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Abstract—We have combined a recently developed imaging 

concept (“cycloidal computed tomography”) with convolutional 

neural network (CNN) based data recovery. The imaging concept 

is enabled by exploiting, in synergy, the benefits of probing the 

sample with a structured x-ray beam and applying a cycloidal  

acquisition scheme by which the sample is simultaneously rotated 

and laterally translated. The beam structuring provides a means 

of increasing the in-slice spatial resolution in tomographic images 

irrespective of the blur imposed by the x-ray source and detector, 

while the “roto-translation” sampling allows for rapid scanning. 

Data recovery based on the recently proposed Mixed-Scale Dense 

(MSD) CNN architecture enables an efficient reconstruction of 

high-quality, high-resolution images despite the fact that cycloidal 

computed tomography data are highly incomplete. In the 

following, we review the basic principles underpinning cycloidal 

computed tomography, introduce the CNN based data recovery 

method and discuss the benefit of combining both.  

 
Index Terms—computed tomography, micro-CT, convolutional 

neural networks, machine learning 

 

I. INTRODUCTION 

RAY computed tomography (CT) plays a crucial role in 

various areas spanning from medicine and biomedical 

research to security, non-destructive testing of materials and 

study of archeological artefacts. A strength of this imaging 

modality is the broad range of spatial resolution levels that can 

be accessed – hospital scanners can typically resolve hundreds 

of µm, compact micro-CT machines can access resolutions of a 

few to tens of µm, and more specialized implementations like 

nano-CT enable resolutions on the sub-µm scale. A scanner’s 

spatial resolution is, on the most basic level, defined by the x-

ray source and detector, which introduce a combined blur to the 

images that defines (besides the signal-to-noise ratio) what can 

and cannot be detected1. While some x-ray sources (e.g. those 

with a variable focal spot) and detectors (e.g. CCD cameras 
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with variable optics) allow controlling the blur to some extent2, 

allowing to increase resolution within a limited range, generally 

this is a restrictive and inflexible constraint.  

In an effort to overcome this, we have developed a (micro-

CT) scanner that features a mask with alternating absorbing and 

transmitting septa in the x-ray beam path. Provided that the 

mask fulfills certain design criteria (see Section II), its presence 

introduces spatial frequencies higher than the cut-off normally 

imposed by the combined source and detector blur into the 

image formation process3,4. Therefore, the mask provides the 

ability of high-resolution imaging even with x-ray sources and 

detectors that would not normally allow this due their large 

focal spot and/or pixel size, respectively. Although the mask 

creates an under-sampling problem as some areas of the sample 

are shielded from radiation, this does not compromise the 

ability of reconstructing high-resolution images, provided that 

a dedicated cycloidal (“roto-translation”) acquisition scheme is 

applied in combination with a suitable method for data 

recovery. The synergy between the beam structuring, “roto-

translation” sampling and data recovery has led to a unique 

imaging concept (“cycloidal computed tomography”) that 

enables rapid and highly flexible high-resolution CT scanning5. 

Here, we report on utilizing a machine learning technique (the 

Mixed-Scale Dense CNN architecture6) for data recovery, 

which outperforms previously applied “naive” approaches like 

bivariate interpolation.    

II. COMBINING A STRUCTURED X-RAY BEAM SETUP                          

WITH CYCLOIDAL SAMPLING 

In our scanner, the x-ray beam is structured into an array of 

long, thin beamlets (a few µm to tens of µm laterally, and 

extending uniformly in the y-direction) by means of a mask 

positioned immediately upstream of the sample (Fig. 1a). The 

mask period (p) matches the effective pixel size (s), i.e. p = s/m, 

where m is the magnification between the mask and detector 

(for simplicity, the distance between mask and sample, which 
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is typically < 5% of the mask-detector distance, is considered 

negligible). It is important that the mask fulfills two design 

criteria; (1) its apertures (w) must be smaller than both the 

effective (i.e. scaled to the mask plane) projected focal spot of 

the x-ray source and the effective detector pixel size; (2) the 

mask period (p) must be sufficiently large to keep the beamlets 

physically separated. While the first criterion leads to the 

presence of additional spatial frequencies in the image 

formation process, the second criterion ensures that these 

frequencies remain accessible (by not being blurred). To a first 

approximation, spatial frequencies up to the inverse of the 

aperture width (1/w) are now present and can contribute to the 

in-slice spatial resolution of an image, provided that diffraction 

effects and detector cross-talk are negligible. It should be noted 

that the second criterion does not impose a constraint on the 

detector pixel size, as one can divert from the p = s/m 

relationship and employ a “line skipping” mask, in which p is 

an integer multiple (>1) of the effective pixel size such that only 

every second (or third etc.) detector pixel column receives one 

beamlet. This is also an effective strategy when working with 

detectors with non-negligible cross-talk between pixels; by 

skipping one or more pixel columns, any signal diffusion due 

to cross-talk can be minimized.  

Generally, the use of beamlets leads to an under-sampled 

sinogram, i.e. the lateral sampling step defined by the mask 

period (p) is too large to adequately capture the newly gained 

spatial frequencies. To manage this problem efficiently, we 

have applied a cycloidal scanning scheme by which the sample 

is translated laterally (along x) simultaneously with being 

rotated around the vertical (y-) axis. This results in a “roto-

translation” motion, where, if the translation is uni-directional, 

each feature in the sample follows a cycloidal trajectory. 

Although “roto-translation” sampling does not solve the under-

sampling problem as such (as no additional data are acquired), 

it transforms a highly unbalanced sampling grid, which would 

correspond to rotation-only sampling, into a balanced grid 

where the available data are more evenly distributed (Fig. 1b). 

A balanced sinogram sampling grid is advantageous, as it 

provides a much better basis for restoring the missing data via 

a mathematical recovery method, to an extent that high-

resolution images can be reconstructed. 

We would briefly like to point out that there is another 

solution to the under-sampling problem that is, however, much 

less efficient than the cycloidal approach. In particular, the 

sample can be scanned laterally through the setup in multiple 

steps at each rotation angle; this leads to the actual acquisition 

of the missing entries in the sinogram. This procedure, which is 

often termed dithering, is incompatible with rapid scanning, as 

– although the overall exposure time can be re-distributed 

among the scanning steps – dead times are required for the 

necessary repeated stop-starting of the sample rotation and 

translation motors. This is not required in a cycloidal 

acquisition; in fact, the latter enables continuous scans 

(sometimes termed “fly-scans”), which do not suffer from any 

dead times, and in which the total scan time is solely determined 

by the exposure time. In the following, images obtained via 

dithering will be considered the “gold-standard” to which 

cycloidally sampled data are compared.   

III. CONVOLUTIONAL NEURAL NETWORK (CNN) 

RECONSTRUCTION 

To improve the quality of cycloidal computed tomography 

images, we have replaced “naive” data recovery based on 

bivariate interpolation by a machine learning approach. 

Specifically, we have trained and applied the recently proposed 

Mixed-Scale Dense (MSD) CNN architecture6 to recover those 

sinogram entries that are not acquired during cycloidal 

acquisitions. In brief, the MSD CNN architecture differs from 

popular existing CNNs by using dilated convolutions instead of 

scaling operations to capture image features at different scales, 

and by connecting all network layers with each other. As a 

result, MSD networks typically require fewer intermediate 

images and learned parameters to achieve accurate results 

compared with existing CNNs, and are therefore well-suited for 

efficiently processing large datasets and accurately learning 

from relatively few training images. It has recently been 

demonstrated that the MSD CNN can improve the quality of 

images reconstructed from incomplete “conventional” CT 

measurements7 (acquired without any beam structuring or 

cycloidal scanning). While previously the CNN was applied as 

a post-processing tool in the image domain, we have adapted it 

to and applied it in the sinogram domain. This has led to the 

recovery of complete sinograms (with as many entries as 

Figure 1. a) Schematic of the micro-CT scanner layout (seen from top), based 

on structuring the incoming x-ray beam into an array of narrow beamlets. Note 
the schematic is not to scale; in a real system the mask apertures are on the 

order of a few to tens of µm, the detector pixel size is around 50-100 µm, and 

the distance between mask and detector is between 15 cm and 1 m. b) 
Sinogram sampling grid realized through cycloidal (“roto-translation”) 

sampling (see text). The grid is shown for a single mask period and a subset 

of angular increments. The filled circles indicate the available data points, 
whereas the empty circles indicate the entries which are to be recovered 

through an appropriate data recovery method. 
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present in dithered sinograms), containing all the data required 

for the reconstruction of high-resolution tomographic images.  

A particular challenge lay in the task of generating suitable 

training data for the CNN. We had aimed for a general approach 

that does not rely on scanning many samples of the same type 

and using these data for the training. Instead, we have 

developed a strategy by which training data are acquired as part 

of the scan of each individual sample. Specifically, the 

acquisition of a number of dithered projections, which would 

become the training data, was integrated into a cycloidal 

acquisition. The angles at which the training projections are 

acquired should be distributed evenly across the full angular 

range. The sinogram sampling grid that corresponds to this 

scanning sequence is shown in Fig. 2. For the most part, the grid 

is the same as the one shown on Fig. 1b, but for some angles all 

sinogram entries are now available.  

IV. RESULTS 

To demonstrate the performance of CNN-based cycloidal 

computed tomography, we have acquired experimental data of 

a chicken bone (fixed in formalin) that was placed in a plastic 

container of approximately 9 mm diameter. To stabilize the 

chicken bone in the container, it was surrounded by agarose. 

The experimental setup comprised a MicroMax-007 HF x-ray 

tube (Rigaku, Japan) with a rotating molybdenum anode, 

operated at 40 kV and 25 mA, resulting in a horizontal focal 

spot of approximately 70 µm (full width half maximum). The 

detector was the Pixirad-2 photon counter with a pixel size of 

62 µm. The mask (Creatv Microtec, USA) had a 79 µm period 

and 10 µm apertures. The mask and detector were positioned at 

1.6 m and 2.53 m from the source, respectively. With these 

distances, the mask period covered two detector pixel columns 

when projected to the detector (“line-skipping”), which is 

equivalent to using a detector with twice as large pixels 

horizontally. A single, dithered scan of the sample was carried 

out, and the data were subsequently sub-sampled to mimic 

cycloidal acquisitions. During the scan, the sample was 

translated laterally in eight steps of 10 µm at each rotation 

angle, as this ensured that all sinogram entries were captured. 

Data were acquired as the sample was rotated in steps of 0.2 

degrees over 180 degrees, corresponding to the acquisition of 

900 x 8 = 7200 frames in total. The exposure time per frame 

was 2s.  

A dithered image was reconstructed from all acquired data. 

Since dithering provides complete sinograms, no data recovery 

was required, and reconstruction was performed with filtered 

back projection (FBP). To generate cycloidally sampled data, 

only a single dithering step was considered, but this was a 

different step (corresponding to a different lateral sample 

offset) at each rotation angle, chosen in such a way that an 

interlaced sampling pattern like the one shown in Fig. 1b was 

created. However, at every 10th angle, the cycloidal sub-

sampling was interrupted and all dithering steps were included; 

the data from these angles were used as training projections (90 

projections in total). Specifically, a 100-layer MSD network 

was trained with bicubic interpolated cycloidal sinograms as 

network input, and sinograms including only the dithered 

projections as training target. Out of 300 available sinograms 

(obtained for 300 cross-sections of the scanned sample), 270 

were used for training the network, while the remaining 30 were 

used as a validation set to monitor performance during training. 

After training the CNN on the dithered projections, the CNN 

was applied to the remaining, cycloidally sampled sinogram 

areas, so as to restore the missing entries in these areas. Once 

the sinogram had been completed, image reconstruction was 

performed with FBP. For comparison, we have also applied 

bicubic interpolation to the same sinogram, and reconstructed 

an image via FBP. In both cases (CNN and bicubic 

interpolation), the 90 dithered training projections had been 

used in the tomographic reconstruction. 

The results are shown in Fig. 3. Panel 3a shows the dithered 

image, panel 3b shows the cycloidal image reconstructed with 

bicubic interpolation, and panel 3c shows the cycloidal image 

reconstructed with CNN-based data recovery. Both of the 

cycloidal images were reconstructed from 22% of the data that 

contributed to the dithered image (this can calculated be from 

the fraction of training projections and the fact that cycloidal 

sampling produces an eighth of the frames produced by 

dithering). It can be seen that the spatial resolution in both of 

the cycloidal images is comparable to that in the dithered image, 

but that the CNN based recovery (panel c) leads to a better 

overall image quality than bicubic interpolation (panel b). To 

quantitatively analyse the performance of bicubic interpolation 

and CNN based data recovery, we have calculated the peak 

signal-to-noise ratio (PSNR) between the respective cycloidal 

Figure 2. Sinogram sampling grid (shown for one mask period) corresponding 
to a cycloidal (“roto-translation”) scan with an interleaved acquisition of 

training data. The angular intervals at which training data are acquired are 

variable. 

Figure 3. Tomographic images of a chicken bone: a) dithered image, b) 

cycloidally sampled image processed with bicubic interpolation, c) 
cycloidally sampled image processed using CNN based data recovery. The 

images shown in b) and c) were reconstructed from 22% of the data that 

contributed to the dithered image shown in a). 
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image and the dithered image; the results are: 

PSNR (bicubic interpolation) = 28.9 

PSNR (CNN based recovery) = 30.9, 

confirming the visual observation on image quality. 

V. CONCLUSION 

Cycloidal computed tomography offers an opportunity for 

flexible and efficient high-resolution scanning. The flexibility 

stems from the beam structuring, as it provides access to higher 

resolutions than those “dictated” by the source-detector blur. 

This implies that high-resolution imaging becomes possible 

also with “low-resolution equipment”, such as x-ray sources 

with relatively broad focal spots and detectors with relatively 

large pixels, and that fast switching between resolution levels 

can be achieved simply by changing the mask inside the 

scanner. The flexibility of the concept also lies in another 

aspect: while the images shown in this document show 

attenuation contrast, cycloidal computed tomography can also 

be implemented in phase contrast mode. This can be achieved 

by including an array of beam stops, positioned immediately 

upstream of the detector, into the scanner. The beam stop array 

transforms the scanner into an edge illumination x-ray phase 

contrast imaging device8, which has been demonstrated to 

produce high-quality phase contrast images for a broad range of 

samples and applications9-11. Phase contrast imaging has proven 

to be especially beneficial when a sample exhibits weak x-ray 

attenuation, as phase effects can be relatively stronger than 

attenuation ones for such samples12.  

The efficiency of cycloidal computed tomography stems 

from the dedicated sampling scheme (“roto-translation”); this 

removes the need for excessive, sub-pixel lateral scanning of 

the sample per rotation angle (i.e. dithering, an extremely 

cumbersome way to acquire data). A key advantage is that 

“roto-translation” sampling is compatible with continuous 

acquisitions (“fly-scans”). In this work, we have explored the 

benefit of applying the Mixed-Scale Dense (MSD) CNN 

architecture to the cycloidally sampled sinogram. We have 

shown that high-quality, high-resolution images can be 

obtained despite the fact that the sinogram is highly incomplete. 

Specifically, we have shown that the CNN outperforms bicubic 

interpolation. In future studies, the CNN should also be 

compared against an iterative reconstruction approach to fully 

appreciate its performance.  

A strategy for generating training data has been proposed; 

this method is very general, and does not rely on previously 

acquired images of similar samples. In practical terms, when 

scanning in step-and-shoot mode, training projections can be 

acquired by applying dithering at a number of rotation angles. 

When scanning continuously (“fly-scan”), the training 

projections would have to be acquired before or after the scan. 

Although this leads to an increase in scan time, this can be 

relatively small (e.g. training projections were acquired at 10% 

of all angles in order to generate Fig. 3c). 

In summary, we believe that, in combination, cycloidal 

computed tomography and CNN based data recovery bear great 

potential to increase the flexibility of CT machines in terms of 

spatial resolution and overall image quality, while also allowing 

to perform scans in a rapid and efficient manner. 
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