market price) the NN/PSO results are more accurate than the MC prices; in fact for all 
such deep-in-the-money instances in the test set the mean relative error is always less 
than 1%, which is not the case observed for the MC prices. There are some limitations 
to the current method, mainly the less accurate pricing of out-of-the-money options. 
The underlying problem was resolved in part by a combination of the softplus-base10 
transform (Eq. 1) and two-component fitness function (Eq. 2); however more work 
will be needed to improve performance for out-of-the-money options. 
 Overall we consider this work a successful exploratory study, producing results 
with good accuracy and with the advantage of extremely efficient price evaluation 
when compared to more traditional numerical methods. We intend to carry out work 
to further increase the accuracy and efficiency of this methodology before applying it 
to the pricing of more complex financial derivative products. 
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