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Abstract

The ability of an individual to reach and engage with basic services such as health-

care, education and activities such as employment is a fundamental aspect of their

wellbeing. Within transport studies, accessibility is considered to be a valuable

concept that can be used to generate insights on issues related to social exclusion

due to limited access to transport options. Recently, researchers have attempted

to link accessibility with popular theories of social justice such as Amartya Sen's

Capabilities Approach (CA). Such studies have set the theoretical foundations

on the way accessibility can be expressed through the CA, however, attempts to

operationalise this approach remain fragmented and predominantly qualitative in

nature.

The data landscape however, has changed over the last decade providing an

unprecedented quantity of transport related data at an individual level. Mobility

data from di�erent sources have the potential to contribute to the understanding of

individual accessibility and its relation to phenomena such as social exclusion. At

the same time, the unlabelled nature of such data present a considerable challenge,

as a non-trivial step of inference is required if one is to deduce the transportation

modes used and activities reached.

This thesis develops a novel framework for accessibility modelling using the CA

as theoretical foundation. Within the scope of this thesis, this is used to assess

the levels of equality experienced by individuals belonging to di�erent population

groups and its link to transport related social exclusion.

In the proposed approach, activities reached and transportation modes used are

considered manifestations of individual hidden capabilities. A modelling frame-

work using dynamic Bayesian networks is developed to quantify and assess the

relationships and dynamics of the di�erent components in�uencing the capabilities

sets. The developed approach can also provide inferential capabilities for activity

type and transportation mode detection, making it suitable for use with unlabelled

mobility data such as Automatic Fare Collection Systems (AFC), mobile phone

and social media. The usefulness of the proposed framework is demonstrated

through three case studies.

In the �rst case study, mobile phone data were used to explore the interaction

of individuals with di�erent public transportation modes. It was found that as-

sumptions about individual mobility preferences derived from travel surveys may

not always hold, providing evidence for the signi�cance of personal characteris-

tics to the choices of transportation modes. In the second case, the proposed



framework is used for activity type inference, testing the limits of accuracy that

can be achieved from unlabelled social media data. A combination of the previ-

ous case studies, the third case further de�nes a generative model which is used

to develop the proposed capabilities approach to accessibility model. Using data

from London's Automatic Fare Collection Systems (AFC) system, the elements

of the capabilities set are explicitly de�ned and linked with an individual's per-

sonal characteristics, external variables and functionings. The results are used to

explore the link between social exclusion and transport disadvantage, revealing

distinct patterns that can be attributed to di�erent accessibility levels.
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Impact statement

The ability of individuals to reach and engage with basic services such as health-

care, education and employment is a fundamental aspect of their well-being. Sus-

tainable development for all implies fair access to transport and to the available

destinations and opportunities being o�ered. Within transport studies, accessibil-

ity is considered to be a valuable concept that can be used to generate insights

on issues related to fairness and equality due to limited access to transport op-

tions. Popular theories of social justice such as Amartya Sen's Capabilities Ap-

proach (CA) can contribute towards conceptualising accessibility, allowing thus

for a more complete evaluation of issues of transport related social exclusion. In

this thesis, implementation of this relationship was done through a coherent model

using probabilistic graphical models in general, and dynamic Bayesian networks

in particular.

This thesis bene�ts academic literature in a number of ways. Within trans-

port geography, a novel data driven/graphical model approach to accessibility is

introduced using the CA as a theoretical framework. The usefulness of the pro-

posed framework is demonstrated by assessing the equality levels and their link to

transport related social exclusion of di�erent population groups in London, using

unlabelled, service provider generated mobility data. The proposal and �ndings

have been published in Journal of Transport Geography 84 (2020). In this way,

the scope of accessibility appraisals is broadened, retaining at the same time the

focus on the individual. Within transportation research literature, the journey

to model development made notable contributions in the �elds of transportation

mode and activity type detection from low resolution mobility data using dynamic

Bayesian networks. Two publications have been produced within this �eld, in the

journal Transportation Research Part C: Emerging Technologies 80 (2017) and

ISPRS International Journal of Geo-Information 8.12 (2019).

Outside academia, the proposed modelling framework has the potential to

provide decision makers with the information needed to assess speci�c barriers

and enablers for each accessibility component at an individual level. Citizens can

then bene�t from better access to di�erent activity types, improving their quality

of life and overall well-being. From a service provider's point of view, the proposed

model can provide city and transport planners with mobility and activity patterns

of individuals, accounting for characteristics of the environment and strati�ed

by individual sociodemographic characteristics. Such information can be used to

support decisions related to the expansion of existing transportation networks or

identi�cation of new areas for development. This is an improvement over the
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traditional models used within the �eld of urban planning which tend to focus

more on aggregated �ows. Within this setting, the methodologies developed in

this thesis were applied in the context of transportation mode detection for the

Brazilian city of Belo Horizonte. The �ndings were used by the city's transport

service provider (BHTrans) to generate insights related to the quality of reaching

and interacting with the transport services from a user's perspective, in a joint

project between the Foreign Commonwealth O�ce, Future Cities Catapult and

BHTrans.
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Chapter 1

Introduction

1.1 Accessibility in transportation studies

A fundamental aspect of individuals' well-being is the ability to reach the available

activities and engage with the opportunities one values. This statement has been

used by a range of di�erent disciplines to re�ect the notion of accessibility. Within

the transportation modelling discipline, accessibility expresses the ability of an

individual to make use of the transport system and is closely related to infrastruc-

ture characteristics such as proximity to access points, reliability and frequency of

the transport system as well as cost (Fransen et al. 2015). Within the discipline of

geography, accessibility refers to the extent to which people can access employment

opportunities or goods/services given their location and available transportation

options (Ettema & Timmermans 2007).

In each case, limited access to both transport options and available opportuni-

ties has long been recognised to contribute to the phenomenon of social exclusion

(Social Exclusion Unit 2003). Social exclusion as a term has been de�ned in many

ways in the literature but it generally involves the inability to participate in all

activities deemed normal in a society as a result of lack of resources, rights, goods

and/or services (Levitas et al. 2007). In this context, people who experience lim-

ited access to di�erent transport modes are at higher risk of experiencing exclusion

from opportunities.

Within the broader de�nition of accessibility the words "ability", "reaching"

and "opportunities" stand out. The abilities of di�erent individuals to use the

available transport modes are not the same, and depend on a myriad of factors

ranging from the individual's background, socio-demographic characteristics and

individual preferences to name a few. Likewise, the acts of reaching the available

transport modes and opportunities at a destination are not isolated from the

wider physical and socioeconomic environment. Place based characteristics of the
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built environment, such as the availability of existing destinations at particular

locations, can potentially shape the levels of access to important daily activities

such as education and health, employment, leisure and shopping. Constraints

such as available time budget and geographical location are also recognised as

important factors in the literature, shaping an individual's access to opportunities

(Church et al. 2000, Kwan 1998). All these factors tend not to appear in isolation,

but to interact with each other in an evolving manner.

The complex and multidimensional nature of the term has made modelling

of accessibility extremely challenging, leading to di�erent modelling formulations

depending on the research goal, the disciplinary focus and data availability. These

range from indicators related to the levels of service for infrastructure assets within

an area (e.g. duration of travel and number of opportunities reachable within a

speci�ed distance) (Geurs & Ritsema van Eck 2001) to more complicated measures

that take into consideration the relative attractiveness of destinations and the ben-

e�ts provided from a spatial choice set (Miller 2005). The modelling formulations

follow from assumptions rooted in di�erent theories, such as utility theory (Ben-

Akiva 1979) and time geography (Hägerstraand 1970). These assumptions dictate

the level of interactions between the di�erent accessibility components. However,

representing the combination of personal abilities and the wider socioeconomic

and built environment in a way that re�ects the capability of a person to reach

potential opportunities remains a challenge (Tyler 2006, Pereira et al. 2017). This

is particularly true considering that each component interacts with accessibility in

di�erent ways. For example, the socioeconomic background of an individual can

have a lasting in�uence in the ability to use di�erent transport modes and reach

di�erent opportunities. On the other hand, place based characteristics, such as the

availability of transportation modes, can vary depending on the geography of an

area and the time of day. Modelling the relative importance of these interactions

requires a �exible speci�cation that can include a wide range of accessibility re-

lated assumptions while at the same time accounting for the dynamic nature of the

di�erent accessibility components, which is a challenging task given the functional

forms of traditional accessibility models. This is increasingly important within the

context of studying transport related social exclusion, where an emphasis on the

causal structure and interactions of the di�erent accessibility factors is essential

(Lucas 2012). For example, even with a fully accessible transportation network,

people with disability would experience social exclusion if the destinations lack

accessible facilities.

Recently, there has been a growing body of research suggesting that the rela-

tion between accessibility and transport related social exclusion can be conceptu-
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alised through Amartya Sen's Capabilities Approach (CA) (Preston & Rajé 2007,

Hickman et al. 2017, Pereira et al. 2017). At its core, the CA is a theory of jus-

tice stating that capabilities are a set of opportunities and freedoms people can

choose to act upon (Sen 2008). Viewing accessibility as a basic human capabil-

ity and using the CA as a theoretical foundation, the components that in�uence

accessibility can be explicitly de�ned, and the relationships between personal char-

acteristics/wider environment (physical and social) and capabilities (the potential

of using transportation modes and the potential of accessing opportunities) can

be e�ectively represented. Extending the modelling context both spatially and

temporally to consider location and time (Farrington & Farrington 2005), would

enable representation of the evolving nature of an individual's capabilities. As

Pereira et al. (2017) puts it, most of the existing accessibility measures are not

compatible with this approach and the ones that potentially are, such as person

based accessibility measures, fail to draw conclusions beyond the limits imposed

by traditional transport surveys.

Survey based studies such as travel surveys and travel diaries (via web, phone,

interviews alone or coupled with Global Positioning System (GPS) loggers) have

undoubtedly dominated research in both accessibility and transport geography for

very good reasons. Such studies reveal both behavioural (e.g. travel purpose) and

travel characteristics (e.g. travel frequency, transportation mode etc.) as well as

personal characteristics (e.g. income, age etc.) causes, motivations, opinions and

situational responses of individual travellers/households (Wermuth et al. 2003),

providing in this way, an in-depth view of individual's mobility behaviour. On the

other hand, the limitations of survey studies are well documented in the literature.

Sample sizes and response rates decrease while participant dropout rates increase.

This has a direct impact on population representativeness, particularly for disad-

vantaged population groups (Stopher & Greaves 2007). Issues of misreporting and

omitting important journeys (particularly small journey legs and leisure related

trips) or journey attributes are also prominent, a�ecting the quality of data and

modelling outputs (Forrest & Pearson 2005, Wolf et al. 2003). The costly nature

of surveys make frequent collections infeasible (Stopher & Greaves 2007), and this

is expected to be particularly true for developing countries with limited resources

for large scale travel surveys. Finally, capturing the increasingly complex travel

behaviour for many individuals is a challenge for traditional travel surveys (Bohte

& Maat 2009).

The data landscape however, has changed enormously over the last decade

providing an unprecedented quantity of transport related longitudinal data at

an individual level. Mobility data from smartphones, automatic fare collection
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systems and social networks have the potential to contribute to the understanding

of individual accessibility and its relation to phenomena such as social exclusion

(Chen et al. 2016, Van Wee 2016). Leveraging such data would not only make

possible a recurring, timely and cost e�ective evaluation of accessibility with a

near real-time potential (as opposed to snapshot evaluations dictated by travel

surveys), it would also enable the assessment of the relative di�erences between

individuals with di�erent characteristics. This is due to the high spatial and

temporal resolution of passively generated mobility data, allowing characteristic

patterns of accessibility to emerge.

The potentials of machine generated mobility data however, are coupled with

considerable challenges. The quantity of such data does not necessarily compen-

sate for the quality of information contained in traditional travel surveys. The op-

portunistic nature of data generated by service providers raise issues of population

representativeness and bias, limiting the scope of accessibility evaluations in terms

of population groups covered, activities reached and transportation modes used

(Witlox 2015). Furthermore, modelling attempts raise important methodologi-

cal challenges (Van Wee 2016). These refer to the unlabelled nature of passively

generated mobility data, which often require a non-trivial step of inference if one

is to deduce elements such as transportation modes used and activities reached.

Moreover, the levels of spatiotemporal resolution of machine generated mobility

data can be low, depending on the needs of the service providers. These issues add

a computational intelligence aspect to the modelling framework, and introduce an

element of uncertainty originating from modelling and data limitations, both of

which need to be considered in the accessibility modelling framework.

Clearly, putting the limitations of both data sources aside, a combination be-

tween the quantitative breadth of machine generated data and the qualitative

depth of travel surveys is the golden medium that could enable facilitation of a

more comprehensive approach to accessibility modelling, structured around the-

ories of social justice such as the CA. Not only would such a combination allow

linking detailed mobility patterns with the socio demographic pro�le of individ-

uals, expanding thus the scope of equity evaluations, but it would also inform

the modelling of a more detailed individual spatiotemporal behaviour. In this

way, assumptions related to the nature of qualitative characteristics of individuals

could be readjusted in the face of evidence from machine generated data, and the

modelling of individual accessibility behaviour could be informed in the face of

individual socio demographic data.

Based on the discussion in the preceding paragraphs, a number of requirements

can be de�ned for an accessibility modelling framework geared towards studying
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transport related social exclusion: a) Conceptualising accessibility using the CA

as the basis for investigating equity issues in transport requires expressing acces-

sibility components and their interactions in a hierarchical, structured way that

enables statistical reasoning; b) Attempting to bene�t from the advantages of both

machine generated mobility data and information contained in traditional travel

surveys requires a modelling framework that enables the combination of diverse

sources of data; c) Extracting high level accessibility components from low level

mobility data (transportation modes used and activity types reached) requires a

computational intelligence capability embedded in the modelling framework; d)

Given the di�erent levels of uncertainty related to both data limitations and mod-

elling processes, there is a requirement for a modelling approach that can quantify

and make explicit uncertainty related statements. As Martens (2015) puts it, cur-

rent accessibility indicators fail to capture all these requirements, particularly for

applications related to social justice in transport.

1.2 Challenges in measuring accessibility

Literature on measuring accessibility has made considerable advancements in both

methodological approaches and on the theoretical link with social issues (e.g (Ra-

souli & Timmermans 2014, Kwan & Kotsev 2015, Kamruzzaman et al. 2016,

Pereira et al. 2017). However, several challenges still remain. In particular:

How should accessibility be de�ned? What should a model of accessi-

bility include?

Although accessibility as a concept is over three decades old, there is no con-

sensus among researchers, practitioners and policy makers on a de�nition and how

it should be approached in an applied way. The major di�culty lies in the all-

encompassing nature of the term which covers diverse topics such as: assessing the

in�uence of di�erent types of barriers to reaching an activity, providing insights

into transport disadvantage as experienced by di�erent population groups, as well

as the di�erent levels of expressing accessibility in terms of geographies covered,

temporal restrictions, modes of egress considered, types of activities as well as re-

search units (eg. service provider, geographies, people) (Geurs & Van Wee 2004).

Furthermore, considering the link of accessibility with complex social issues such as

freedom of choice (Van Wee 2011), justice (Pereira et al. 2017) and social exclusion

(Kamruzzaman et al. 2016), it is nearly impossible to capture all factors that best

represent these concepts, both from a theoretical and a computational tractability
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point of view. A measurement model using the CA as a theoretical framework

o�ers some advantages in this regard. First, it can be used to identify the most

important factors of accessibility as well as the levels of interaction between them.

This simpli�es modelling as the state space of potential variables and interactions

can be reduced to the ones deemed important according to the causal structure

imposed by the CA. Second, the latent nature of capabilities in the CA can be

used to expand the scope of information that can be included in the modelling

process. This is done by using the parameters of the latent capability variables to

encode additional information in the model. Finally, expressing accessibility using

a theory of social justice provides a framework for investigating transport related

social exclusion and equity. This is done by directing the focus of the analysis to

the CA components and assessing how they relate to an individual's potential of

using di�erent transportation modes and potential of reaching di�erent activity

types.

How can the output of an accessibility analysis be interpreted?

Another challenge in measuring accessibility relates to interpreting the out-

puts of accessibility analyses. On what basis should the outputs of accessibility

indicators be used? Policy makers and urban planners are accustomed to using

absolute metrics such as transport accessibility levels, or even simpler metrics

such as congestion levels or travel time/speed (Papa et al. 2017), which are easy

to understand and interpret. However, they are often inadequate in identifying

relative di�erences between people (Church & Marston 2003). Indeed, absolute

accessibility measures can obscure people's individual accessibility levels, which

can vary greatly depending on their capabilities and choices (Farrington & Far-

rington 2005). These di�erences can be crucial to provide evidence about issues

such as social exclusion due to lack of transport availability or opportunities at a

destination.

Accessibility indicators focused on the individual, on the other hand, are con-

sidered to be well suited for providing an in-depth view on the mobility dynamics

of individuals (Neutens et al. 2011). However, they are commonly criticised on the

grounds of providing a descriptive, as opposed to inferential, view on individual

accessibility (Páez et al. 2010). This holds true for both space-time and util-

ity based accessibility measures since both of those modelling approaches focus

on the actual travel behaviour of individuals rather than the possible potential

behaviours (Martens & Golub 2011). Moreover, current accessibility measures

conceal the complex interactions of accessibility factors by condensing the output
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to one indicator (Martens 2015, Kamruzzaman et al. 2016). This, although bene�-

cial to decision makers and planners, makes interpretation of the relative in�uence

of accessibility factors di�cult. Furthermore, since each measure addresses di�er-

ent accessibility components, the resulting outputs can be considerably di�erent

from one another (Neutens, Schwanen, Witlox & De Maeyer 2010). These issues

limit their use as relative measures that can be used to quantify di�erences in

individual accessibility levels. Structuring accessibility using the CA as a theo-

retical basis and elaborating on its basic components (latent capabilities, realised

functionings and functioning vectors) through the use of probability distributions

over the potential transport modes an individual can use and the potential activ-

ity types an individual can reach, could provide the basis for relative accessibility

evaluation that can be used regardless of any wider evaluation frameworks (such

as cost-bene�t analysis) (Van Wee 2016).

What modelling approach should be used?

This challenge relates to the modelling approach upon which accessibility stud-

ies are based. There is a long history within accessibility measuring literature that

illustrates the evolving nature of the topic. This ranges from using a physical anal-

ogy to gravity (Hansen 1959) and mathematically formalising it as a function using

the degree of attractiveness and distance (Weibull 1976), to the notion prescrib-

ing that activities are both spatially and temporally constrained (Hägerstrand

1973), to conceptualising accessibility based on random utility theory principles

(Ben-Akiva 1979). The mathematical implementation of each measure re�ects the

assumptions used in the modelling process. However, none fully encompases the

implementation requirements set out in section 1.1. These are: Representing and

quantifying the interactions between di�erent accessibility components in a struc-

tured and �exible way; Combining di�erent sources of data, both opportunistic

and survey based; Providing computational inferential capabilities for extracting

semantic information from unlabelled data; Robustly quantifying the uncertainty

in the estimates.

Geometric accessibility constructs such as space-time measures are not particu-

larly suited for quantifying the magnitude and signi�cance of interactions between

accessibility factors. On the other hand, utility based accessibility measures as-

sume a linear additive function of accessibility factors, which makes capturing

complex interactions challenging. Furthermore, in terms of data requirements,

none of the existing accessibility measures are designed to extract high level se-

mantic information from low level unlabelled mobility data (such as transportation
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modes used and activity types reached) while retaining the �exibility of combining

both machine generated and traditional travel survey data. This is important in

the context of developing a model that would enable decision makers to bene�t

from the longitudinal, pervasive and recurrent nature of service provider data. As

a result, a modelling approach that can address the requirements set out in the

introduction of this thesis would be bene�cial.

To this extent, of particular interest for accessibility modelling is Probabilis-

tic Graphical Models (PGMs). This family of graphical models has been under-

explored in accessibility literature, despite their potential for accessibility studies

(Kwan et al. 2003). PGMs are capable of expressing complex relationships, in-

cluding both latent (potential/hidden) and observed (actual/realised) variables,

dictated by a graphical structure. Adopting a Bayesian approach, PGMs can

facilitate the inclusion of diverse data sets at di�erent levels in the modelling hier-

archy to assist inference and expand the information context of the model. In the

�eld of pattern recognition and classi�cation using unlabeled mobility data, PGMs

have been found to perform well even with data of low spatiotemporal resolution

(Lin & Hsu 2014). The �exibility of PGMs allows straightforward extension to

the temporal domain while retaining the overall structure. Finally, the generative

modelling framework of PGMs is centered around probability distributions, which

enables uncertainty statements about the state of belief of variables through the

posterior credible intervals (Koller & Friedman 2009).

1.3 Research aims and objectives

Following the discussion above, the overarching aims of this thesis can be con-

densed to:

� Developing a novel modelling framework for expressing individual accessibil-

ity using the CA as a theoretical foundation, using a combination of travel

survey and machine generated data.

� Understanding the di�erences in accessibility between individuals belonging

to di�erent population groups.

� Provide evidence on the levels of equality experienced by individuals, as well

as their link to transport related social exclusion.

The speci�c objectives of this thesis towards the achievement of the above aims

are:
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� To translate the modelling framework into a quantitative model using PGMs

in general, and Dynamic Bayesian Networks (DBN) in particular.

� To perform transportation mode and activity type inference on unlabelled

mobility data of di�erent spatial and temporal resolution, quantifying the

levels of achievable accuracy.

� To capture the dynamics of an individual's interactions with public trans-

portation modes and available activity types.

� To elaborate on socioeconomic and place based factors that result in the

observed levels of transportation mode used and activity types reached.

� To use the inferred capabilities sets for activity types and transportation

modes within an entropy based equality assessment framework.

The above objectives will be explored using di�erent machine generated mo-

bility datasets:

� Mobility data gathered by smart-phone devices.

� Social networks mobility data.

� Transportation service provider data (Automatic Fare Collection data).

In particular, the �rst dataset is used to capture the mobility patterns of

individuals experiencing di�erent mobility impairments. In this way, the com-

putational intelligence capabilities of the model in terms of transportation mode

detection are demonstrated, introducing at the same time a data fusion framework

of travel survey and machine generated mobility data.

Recognising that semantic information on the nature of activities at a destina-

tion is an indispensable part of accessibility modelling, the second dataset is used

to perform activity type inference while at the same time, benchmarking the limits

of accuracy of activity type inference using machine generated mobility data.

Finally, by consolidating the modelling approaches and outputs of the previous

models, a novel framework of expressing accessibility at the level of an individual

based on the basic elements of the CA is introduced. The usefulness of the pro-

posed framework is demonstrated using the third dataset, where the link between

equality levels and transport related social exclusion of di�erent population groups

is assessed.
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1.4 Scope of the thesis

Although rural accessibility is a very important topic of research in its own right,

this thesis will concentrate only on urban environments, with its geographical

scope being the Greater London area. The model formulation is always built

from the ground up, focusing on individual accessibility. Contrary to the major-

ity of accessibility studies or studies using the CA in transport, this thesis uses a

probabilistic approach to modelling mobility and activity patterns from unlabelled

mobility data. In this way it di�ers from studies using travel diaries and stud-

ies using qualitative data from interviews and focus groups, where the activities

performed and transportation modes used are explicitly stated by the participants.

Finally, any accessibility related conclusions, particularly in the later chapters

of the thesis (chapter 7) are only relevant to the extent the mobility data used

allow. Highlighting this is of particular importance considering the fact that se-

mantic information on people's mobility and accessibility patterns is missing and

has to be imputed from secondary data. Nevertheless, as demonstrated in the case

studies of this thesis, the developed modelling framework is �exible enough to ac-

count for data of di�erent spatial and temporal resolution, and as such, con�dence

in the results is expected to improve with data of greater �delity.

1.5 Structure of the thesis

This thesis is organised in 8 chapters. Chapters 1- 4 set the scene by reviewing

the relevant literature on accessibility, CA and the relationship between them, as

well as providing some background on graphical models. In particular, chapter 2

provides a literature review on the di�erent ways accessibility has been approached,

along with a review of the di�erent methodological frameworks that have been

used.

Chapter 3 explores the link between accessibility and CA as it has been ex-

plored in the transport context. The literature reveals the usefulness of the CA

in three regards: 1) as a policy evaluation tool for transport interventions; 2) as

a way to frame and extent the notion of accessibility and; 3) as a way to examine

the relative transport disadvantage and social exclusion experienced by di�erent

population groups. The chapter then examines the potential of using existing ac-

cessibility measures with a CA framework before proposing a formulation using

graphical models.

Chapter 4 reviews di�erent types of graphical models and assesses their ap-

plicability within accessibility and CA studies. DBNs are identi�ed as the most
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promising graphical model in terms of meeting the objectives of this thesis.

Chapter 5 introduces the data and chapter 6 describes the methodology used

in this thesis. This is de�ned by three interrelated DBNs, each performing a

speci�c task: transportation mode detection, activity type inference and accessi-

bility modelling structured around the CA (Capabilities Approach to Accessibility

(CAA) model).

Chapter 7 presents the modelling results and proceeds to examine the levels of

social exclusion and transport disadvantage experienced by some individuals using

a popular entropy driven equality index (Theil index) on the posterior quantities

of the capabilities sets.

Finally, chapter 8 provides the conclusion of the thesis. The main outcomes

are stated and future directions are discussed.

Chapter 1

Introduction

Chapter 2

Research
background

Chapter 3

Capabilities approach
and accessibility

Chapter 4

Graphical models

Chapter 5

Data description and
preprocessing steps

Chapter 6

Methodology

Chapter 7

Assessing transport

related social exclusion

using a capabilities approach

to accessibility model: Results

Chapter 8

Conclusions

Literature
review

Data processing
and
methodology

Results

Conclusions
and outlook

Figure 1.1: Thesis roadmap.
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Chapter 2

Research background

2.1 Chapter overview

This chapter provides the research background for this thesis. The roadmap that

guides the structure of the literature review is illustrated in the following �gure:

Section 2.4
Accessibility within
social sciences

Section 2.5
Accessibility indicators
from a social justice
perspective

Section 2.2
Numerical measurement
of accessibility

Section 2.6
Summary

Section 2.3
Accessibility measurement
using passive mobility
data

Figure 2.1: Research background roadmap.

Section 2.2 provides an overview of the most widely used accessibility indicators

along with their strengths and weaknesses. The focus here is to examine how

the di�erent accessibility components are included in the functional forms of the

indicators and the implications this has for evaluating equity issues in transport.

Section 2.3 provides a brief overview of the ways passive mobility data have
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been used within the context of those indicators, along with the challenges intro-

duced by the unlabelled nature of such data. Relevant literature related to the

de�nition of accessibility and the link between accessibility indicators, equity and

transport related social exclusion is presented in section 2.4.

Section 2.5 provides an overview of how di�erent theories of social justice have

approached accessibility and the role of the di�erent accessibility indicators for the

purposes of equity evaluations. The premise here is that approaching accessibility

modelling from a justice theoretic lens is bene�cial in that it provides a framework

for identifying and structuring the most important components for investigating

equity issues in transport.

Consolidating the �ndings, section 2.6 provides a summary of the most im-

portant learnings for the di�erent accessibility families of indicators with respect

to theoretical basis, technical, practical and equity related considerations for this

thesis, as well as indicative applications.

2.2 Numerical measurement of accessibility

The concept of accessibility has been the focus of di�erent disciplines such as

geography, urban planning and transport planning for some time. The wide adop-

tion of the term has resulted in di�erent de�nitions commonly encountered in the

literature: A very early de�nition originates from Hansen (1959) who de�ned ac-

cessibility as the potential of interaction between destinations. Within transport

economics Ben-Akiva (1979) based the de�nition of accessibility on the bene�ts

provided by the interaction between transport and land use. In transport geogra-

phy, Geurs & Van Wee (2004) de�ned accessibility as the extent to which transport

and land-use systems enable individuals or groups of individuals to reach activ-

ities or destinations by means of transport. These de�nitions are characterised

by di�erent mathematical models and data speci�cations, applied within di�erent

contexts and di�erent measurement levels. This section provides a description of

the di�erent accessibility indicators, focusing on their strengths and weaknesses.

2.2.1 Accessibility models

2.2.1.1 Gravity-based indicators

This family of models perceives accessibility as the potential of interaction between

di�erent spatial entities (Hansen 1959). In general, these spatial entities are geo-

graphical areal units within which a measurable quantity is observed. Examples

include measures of populations, number of commuters, number of jobs etc. The
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model considers the potential of interaction between an area A and another area B

to be proportional to the magnitude of activity potential of area B, and inversely

proportional to some impedance function between areas A and B. This de�nition

is closely related to gravity models, a mathematical formulation that is analogous

to the Newtonian gravitational law applied to human behaviour:

Mij = g(Ai, Bj)/f(cij) (2.1)

whereMij is the potential of interaction between areas ij, Bj is the measure repre-

senting the activities/opportunities of area/zone j in relation to the area of zone Ai

and cij is the generalised cost between these areas. This cost is usually mapped

to a function f(cij). This function commonly appears as an exponential decay

function with a scalar decay constant determining the strength of the in�uence

between the pairwise quantities or as a simple power function with the exponent

determining the degree of interaction. The function g(Ai, Bj) ensures that the

product of AiBj is in accordance with the observed quantities, usually through a

multiplicative factor.

This model has been extensively used in the �eld of social sciences for decades,

despite its loose theoretical foundation; unlike the accuracy in predictions that

Newtonian equations of gravity provide in the physical realm, such results were

never empirically established in the �eld of social studies (Sen & Smith 2012).

Nevertheless, the model is popular even today due to its simplicity and intuitive-

ness.

A very commonly used gravity type model is the potential accessibility measure

(Hansen 1959):

Ai =
∑
j

Dje
−βcij (2.2)

where Ai is the potential accessibility of the ith area, Dj is a proxy for the oppor-

tunities of area j.

The exponential function implies that nearer destinations (for example, in

terms of distance or travel time) to the origin are more accessible than distant

ones. The parameter β can have a signi�cant e�ect on the results and is usually

estimated using empirical data of the spatial behaviour of people in each area.

Other commonly used decay functions in the literature are Gaussian and logistic

functions, however the negative exponential is the most used one as it is more

closely related to travel behaviour (Handy & Niemeier 1997).
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Applications of this type of measure in real world settings are many and range

from assessing the accessibility to jobs, retail, health and education services (Geurs

& Ritsema van Eck 2001). In many of the studies, equation 2.2 has been adapted

to meet the speci�c needs of the analysis. For example, Van Wee (2016) and

Wegener et al. (2000) have used the logsum impedance function as a generalised

cost function for assessing multimodal accessibility. This is de�ned as:

cij = −1/βln
∑
m

e−βicijm (2.3)

where cijm is the generalised cost between ij for mode m and β is the sensitivity

parameter.

Apart from the potential accessibility measure, gravity models formed the ba-

sis for developing the concept of potential interaction between spatial entities.

This line of research resulted in a family of Spatial Interaction Models (SIMs).

The theoretical underpinning of those models is the idea of distance as a friction,

which is in accordance with the spatial dimension of accessibility. Besides distance

as friction, spatial interaction models assume complementarity and the potential

of changing the expected interactions by using some other explanatory variables

(Fotheringham & O'Kelly 1989). Complementarity refers to the idea of supply

and demand between two areas. For example, an area that has a surplus of jobs

is complementary to an area that has high employment demand. Spatial interac-

tion models have extended the simpler gravity models by introducing sensitivity

parameters and constraints for both the supply, demand and friction components.

These parameters can be formed within both a deterministic and a probabilistic

framework (Wilson 1971).

Strengths and weaknesses

Important advantages of the potential accessibility measures are the straightfor-

ward communication of the results (this is relevant only for the less complicated

gravity type models) and the modest data requirements, as only land use and

transport related data are needed (Geurs & Ritsema van Eck 2001, Koenig 1980).

Furthermore, such measures are thought to be appropriate as social indicators,

as they can be used to analyse the levels of access to di�erent social, healthcare

and employment opportunities, particularly the implementations that allow disag-

gregation based on di�erent population groups (Geurs & Van Wee 2004, Neutens

2015). This is done by assessing the trade-o� between the size and quality of

the available opportunities (maximising attractiveness) with some form of travel

impedance (minimising costs). Given more detailed data such as levels of available
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income, it is possible to extend the model to include variations in this trade-o�

(typically through the sensitivity parameter of 2.2).

It is important to notice the relationship of the functional form for the models

belonging in this family with Generalised Linear Models (GLM) such as Poisson

or Negative-Binomial regression. This positions the model �rmly within statistical

estimation literature and makes calibration of the free parameters and balancing

factors easier, allowing thus more complicated speci�cations.

The inverse of balancing factors could be interpreted as an indicator of eco-

nomic bene�t, which allows relating some models of this family of accessibility

indicators with aspects of economic theory (Neuburger 1971). At this stage, it is

worth mentioning that all gravity type accessibility indicators adhere to a common

generalised form, which was formalised as an accessibility measure by (Weibull

1976). In this formulation, accessibility is considered as a property of the spatial

con�guration of opportunities available for spatial interaction. In this context, a

spatial con�guration is simply a con�guration of opportunity elements ω1...n be-

longing to a �nite set Ω. Accessibility is then a property of this con�guration,

materialised as a mapping function that expresses the magnitude of the property.

In this axiomatic formalisation, the accessibility indicators preserve some desired

properties such as monotonicity, additivity and associativity.

Disadvantages often mentioned in the literature are the propensity for overes-

timating internal accessibility and the inability to account for competition e�ects

between the supply and demand of each origin/destination pair (Karst & van Eck

2003). The former relates to the self-potential of an origin with considerable mass,

that leads to heavy weighting for internal accessibility (Geurs & Ritsema van Eck

2001). The latter implies that the distribution of demand does not a�ect the

accessibility levels of the destinations. Such an assertion is hard to defend since

competition often shapes the spatial distribution of activities and can lead to in-

accurate and misleading results (Shen 1998). More elaborate models, such as the

doubly constrained model, were designed to address these limitations through the

inclusion of balancing factors (Geurs & Van Wee 2004, Sen & Smith 2012).

Moreover, although in theory SIMs can be disaggregated to individual popula-

tion groups, model calibration can be di�cult, as di�erent balancing factors have

to be computed for all population groups considered. Perhaps the most impor-

tant disadvantage for the purposes of transport related social exclusion and equity

evaluations, is the level of aggregation for these types of models, which is typically

done at areal unit level (census tracts, land-use polygons, transportation analysis

zones etc.). This is su�cient for applications focused on studying issues of eq-

uity of access to di�erent service providers (e.g. primary care Guagliardo (2004),
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employment Karner (2018)). However, applications focusing on equity consider-

ations at the level of individual cannot be addressed. This is because individual

variations in accessibility cannot be captured at aggregated units of measurement

(Dong et al. 2006).

Finally, the non-linear nature of the models (particularly for the most ad-

vanced SIMs) and the lack of causal structure between the variables can become

a challenge when interpreting the output.

2.2.1.2 Cumulative-based indicators

This measure is also referred to as relative accessibility. It was �rst proposed

by Ingram (1971) and describes accessibility in terms of some form of separation

between two points. The separation function can be the physical distance, time

or cost. The simplest form of this measure can be considered a straight line

connecting two points. Due to its simplicity, this measure has been used as a

standard in land-use planning for the distance between a point or an area and

the transportation infrastructure (Geurs & Van Wee 2004). The measure can be

extended to include multiple destination locations that can be accessed within a

given time, distance or cost. The latter is referred to as the isochronic, contour or

cumulative approach:

Mi =
∑
j

dijWj (2.4)

where dij is the separation measure and Wj are the destination points.

Figure 2.2 below shows the contours for an origin point in central London using

travel time as a separation measure, assuming a mean travel speed of 4.5km/h.

Researchers have proposed improvements over this basic formulation. To ad-

dress the inability to account for competition e�ects in the indicator, researchers

have proposed di�erent strategies. These range from introducing a distance decay

function in the speci�cation (Cheng & Bertolini 2013), to following a probabilis-

tic approach to estimate the share of relative opportunities between the zones

de�ned by the indicator (Kelobonye et al. 2020) and using fuzzy logic to delin-

eate minimum accessibility distance thresholds (Lot� & Koohsari 2009). Floating

Catchment Area (FCA) methods broadly belong in this family of indicators as

well. These allow the contours to vary from one location to another using a proxy

for the catchment area (e.g. opportunities to population ratio), incorporating as-

sumptions regarding service availability within the contour area (Wang 2000). An

extension of the FCA method is the two step FCA (2SFCA) where both the catch-
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Figure 2.2: Isochrone contours of 5, 10, 15 and 20 minutes walking time from an

origin point in the City of London.

ment area for facilities and population is allowed to �oat based on the location

(Delamater 2013).

Strengths and weaknesses

A big advantage of cumulative accessibility measures is their simplicity and intu-

itive interpretation. This has allowed researchers to easily combine this indicator

with other accessibility measures that take into consideration temporal and indi-

vidual constraints, such as space time accessibility, using map algebra techniques

(Fransen & Farber 2019). It is interesting to observe that this indicator has a

very similar functional form to gravity type indicators, which makes integration

of the two measures straightforward (Páez et al. 2012). Due to their counting

property, which makes use of absolute units, and the modest data requirements

for indicators of this family, accessibility comparisons between cities is relatively

straightforward (Merlin & Hu 2017). This is in contrast to gravity type indica-

tors, where interpretation of the output can only be made in relative terms, after

normalisation (Batty 2009). These advantages have made cumulative accessibil-

ity popular within the transport equity literature. El-Geneidy, Levinson, Diab,

Boisjoly, Verbich & Loong (2016) used the indicator to study the e�ects of both

travel time and transit fares for accessing employment opportunities, focusing on

disadvantaged population groups. Pereira (2019) used a travel time based cumu-

lative accessibility measure to study the impact of future transport infrastructure

investment scenarios to the accessibility of low income groups. Farber et al. (2014)

used a cumulative accessibility indicator along with the General Transport Feed

Speci�cation (GTFS) �les to investigate accessibility to food options throughout
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the day. Fransen et al. (2015) used a similar indicator and data speci�cation in

the context of identifying transport gaps and their role in social exclusion. Fur-

thermore, it should be noted that this indicator has been extensively used to study

equity issues around access to healthcare (Neutens 2015). This is due to the sen-

sitive nature of patient data where they are seldomly shared among researchers

outside clinical research.

Disadvantages of the indicator include the inability to account for attractor

variables (at least in its native form), which suggests that all opportunities are

equally desirable. Another disadvantage is the arbitrary threshold of isodistance

and the lack of sensitivity to the opportunities that are contained within the

isochrone (Ben-Akiva 1979). Because of this, Geurs & Van Wee (2004) mention

that this measure can lead to misleading decisions during land-use/transport in-

frastructure projects, as interventions that aim to improve travel time may not

lead to an improvement of accessibility. For example, an infrastructure project

that reduces the travel time between two points from 50 to 15 minutes, doesn't

necessarily improve the accessibility of the destinations within the boundaries of

the isochrone polygons. Similar to gravity type indicators, cumulative accessibility

measures are aggregate measures, which render them inapplicable for equity eval-

uations at the level of an individual. However, the approach is still of interest to

this research as the basic concepts can be easily implemented within more complex

models of accessibility, for example to de�ne the activity space of an individual.

2.2.1.3 Space-time accessibility indicators

Space-time accessibility (also referred to as the constraints oriented approach)

traces its roots to the work of Hägerstraand (1970). In this approach, accessibil-

ity is evaluated relative to an individual's ability to reach activity locations given

constraints such as the person's daily activity schedule and other spatio-temporal

constraints (Kwan 1998). In this measure, both the temporal and spatial compo-

nent are equally important.

The Space Time Prism (STP) is one of most used methods of space-time

accessibility measurement. Geometrically, the STP is a construct that de�nes

(Miller 1991):

� the space that can be reached in a given time interval, bounded by the

locations of an individual at the begin and end of the journey,

� the time required for participation in activities during that interval and

� the velocities at which an individual can travel.

30



An illustration of the space-time prism is shown in �gure 2.3. In this �gure,

the individual has to be at a certain location (e.g.. workplace) until time t1 and

then return at that location for time greater than t2. This leaves time t1 < T < t2

time units for the person to reach all the available destinations. The level of

accessibility using this technique can then be de�ned by using the size and volume

of the space-time prism (potential path space) or its projection on the geographical

space (Potential Path Area (PPA)).

Figure 2.3: Space-time prism. Image source: http://www.rita.dot.gov

Improvements over the basic structure of the STP have also been proposed

in the literature. Recognising that there are inherent infrastructure related re-

strictions of the extent of PPA, Miller (1991) used the road and public transport

networks as a means to constrain the area that can be reached (this approach is

referred to as network time prism). Wu & Miller (2001) used a dynamic network

approach in the calculation of STP that can account for varying travel times due to

congestion. Acknowledging the uncertain nature of travel times as well as the start

and end time of an individual's time window both in space and time, many of the

core components of STP have been extended to include a stochastic element. For

example, Kuijpers et al. (2010) extended an individual's STP anchor points (start

and end points) to vary according to a set of possible outcomes, each of which has

di�erent degrees of uncertainty. Within this line of thought, Chen et al. (2013)

proposed an analytical framework to delineate STP under travel uncertainty, ac-
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cording to a predetermined arrival time probability. Investigating the day-to-day

variations in potential travel and activity behaviour, Neutens, Delafontaine, Scott

& De Maeyer (2012) used a dynamic evolution approach to calculating STPs for

di�erent individuals. Combining individual based and facility based STPs, Wang

et al. (2018) developed a methodology for including restrictions related to service

areas and opening times of facilities.

Strengths and weaknesses

In contrast to relative and potential accessibility, space-time accessibility is focused

on the household/individual/person level and in this way, equity evaluations at

the level of individuals can be performed (Fransen & Farber 2019, Neutens, Schwa-

nen, Witlox & De Maeyer 2010, Kwan 1999). The focus of the indicator on what

is reachable given a time budget allows researchers to approach computation of

STPs using methods from analytical geometry such as Fourier shape analysis (Lee

& Miller 2019). The individual components that describe the STP (eg. PPA)

are intuitive and relate directly to an individual's behaviour allowing for a richer

representation of a person's capabilities and constraints when reaching an activity

(Miller 2016). Moreover, by studying individuals' anchor points (origin and des-

tination points) and durations within the SPT, multipurpose/multimodal assess-

ments of accessibility can be performed (Ettema & Timmermans 2007). Finally,

advances in analytical time geography have enabled the construction of SPTs and

the study of their theoretical properties using approximation techniques such as

Monte Carlo simulations, Random Walks and Kernel Density Estimation tech-

niques (Miller 2016, Kobayashi et al. 2011, Liao et al. 2014)

On the other hand, some authors argue that space-time accessibility measures

do not account for competition e�ects and the capacity constraints of destinations

(e.g. available jobs) (Geurs & Van Wee 2004) and as such, they are not suitable

for analysing accessibility where competition occurs (e.g. employment). Other au-

thors mentioned that, since space-time accessibility measures focus on short term

behavioural patterns, they are not well suited to study the long term e�ects of land

use and transport changes on daily activity patterns (Sclar et al. 2014). Moreover,

such measures are di�cult to operationalise since they rely on a computationally

intensive framework and require extensive and detailed datasets at an individual

level (e.g. travel diaries and time use studies). Finally, it has been argued that

accessibility evaluation using the space-time approach is framed in terms of the

researcher's expectations of an individual's behaviour which does not necessarily

re�ect the actual observed behaviour. As such, it has been used to indicate indi-

vidual travel possibilities rather than explicitly predicting or explaining individual
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behaviour (Páez et al. 2012, Neutens, Versichele & Schwanen 2010, Pred 1977). In

the context of this thesis, reasoning behind the factors that potential explain an

individual's accessibility is particularly important, since it enables equity related

evaluations between individuals.

2.2.1.4 Utility-based indicators

Utility-based accessibility measures trace their origin in the �eld of microeconomics

and consumer choice theory (Ben-Akiva 1979). In this speci�cation, an individual

makes the decision to choose an activity over a discrete choice set, all of which

could potentially satisfy an individual's needs (Geurs & Ritsema van Eck 2001).

The utility or value that each individual assigns to a particular choice set is

not known to the analyst, so it is common that is treated as a random variable.

Traditionally, the utility function of an individual n located at i attaches at a

destination j is given by (Geurs & Ritsema van Eck 2001):

Uij = Vij + βcij + εij (2.5)

where Uij is the utility that an individual assigns to the choice set, Vij is the value

one gains from a trip, cij is a general cost function and ε is the random error term.

Assuming that an individual will opt to maximise equation 2.5 given a set

of choices, then accessibility can be viewed as the con�guration of probability

choices that maximise this utility function. This corresponds to the denominator

of a Multinomial Logit Model (MNL):

ln
P (U = κ− 1)

P (U = K)
= eVij+βcij+εij (2.6)

The observed utility part of the total utility of choice κ is referred to as the log-

sum model in accessibility literature (Dong et al. 2006, Geurs et al. 2012, de Jong

et al. 2005). Assuming the choice set is K ∈ {1...m}:

Ai = ln
( m∑
κ=1

eVκ
)

(2.7)

Equation 2.7 can be rewritten relative to the potential accessibility of section

2.2.1.1 by applying the exponential decay function (Geurs & Ritsema van Eck

2001):

Ai =
1

β
ln
∑
j

Dje
−βcijm (2.8)
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The second framework of utility-based accessibility measurement is analogous

to the doubly constraint version of the spatial interaction model of potential acces-

sibility (Martínez & Araya 2000). In this speci�cation, the utility function of an

individual is constrained to comply with the observed origin destination journeys:

Ai =
1

β
ln(αi) (2.9)

Aj =
1

β
ln(bj)

Aij =
1

β
ln(αibj)

where αi are the expected bene�ts from the trips generated from origin Ai, bi are

the expected bene�ts from the trips attracted to destination Aj and αibj are the

bene�ts derived from the trip between ij.

Strengths and weaknesses

One important advantage of this family of accessibility indicators is their link with

random utility theory as described in microeconomics. This fact, explicitly relates

the outputs of the indicator with consumer surplus theory (by dividing equation

2.7 with the cost function). Furthermore, it enables expression of accessibility

in monetary terms (Van Wee 2016), opening up the possibility for more compli-

cated model speci�cations such as discrete choice, nested choice and extreme value

models (Ben-Akiva & Lerman 1985). These models can account for some of the

shortcomings of the simpler speci�cations, such as the principle of independence

of irrelevant alternatives1 (IIA) that occur within multinomial logit models (Ben-

Akiva & Lerman 1985). This is done by modelling the correlations between the

choice sets through partitioning them into more generalised clusters. Examples of

such speci�cations include the nested logit (NL) (Yun et al. 2000), cross-nested

logit (CNL) (Ben-Akiva & Bierlaire 1999) and mixed multinomial logit models

(MMNL) (De Jong et al. 2003). Versions of such models that use latent variables

to capture population heterogeneity have also been proposed, either through a

mixture of MNL probabilities or through the use of latent class NL speci�cation

(Wen et al. 2012). This is done by dividing the population into a discrete set

of classes that can be used to capture the unobserved preferences of individuals

using variables such as socioeconomic characteristics (Xiong et al. 2014). At this

1A common example to demonstrate the practical e�ect of IIA is the following: Consider that

there is a mode choice of travelling by car or taking a red bus, each having a probability of 0.5.

If we introduce a blue bus, IIA tells us that now the probability of taking a bus (blue or red )

would be 0.667 which is counterintuitive considering that both buses provide an identical service.
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point, it should be mentioned that applications of discrete choice models within

transportation literature have a long history, which in the context of parameter

estimation, is manifested through reliable and e�cient algorithms.

Similarly to space-time accessibility, utility-based accessibility indicators are

often classi�ed as individual accessibility indicators and, from this perspective, are

well suited to study individual behaviour. Another advantage is that utility-based

accessibility scales well, as aggregation of individual measures produces realistic

results (Geurs & Ritsema van Eck 2001). All the advantages mentioned above have

made this family of indicators attractive for investigating issues of social equity in

transport (Neutens, Delafontaine, Schwanen & Van de Weghe 2012, Van Wee &

Geurs 2011, Neutens, Schwanen, Witlox & De Maeyer 2010).

On the other hand, a limitation of utility based models is the linear functional

form of the value term in the utility function which limits their applicability when

modelling more complex individual behaviours (Yamamoto et al. 2002, Xie &

Waller 2010, Zhu et al. 2018). This is due to the assumption that all included

variables (or predictors) in the model in�uence the utility of an individual in an

additive way, regardless of their place in the modelling hierarchy (as in case of

nested or latent variable models). For applications where the process that gave

rise to the phenomenon in question is not known or only partially understood

(such as the relationship between accessibility and issues around equity), such an

assumption can be restrictive. This relates to the issue of how to model an indi-

vidual's choice process, which in the case of utility based models is deterministic

in the predictor variable space. This can be problematic as it is thought that most

people reason under "if-then" scenarios rather than using utility maximisation

terms (Janssens et al. 2006).

Another issue relates to the correlation structure of multidimensional choice

problems. This arises from heterogeneity in preferences which manifests into vary-

ing variance across the di�erent choice occasions of the included covariate terms

(Keane 1997). This is clearly a problem when the model assumes homogeneity (as

in simpler utility based models). Heterogeneity in preferences can also be an issue

in more elaborate speci�cations, as it requires explicit modelling of the speci�c

structure of correlation among the di�erent modelling dimensions, which leads to

more complicated model speci�cations with further assumptions on the structure

of the error variance-covariance matrix (Bhat & Guo 2004).

Furthermore, when it comes to behavioural dynamics and interactions between

the elements of the choice sets, discrete choice models have almost universally

been applied in a static context (Ben-Akiva et al. 2002). Research on dynamic

discrete choice models is limited and mainly focuses on simple cases where the
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errors between transitions are assumed to be constant and the base model is a

binary logit (de Palma & Kilani 2005, De Palma & Kilani 2011, Arcidiacono &

Miller 2011). This makes utility based models unsuitable for applications where

the evolution of state spaces is important.

Another challenge of utility-based indicators for addressing issues of social

equity is the emphasis on an individual's realised behaviour, ignoring the potential

or possible behaviours that the person could have chosen if his/her situation was

di�erent (Chorus & De Jong 2011, Martens & Golub 2012). Furthermore, utility-

based measures are thought to be susceptible to arguments such as the "expensive

tastes argument"2 and the "o�ensive tastes argument"3 (Wol� 2007). For example,

the utility that is experienced from a buggy user that occupies a wheelchair user

spot on a bus should not be accounted as contributing to his/her welfare.

Finally, the data requirements for estimating the choice probabilities for this

family of models can be an issue, with the overwhelming majority of studies us-

ing survey data where an individual's choice is observed. Apart from making

utility-based accessibility evaluations costly and di�cult to repeat at frequent in-

tervals, the requirement of observed choice renders these methods inapplicable for

unlabeled mobility data where an individual's choice needs to be inferred from

contextual information.

2.2.1.5 Other methods

Besides the above described models, researchers have explored other accessibility

formulations using di�erent computational constructs.

A popular measure that does not fall under the above described categories is

the concept of activity spaces. An activity space is de�ned by the geographical

extent an individual travels for reaching their daily activities. Generally, there

are three di�erent approaches for the computation of activity spaces found in the

literature (Patterson & Farber 2015). The �rst is related to the construction of

geometric objects centered around a suitably de�ned point (eg. a public transport

access point). These objects can take the form of ellipses, circles or more elabo-

rate constructs such as convex hull polygons. The second approach is related to

constructing bu�ers around the shortest path networks that connect the points

visited by the individual. Finally, the third approach is related to the construc-

2The "expensive tastes argument" describes a thought experiment stating that, between in-

dividuals that have otherwise the same ability to convert resources into welfare, if an individual

happens to develop 'expensive tastes' then a distribution of resources from one person to the

other is required in order to equalise their resources
3The "o�ensive tastes argument" refers to being denied admission to a good or service on

grounds of justice
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tion of activity space surfaces by non-parametric methods such as kernel density

estimates.

Geometrically de�ned activity spaces using ellipses and circles have been found

to correlate with more simple measures of travel behaviour such as travel distance

(Schönfelder 2001). However, since the surface of these constructs is determined

only by the spatial distribution of visited locations, they do not consider elements

of the environment that could have contributed to the observed mobility behaviour.

Kernel density approaches provide more �exible activity space constructs but su�er

from the same issues as ellipses and circles, with the additional disadvantage of

tending to over-�t to the observed locations. On the other hand, using shortest

path network approaches, tends to focus on the connectivity between di�erent

visited locations, which may overestimate an individual's activity space for services

such as rail.

Other methods include the use of Geographical Information Systems (GIS)

in conjunction with the methods described in previous sections to enhance the

results and incorporate more assumptions in accessibility computations. For ex-

ample, Wang & Chen (2015) used a relative job accessibility measure accounting

for spatial autocorrelation using a simultaneous autoregressive model (SAR). Out-

side academia, UK's Department for Transport (Department for Transport 2014)

has developed a set of core accessibility indicators to assist local government bodies

when undertaking local transport planning. Examples of the indicators include:

journey time from origin (O) to nearest destination (X) using mode (Y); Frequency

of public transport from O to X; Number of X accessible by X from O in t time;

Population of O within t time of X by Y.

2.3 Accessibility measurement using passive mobility

data

Traditionally in transportation research, numerical accessibility indicators have

been applied using travel surveys and questionnaire surveys (Schönfelder & Ax-

hausen 2003). While the bene�ts of such surveys are well understood (e.g. includ-

ing travel purpose, travel frequency, transportation mode etc.) the costly nature,

limited sample size, low update rate and low temporal and spatial resolution make

them unsuitable for recurrent evaluations of accessibility. Recently, however, there

is an increasing number of studies using passive, machine generated mobility data

either for computing, or providing data input for accessibility indicators (Martens

et al. 2019). As already mentioned in section 1.1 such data have the potential to

contribute to accessibility literature due to their low cost, high update rate and
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detailed nature. This enables the study of travel behaviour of individuals at a

daily trajectory level. In the context of this thesis, passive mobility data refer

to data that can be considered opportunistic, usually gathered for purposes other

than those of accessibility analysis.

2.3.1 Passive mobility data for calculating accessibility

Commonly used passive mobility datasets used in studies measuring accessibil-

ity include Call Detail Records (CDR) data, Automatic Fare Collection Systems

(AFC) data, GPS as well as social media data. Some studies have also used data

generated using the General Transport Feed Speci�cation (GTFS), however, such

data relate to transportation service provider availability, rather than individual

mobility behaviour.

In the context of deriving individuals daily activity spaces, Xu et al. (2015)

used a mobile phone location dataset to uncover key locations that serve as anchor

points, around which everyday activities take place. Using Call Detail Records

(CDR) for over 1 million individuals for the city of Shenzhen, China the authors

used measures such as radius of gyration and standard distance to describe the

spread of activity spaces. The authors found that it is possible to correlate the

activity spaces with di�erent economic and transportation characteristics of the

study area. Extending CDR activity based mobility patterns with census and

travel survey data, Jiang et al. (2017) were able to detect speci�c daily mobility

"motifs" of individual users and relate those to unique sociodemographic identities

of di�erent geographical areas. In another study, (Xia et al. 2018) used CDR and

travel cost data (through an Application Programming Interface (API)) to esti-

mate population �ows and impedance functions of a SIM, extended to include the

potential of travelling based on population density. Validated against census data,

the developed model was suitable for predicting potential population �ows. In

another study, Chen et al. (2019) used a CDR dataset within a STP accessibility

approach to estimate individual accessibility for each phone user. Evaluated at

geographical cohorts, the authors found distinct accessibility patterns to shopping

facilities for urban/rural and suburban groups. Further, by using taxi trajectory

data, the study also demonstrated the impact of travel time uncertainties on indi-

vidual accessibility. Using a combination of space-time accessibility supplemented

with a cumulative measure, Chen et al. (2018) used a CDR dataset to evaluate

interpersonal accessibility variation for phone users of the same residential loca-

tion. In this way, the authors demonstrated the value of passive mobility data for

individual based accessibility analysis.

Using a cumulative accessibility measure together with taxi GPS data, Cui
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et al. (2016) detected areas of low accessibility and related the results with the

levels of available activity types at a destination. Moya-Gómez et al. (2018) used

car GPS data together with social media data for computation of Origin Destina-

tion (OD) times and the distribution of attraction factors. Using dynamic exten-

sion of a cumulative accessibility indicator, the authors investigated the temporal

patterns of accessibility for the city of Madrid, Spain.

Smith, Quercia & Capra (2012) used a gravity model in combination with

automatic fare collection (AFC) data to quantify the levels of accessibility for em-

ployment and leisure related activities. They concluded that it is likely that richer

datasets are needed, in the form of socioeconomic and environmental character-

istics, to derive realistic accessibility levels using pervasive mobility data. Using

GTFS data, St¦pniak & Goliszek (2017) derived OD matrices in the context of cal-

culating a potential accessibility measure. In this way, the authors demonstrated

the importance of considering uncertainty in diurnal �uctuations of accessibility.

2.3.2 Passive mobility data for inferring accessibility components

More granular accessibility analysis at the individual level requires derivation of

semantic knowledge of attributes such as the transportation mode used and the

types of activities reached. These are not readily available in passive mobility

data and have to be inferred from mobility data often coupled with secondary

information. This section provides a brief overview of the di�erent computational

methodologies for these tasks.

2.3.2.1 Transportation mode inference from unlabelled mobility data

Knowledge of the share of transportation modes used is very important semantic

information related to an individual's mobility, and forms the basis for disaggre-

gated evaluation of secondary mobility quantities such as number of trips per

mode, access to transit etc. It is also a very volatile quantity that depends on in-

dividual characteristics such as age, gender and disability to a large extent (Ryan

et al. 2015, Nordbakke 2013). The task of transportation mode detection from

unlabelled passive mobility data is largely treated as a machine learning classi�-

cation/clustering problem in the literature.

A popular classi�er used within the transportation mode detection literature

is Support Vector Machines (SVM). A SVM is a supervised linear classi�er that

uses a kernel function to transform the original variables into a higher dimen-

sion feature space in order to tackle the problem of linear inseparability between

di�erent categories. A common approach to tackle the problem of inseparability

between travel modes, is to expand the feature space by using more quantities
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e.g. using both speed and acceleration. However, such measurements might not

be available in the �rst place. Moreover, SVM classi�cation methods ignore the

temporal structure of human mobility data, although there have been attempts to

circumvent the problem (Bolbol et al. 2012). Modifying SVM models to include a

wider range of information in the classi�cation problem can be done either by al-

tering the kernel function, or by building the model within a regression framework.

As SVMs are supervised classi�cation models, they require a training set which

might not be available beforehand. As SVMs are by de�nition non-probabilistic

classi�ers, it is di�cult to assess the uncertainty in the estimates over the set of

classes.

Another commonly used classi�cation approach to transportation mode de-

tection, often thought to be one of the best performing classi�ers for this task

(Jahangiri & Rakha 2015) is Decision Trees (DT) (Zheng et al. 2008, McGowen

& McNally 2007, Gri�n & Huang 2005, Reddy et al. 2010). These can appear

alone or in combination with a MNL regression model. A DT classi�er recursively

segments the feature space in a binary fashion, based on the principle of minimis-

ing some loss function (eg. chi-squared, entropy etc.). An elementary example

of a DT classi�er for determining transportation modes using speed would be to

"make decisions" on the mode based on how high or low the speed value is.

DTs have the advantage of being direct and easily interpretable. However, they

tend not to generalise well as they refer to a particular setting of decisions con�g-

urations only. Another big disadvantage of DTs is the large variance, especially in

the case of correlated features (Janssens et al. 2006). An improvement over this, is

the merging of a set of individual DT classi�ers into a single one (Random Forests

(RF)) to smooth the individual variances. The downside of using this method is

the loss of interpretability.

A third family of models commonly used for transportation mode detection

from mobility data is Arti�cial Neural Networks (ANN) (Zhang et al. 2015, Sten-

neth et al. 2011, Sha�que & Hato 2015). ANNs are used to approximate complex

functions by summing together weighted versions of simpler functions (neurons).

These neurons can have a sigmoid response function in case of binary and categor-

ical variables or linear response function in the case of continuous variables. For

transportation mode detection, the complex function can represent the bound-

aries between di�erent mode categories. Advantages of Neural Network methods

include the easiness of including a wide range of variables in the classi�cation

process in a straightforward way (Omrani 2015). A disadvantage is the loss of

interpretability of the classi�cation results due to the dense network of neurons.

This fact can make the generalisation of a learned ANN to datasets of di�erent
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spatial resolution di�cult.

Another family of models used in transportation mode detection from pas-

sive mobility data is generative models. These use the joint probability of all the

variables in the feature space together with the class probabilities to solve the clas-

si�cation problem. Contrary to discriminative classi�ers (e.g. SVM, RF, ANN),

they don't de�ne the classi�cation process using boundaries, but rather probability

distributions that characterise the classes. This family of models include various

versions of probabilistic graphical models (PGMs) such as naive Bayes, Hidden

Markov Models (HMM), Bayesian Networks (BN) etc.

The simplest classi�er in this context is naive Bayes. This method assumes

complete independence over all variables in the feature space given the class, a

condition which is di�cult to defend in most cases. As a classi�er, it has been

found to have a reduced accuracy in the context of transportation mode inference

compared to other classi�ers when the feature space is limited to quantities such

as speed, acceleration and heading (Reddy et al. 2010, Stenneth et al. 2011). On

the other hand, in the case the feature space is broadened with variables such as

distance to metro or bus lines, naive Bayes has been found to perform better than

any discriminative classi�cation method (Feng & Timmermans 2016).

BNs o�er an improvement over the conditional independence assumption of

naive Bayes and as a consequence, they are able to model more complex rela-

tionships between variables in the feature space. Such a model has been found

to perform well in transportation mode classi�cation by modelling the conditional

relationships of acceleration, speed, trip distance and speed percentiles (Xiao et al.

2015).

The above described models tend to overlook the temporal dependence of

mobility data. Dynamic models such as HMMs and Dynamic Bayesian Networks

(DBN) attempt to address this issue.

HMMs are Bayesian networks exploiting the sequential nature of time stamped

data. The main assumption is that an unobserved "hidden" time dependent pro-

cess is the driver behind the observations. HMM are memoryless models, in the

sense that a node is dependent only on the preceding node and not on the pre-

vious ones. This assumption can be relaxed if a higher order HMM is employed,

In this case, however, there is a risk of over-smoothing, making classes less dis-

tinguishable. Richer modelling speci�cation frameworks, such as a combination of

HMMs with DTs, have been found to provide increased classi�cation accuracy for

di�erent modes (Reddy et al. 2010).

DBNs combine the graph structure of Bayesian Networks with the sequential

structure of Markov models. By treating problems as time dependent stochastic
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processes, dynamic Bayesian networks can not only capture the associated un-

certainty for each node, they can also reason about the way these evolve over

time(Koller & Friedman 2009). This is due to the causal network structure of

such models which allows researchers to "inject" domain knowledge in their mod-

els. Their �exibility and granularity made these models popular amongst a variety

of disciplines such as speech recognition, automatic handwritten character recog-

nition and DNA sequencing. These models are being increasingly used within the

human trajectory mining and activity recognition held within an unsupervised

classi�cation framework (Liao, Patterson, Fox & Kautz 2007, Lin & Hsu 2014).

A disadvantage is that, being unsupervised classi�cation algorithms, with given

additional data the parameters of the models have to be learned again (Lin & Hsu

2014).

Table 2.1 below summarises the advantages and disadvantages of some of the

cited methodologies.
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Table 2.1: Comparison of di�erent transportation mode detection methodologies

Authors Method Accuracy Sensor External

parame-

ters

Advantages Limitations

Bolbol

et al.

(2012)

SVM 88% GPS No Includes a variety

of transportation modes

Preprocessing required,

inseparability issues between bus

and underground mode

Janssens

et al.

(2006)

BN and

DT

53.60% Travel

Diaries

Yes Includes variety of information re-

lated to transportation habits

Combined method underperformed

compared to BN and DT alone

Zhang

et al.

(2015)

ANN 62% GPS No Fast computation even for large

datasets

A preprocessing step is required as

inference is based in a derivative of

speed

Feng &

Tim-

mer-

mans

(2016)

Naïve

Bayes

99.40% GPS Yes Includes a variety of classi�cation

features and external parameters

Data obtained from a dedicated

GPS logger with a variety of accu-

racy measures which are beyond the

reach of low end GPS sensors
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Xiao

et al.

(2015)

Bayes

Nets

90% GPS No Accounts for the inter-dependencies

between classi�cation feature space

Potential loss of information

through discretisation of continuous

variables

Reddy

et al.

(2010)

HMM 95.8% Smart

phone

No No preprocessing step Results were tested on one particu-

lar smart phone device only

Liao,

Pat-

terson,

Fox &

Kautz

(2007)

DBN 75% GPS No No preprocessing step, no training

set

Complex model
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2.3.2.2 Activity type inference from unlabelled passive mobility data

Knowledge of activity types performed at a destination is one of the most im-

portant components of accessibility studies and one of the most challenging tasks

for unlabelled mobility data. Di�erent data sources are considered for this task:

examples in the literature range from AFC systems (Zhao et al. 2007), GPS traces

(Shen & Stopher 2014) and CDR data, to mobility data from location enabled

applications (such as Twitter and Foursquare). To assist the inference process,

such data are commonly coupled with secondary information such as land use and

destination data such as Points of Interest (POI) and land use data that could

inform on the nature of the performed activities.

In nearly all cases of human activity inference from mobility data, the range

of activities is commonly discretized to a �nite set such as home, work, leisure,

shopping etc. Methodological approaches on the task of inference on this dis-

crete set of activities varies depending on the nature of the data as well as the

research goal. For example, when the primary focus is the generation of activity

data for the purposes of transportation demand modelling (eg. origin destina-

tion matrices), an activity type set consisting of home/work locations is su�cient.

Accessibility modelling however, relies on an expanded set of activities that span

beyond commuting to/from work such as recreation and shopping. Relying on

spatiotemporal characteristics of mobility data is not enough, as such activities

often fall beyond any regularities that can be leveraged from such data. As a

result, researchers have looked into other, complementary sources of information

that can compensate for this limitation. The most straightforward approach that

has been proposed in the literature is to associate each transportation access point

with an activity that is a function of the POIs that exist within a prede�ned dis-

tance from the transportation access point (Chapleau et al. 2008) . Di�erent

methodological frameworks made use of such data ranging from simply counting

the number of POIs within a distance from a public transport stop/station (Long

& Shen 2015), to more complicated ones that attempt to address the fact that

POI do not necessarily correlate with the actual activities that are undertaken at

a particular location (Hasan & Ukkusuri 2017). In practise, however, a combi-

nation of di�erent approaches is applied to assist inference. In terms of output,

di�erent approaches produce di�erent outputs ranging from activity type clusters

using similar characteristics of the input feature vector to probabilities of speci�c

activity types. Usually the former requires an extra interpretation step to derive

semantic context from the clusters.

Rule based activity detection methods are one of the most used methods of

imputing activities from mobility data. Such methods have been successfully used
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in the context of transport data for the determination of activities such as home,

employment and study (Anda et al. 2017). The rules generally follow from as-

sumptions related to temporal regularities of di�erent activities, together with

assumptions on the travel frequency as well as the spatial distance between sub-

sequent destination locations as derived from mobility data (Barry et al. 2009).

Commonly, classi�cation rules are derived from past travel survey data (Wang

et al. 2017), however it is not uncommon to derive such rules from behavioural

patterns in the mobility data, especially when the activity space set consists of

predictable categories such as employment (Lee & Hickman 2014).

Example applications of rule based methods can be found throughout the liter-

ature for activities such as home, employment and a general category that captures

the remaining activities (such as shopping, entertainment etc.). Using AFC data,

(Long & Shen 2015) and (Wang et al. 2017) de�ned a "home" activity station to

be the station where the �rst trip of the day is made, as long as this pattern is

consistent throughout the sequence of AFC observations. To determine an individ-

ual's workplace station, the authors added a temporal threshold to the remaining

stations along a user's daily AFC observations not categorised as home. In the

context of these studies, this threshold was determined from past origin destina-

tion surveys. Devillaine et al. (2012) approach was also based on a set of empirical

rules derived by querying the AFC records database (for the cities of Santiago and

Gatineau) to distinguish home, work, study and "other" activities. They did this

by specifying hard temporal thresholds together with the record's sequence in re-

lation to the time of transaction. The authors discovered similar activity patterns

between these cities despite their unique socioeconomic characteristics.

Moving away from AFC data, Alexander et al. (2015) used call detail records

from mobile phones to infer important places such as home and work. Due to the

noisy nature and the reduced spatial resolution of the data, the authors had to

agglomerate the individual location estimates into clusters of location data, before

extracting features such as duration of stay. Spatio-temporal rules were then

applied to those features to distinguish home and work locations. Speci�cally,

the authors de�ned a temporal window within which an individual is expected

to be home, and a spatiotemporal window for work location that combined the

observations falling into a temporal window on weekdays along with a spatial

distance threshold re�ecting the assumption that longer distance trips are more

likely to be work trips (Levinson & Kumar 1994).

One disadvantage of the above reviewed activity inference methods is the

reduced �exibility to model more complex relationships between activity types,

attributes derived from mobility data as well as secondary information such as
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characteristics of the built environment. Moreover, quantifying uncertainties orig-

inating from the noisy, inaccurate and incomplete nature of mobility data using

rule based methods and heuristics is di�cult. Probabilistic methods can account

for this either by representing such relationships through a set of conditional prob-

abilities between the latent activities and the feature space variables (discrimina-

tive models) or modelling the joint distribution of activities and feature space

variables (generative models). This relationship is commonly represented using a

graph structure that factorises the joint probability density density over the set of

random variables depending on how these variables are assumed to interact with

each other.

In terms of applications using generative probabilistic models, Yuan et al.

(2012) used a combination of GPS and POIs to infer functional regions corre-

sponding to di�erent activity types in the city of Beijing. Following the analogy

of using GPS traces as words and POIs as documents, the authors used a topic

modelling framework (Latent Dirichlet Allocation, LDA) to discover regions of

similar semantic background. A LDA is a directed probabilistic graphical model

that uses a "bag of words" assumption to represent documents as a mixture of

topics, each one characterised by a distribution of words belonging to a certain

topic (Blei et al. 2003). Within a similar modelling framework Hasan & Ukkusuri

(2014) used the analogy between check-ins/words activities/topics to geo-tagged

Twitter feeds linked to Foursquare check-in data. Their model was able to classify

individual check-ins into higher level activities such as entertainment, education

and shopping, however, it is unclear how the above approach can be applied to

data without any semantic reference such as un-labeled social media data or mobil-

ity data of comparable granularity. Furthermore, it is unclear how LDA operates

in the context of sparse feature vector scenarios such as limited observations (few

documents), and short observation vectors (documents with few words). Both of

these cases are characteristic of mobility data generated by service providers such

as Automatic Fare Collection systems where there are as few as two interactions

of an individual with the transportation system per day, or in scenarios where

the POI feature vector is limited to few POIs (as in the case of less dense urban

environments).

In another study, Widhalm et al. (2015) used the concept of Relational Markov

Networks (RMNs) to impute activities such as home, work, shop and leisure from

functional clusters derived from cell tower mobile phone and landuse data. RMNs

are an extension of Markov Random Fields, modelling the factor potentials in

a structure that resembles a relational database. Speci�cally, their model spec-

i�ed the activities given land use types, activity duration, starting time as well
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as heuristic rules (eg. if the activity was visited previously, if the activity has

a unique location). Their approach achieved comparable results in the activity

clusters compared to traditional origin destination surveys, however, here an ex-

tra interpretation step is needed to extract speci�c activity types from discovered

clusters.

Table 2.3 below, summarises the advantages and disadvantages of di�erent

activity inference methodologies found in the literature.

Authors Method Validation Scope Advantages Limitations

Alexander

et al. (2015)

Rule based (fre-

quency of visits,

distance, time)

Using survey data CDR / identifying

home, work and

'other'

Can be applied to

large datasets

Approximate val-

idation / limited

activity types

Long &

Thill

(2015),

Wang et al.

(2017)

Rule based (trip

sequence, location

, time)

Using survey data AFC / identifying

home, work

Can be applied to

large datasets

Approximate val-

idation / limited

activity types

Yuan et al.

(2012)

Latent Dirichlet

Allocation (LDA)

Performance

bench marking

using di�erent

algorithms

GPS / Functional

clusters

Inclusion of both mo-

bility and POI data

No absolute vali-

dation / requires

an annotation

step

Hasan &

Ukkusuri

(2017)

Continuous time

bayesian network

(CTBN)

Using synthetic

data

Twitter check-ins /

Functional clusters

Good accuracy on

activity transitions

Approximate

validation / No

semantic informa-

tion on activities

Han & Sohn

(2016)

Hidden Markov

Model (HMM)

Using survey data AFC / Functional

clusters

Accurate representa-

tion of activity se-

quences

Approximate

validation / No

semantic informa-

tion on activities

Yin et al.

(2018)

Input-Output

Hidden Markov

Model (IOHMM)

Using survey data

/ small sample of

ground truth

CDR / Identifying

home, work, eating,

recreation etc.

Includes secondary

activities

Activity types

are determined

empirically

Xiao et al.

(2016)

Arti�cial Neural

Network (ANN)

Participant vali-

dated

Smartphone data /

Identifying home,

work, eating, shop-

ping etc.

Includes a wide range

of features

Requires labelled

mobility data

Liao et al.

(2006)

Conditional Ran-

dom Field (CRF)

Participant vali-

dated

GPS / Identifying

home, work, leisure,

visiting

Good activity detec-

tion accuracy

Very small sam-

ple / Requires

labelled mobility

data

Widhalm

et al. (2015)

Relational

Markov Net-

work (RMN)

Using survey data CDR / Functional

clusters

Database relation-

ships can be directly

mapped to factor

potentials

Approximate val-

idation / requires

an annotation

step

Bantis &

Haworth

(2019)

Dirichlet Multi-

nomial Dynamic

Bayesian Network

(DBN)

Participant vali-

dated

Foursquare check-ins

/ Food, Shopping,

Outdoors and recre-

ation, Arts and

Entertainment,

Colleges and Univer-

sities

Accuracy in par with

state of the art, no

annotation required,

allows incorporation

of di�erent levels of

prior belief

Computationally

intensive / not

suitable for real

time applications

Table 2.3: Comparison of di�erent activity inference type methodologies
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2.4 Accessibility within social sciences

Having introduced the most widely used accessibility indicators and the challenges

and potentials of using passive mobility data in accessibility evaluations, this sec-

tion introduces the necessary research background on the link between accessibility

and transport related social exclusion. The goals of this section are to highlight

the di�erent dimensions that contribute to the process of transport related social

exclusion, as well as to provide insights on how accessibility indicators are used to

study issues of social exclusion and equity.

2.4.1 De�ning accessibility in a social sciences context

When the research focus is the connection between accessibility and social pro-

cesses that can result in relative disadvantage, such as transport related social

exclusion, the term accessibility is generally viewed as a fundamental property of

individuals' ability to participate in di�erent activities within civil society (Burns

1980, Preston & Rajé 2007). The de�nition refers to the extent to which a per-

son is able to reach a range of destinations that can facilitate the completion of

di�erent social, leisure and employment activities considered to be normal in a

particular society (Evans 2009, Nutley 1998). This ability takes the wider urban

environment characteristics into consideration, such as transport provision (buses,

trains etc.), environmental characteristics as well as individual preferences and

capabilities (Farrington 2007, Kwan 2013). Related to this, Church et al. (2000)

identi�ed seven distinct factors that could reduce access to opportunities, which

are shown in table 2.4.
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Category Description

Physical Exclusion Physical conditions can a�ect the ability of the

person to e�ectively use the transport network. Exam-

ples are people with reduced mobility, learning disabil-

ities, visual impairments or age related di�culties

Geographical exclusion Longer commutes from place of living and workplaces

or amenities can make them di�cult to reach due to

temporal or �nancial aspects

Exclusion from facilities Lack of transport services within the area is likely to

cause transport exclusion, particularly for people who

do not own a car

Economic exclusion Whenever low �nancial income a�ects the ability of a

person to a�ord transport costs

Time based exclusion When personal factors or duties reduce the time avail-

able for travelling. This phenomenon is particularly

common among carers who lacks of an adequate social

support network

Fear-based exclusion Fear for personal safety can easily discourage individ-

uals from using the transport network or other public

spaces

Space exclusion Space management can a�ect the perception and con-

sequentially the use of public spaces and services.

Table 2.4: Factors related to social exclusion as identi�ed by Church 2000 (p.198-

200)

It is important to note that the factors in table 2.4 tend not to appear in

isolation, and coexisting factors are more likely to increase the risk of transport

related social exclusion.

Although the above description of accessibility overlaps with the notion of mo-

bility, it also highlights some key concepts that tend to be overlooked by thinking

only in terms of mobility. Traditionally in transportation planning and engineer-

ing, individual mobility refers to the resources and characteristics of individuals

(�nancial status, age, access to a car etc.) that facilitate the ability of a person to

move from place to place (Tyler 2006). However, increased mobility does not nec-

essarily result in increased accessibility. For example, a person can be thoroughly

mobile and still experience barriers when attempting to reach an activity. Besides
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physical and geographical, these barriers could be of a social nature as shown in

table 2.4. This highlights the need to consider factors related to both mobility

(ability to use di�erent transportation modes) and accessibility (ability to reach

opportunities) in the modelling approach.

2.4.2 Accessibility equity and transport related social exclusion

The link between transport disadvantage and issues such as social exclusion, well-

being and discussions around issues of equity and equality has been recognised

since the 1960's. Fairly recently, this discussion was extended to recognise the

fundamental role of accessibility on such issues (Pereira et al. 2017, Lucas 2012,

Casas 2007). According to a widely cited de�nition by Kenyon (2003), transport

related social exclusion is a process by which individuals are prevented from par-

ticipating in di�erent aspects of a social life in a community. This may be because

of reduced access to opportunities, services and social networks or due to insu�-

cient mobility in a society. Such a process leads to decreased levels of well-being,

particularly for vulnerable population groups (Currie et al. 2010).

Another ethically relevant topic is that of equity in accessibility evaluations.

The focus here is on the distributional e�ects, or the `fairness' of access to op-

portunities (Van Wee & Geurs 2011). The relation with transport related social

exclusion can be summarised by the premise that equity dictates the level of po-

tential to participate in opportunities, regardless of factors such as age, gender,

ethnicity, race or income, to name just a few. Lower levels of opportunities due

to lack of transport results in transport related social exclusion. Judgement of

redistribution (or what is considered fair) of accessibility is a complex topic as it

requires a degree of moral judgement and as such it is often unaddressed in equity

related accessibility evaluations (Farrington & Farrington 2005, Van Wee & Geurs

2011). Current guidance on methods and processes to study equity are not com-

prehensive enough and as a result, stakeholders (transportation agencies, public

bodies etc.) wishing to evaluate equity often resort to simple accessibility indi-

cators. These are not always insightful to identify relative disadvantages (Karner

& Niemeier 2013). In a review of accessibility implementation plans conducted

by the relevant associations/institutions of 14 North American cities, (Manaugh

et al. 2015) found that, beyond recognising the existence of accessibility related

issues, there is little evidence of speci�c measures that can address challenges such

as transport disadvantage, social equity and quality of life. As a result, the ma-

jority of measures focus on challenges that can be tackled in a more direct way.

Examples include environmental aspects such as reducing carbon emissions as well

as mobility related issues such as optimising proximity to available transportation
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access points. To that extent, framing accessibility evaluations around theories of

social justice can help provide the basic framework within which such evaluations

of equity can be made (Pereira et al. 2017).

A social exclusion approach to transport disadvantage puts the focus on the

outcomes of transport deprivation (Titheridge et al. 2014), however, it is important

to notice that this concept emphasizes both the causal factors that lead to such a

condition and the interactions between them (Lucas 2012). As already mentioned

in section 2.4.1, these factors include characteristics that lie with the individual,

characteristics of the local area as well as wider economic societal and governance

factors. The lack of available transport options or inability to use them, together

with disadvantaged personal status, reduces the ability of an individual to reach

di�erent opportunities. This causes a lack of accessibility, which in turn is mani-

fested as social exclusion. The causal �ow between transport disadvantage, social

disadvantage and social exclusion as well as the factors that in�uence them is

illustrated in �gure 2.4 (Lucas 2012):

Figure 2.4: Causal structure between transport disadvantage, social disadvantage

accessibility and social exclusion as illustrated by (Lucas 2012)

In the same line of thought, Preston & Rajé (2007) argue that the e�ects

of social exclusion are not due to lack of social opportunities, but because of

lack of access to those opportunities. According to the authors, addressing social

exclusion requires extending the knowledge of person/place interaction beyond

transport geography and into the domain of social-spatial research. Approaching
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accessibility from this angle, Farrington & Farrington (2005) rede�ned the terms

used to describe accessibility. Opportunities become more than locations on a

map; they are potentials for achieving one's needs, wants, aspirations and desires.

Reaching opportunities becomes more than a property of space or a property of

the transport system, as it doesn't necessarily re�ect the ability of an individual to

participate in the activities associated with each destination (Pereira et al. 2017).

At this point, it should be noted that case studies seeking to quantify trans-

port disadvantage or transport related social exclusion4 rarely adopt the above

described de�nition of accessibility in its entirety. Instead, existing accessibility

indicators covering aspects of the above de�nition are used (Kamruzzaman et al.

2016, Pyrialakou et al. 2016). On the other hand, when the focus of the studies

is the use of accessibility indicators to examine the link between accessibility and

equity, engagement with theories of social justice is rarely made (Pereira et al.

2017) ). Finally, it should be mentioned that accessibility is only one way of

quantifying transport related social exclusion, albeit the most holistic one. Other

methods include structured questionnaires and basic statistical analysis (Delbosc

& Currie 2011a), outcome based analysis such as measurement of individual ac-

tivity spaces (Schönfelder & Axhausen 2003), deprivation based measures (Noble

et al. 2007), mobility based measures (Dodson et al. 2006) and structural equation

models (Golob & McNally 1997).

Examples of how the most commonly used accessibility indicators are used

with transport equity in the literature are given in the following sections.

2.4.2.1 Gravity-based accessibility indicators

Preston & Rajé (2007) used three criteria to evaluate the social exclusion process:

levels of travel in an area, levels of individual travel and the overall accessibility of

an area (as assessed by gravity and utility based accessibility indicators. The au-

thors raised issues of data availability (in particular extensive surveys of individual

travelers) as barriers for adopting a more disaggregated approach, both spatially

and socially, recognising that current accessibility planning tools are not sensitive

to issues such as gender, age and ethnicity. Generation of synthetic population

mobility data as an alternative to data availability is unlikely to provide a solution

as the major weakness of such methods is identifying the unique combinations of

attributes of individuals a�ected by social exclusion (Preston & Rajé 2007). Bo-

carejo S & Oviedo H (2012) used a gravity based indicator to capture the e�ects of

income and travel time for travelling to employment. This was done by modifying

4Although transport disadvantage and transport related social exclusion are di�erent con-

cepts, the indicators used in case studies are often identical (Kamruzzaman et al. 2016)
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the impedance function of the model to include travel cost and travel time in the

context of evaluating investments in transport provision that promote equity in

the city of Bogota. The authors disaggregated the results geographically and by

income strata. However, both the sets of accessibility components used and ac-

tivities reached were restricted. Again, one of the main reasons for this was data

availability. Recently, transit data in GTFS (General Transit Feed Speci�cation)

format have been used by researchers to obtain disaggregated transport data. For

example, Karner (2018) used GTFS data with OD matrices to assess transport

equity for di�erent income groups in Phoenix, USA. In their analysis, they used a

disaggregated gravity type model for each wage level. Although useful, GTFS data

are essentially timetables which describe the range of transport options available

and not their usage.

2.4.2.2 Cumulative-based accessibility indicators

Wu & Hine (2003) used a contour based accessibility approach (Public Transport

Accessibility Levels (PTAL)) in combination with deprivation indices to identify is-

sues of transport disadvantage in households living in areas with limited transport

coverage and investigate how these would change under di�erent infrastructure

change scenarios in the city of Belfast. The study captured structural di�erences

in transport provision for di�erent religions and age groups. However the analysis

was conducted at a level of aggregation that prevents a more detailed study of

individual characteristics in relation to mobility and accessibility patterns. In an-

other study (Ben-Elia & Benenson 2019) used a combined cumulative accessibility

index composed of the total travel time by public transport and car and the total

count of destinations at building level to study to study issues of spatial equity in

the city of Tel Aviv. The authors focused on providing a disaggregated approach

to evaluating equity using accessibility. However, the study did not account for

sociodemographic characteristics of individuals that may in�uence the composite

accessibility index. The GTFS format was also explored to obtain more detailed

data for this accessibility indicator. For example, (Farber & Fu 2017) used a

cumulative accessibility indicator to explore how accessibility is changed under

di�erent network modi�cations.

2.4.2.3 Space-time accessibility indicators

Using a space-time accessibility indicator, Fransen & Farber (2019) evaluated the

levels of equity experienced by individuals in the wider area of Utah, USA. They

found that both place based and sociodemographic characteristics resulted in sig-

ni�cant di�erences in accessibility levels. Kwan (1999) used the concept of poten-
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tial path area of space-time accessibility to study the signi�cance of an individual's

ethnic background and gender when accessing day-to-day destinations. The au-

thors found that the levels of individual access in women is signi�cantly lower

compared to those of men. In a study comparing di�erent methods of quantify-

ing social exclusion of children from available opportunities, Casas et al. (2009)

found that space-time accessibility measures can adequately represent children's

activity spaces given household socio-demographic characteristics and carers' time

budgets. However, a common modelling trait of studies using space-time acces-

sibility measures is that they don't explicitly include individual characteristics in

the modelling process and as a result, accessibility outputs have to be related to

di�erent population cohorts as a separate step in the analysis. This requires de-

tailed travel diary and time use data and as a result, the number of participants

is limited and the geographic extent of the studies relatively small (Geurs & Rit-

sema van Eck 2001, Neutens et al. 2011). Fairly recently however, researchers have

begun to explore the usefulness of machine generated data to obtain travel time

distributions at the individual level. For example, Chen et al. (2019) used mobile

phone cell tower data with a space-time accessibility approach to estimate travel

times, and evaluate all feasible space-time locations to perform a �exible activity.

They then combined the results with a cumulative accessibility indicator to detect

equity issues in accessibility to shopping facilities for di�erent geographical groups

(urban/rural/suburban). Using GTFS data to model the state of the transport

system before and after the introduction of a new bus service in Colombus Ohio

USA, (Lee & Miller 2018) used a space-time accessibility measure together with

a cumulative opportunities measure to investigate the impact of this new service

on access to job and healthcare facilities. The authors were able to identify the

optimal combinations of services that would result in increased accessibility. How-

ever, the study didn't take into consideration any behavioural factors that would

result in di�erent accessibility levels, rendering the approach mostly relevant as a

physical infrastructure accessibility indicator.

2.4.2.4 Utility based accessibility indicators

Comparing the performance of di�erent accessibility measures on the equity of ac-

cess of di�erent destinations for the city of Ghent in Belgium, Neutens, Schwanen,

Witlox & De Maeyer (2010) found that utility-based measures better articulated

interpersonal di�erences, providing more conservative estimates of equity. Using

a utility based accessibility indicator (the logsum measure) evaluated on travel

demand survey data, Bills & Walker (2017) compared changes across and among

low and high income population groups with regards to equity in transportation
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provision under di�erent travel cost and time scenarios. The authors generated

useful insights on the shape of transportation mode share under those scenarios.

However, the study makes a major assumption that by using the observed mode

to calculate the equity indicator, the individual acts as a maximiser. This is re-

stricting in the context of representing the potential behaviour of an individual as

observed behaviour might not necessarily re�ect desired behaviour. In the context

of assessing the sensitivity of di�erent equity measures for di�erent transportation

provision policy scenarios, Ramjerdi (2006) used the logsum indicator to compare

levels of equity across di�erent regions of Oslo, Norway. The authors found that

equity levels were sensitive to di�erent spatial aggregation levels of the indicator.

At this point, it should be noted that when the focus is economic evaluations of

accessibility, utility base indicators outperform all other accessibility indicators

(Geurs 2018, Bhandari et al. 2009).

2.5 Accessibility through the lens of social justice the-

ories

The discussion of section 2.4.2 highlighted the usefulness of accessibility indicators

for the task of evaluating issues of transport related social exclusion and equity

experienced by individuals and/or population groups. Studying the indicators

can be useful in themselves (Van Wee 2016). However, a closer engagement with

social justice theories and the insights they generate when applied to transport

equity could provide a transparent framework both for analysing (by providing

structure and identifying important factors and their interactions to be included in

the analysis) and assessing (by providing a direction on the measurable quantities

that could be used to study the process of transport related social exclusion) issues

of equity in transport (Mullen et al. 2014).

2.5.1 Accessibility indicators from a social justice perspective

From an equality perspective, the link between accessibility, and transport related

social exclusion and equity has been examined through the lens of di�erent theo-

ries of social justice such as utilitarianism, libertarianism, su�cientarism, Rawl's

egalitarianism and the Capabilities Approach (CA) (Pereira et al. 2017, Lucas

et al. 2016). In this context, social justice in transport refers to the fairness of dis-

tribution of goods, transport services and accessibility for people (Beyazit 2011).

Approaching the topic through these di�erent schools of thought results in

di�erent interpretations of the wider de�nition of accessibility. For example util-

itarianism primarily focuses on the instrumental value of travelling to activity
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locations in order to bene�t from the activities that take place at those locations.

As such, it is not a goal in itself, but rather a tool that facilitates utility max-

imisation. This approach has been adopted by transportation providers primarily

through willingness-to-pay surveys for di�erent transport demand models (Mc-

Fadden 1998). However, this approach has been criticised on the grounds that it

usually focuses on monetising values such as travel time, distance and convenience

of services and as such it implicitly emphasises activities that provide higher value,

such as employment (Van Wee & Roeser 2013). Moreover, since utilitarians seek

to maximise the bene�ts (utility) for the whole society, they tend to approach

accessibility on an aggregate level, not paying attention to how it is distributed

throughout society (Pereira et al. 2017). This leads to under-representation of the

most vulnerable individuals within a society in accessibility evaluations, or even

worse, the promotion of accessibility for people who are better o� at the expense

of those who are not.

The idea of libertarianism dictates that people should be able to keep what

they earn or inherit (Titheridge et al. 2014), with minimal intervention by the

state or others, provided that the rights of the rest of the people to do the same

are respected. Within an accessibility discussion, the accessibility bene�ts from an

intervention are distributed in accordance to the rules that dictate a free market.

Currently, there is a major push to support and expand initiatives related to

"Mobility as a Service" (MaaS) from both research institutions and government

funds (UKGovenrment 2018). Many applications of MaaS fall under the economies

of sharing applications such as Uber and Lyft. In this context, Pereira et al. (2017)

mentions that the economy of sharing services may have expanded the choices of

transportation of consumers, however, it raises issues of fairness and equity among

con�icting sectors and among minority population groups. This is because private

companies have no economic bene�t from attending to the special needs of such

groups.

Su�cientarianism theories assume that people should be `well-o�' up until a

certain minimum threshold deemed su�cient to guarantee that basic needs and

wellbeing is maintained (Lucas et al. 2016). The theory provides a justi�cation for

relative agencies to set a minimum threshold of accessibility below which individ-

uals falling below are considered socially excluded. Given the complexity of the

processes leading to social exclusion and the diversity of people's needs, a big ques-

tion here is what constitutes a minimum threshold of accessibility and who decides

what it is. This question remains unanswered in the relevant literature (Preston

& Rajé 2007) . Expressing accessibility indicators in the context of determining a

minimum threshold is generally related to the principles of su�cientarianism. Ini-
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tiatives such as that undertaken by the Social Exclusion Unit in the UK are a step

in this direction. However, as Farrington & Farrington (2005) puts it, given the

fragmented nature of assets and responsibilities of di�erent stakeholders (examples

can be: land use planning departments, health institutions, education institutions,

transport authorities, social services, citizens etc.) that could play a role in im-

proving accessibility, it is unclear who is responsible for setting thresholds that cut

across di�erent organisations. It is argued that it is unlikely that an overarching

organisation (for example local authorities as suggested by Social Exclusion Unit)

hold enough political in�uence to facilitate cross sector collaboration between the

di�erent players.

Rawl's egalitarian approach is based around the premise that all people should

be treated equally and have as much freedom as possible, as long as this doesn't

compromise the freedoms of others. This premise is extended to allow for the

di�erence principle (Martens & Golub 2012), meaning that inequalities in the dis-

tribution of primary goods should be allowed to exist, as long as they bene�t the

least advantaged members of society. This reading promotes the role of agencies

that can facilitate equality in distribution of goods, such as institutions (Pereira

et al. 2017). Many authors argue that accessibility in its wider de�nition should

be counted as a primary good (Van Wee & Geurs 2011, Khisty 1996) and, through

Rawl's egalitarian approach, it is the role of institutions and policy makers to en-

sure that any interventions in transport aimed at improving accessibility, will do

so for the least advantaged groups. One point of critique of the di�erence principle

in Rawl's egalitarian approach is that it doesn't di�erentiate between inequalities

resulting from arbitrary circumstances (such as being born poor) and those re-

sulting from personal choices. As a result, any interventions aimed at mitigating

arbitrary circumstances will result in mitigating the legitimate choices of others

(Pereira et al. 2017). Current accessibility indicators that focus on the di�erences

between people generally agree with the equality principles of egalitarianism. In-

deed, the three step process of selecting appropriate accessibility indicators, calcu-

lating accessibility for di�erent population groups, and comparing the changes in

the indicators across groups and across di�erent scenarios followed by most studies

(Bills & Walker 2017) generally re�ect those principles. However, the speci�cs of

accessibility indicators can produce very di�erent results, even if they fall under

the egalitarian philosophical theory. Martens & Golub (2012) have distinguished

three di�erent approaches to equity: equality of resources, equality of midfare and

equality of welfare. Simple infrastructure reliability measures as well as simpler

cumulative accessibility indicators fall under this category. Focusing on actual

accessibility patterns, utility based and space-time based indicators that focus on
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actual behaviour fall under the welfare approach. More complicated cumulative

and gravity type indicators can be categorised in the equality of midfare approach.

The CA was �rst introduced by the philosopher and economist Amartya Sen

in the 1980's (Sen et al. 1990), and was originally developed as an alternative to

the predominant utilitarian way of viewing notions such as quality of life and well-

being in welfare economics. Its success as a theory of social justice has led to the

creation of the Human Development Index5 by the United Nations Development

Programme for the purposes of ranking countries by their level of well-being.

In essence, the CA describes the ability of an individual to function given the

set of freedoms and practical opportunities that are available to them (Sen et al.

1990). Contrary to Rawl's egalitarian approach, where the emphasis is on primary

goods (Rawls 2009), the CA focuses on human capabilities which result from a

combination of personal abilities, and the wider environment (Pereira et al. 2017).

In this sense, the CA has many similarities with the egalitarian midfare approach

since it focuses on the ability of an individual to convert resources into welfare, a

compromise in essence between resources and welfare (Martens & Golub 2012).

The CA can be perceived as a normative evaluation concept, aimed at promot-

ing public policies towards improvement of the abilities of individuals to function

as opposed to just describing the problem. This allows for the relative assessment

of di�erent policy proposals and the e�ect that those will have on a person's well-

being (Alkire 2008). As accessibility has been traditionally been used as a tool

that can push towards policy changes (Pirie 1981) the CA seems to �t within that

framework. Viewing accessibility within this context encompasses not only the

ability of individuals to move so that they can conduct the activities they value,

but also includes all the policies that enable people to do so (Pereira et al. 2017).

However, the application of the CA within an accessibility framework is chal-

lenging for a number of di�erent reasons. First, it doesn't prescribe thresholds on

the minimum accessibility needs of individuals. This limits initiatives to improve

accessibility levels of people that fall below such thresholds (Hananel & Berechman

2016). Another issue that is commonly brought in the agenda is that of individual-

ism. The argument here is that the CA framework fails to account for capabilities

which arise from collective participation since it is focused on the individual level.

As such, there is the risk of omitting in the analysis the institutions, public bod-

ies and communities that helped create and sustain the capabilities in the �rst

place (Deneulin 2008). However, some researchers (Alkire 2008) argue that such

intrinsic importance to group capabilities should at least be viewed with caution

since participation in collective activities on its own is not enough to evaluate

5http://hdr.undp.org/en/content/human-development-index-hdi
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well-being on the individual level. As an example, the use of specialised public

transport services such as London's Dial-A-Ride could be claimed to be a good

way of expanding the capability of "being mobile" for the group of people using

it. However, if a person doesn't enjoy using this service (because of the reduced

�exibility o�ered, having to go through the booking procedure etc.) but is obliged

to use it because no other travelling option is available then that person does not

"trade" that capability with increased well-being. Moreover, on a practical level,

bringing this framework to real-life applications implies that a robust methodology

exists that derives accessibility as a capability, taking into consideration personal

abilities, socio-economic factors and the built environment. Due to this complex-

ity, this notion of accessibility is rarely used in transport studies (Tyler 2006).

A more detailed description of the CA in the context of accessibility is given in

chapter 3.

2.6 Chapter summary

This chapter provided the research background of this thesis by introducing the

most common accessibility indicators and brie�y describing the di�erent compo-

nents in�uencing their relation to equity in transport and transport related social

exclusion. The placement of accessibility indicators within theories of social jus-

tice was given along with a comparison table across di�erent considerations from

both technical implementation and equity perspectives. At the same time it was

postulated that the CA could provide a platform to express issues of social justice

while accounting for the complexity of interactions between the di�erent accessi-

bility components. The following chapter introduces the CA in more detail and

how it has been used within the accessibility literature.

Considering the practical and theoretical strengths and weaknesses of accessi-

bility indicators as described in section 2.2, one can conclude that there is no single

numerical accessibility framework encompassing all di�erent aspects of people's ac-

cess to opportunities and the implications this might have on issues of social justice

and policy making. Given the di�erent geographical scales of measurement, mea-

surement domain and target group, di�erent accessibility indicators can be used

to address di�erent components of social equity. However, the choice of a measure

can produce drastically di�erent results. Using the Gini index as a comparison

framework, Neutens, Schwanen, Witlox & De Maeyer (2010) have found that both

cumulative accessibility and gravity type models can greatly overestimate equity

of access to di�erent urban services. On the other hand, both space-time and

utility indicators produce a far more conservative result. Moreover, there are con-

60



siderable di�erences within the same category of measures. This is especially true

for indicators focusing on the individual. To this extent, the choice and opera-

tionalisation of accessibility indicators remains an open challenge (Geurs 2018).

Consolidating the �ndings of this chapter, a comparison table between di�erent

accessibility indicators with respect to applications, theoretical basis, technical

considerations and equity considerations is given.
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Cumulative indicators Gravity type indicators Space-time indicators Utility based indicators

Theoretical

basis

Lacking individual behaviour

mechanism; generally weak

Spatial interaction mod-

elling; GLM regression;

entropy maximisation;

Time geography; Computa-

tional geometry

Welfare economics; microe-

conomics; discrete choice

theory

Technical con-

siderations

Can be integrated with other

indicators easily; Arbitrary

thresholds of contours; In-

variant across individuals

Non-linear functional form;

Lack of causal structure; Can

capture accessibility inter-

actions Calibration process

of balancing factors greatly

a�ects output; Propensity

for overestimating accessibil-

ity for origins with big mass;

Calibration parameters in-

variant across individuals

Calculation of realistic ex-

tent of PPA challenging; In-

teractions between accessi-

bility components geometri-

cally de�ned; Inherently in-

cludes temporal component

Linear additive form of ac-

cessibility components in the

utility function restrictive

for complex behaviours; Ad-

dressing correlations chal-

lenging for complex interac-

tions; Inclusion of dynamic

component di�cult; Esti-

mated coe�cients invariant

across people; Suitable for

microsimulation
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Equity consid-

erations

Can be related to both egal-

itarian (from a potential ac-

cessibility perspective ) and

su�cientarianism; Related

to the potential of activ-

ity participation; Increased

supply of opportunities does

not mean more choices; Only

applicable at an aggregated

level

Can be related to both egali-

tarian (from a potential ac-

cessibility perspective) and

su�cientarianism; Related

to the potential of activ-

ity participation; Accounts

for competition e�ects; Only

applicable at an aggregated

level

Can be related to egalitarian

principles both from poten-

tial and actual accessibility

perspectives; Not suitable for

competition e�ects; Applica-

ble at the level of individ-

ual; Does not prescribe be-

havioural mechanisms

Can be related to egalitarian

welfare approach and utili-

tarian principles; Not suit-

able for potential accessibil-

ity; Suitable for describing

individual behaviour

Practical con-

siderations

Easy to compute and com-

municate; Enables compar-

isons across geographic do-

mains (e.g. cities); Modest

data requirements

Calibration can be di�-

cult for highly disaggregated

models; Modest data re-

quirements

Di�cult to visualise and

communicate; Results not

easily generalised to popu-

lation level; Detailed travel

data are needed (e.g. travel

diaries, time use studies, cell-

tower data)

Di�cult to communicate to

non-experts; Case study re-

sults not easily comparable;

Requires detailed travel di-

ary data (e.g. travel diaries)
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Applications Applied in a wide range of

equity studies (e.g. urban

services (Kelobonye et al.

2020), healthcare (Neutens

2015), employment (El-

Geneidy, Buliung, Diab, van

Lierop, Langlois & Legrain

2016), infrastructure invest-

ment evaluations (Pereira

2019), food desserts (Farber

et al. 2014))

Applied in a wide range of

equity studies (e.g. pub-

lic transport (Karner 2018),

healthcare (Lowe & Sen

1996), employment (Merlin

& Hu 2017)

Applied in equity studies

at sub-population level

(e.g. ethnic background

and gender (Kwan 1999),

children (Casas et al. 2009),

urban-rural (Chen et al.

2019) ; Transportation in-

frastructure optimization

(Tong et al. 2015); Ur-

ban services optimisation

(Neutens, Schwanen, Witlox

& De Maeyer 2010)

Applied in equity studies fo-

cusing on interpersonal dif-

ferences (Neutens, Schwa-

nen, Witlox & De Maeyer

2010), transportation provi-

sion (Bills & Walker 2017,

Ramjerdi 2006); Suitable

for economic accessibility ap-

praisals (Bhandari et al.

2009); Suitable for policy

evaluation under di�erent

scenarios

Table 2.6: Comparison of di�erent accessibility indicators
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Taking into consideration the arguments presented in table 2.6 some authors

argue that there is a need to gain a more complete understanding of accessibility

in terms of the social justice challenges they are supposed to address (Pereira

et al. 2017). Approaching accessibility modelling through the lens of CA can be

useful in this regard. Despite the disadvantages mentioned in section 2.5.1, the CA

appears to be a promising candidate for expressing issues of social justice within

an accessibility framework (Nahmias-Biran et al. 2017, Hananel & Berechman

2016, Pereira et al. 2017). This potential is expressed by two qualities of the

CA: Providing a structure that describes the ability of an individual to transform

available goods and services into capabilities and welfare and; prescribing the

measurable quantities (capabilities) that can be used in equity evaluations.
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Chapter 3

Capabilities approach and

accessibility

3.1 Chapter overview

This chapter aims to introduce the Capabilities Approach (CA) as a framework

to structure accessibility modelling for equity related evaluations. It begins by

providing an overview of the basic concepts and premises, followed by a discus-

sion on how the CA has been used within the transportation literature from two

viewpoints: using the CA to de�ne accessibility and using the CA framework to

examine issues of equity in transport. It then argues that existing accessibility

measures fall behind in capturing the basic components of the CA, and concludes

by proposing a graph theoretic approach as an alternative. Some theoretical as-

pects of this chapter have been published in Journal of Transport Geography vol.

84 "Assessing transport related social exclusion using a capabilities approach to

accessibility framework: A dynamic Bayesian network approach" (Bantis & Ha-

worth 2020).

3.2 The Capabilities Approach

As already mentioned in section 2.5, the CA describes the ability of an individual

to function given the set of practical opportunities that are available to them (Sen

et al. 1990). Two notions are central in this theory:

� Capabilities: These refer to the practical opportunities available and are

the combination of beings and doings that a person can achieve (e.g. being

socially active; doing recreational and leisure activities etc.).
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� Functionings: These refer to the various things a person may value doing

and being (Sen 2014), representing what an individual actually achieves (e.g.

working; shopping; taking the bus etc.).

In accessibility terms, functioning can be understood as the realisation of day-

to-day activities (e.g. shopping, getting to work, visiting friends etc.). The practi-

cal opportunities constitute the capabilities that each person has to complete these

activities. Although the capability set is not directly observable, it can be derived

from a set of functioning vectors from which the person has the freedom to choose

(Mitra 2006). In this reading, the CA can be used to capture elements of social

freedom (the ability to achieve various functions and realise one's potential), the

ability to convert available resources (e.g. income, education levels etc.), welfare

(the ability to achieve these functions) and equity (by evaluating the `fairness' of

achieving those functions) (Hananel & Berechman 2016).

Within the CA, the notion of functioning vectors refer to all factors that shape

the capabilities set. The scope of functioning vectors can be very broad and can

be made to include di�erent elements such as an individual's characteristics (e.g.

age, income, impairment etc.), characteristics of the environment (e.g. social,

physical, cultural etc.) or commodities (e.g. possession of a car, availability of

public transport means etc.). Disaggregating the above, one can distinguish three

main concepts of the CA (Lelli 2008): The �rst one is the functioning vectors an

individual has at his/her disposal. The second is the ability to convert the elements

in these vectors in a way that will result in realised functionings (such as using the

available public transport). The third refers to the notion of capabilities, which

can be viewed as the set of all functionings a person could choose given his/her

ability to convert the elements of the functioning vector to realised functionings.

Besides the above, another concept that plays a central role in Sen's theory is

agency. In this framework, an agent is someone who acts and facilitates change.

This change is evaluated in terms of the subject's own values or opinions of what

is important. It is important to notice that although well-being and agency are

related concepts for Sen, they are not equivalent. One example commonly used is

that of practising fasting. Practising fasting can result in malnutrition and as a

result a degradation of one's well-being. Assuming the person has the capability to

choose whether to practice fasting (for religious reasons perhaps) or eat, a choice

of the former constitutes an act of agency.

This interpretation of agency is di�erent from that encountered in the principal-

agent problem, where an agent is someone who acts on behalf of someone else.

However, these two de�nitions need not be exclusive. For example, in the case of

people with mobility impairments relying on a carer to complete their day-to-day
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activities, the carer can have signi�cant impacts on the person's ability to achieve

his/her activities. The carer, for instance, might not be available at the times the

mobility impaired person needs to attend university lectures. In this context, the

actions of someone else are interfering with a person's agency, either expanding or

reducing capabilities. To address this issue, Sen distinguishes two types of agency

success (which means: one's goals become realised) (Keleher 2014): a) realised

agency success and b) instrumental agency success. In the �rst case one's objec-

tives are realised even if the individual doesn't play any role in the achievement.

Following the above example, the choice of the carer to assist the mobility impaired

person to visit the university beyond his/her normal working hours will result in

a realised agency success for the mobility impaired person. In the second case, it

is the actions of the person that facilitate the achievement. In our example, this

concept could be understood if the mobility impaired person o�ered some sort of

incentive for the carer as compensation for working beyond their normal working

hours.

Sen intentionally kept the CA framework loose so that a variable can be con-

sidered as a functioning, capability or characteristic that in�uences the capabilities

set, depending on the circumstance. However, this under-speci�cation is a subject

of criticism by researchers, who argue that it makes the application of the CA to

practical, everyday problems di�cult. These di�culties can be attributed to the

ambiguities in de�ning capabilities as well as to its bottom-up approach, requiring

participation of the people immediately involved (Comim 2008). Another issue of

the CA that is commonly raised is that of individualism. As mentioned in sec-

tion 2.5.1, the argument here is that the CA fails to account for capabilities that

arise from collective participation since it is focused on the individual level. As

such, there is the risk of omitting the importance of the institutions, public bodies

and communities that helped create and sustain the capabilities in the �rst place

(Deneulin 2008). However, some researchers (Alkire 2008) argue that such intrinsic

importance to group capabilities should be viewed with caution since participation

in collective activities on its own is not enough to evaluate well-being on the indi-

vidual level. The Dial-A-Ride example mentioned in section 2.5.1 is an example

of a group capability that doesn't necessarily result in increased well-being.

3.3 The capabilities approach in transportation litera-

ture

Given the recent interest of the CA in the context of accessibility, there are two

strands of studies in the literature: Studies that focus on de�ning accessibility
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through the use of the CA, and studies that use the CA framework to examine

issues of equity in transport through speci�c case studies. It is important to note

that these two bodies of research should not be viewed in isolation with each other

as the concepts and theoretical foundations often overlap.

3.3.1 Capabilities approach in transportation literature: De�ni-

tion of CA components

Hananel & Berechman (2016) argue that the �rst step towards translating the CA

to the transportation domain is to de�ne what is meant by capabilities. In their

view, a combination of the extent of mobility and access to opportunities for indi-

vidual population groups, especially the disadvantaged ones, could be considered

as good candidates for capabilities. These capabilities should re�ect the minimum

conditions that allow the least advantaged groups to bene�t from any transporta-

tion interventions. Thus, the functioning vectors may include measures such as

the maximum allowable travel time, travel distance or travel expenses for all res-

idents in the area of in�uence, focusing on the more disadvantaged. The authors

conclude that the capabilities and functioning vectors should not be viewed as

independent from one another, but should recognise and address the interactions

between them. As an example of how this approach can be implemented in prac-

tise, Hananel & Berechman (2016) demonstrate that addressing the a�ordability

of public transport through targeted interventions can result in the creation of

capabilities for the less a�uent people in King county, United States. However,

although a step in the right direction, this example doesn't elaborate on the way

such interventions can be expressed through the proposed functioning vectors,

given the complex interactions of the de�ned capabilities.

In another study, Beyazit (2011) juxtaposed the core elements of the CA with

concepts in transport research. In their analysis, functionings refer to the wider

de�nition of accessibility as described in section 2.4. Particularly, the transport

system constitutes the goods, while the provision of access to ones needs and wants

is the functioning of the transport system. Travelling for leisure could be one of

these functionings, as is travelling for social interaction. The capabilities then refer

to the mobility element that enables people to move from one location to another

physically, socially and �nancially, within a society and across societies. In this

way, people possess a capabilities set which translates into an opportunities set

of achievable functionings, from which they are free to chose. Manifestations of

these choices could be the travelling mode or modes, the choice of locations, the

reason to travel and the choice of travel time.

Hickman et al. (2017)'s interpretation of functionings and capabilities within
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the transport context is similar to that of Beyazit (2011). In their view, the func-

tionings represent what a person actually does and how. The realised functioning

element is represented by the actual travel behaviour and participation in activities

and as such, it is easier to measure. Measurement of capabilities on the other hand

is more challenging. The authors propose an individual based accessibility de�ni-

tion that encompasses, alongside physical accessibility, issues such as the type of

available infrastructure, land use, social and cultural norms and individual char-

acteristics. The de�ned capabilities set is speci�c to each individual and re�ects

the freedom to choose from di�erent potential functionings. However, this doesn't

mean that two persons with similar functionings have the same capabilities. For

example, a person with higher income may choose to have a similar mobility level

to a person of a lower income by choosing not to own or use a car.

For Grengs (2015), functionings are translated as achievements of what a per-

son manages to do or be. For example, using the di�erent transportation options

in order to be mobile, is an interpretation of a functioning. Having access to goods

and resources can enable functionings, just as an unfavorable physical and social

environment can disable them. Simply adding those functionings in a utilitarian

way does not re�ect their overall contribution to well-being since quality of life is

also determined by the opportunities available for the individual. In this reading,

a capability is a functioning an individual could have achieved. In this sense, ac-

cessibility as a measure of potential access to destinations re�ects the notion of

capabilities.

Pereira et al. (2017) proposes framing accessibility in terms of combined capa-

bilities, having two separable but interacting components. This �rst one relates to

a person's capability to access and use the transportation system, which depends

on the interplay between personal and external factors. Personal factors may be

individual characteristics such as physical and mental health, accumulated expe-

rience and �nancial resources. External factors may be the social environment as

well as the transport system's design, price level information or availability. The

second component refers to the more macroscopic view of accessibility which is re-

lated to the interaction between the transportation system and land-use patterns,

and how this interaction acts as an enabler towards the expansion of capabilities.

This includes elements of the transportation network such as network coverage

and connectivity, as well as the spatial distribution of activities.

A somewhat di�erent approach to de�ning capabilities and functionings is

adopted by Nahmias-Biran et al. (2017) and Nahmias-Biran & Shiftan (2019) . In

the author's view, the mobility element of accessibility represents the functionings

in the transportation domain, while the ability to reach opportunities represent
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capabilities. The former is associated with the act of travelling, the latter with the

traditional de�nition of accessibility. The authors proposed the use of a logsum

accessibility metric as a potential candidate for capturing the essence of capabili-

ties, however since this indicator is calculated on actual travel patterns, it's usage

contradicts the view of capability as the means to capture the possible opportuni-

ties that could have been chosen by an individual, re�ecting the idea of `freedom'

in Sen's approach (Martens & Golub 2012)

Tyler (2006) approached accessibility through the CA following a more mi-

croscopic view. Capabilities are perceived as the combination of the individual

abilities of a person, and the capabilities the environment provides. As Tyler

(2006) states, the physical infrastructure might require someone to be able to step

up 30cm to participate in an activity. If the person is not able to provide this ca-

pability based on their individual characteristics (eg. wheelchair user or elderly),

then participation in the activity is not possible. Therefore, there is an interaction

between what an individual can o�er and what the environment can provide. The

authors developed a measurement framework that relates the di�culty of achiev-

ing a task with the combination of required and provided capabilities (Holloway

& Tyler 2013, Cepolina & Tyler 2004). The result determines whether a task is

possible to achieve or not.

3.3.2 Capabilities approach in transportation literature: Case

studies

Reviewing the most relevant literature was done by examining the scope of the

studies with respect to equity issues in transport, the functioning vectors included,

the de�nitions of capabilities and functionings used in the study, as well as the

methodology followed and data used (table 3.1).
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Authors Scope Factors included Capabilities Functionings Methodology Data

Hickman

et al. (2017)

Investigating

transport disad-

vantage between

di�erent income

groups in Manilla,

Philippines

Proximity to trans-

port, security, air

pollution, access

to employment,

income etc.

eg. Travel to work

and other activities,

Information, Natu-

ral environment

Similar to capabili-

ties

Qualitative in-

terviews with

focus groups, self-

disclosing desired

and actual levels of

PT experience

Online question-

naires, face-to-face

interviews

Ryan et al.

(2015)

Evaluating levels of

interaction of PT

for elderly people

Income, driving

license, population

density, gender,

age, di�culties in

boarding a bus etc.

The extent that el-

derly people can

use public trans-

port for the major-

ity of their trips

Frequency of public

transport use

Logistic regressions

for capabilities

and functionings

using likert scale

responses for

dependent vari-

able and factors

as independent

variables

Travel survey

Nordbakke

(2013)

Investigating mo-

bility of older

women

Social networks, ac-

cess to car, physical

accessibility of the

build environment,

security

Availability of

PT, availability of

activities, access

to information, ac-

cess to alternative

transport

Mobility levels Qualitative inter-

views

Focus groups
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Smith,

Hirsch

& Davis

(2012)

Benchmarking

transportation

costs for rural

communities

Income, accessibil-

ity to services, age

and household com-

position etc.

Access and sustain

of activities such

as education, social

participation, em-

ployment, health-

care etc.

Types and number

of trips

Strati�ed sampling

followed by qualita-

tive interviews

Focus groups

Rashid

et al. (2010)

Exploring trans-

port disadvantage

Income, ethnicity,

household composi-

tion etc.

Trip frequency,

travel time, car

dependency

Similar to capabili-

ties

Principal com-

ponent analysis

followed by multi-

criteria evaluation

No information

given

Maciel et al.

(2015)

Exploring the mo-

bility dimension of

deprivation in Sao

Paulo

Income, education,

housing, access to

information etc.

Mobility and acces-

sibility

Commuting to

work patterns

Generation of de-

privation and acces-

sibility indices

Census, travel di-

ary data

Goodman

et al. (2014)

Investigating the ef-

fects of providing

free bus transport

to young Londoners

Location, gender

age, ethnicity,

deprivation

Social participation Free bus journeys Qualitative inter-

views

Focus groups

Yang & Day

(2016)

E�ect of job reloca-

tion on travel well-

being

Income, age, vehi-

cle ownership, loca-

tion, tra�c etc.

Preferred PT mode Used PT mode SEM Questionnaire
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Chikaraishi

et al. (2017)

Association be-

tween individual

capabilities and

travel time spent

Income, years of

schooling, car own-

ership

Leisure (consump-

tion) and employ-

ment (production)

Mobility PCA derived index Travel diary

Cao &

Hickman

(2019a)

Investigating

desired and ac-

tual levels of

participation to

opportunities

Gender, education,

age, employment,

car ownership etc.

Travel safety,

access to hospi-

tals/groceries/education/work/recreation

Similar to capabili-

ties

Multinomial regres-

sion

Travel surveys

Nahmias-

Biran et al.

(2017)

Evaluation of ben-

e�ts of transport

projects between

population groups

Income Access to di�erent

activities

Transportation

modes used

Logsum accessibil-

ity indicator

Synthetic data from

activity based mod-

els

Lira (2019) Examining eq-

uity to accessing

opportunities

Gender, age, dis-

abilities, safety, ac-

cess to information

etc.

Extrapolation of

functionings to

basic capabilities

Transport mode,

travel time, prox-

imity to other

transport users

Exploratory analy-

sis using likert scale

Online question-

naire survey

Table 3.1: Reviewed literature.
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Investigating transport disadvantage between di�erent population groups in

the city of Manilla, Philippines, Hickman et al. (2017) used qualitative structured

interviews to assess the levels of capabilities and functionings experienced by dif-

ferent individuals. The study showed that the more a�uent members of society

experience higher levels of capabilities and functionings relative to lower income

groups. This translates to transport infrastructure investments in the city af-

fecting disproportionately people with lower income. In this context, the use of

qualitative interviews provided direct input on the desired potential of individuals

for various capabilities (eg. levels of stress while travelling, levels of accessibility

to employment etc.), however, the nature of the research methods used makes it

inapplicable for use within the context of passive mobility data.

In two similar studies, Nahmias-Biran et al. (2017) and Nahmias-Biran &

Shiftan (2019) used data from activity based models to demonstrate the usefulness

of the logsum accessibility measure within a CA framework. Using a synthetic

binary logit choice model speci�cation, the authors de�ned di�erent thresholds of

logsum values to represent su�cient levels of capabilities. Although the authors

demonstrated the usefulness of the approach within the context of di�erent policy

evaluations between a simple �rich/poor� dichotomy of population groups, it is

unclear how the developed methods can be transferred to real world applications

given the complexity of individual activity/travel behaviour.

Looking at the mobility component of accessibility for elderly people, Ryan

et al. (2015), approached capabilities as the outcome of an individual's mobil-

ity resources. In this way, the potential of an individual to use public transport

constitutes an element of the capabilities set. Functionings are chosen by an in-

dividual from the elements of the capabilities set, which could be all the di�erent

transportation options. The de�nition of realised functionings as actual behaviour

is in line with Pereira et al. (2017), Hickman et al. (2017) 's and Beyazit (2011)'s

interpretation. The approach is demonstrated using a case study in Stockholm,

Sweden. Two independent logistic regression models are applied to a travel de-

mand questionnaire survey. The �rst one uses as a proxy for capabilities the

potential to travel given mobility resources, while the second repeated the experi-

ment with responses about the actual travel behaviour (functionings). The study

highlighted the importance of attributes such as living with a partner, health,

number of cars, education etc. in the ability to use public transport, however,

the study focused only on the mobility element of accessibility, without providing

insights on the levels of access (potential or actual) to particular opportunities at

a destination.

A similar methodology was adopted by Cao & Hickman (2019a) in a study
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aiming to understand the desired levels of participation in activities and the ac-

tual levels of participation in East Beijing, China. The authors used the former

as an indication of capabilities and the latter as an indication of functionings.

Using qualitative interviews, they assessed the di�erence between responses using

standard ANOVA (Analysis Of Variance) and F-test statistical techniques. To

determine whether spatial e�ects were signi�cant in the analysis between di�erent

geographical districts of the case study area, the authors used a MNL regression

model. The authors repeated the methodology in another case study for three east

London district areas (Cao & Hickman 2019b). The authors were able to identify

signi�cant di�erences between capabilities and functionings across individuals of

di�erent socioeconomic backgrounds, however, evaluating complex mobility be-

haviour in this context is di�cult using the proposed methodology (Zhu et al.

2018, Xie & Waller 2010, Yamamoto et al. 2004). This is particularly important

in the context of passive mobility data characterised by individual trajectories.

Within a similar research scope, Nordbakke (2013) examined the mobility of

elderly women in an urban setting. Capabilities are perceived as a combination of

individual resources as well as contextual characteristics (eg. the wider socioeco-

nomic environment). Barriers to mobility were perceived as disabling agents that

constrict the capabilities set. The geographical scope of the study was the city of

Oslo, Norway and the research method used was qualitative interviews and focus

groups with questions designed to probe the potential of travel. The authors found

that sociodemographic variables together with residential density were strong pre-

dictors for both the capability and functional elements of the study. Again here,

the study focused on the mobility element of accessibility without demonstrating

how the use of di�erent transportation modes result in increased levels of access

to opportunities.

Examining the equity gap for a case study in the city of Santiago, Chile, (Lira

2019) interpreted capabilities within the context of both available opportunities,

the freedom to choose between them and the ability to convert resources into

valuable functionings. All three components interact with each other in the context

of performing the activities an individual might value. The authors highlighted the

di�erence between this interpretation of evaluating equity and methods based on

the needs, satisfaction, happiness or subjective well being commonly employed in

the transportation equity literature. Using questionnaire surveys, the authors used

the perceptions of individuals to construct `weighted functionings' or functionings

weighted according to the relative importance an individual is attributing to them.

They then used this notion to `probe' on the individual capability levels. In this

sense, the study facilitated an exploratory approach to the notions of functionings
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and weighted functionings, as opposed to providing a modelling methodology that

can be transferred to di�erent application settings.

In a study to identify minimum income standards for transport use within rural

communities, (Smith, Hirsch & Davis 2012) used the CA to place income in the

wider notion of well-being. Income however, is only one of the factors that a�ect

people's capabilities to function. As a result, the authors extended the de�nition

of minimum income to refer to all the goods, services, opportunities and choices

to participate in society. This de�nition was then presented to focus groups that

were free to describe the capabilities needed to attain this function. These were

then translated to speci�c metrics such as types and numbers of trips required

which, along with other datasets (accessibility indicators, cost per mile, distances

etc.), were used to formulate the minimum income standard threshold for di�erent

rural population groups. Speci�c types of trips derived from this approach were:

access to groceries, household services and goods, transport, education, health,

employment, social and cultural participation. Similarly to other focus groups

related studies reviewed in this section (see table 3.1), the research methods are

out of scope in the context of using passive mobility data.

Other authors (Orr 2010) proposed to de�ne the capabilities set by focusing

on activities, both realised and potential. Once identifying these, the individual

capabilities required to achieve these can be mapped out (eg. access to su�cient

income). The authors then framed this approach in terms of evaluation of di�er-

ent transportation interventions aimed at minimising transport disadvantage and

social exclusion for elderly and disabled people. They proposed to break down an

activity into tasks and assess each task individually. For example, the activity "go-

ing to a shop" has a set of necessary tasks embedded, one which could be "taking

the bus". Speci�c barriers can then be associated with the particular tasks, such

as "fear of crime walking to the bus stop". In contrast to the above mentioned

case studies, this approach to de�ning and measuring the capabilities set is in-

herently data driven. The authors suggested possible sources of mobility data for

these tasks such as GPS. However, that implies having a robust methodology to

infer speci�c tasks/activities from unlabelled mobility data. As such, case studies

where this approach is applied were not provided.

A quantitative approach to evaluating transport disadvantage using the CA

was adopted by Rashid et al. (2010). In this study, the authors used the CA

to identify a set of variables believed to in�uence functionings, such as low trip

frequency, long distance travel, travel time and high private vehicle use. These

variables were related to three factors: socio-economic characteristics (e.g. in-

come, ethnicity), land-use characteristics (e.g. population density, neighbourhood
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types) and public transport characteristics (e.g. routes, stops). The next step of

the process was to apply dimensionality reduction techniques to de�ne a set of in-

dicators from the input variables and associate them with the functioning variables

by a linear additive relationship. Finally, the authors proposed performing multi-

criteria evaluation techniques to di�erent transport disadvantage scenarios and

examine the distribution of the indicators. Although the methodological frame-

work provided by the authors draws elements from the CA to identify and include

factors related to transport disadvantage, subsequent analysis doesn't di�erentiate

between capabilities and functionings.

3.3.3 Capabilities approach in transportation literature: Discus-

sion

The CA has been applied to a wide range of social issues in transport, ranging from

investigating the impact of speci�c transport interventions to evaluating transport

related social exclusion. In nearly all cases, the studies were based on empirical

�ndings within a speci�c geographical context, while the focus was on disadvan-

taged groups (eg. low income people, elderly, slum dwellers etc.) and within

a comparative evaluation framework. A considerable proportion of the reviewed

studies were qualitative, in line with the body of literature covering social aspects

of transport (Lucas & Porter 2016). The ones that were more quantitatively ori-

ented used statistical tools such as Structural Equation Models (SEM), Principal

Component Analysis (PCA) , logistic and MNL regression models. This suggests

that there is currently no consensus among researchers on how to quantitatively

operationalise the CA for issues related to transport and social exclusion. This

trait is not an exclusive property of the CA, and is associated with the nature of

considering equity in accessibility evaluations as discussed in section 2.4.2.

The de�nition of the elements included in the capabilities set and the corre-

sponding functionings is used interchangeably in some studies. This is not un-

common and has been identi�ed in applications of the CA to other social aspects

beyond transport (such as quality of life) (Robeyns 2005b). Reasons for this can

be traced in the de�nition of functionings as enablers to achieve the de�ned capa-

bilities, but also the close relationship between transport concepts such as mobility

and accessibility (for example, mobility can be considered both a functioning (us-

ing the bus) and a capability (ability to move)) (Chikaraishi 2017). In all cases,

however, there is a distinction between what is measured (functionings) and the

hypotheses to be tested (capabilities).

On the other hand, there exists a general consensus on the factors in�uencing

the capabilities set. This includes either focusing on the socioeconomic character-
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istics of an individual, the wider environment (both physical and social) or both.

In line with the social exclusion de�nition as provided by the Social Exclusion

Unit (Social Exclusion Unit 2003), sociodemographic variables such as income,

age and gender are all de�ning factors that in�uence accessibility and have been

included in the majority of the studies. Variables of the wider social environment

such as deprivation, although not explicitly accounted for, have been taken into

account during the design phase of most of the reviewed studies. Physical char-

acteristics such as distance to amenities and density of public transport have also

been adopted by the majority of the studies as important factors that shape the

capabilities set.

In terms of data used, qualitative data acquired using the CA as a method-

ological basis has been the most widely used. Such data provide a deeper insight

into the reasons behind accessibility issues as expressed in the latent capabilities

set, particularly in the cases where actual choice behaviour is restricted in some

way. However, there is currently no formal instrument designed to obtain infor-

mation on an individual's choices while avoiding the risk of subjectivity and bias

in the responses, particularly when incentives for participants to provide accurate

responses are insu�cient (Krishnakumar 2013). Furthermore, due to the complex

and costly nature of data collection, scaling the �ndings to the population level is

di�cult. This is of particular importance when evaluations of di�erences across

population groups is the goal of the study. In terms of quantitative studies, repur-

posed data (such as travel surveys) have been used by some of the studies. Such

data don't provide any insights on the capability sets, and they mostly relate to

data on achieved functionings. As such, it is up to the researcher to de�ne the

latent (hidden) capabilities set using previous research in the �eld or additional

research through focus groups. The main advantage is the larger penetration of

the general population, which is often coupled with sociodemographic data at an

individual or household level.

Although all of the studies reviewed here make implicit and explicit connections

of the CA with accessibility as the multidimensional concept de�ned in section 2.4,

none elaborate on how existing numerical accessibility methods can be used within

the CA framework.

Finally, in spite of the advantages of passively generated mobility data from

transport service providers, namely larger samples, regular update rate, low cost

and the potential for longitudinal studies (Pelletier et al. 2011, Bagchi & White

2005), none of the reviewed literature has explored their potential to extract quan-

ti�able evidence of social exclusion and transport disadvantage. This is true within

the accessibility literature in general (Anda et al. 2017) and the CA in particu-
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lar. This is largely due to the unlabelled nature of such datasets, requiring an

additional step to infer activity types at a destination.

3.4 How do existing numerical accessibility measures

�t within the Capabilities Approach framework?

After examining the way the CA has been used in transport studies, some common

themes emerge between accessibility and the CA:

� Capabilities represent the potential of an individual to reach and engage

with opportunities. Realised functionings represent the observed behaviour

of the above. Both of the terms are in line with the general de�nition of

accessibility as set out in section 2.4.

� The focus of the CA is the individual and in this sense in line with individual

based accessibility indicators. Moreover, it takes into consideration the in-

�uence of internal and external factors that shape the individual capabilities

set.

� The capabilities set is not static but in constant interaction with the com-

ponents that shape it and the realised behaviour expressed by the actual

functionings. The evolving nature of the capabilities set extends both spa-

tially and temporally, in the sense that is modi�ed based on location and

time.

Moreover, there is a causal structure between the factors that shape the ca-

pabilities, the capabilities themselves and the functionings. This causal structure

appears to be hierarchical in nature, with the functionings appearing at the bottom

of the hierarchy and the factors appearing at the top.

The fact that the CA framework is applied at the individual level renders ac-

cessibility as the potential of interaction and cumulative based indicators incom-

patible (Pereira et al. 2017). This is because such measures analyse accessibility

at a particular location where it is assumed that all individuals at the location's

catchment have the same accessibility levels (Geurs & Ritsema van Eck 2001).

This is true even if disaggregation for di�erent socio demographic groups occurs.

However, it is important to notice that the concept of potential access to oppor-

tunities represented in such indicators (particularly cumulative based accessibility

indicators) to express freedom of choice, is still relevant in the context of de�ning

capabilities.
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On the other hand, individual accessibility indicators approach the concept as

an attribute of an individual. This property is in line with the general premises

of the CA framework. This property is in line with the general premises of the

CA framework. However, as both utility and space-time accessibility use actual

individual behaviour to derive the indicators, it is important to emphasize that

the concept of freedom in Sen's approach is not adequately represented.

A discussion on the strengths and weaknesses of each accessibility indicator was

given in section 2.2.1. The following section will relate these insights in the context

of using the CA as a platform to express equity issues in transport, focusing on

individual accessibility indicators.

3.4.1 Space-time accessibility indicators

Space time accessibility focuses on the potential area of opportunities that can

be reached within a given temporal constraint (Geurs & Ritsema van Eck 2001).

These potential areas represent the accessibility levels of an individual and are

derived from individual level mobility data (such as GPS traces, travel diaries

etc.). They are calculated using either the volume of the space-time prism or its

projected area on the spatial plane.

In its simplest form, the shape of the construct is purely geometrically derived

based on the set of locations that can be reached within a prede�ned time inter-

val, assuming some speed of movement (Ettema & Timmermans 2007). However,

many authors have extended the framework to account for di�erent assumptions.

For example, it is not uncommon to account for the relative attractiveness of the

di�erent opportunities based on some utility or gravity type based formulation

(Geurs & Ritsema van Eck 2001). Other authors have examined how di�erent

assumptions about the uncertainty of the scheduled times between activities can

be incorporated in the standard space-time prism calculation (Ettema & Timmer-

mans 2007). Focusing on quantifying the uncertainty of the traveller's movement

in space, Winter & Yin (2011) formulated a probabilistic approach for calculat-

ing the potential path's surface. The uncertainty in this case is evaluated using

stochastic processes, such as random walks, constructed using unbiased or biased

transition matrices. The latter case is useful for accounting for the relative attrac-

tiveness of destinations.

In all cases, however, the space-time prism is determined by the spatiotempo-

ral constraints such as maximum speed, distance, time budget or, in the case of

introducing a bias, the attractiveness of a destination. Individual characteristics

and external factor in�uences on accessibility can only be determined by looking

at di�erences between space-time derived metrics across individuals of di�erent
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sociodemographic characteristics. For example, Kwan (1999) compared the po-

tential path areas between individuals of di�erent gender in Ohio, USA, when

assessing the relative accessibility to di�erent day-to-day opportunities (such as

shopping, entertainment, education etc.). In a study focusing on children's access

to urban opportunities (such as home, school, recreational) Casas et al. (2009) pos-

tulated that the resulting space-time metrics could be used to re�ect household

characteristics such as income and the guardian's working hours.

Following from the above discussion, space-time accessibility measures, al-

though useful for di�erent applications ranging from assessing policy implications

to visualisation (Neutens et al. 2011), do not quantify the magnitude and signif-

icance of interactions between the variables. Moreover, the causal structure be-

tween resources/capabilities and functionings is di�cult to represent using space-

time accessibility measures.

3.4.2 Utility based accessibility indicators

Utility based accessibility measures assign a utility to each destination choice ele-

ment from a �nite destination set. Within a multinomial logit/logsum formulation,

the destination set can be represented as a multinomial distribution over a �nite

set of opportunity categories such that for each xi ∈ {0...n} destinations belonging
to i ∈ {1...κ} opportunity categories, there is a corresponding probability vector

p1...pκ with
∑

κ p = 1. This probability vector is informed by the utility assigned

to each xi and the probability vector is inferred from the individual's observed

behaviour. Although the resulting probability vector can relay to concepts of the

CA as a representation of the capabilities set, such an assertion is not completely

accurate as its calculation is not based in the utility travellers are experiencing,

but on the utility of their �nal decision (Chorus & De Jong 2011). More compli-

cated models including latent components for choice formation, could potentially

be used to add a layer of abstraction between the observed choices and the hidden

combinations of choice sets to represent the capabilities set (e.g. Cross-nested

Logit (Vovsha 1997), GenL (Swait 2001)). These models generally perceive the

latent choice sets as subsets of a `master' set each one having a certain probability

of being the `true' choice set. However, as already mentioned in section 2.2.1.4

these structures were originally introduced to capture the correlations between

di�erent choices, resulting from incomplete knowledge about the decision making

process or captivity e�ects (choices not available to an individual by default), and

not as an alternative to the reasoning process that de�nes the potential behaviour

of an individual. On the other hand, incorporating a degree of prior belief in

a Bayesian setting to inform an individual's decision making process has been
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proposed as a more �exible alternative to account for the behaviour uncertainty

(Brownstone 2001, Daziano et al. 2013). This stems from the fact that using such

a speci�cation, uncertainty and additional decision making process assumptions

can be accounted for within the context of each potential choice. This adds more

�exibility for representing the shape of the capabilities set as in this speci�cation,

data that are not directly related to the utility function can be included. Examples

include prior beliefs made on the basis of past studies or subject matter expertise

that can express the potential of an individual's behaviour before observing the

data.

In its basic form, the utility function can be formulated to include explanatory

variables in the form of covariates that are assumed to contribute to the choice

of κ alternatives. This is usually approached in a deterministic way, as a linear

additive function of covariates with coe�cients βκ: Ui = Vi + εi =
∑

κ βκxiκ + ε

where ε corresponds to the error term. The covariates xiκ can be chosen to repre-

sent the attractiveness of di�erent destinations as well as personal characteristics

of travelers (Dong et al. 2006). In this way, external and internal factors that

in�uence the accessibility of an individual can be included in the model. For

example, Bocarejo S & Oviedo H (2012) formulated the utility function using

di�erent variables such as occupation, age and income level as well as land use

variables such as activities distribution. The goal of the study was to analyse

the e�ects of the introduction of a new bus rapid transit line on elements of so-

cial exclusion for the travellers a�ected. In another study Doi et al. (2008) used a

utility-based accessibility model to investigate the travel patterns of elderly people

and their relationship with gender and ethnicity in Japan. The linear additive form

in the deterministic part of utility function is considered a standard in discrete

choice modelling literature, and this holds true for simple to more complicated

models. Such a speci�cation introduces restrictions in the context of the CA as

representation of complex interactions between the elements of the functioning

vectors becomes di�cult. Although there exist non-linear representations of util-

ity parameters, estimation, model convergence and interpretation is more di�cult

(Train 2009).

In the context of CA, the functioning vectors have been identi�ed as the set

of resources, the socio-spatial context, and preference mechanisms that shape the

capabilities set. These factors are often context and situation dependent and

in�uence the capacity of an individual to choose an achievable functioning from

the capabilities set at di�erent levels (e.g. long term, short term). Utility based

models are in essence discriminative models capturing the choice probability of

the utility function given the di�erent explanatory variables P (U |x), which in
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the context of CA can be related to the functioning vectors. Inference using

observed data results in estimates of the strength and signi�cance of the covariates

on the choice set. Although this process can provide insights on the degree of

in�uence of the explanatory variables in the probability choice vector, it generally

doesn't impose any speci�c structure on the relationship between the explanatory

variables and the di�erent opportunity choices apart from the assumption that

choice probability is expressed by a linear combination of covariates. Approaching

a latent quantity such as capabilities using an approach that does not impose

a generative structure makes interpretation of the interactions di�cult. On the

other hand, using a causal structure on the functioning vectors would allow easier

interpretation of the model's output. Causal modelling techniques such as belief

networks, Bayesian and decision networks can be a promising alternative in this

regard. Such modelling speci�cations have been applied successfully in problems

where modelling decision making process under uncertainty is the focus. Examples

include transportation mode choice behaviour (Ma 2015, Verhoeven et al. 2005,

Daziano et al. 2013), location choice modelling (Ma & Klein 2018) and activity-

travel behaviour (Koushik et al. 2020). The CA in this regard can provide the

basis upon which the causal structure is de�ned.

3.5 A Capabilities Approach accessibility framework

Following from the discussion of sections 3.3 and 3.4, it is clear that no individ-

ual accessibility numerical measurement framework exists that captures all the

elements of the CA as set out in section 3.3.1. Space-time accessibility measures

can be related to the concept of capabilities through the use of the space-time

prism. However, its computation emphasizes primarily on the spatiotemporal

components of accessibility. On the other hand, utility-based measures focus on

measuring the actual behaviour (the functionings) and are not suited to quantify

the potential behaviour of individuals. When it comes to including all the fac-

tors that in�uence the shape of the capabilities set, utility-based measures can

incorporate external and internal factors through the utility function however the

linear functional form limits the �exibility of expressing complex interactions in

an interpretable way. Space-time measures on the other hand, do not provide a

native framework to do so. However, they can be modi�ed to include destination

attraction factors through incorporating a utility function in the calculation of

the space time prism (Geurs & Ritsema van Eck 2001). In both individual ac-

cessibility measures, interactions between all the factors in�uencing accessibility

are not explicitly quanti�ed. As a result, researchers interested in the interactions
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between accessibility and personal characteristics often use other modelling frame-

works such as structural equation modelling (Simma & Axhausen 2003, Van Acker

et al. 2010, 2007).

3.5.1 The Capabilities Approach to accessibility as a graph

Using the CA framework as a guide, it is possible to form a basic structure that

speci�es how the basic accessibility components relate to each other and interact

in a causal way. The di�erent concepts of the CA and the way they are linked

are shown in �gure 3.1 (Mitra 2006, Beyazit 2011). At an observable level, one

encounters the functionings of an individual. Within an accessibility setting, this

node refers to the realised activities as well as the realised transportation modes

used to reach those activities. Moving one level up the hierarchy there exists the

latent set of capabilities that form the choice set of an individual. These are all

the potential opportunities an individual could choose. In this setting, a realisa-

tion of a chosen element of the capabilities set leads to an observed functioning.

This in turn is in�uenced by personal, environmental and social characteristics,

as well as the commodities a person has in his/her possession. All variables of

this representation are expressed through stochastic quantities that aim to quan-

tify uncertainty from incomplete knowledge about the state of variables, as in the

case of capabilities, or from noisy and erroneous measurements, as in the case of

functionings. In this line of argument, the CA is used as a theoretical framework

upon which an interpretation of individual accessibility is constructed, as opposed

to providing the platform upon which issues of social equity are discussed. This

is in accordance with the current practice of the CA used in empirical and ap-

plied studies (Robeyns 2005a). Nevertheless, by using the hierarchical structure

between personal/environmental characteristics, capabilities and functionings, the

degree of contribution of each of the components to an individual's levels of social

exclusion and transport disadvantage can be evaluated.

The process is relevant for each individual and takes place in space and time

during the act of reaching opportunities. In this setting, the capabilities set

changes depending on the characteristics of the environment that exists in each

location at a particular point in time (t = 1...n). This representation imposes a

structure on accessibility through the use of a directed graph, where the nodes

represent the components of the CA and the edges the relationship between them.

The graph is acyclic, in the sense that no closed loops appear between the nodes.

This allows information to �ow from the top level to the bottom level nodes.

The whole process should not be independent between subsequent time steps but

should capture the dynamic evolution of capabilities through time.
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Figure 3.1: The CA (adopted from Mitra (2006)).

3.6 Chapter summary

This chapter provided an overview of the CA, with emphasis placed on the rela-

tionship with accessibility. It is argued that, given the themes most commonly

mentioned in the literature on this relationship, none of the existing numerical ac-

cessibility measures succeeds in providing a framework for implementation. Draw-

ing from the hierarchical and causal structure of this formulation, it is postulated

that graphical models could provide the mathematical foundations to represent the

building blocks for the Capabilities Approach to Accessibility (CAA) framework.

The next chapter will introduce the background on the theory behind graphical

models as well as their applications within the wider accessibility/transportation

literature.

86



Chapter 4

Graphical Models

4.1 Chapter overview

The previous chapters discussed some theoretic aspects of the link between the

Capabilities Approach (CA) and accessibility. It was argued that traditional ap-

proaches such as discrete choice models are insu�cient given the requirements of

this thesis (section 3.4). Therefore it was postulated that graphical models could

provide an implementation alternative to already existing accessibility measures.

This chapter will introduce some basic terminology of graphical models before

proceeding to the description of two main families of models used within the wider

accessibility/transportation literature: probabilistic graphical models and struc-

tural equation models. Given both the inferential requirements from unlabelled

mobility data and the accessibility modelling requirements of this thesis, each main

type of model will be assessed through the lens of computational intelligence (infer-

ring semantic information from unlabelled mobility data) and statistical inference

(inferring the properties of the underlying model and interpreting the relationship

between variables).

4.2 Graphs

Graphical models are statistical/mathematical models that use a graph structure

to represent the relationship of a set of variables. Such models have been used

throughout an extremely wide domain of disciplines, with applications ranging

from psychology, social sciences and econometrics to genetics and machine learning

(Koller & Friedman 2009, Pearl 2009).

More general, in discrete mathematics, a graph G is an object consisting

of nodes and edges such that G = (N,E) where N is the set of nodes N =

{X1,X2...Xn} where Xi can correspond to a mathematical object (eg. random
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Table 4.1: Basic terminology of graphs

Term Description

Nodes The set of random variables N = {X1,X2...Xn}
Edges The set of pairs where each pair is either Xi −→

Xj , Xj −→ Xi or Xi −Xj
Subgraph A subset Gi such that Gi ⊂ G
Directed

edge

An edge connecting nodes that have a par-

ent/child relationship Xi −→ Xj
Undirected

edge

An edge connecting nodes that are neighbors

such that Xi −Xj
Path A sequence of edges that connect a sequence of

nodes. These can be directed or undirected. The

term trail instead of path is often used for undi-

rected paths.

Neighborhood

(of a node)

The immediate adjacent nodes of a particular

node that are connected with an edge.

Cycle A cyclic path occurs in a directed graph

when a node leads to itself: eg. for N =

{X1,X2...Xκ},X1 = Xκ.
Directed

Acyclic

Graph

(DAG)

A graph is acyclic when there are no cycles oc-

curring. Such a graph is referred to as a directed

acyclic graph .

variables, deterministic functions, linear models) and E is the set of edges con-

necting the nodes.

There are two types of edges, directed and undirected. A directed edge between

Xi −→ Xj implies a conditional probability P (Xj |Xi) while an undirected edge

Xi − Xj implies a joint probability P (Xi,Xj). Table 4.1 summarises the basic

terminology of graphs in the context of graphical models after Koller & Friedman

(2009).

As the type of graph is determined by the type of edges, one can make the

distinction between directed and undirected graphical models. However, there

exists a structure where both directed and undirected edges exist in the same

graph, the mixed graphical models.
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4.3 Graphical models

In the context of using the Capabilities Approach (CA) as a structure to model ac-

cessibility for applications related to transport related social exclusion and equity,

graphical models o�er some distinct advantages compared to traditional accessi-

bility indicators:

� The graphical structure encodes causal relationships between a set of stochas-

tic variables for a problem domain. In this way, the causal �ow between

functioning vectors/capabilities /realised functionings can be explicitly rep-

resented.

� The conditional probabilities used to express relationships, allow for a fully

probabilistic approach to the problem. In the context of representing the

potential behaviour of individuals, this enables incorporation of assumptions

(derived by secondary data and prior knowledge) related to forming the

latent capabilities component as a set of conditional probabilities

� Expressing every variable in the model as a stochastic variable, enables quan-

ti�cation of uncertainty through the shape of the resulting probability dis-

tributions. This is highly desirable in the context of incomplete information

about the factors in�uencing capabilities.

� Graphical models allow propagation of information among the variables, as

dictated by the graphical structure. This allows updating the state of capa-

bilities related variables in the face of new evidence, enabling a more precise

representation of capabilities as a compromise between resources (expressed

by prior information and covariates) and welfare (expressed by the realised

functionings).

� Graphical models can be easily extended to account for the dynamic repre-

sentation of processes in both the temporal and spatial domain, rendering

them ideal for modelling evolving phenomena such as the capabilities of an

individual.

4.4 Probabilistic graphical models

Probabilistic graphical models �rst appeared in the area of statistical physics

in 1902 when modelling the interactions between particles (Gibbs 2014). Two

decades later, Wright (1921) used such models to represent the genetic inheritance
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of species. More recently, probabilistic graphical models were the key to under-

standing the human genome through DNA sequencing (National Human Genome

Research Institute 2017) and today they are an integral part of many machine

learning algorithms.

In probabilistic graphical models, the model is represented by a joint probabil-

ity density over the set of random variables, while the graph structure represents

the skeleton dictating how the variables are related with each other. This graphical

representation has several bene�ts (Koller & Friedman 2009):

� It allows the representation of a phenomenon using a model structure that

captures the �ow of information in a causal way

� It signi�cantly reduces the inference feature space by a set of probabilistic

assumptions on the state of dependencies between the variables, making

inference tractable.

� It provides a transparent framework for humans to understand and evaluate

the semantics and properties of the phenomenon associated with the model.

� It allows for knowledge discovery, through the use of queries and what if

questions through the use of conditional probabilities.

There are two main probabilistic graphical model types: undirected graphical

models and Bayesian networks.

4.4.1 Undirected Graphical Models

As the name suggests, an Undirected Graphical Model (UGM) is a representation

of a joint distribution between random variables where the factorization relative

to the graph structure doesn't assume any direction. Figure 4.1 shows a simple

model with four random variables.

D

EC

B A

Figure 4.1: A simple Undirected Graphical Model
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Such models are often referred to as Markov networks or Markov Random

Fields (MRFs) due to the 'memoryless' property of Markov processes. This dic-

tates that information about the events that are separated by a random vari-

able not belonging in their immediate neighborhood, are conditionally indepen-

dent given the separating node. In the graph of �gure 4.1 this translates to

P (C ⊥ A|D). This does not imply complete independence between C and A,

it simply transcribes the fact that if we know the outcome of D then the outcome

of A does not contribute to the outcome of D as all information related to C is

determined by D. On the other hand, if the outcome of D is not known, then

information about A could help determining C.

The joint distribution of an undirected graphical model is encoded by a set of

factor potentials which are determined based on the graph structure. In the graph

of �gure 4.1 the factor potentials are φ1(C,D), φ2(A,D), φ3(B,D), φ4(D,E). The

term potential intuitively refers to the compatibility among variables in their im-

mediate neighborhood: the larger the potential the more compatible are the vari-

ables in the graph con�guration (Liao, Fox & Kautz 2007). The joint density in

the above example is then:

P (A,B,C,D) =
1

Z
φ1(C,D), φ2(A,D), φ3(B,D), φ4(D,E) (4.1)

where, in the case of discrete random variables,

Z =
∑

A,B,C,D,E

φ1(C,D), φ2(A,D), φ3(B,D), φ4(D,E) (4.2)

is the normalising constant transforming the equation 4.1 into a valid probability

distribution, and is referred to as the partition function.

Advantages of such speci�cation is that it allows greater �exibility when repre-

senting the interactions between the variables, as no assumptions on the direction

of �ow of the information is made. However, this can have an impact of the inter-

pretability of the results as it is not clear what the cause and e�ect relationship is

for the analyst (Koller & Friedman 2009).

Of the multitude of undirected graphical model speci�cations (Robert 2014),

only the ones that were used in applications related to the broader accessibil-

ity/transportation literature are discussed.

4.4.1.1 MRFs in statistical inference

Ubiquitous examples of this class of graphical models for di�erent disciplines are

Gaussian Markov Random Fields (GMRF). A GMRF is a �nite dimensional ran-
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dom vector following a multivariate Gaussian distribution (Rue & Held 2005).

GMRFs are speci�ed through a set of conditional distributions of one node given

its neighborhood (Gelfand et al. 2010) using an undirected graph structure. For

a random vector X = (X1, X2...Xn) with respect to a graph G = (V1...n, E) a

GMRF has a probability density of the form:

P (X) = (2π)−n/2|Q|1/2exp(−1

2
((x− µ)TQ(x− µ)) (4.3)

where Q is a positive de�nite precision matrix (the inverse of the covariance ma-

trix) with individual entries Qij 6= 0 for i, j ∈ E and i 6= j.

GMRFs are used in many �elds of discrete spatial statistics when a task re-

quires reasoning under uncertainty for di�erent spatial phenomena, ranging from

spatial econometrics to disease mapping. A common way to incorporate this spec-

i�cation to analytical and predictive models is through a regression framework.

This can be done by using the spatial structure speci�ed by the graph to account

for the interdependence of observations due to their locations in space. In the

static case, where no temporal dependency is assumed, Simultaneous Autoregres-

sive Model (SAR) (Anselin 2013) and Conditional Autoregressive Models (CAR)

(Besag et al. 1991) have been extensively used in di�erent applications. Assuming

an observation random vector Y = (Y1, Y2, ...Yn) with variables representing the

nodes of an undirected graph and W a matrix encoding the adjacency structure

as speci�ed by the edge connectivity between the variables in the graph then in

the SAR approach:

Y ∼ N(0, C) (4.4)

C = [(In − ρW )T (In − ρW )]−1

In this speci�cation, ρ is a spatial coe�cient controlling the strength of the

spatial dependency while W causes simultaneous autoregression of each random

variable on its neighbors (Hoef et al. 2017). On the other hand, within a CAR

model speci�cation, every variable of the random �eld is conditionally speci�ed

only by its neighboring nodes. In its simplest form (Intrinsic Conditional Autore-

gressive Model, ICAR):

Yi|y−i ∼ N(
∑
cij 6=0

cijyj ,mij) (4.5)

where y−i represents all the realization's of Y neighbours, cij are the elements of

the spatial dependency matrix and mij is the i, j element of a variance matrix M.
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Both models have been used in applications within the broader transportation

literature, particularly with applications related to modelling the interactions be-

tween land use and transportation. The choice of one over the other depends on

the type of assumptions on the degree of in�uence of the spatial con�guration,

as well as the particular goal of the study. When observations are assumed to

be correlated on global level, a SAR speci�cation is more appropriate. When the

e�ect of the spatial con�guration is assumed to be localised, a CAR model can be

used instead.

For example, following the assumption that the spatial con�guration of resi-

dential properties locations is correlated with their price, Löchl & Axhausen (2010)

used a SAR speci�cation to model the in�uence of land use and transport charac-

teristics in property prices. In another study, Ahlfeldt (2011) used a similar model

to explain the in�uence of land use in property prices within a gravity-based ac-

cessibility model. They found that accounting for the spatial heterogeneity of land

value can signi�cantly improve standard gravity based employment/transport ac-

cessibility models. Investigating the hypothesis that jobs that can be accessed

by di�erent transportation modes between neighboring districts interact spatially

with each other (due to similar physical and socioeconomic conditions), Wang

& Chen (2015) used a SAR model to test the signi�cance of the spatial e�ect of

gravity type accessibility measures for walking, public transport and bus regressed

on socioeconomic and built environment characteristics. Implementation of such

a model informed the discovery of the transport disadvantage of single-parent

households on transport-based job access. Looking at the travelling behaviour of

disabled people, Bantis et al. (2017) used a CAR model to identify the most likely

transportation access points that people might use in case of an emergency. They

found that the spatial variability accounted by a Poisson regression with a CAR

speci�cation can account for the increased uncertainty of people's whereabouts

during such events. Modelling the subjective travel satisfaction of travelers using

sociodemographic attributes, location variables and travel related characteristics,

Dong et al. (2016) used a CAR speci�cation to account for the spatial e�ects

within a multilevel modelling regression framework for the city of Beijing, China.

They found that modelling the spatial correlation between district level covariates,

can help prioritise potential transportation interventions between districts.

4.4.1.2 MRFs in computational intelligence

Besides tasks related to statistical inference, MRF have also been used for com-

putational intelligence in machine learning algorithms. This broader category of

MRFs is generally concerned with the e�cient representation of the underlying
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properties of data and also in the task of generating accurate and reliable predic-

tions (Karlaftis & Vlahogianni 2011). Researchers using such models are mostly

interested in data driven classi�cation/clustering tasks given a highly non-linear

feature space. Due to this shift of focus, applications directly related in accessibil-

ity topics that use MRF in such a way is more limited compared to tasks inference

tasks. On the other hand, applications of MRF through computational approach

allow the exploration of mobility related data that can reveal a great deal of detail

related to individual's mobility behaviour. For example, Liao et al. (2006) used a

Relational Markov Network (RMN) to classify raw GPS traces to speci�c activi-

ties such as driving, working and using public transportation. A RMM is a MRF

that extents factor potentials into higher hierarchical layers describing how they

are linked with each other:

P (Y |X) =
1

Z

∏
C∈C

∏
vC∈C

ψ(C)φ(vC) (4.6)

where C is the set of all higher level factor potential cliques and vC is the set of

all factor potentials de�ned by the graph.

In this way, the authors were able to use the spatiotemporal structure of in-

dividual GPS traces together with secondary information to discover the actual

activity pro�les of individuals. In a later study, the authors extended the hierar-

chical structure of this model to to include clustering at a factor potential clique

level to discover contextual signi�cant activity places such as visiting a friend,

working etc.(Liao, Fox & Kautz 2007). Using a spatially coarser cell phone CDR

(Call Detail Records) dataset, Widhalm et al. (2015) used a RMN to cluster the

raw data into activity classes such as home, work, shopping and leisure. They did

that by de�ning a set of clique potentials representing joint densities of of com-

binations of variables such as activity type and land use, activity type, starting

time and duration of activity etc. They found that such an approach is able to

e�ciently reconstruct activity patterns appearing in conventional travel surveys

(such as paper and pencil surveys, computer assisted telephone surveys etc.).

Modelling the higher level of interactions between di�erent activities, Markov

Logic Networks (MLNs) have been proposed as a promising technique (Yang 2009).

A MLN is a representation of �rst-logic arguments and their relationships within

an undirected graph structure (Murphy 2012). The arguments are referred to as

formulas and are constructed using four types of symbols: constants, variables,

functions, and predicates. Constant symbols represent the constant objects in an

assertion, variable symbols allow to range over the objects, function symbols map

objects to other objects in the domain and predicate symbols represent the rela-
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tions of objects in a domain. Examples of such arguments could be (Li et al. 2017):

The rainy weather causes car choice preference to increase, the rainy weather

causes tra�c jams, tra�c jam causes public transit to have a longer travel time.

In terms of applications, Li et al. (2017) followed a MLNs approach to modelling

transportation choice behaviour. The logic arguments used in the study related

transportation mode choice with levels of satisfaction using data from stated pref-

erences survey. They found that such a framework can o�er a richer representation

of unobserved uncertainty in transportation mode choice modelling compared to

a multinomial logit model.

Discovery of the choice of transportation modes used was also the research

topic of Zheng et al. (2008). The authors used GPS traces were to infer whether an

individual is walking, driving, using the bus or cycling. Using Conditional Random

Fields (CRFs), the authors were able to capture the spatiotemporal dependence

between the transportation modes and the raw observations. A CRF is a speci�c

type of MRF where all factor potentials are conditioned on input features (Murphy

2012):

P (Y |X,w) =
1

Z

∏
c

ψ(yc|x,w) (4.7)

where ψ(yc|x,w) is usually modelled as ψ(yc|x,w) = exp(wTc φ(x, yc)), x are the

observed variables, yc the transportation mode labels and w the associated weight

vector.

The authors commented on the potential of CRFs to model data of sequential

nature, however, they found that the relatively unchanged transportation mode

state spaces (as most of the individuals didn't change transportation mode within a

trip) didn't allow fully leveraging the advantages of CRFs on labelling raw mobility

data.

In another study, Mohamed et al. (2014) used Hidden Markov Random Field

(HMRF) to cluster people travel patterns using AFC data and socioeconomic

variables. A HMRF is a generalisation of a Hidden Markov Model (HMM) which

is a stochastic processes de�ned by a markov chain with latent (non-observable)

states. The observable underlying graph within a HMRF speci�cation is de�ned

by a MRF:

p(yi|xi, xN ) = p(yi|xi)p(xi|xN〉) (4.8)

where xN〉 is the neighborhood con�guration of xi. Using this speci�cation, the

authors were able to discover the varying travel to employment patterns and at-

tribute them to the similarity of socioeconomic characteristics of di�erent popu-

lation groups.
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4.4.2 Bayesian Networks

Contrary to UGMs, Bayesian Networks (BNs) factorise the joint probability den-

sity of a set of random variables according to the directional structure of a directed

graph. Figure 4.2 shows a directed equivalent model of �gure 4.1:

D
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B A

Figure 4.2: A simple Bayesian network

A BN is a DAG representing the conditional independence assumptions that

factorise the joint distribution by the type and nature of connections between the

variables. The joint density of �gure 4.2 factors:

P (A,B,C,D) = P (C|D)P (E|D)P (D|B,A)P (B)P (A) (4.9)

Bayesian networks combine the graph structure of a directed graph with the

advantages of Bayesian inference. The term "Bayesian networks" doesn't neces-

sarily imply that BN are committed to Bayesian statistics (Murphy 2012). Rather,

they use the notion of conditional probabilities as speci�ed by Bayes rule:

P (A|B) =
P (A,B)

P (B)
=⇒ P (B|A) =

P (A|B)P (B)

P (A)
(4.10)

When two nodes are directly connected (eg. nodes D and C in �gure 4.2) then

these two random variables directly in�uence each other regardless of any evidence

about the values of the rest of the variables. In the case of an indirect connection

one can distinguish four cases of variable interactions (Koller & Friedman 2009):

Indirect causal e�ect, indirect evidential e�ect, common cause and common e�ect.

Indirect causal e�ect occurs when a path between two variables does not con-

tain any variables for which evidence exists. In the example of �gure 4.2, the

nodes B and C interact with each other only if node D is not observed. Intu-

itively, one can think that if node D is observed, then information about the node

B doesn't change the beliefs for the values of node C. Indirect evidential e�ect is
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the symmetrical opposite of the previous case. Speci�cally, the values of node B

are in�uenced by the outcomes of C only when D is not observed. This is due to

the symmetrical notion of dependence, that is if (B ⊥ C) then (C ⊥ B).

A case of common cause occurs between nodes C, D, E in �gure 4.2. In this

con�guration, information about C can change the levels of belief about D if D is

not observed, and hence C and E are correlated. However, in the case that there

exists evidence for the state of node D, then all information necessary to determine

C is contained in D, and thus C and E are independent given D.

Common e�ect occurs in a con�guration of the type B, D, A in �gure 4.2.

Contrary to the previous cases, observing node D activates the path between B

and A. Intuitively, information about B and A is correlated when the outcome of

D is observed, as both B and A are in�uenced by this outcome.

The above rules generalise for any number of nodes and paths in a DAG and

guarantee the soundness and completeness of independencies in the graph (Koller

& Friedman 2009). These rules are commonly referred to a directional separation

or d-separation.

Similarly to UGM, the following sections will discuss di�erent types of BNs in

applications related to transportation and accessibility.

4.4.2.1 BNs in statistical inference

The conditional independence property of BNs is very powerful and can be ap-

plied in many di�erent contexts. For statistical inference, BNs can naturally rep-

resent hierarchical dependencies where sharing of information or "pooling" occurs.

Bayesian hierarchical models are statistical models that are formulated based on

this property. Figure 4.3 shows a 2-level Bayesian hierarchical model where the

observations (yi) are assumed to be in�uenced by a set of parameters that are

sampled from an underlying normal distribution with parameters µ, σ:

The hierarchical structure is achieved by placing prior information for the

model parameters at di�erent levels in the representation. The prior information

is translated into the prior distribution which, combined with the likelihood func-

tion that represents the theoretical distribution of the data, forms the posterior

distribution. In the example of the 2-way hierarchical model (�gure 4.3) this is

given by Eq: 4.11.

p(µ, σ, θ, α|y) ∝ p(y|θ)p(ϑ|α)p(α) (4.11)

In terms of applications, Perrakis et al. (2012) used a Poisson-Gamma Bayesian

hierarchical model to estimate OD �ows from census data, as a viable alternative
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Figure 4.3: A 2-level Bayesian hierarchical model

to gravity type land use transport interaction models. Using the assumption that

socio-economic variables scale over di�erent aggregated levels, they used a re-

gression framework to predict and generate origin destination �ows from di�erent

geographical aggregations as well as assess the signi�cance of the covariates in the

predicted �ows. In the context of travel behaviour modelling and discrete choice

modelling in particular, Daziano et al. (2013) argued that the concept of subjec-

tive knowledge and preferences that is inherently present in choice models, can

be e�ciently represented by the prior distribution. As a case study, they used a

Bayesian multinomial probit model to infer transportation mode choice from re-

vealed preference data on interurban travel choice in Canada. They found that a

carefully selected prior distributions not only can account for weakly identi�ed pa-

rameter estimates but can help alleviate biases compared to the classical statistical

(frequentist) approach, especially in the case of limited observations.

Despite the advantages of BNs (e.g. capturing non-linearities between vari-

ables, providing a solid mathematical framework for incorporating prior knowl-

edge as well as representing the causal structure of a phenomenon), they have

rarely been applied in the �eld of CA based applications, up until very recently.

In particular, drawing from CA framework to measuring well-being, Ceriani et al.

(2016) used the causal structure of BN to discover the �ow of in�uence between

variables related to well-being as measured by the European Bank of Development

Life in Transition Survey. The information �ow captured by the model revealed

some interesting facts, notably the way objective life circumstances (such as age,

employment status etc.) a�ect subjective beliefs about aspects of well-being (eg.

personal voice and political views, social networks and ties) and the way these

manifest in the outcome of questions related to life satisfaction.

Reasons for the slow adoption of BNs in CA studies could be found to the
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disadvantages of BN such as the computational intensive framework of Bayesian

statistics, combined with the predominantly frequentist statistical approach of

social theory studies.

4.4.2.2 BNs in computational intelligence

Similarly to MRFs, BNs have also been used for knowledge discovery from raw

mobility data. Relevant application domains include travel mode as well as activity

purpose detection.

Exploring the applicability of BNs to travel mode detection from GPS signals,

(Xiao et al. 2015) used the causal information �ow between acceleration, speed,

travel distance and travel heading to classify trip segments to walking, cycling,

using the public transport or driving. Using data from 202 individuals, they were

able to use the BN structure to capture the interrelationships between the vari-

ables as well as addressing uncertainties in measurement. Their model provided

increased accuracy in travel mode detection compared to widely used machine

learning algorithms for this task (such as support vector machines and arti�cial

neural networks). Arguing that utility based accessibility methods are not in line

with evidence on human behaviour (people are more likely to reason under what

if scenarios rather than in terms of utility maximisation), Janssens et al. (2006)

used a combination of a decision tree and a BN to account for interpretability

of an individual's decision process to reach and perform an activity. Speci�cally,

they used a BN to derive the skeleton of an individual's decision making process

using travel diary data, before feeding the resulting rules into a decision tree for

more direct interpretation. They found that this augmented approach can pro-

vide a more accurate modelling framework for a complete accessibility modelling

framework compared to decision trees. However, comparing the same approach

with a BN, the authors found insigni�cant di�erences in prediction accuracy.

Bayesian networks for computational intelligence applications can be naturally

extended to incorporate the temporal dimension of mobility. Most commonly, this

is done through the use of a markov chain that imposes a temporal dependence

between a sequence of random variables. A frequently used dynamic BN for se-

quential data is a Hidden Markov Model (HMM). Figure 4.4 below shows the

graphical structure of a HMM:

Within an HMM, the temporal dependency is represented by a stochastic latent

process conditioned on the actual observations. Equation 4.12 shows the joint

density of �gure's 4.4 HMM:
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yt=1 yt=2 ... yt=t

θt=1 θt=2 ... θt=t

Figure 4.4: A simple Hidden Markov Model

p(θ1, θ2, ...θt, y1, y2..., yt)p(y1|θ1)
t∏
t=2

p(θt|θt−1)p(yt|θt) (4.12)

In terms of applications, there is a wealth of studies on trajectory classi�cation

using dynamic BNs (Zheng 2015) for both activity detection and transportation

mode choice from raw mobility data. For example, Bantis & Haworth (2017) used

a dynamic BN to infer individual's mode choice from low accuracy smartphone

data. Using information related to an individual's transportation behaviour from

past travel surveys as prior information, they were able to assess the signi�cance

of individual characteristics to mode choice while at the same time classifying

untagged location traces into travel modes. In the �eld of activity type detection,

Bantis & Haworth (2019) used a dynamic BN model with social media data to

benchmark the limits of accuracy of activity type detection from unlabelled data.

More in depth analysis of both of these studies will be given in subsequent chapters.

In another study, Song et al. (2014) used the generative properties of a HMM

to predict future locations of individuals from GPS mobility traces following an

earthquake. Speci�cally, by using data obtained from smartphone GPS traces fol-

lowing the Great East Japan Earthquake and Fukushima nuclear accident together

with disaster reports, they found that people behaviour tend to persist as normal

at the early stages of the disaster. Signi�cant deviations from the usual behaviour

occurred hours/days after the event. Activity prediction was also the topic of Ye

et al. (2013). Using check-in data from a social media app, the authors employed a

two level HMM to infer the most likely activity category given an individual's past

activities. Following from this, they were able to use location and time speci�c

covariates to suggest the most likely location of the activity.

Finally, in terms of robustness and prediction accuracy for combined trans-

portation mode and activity detection purposes from raw mobility data, Feng &

Timmermans (2016) found that BNs outperform classi�ers such as Decision Trees

(DT), Support Vector Machines (SVM) and Logistic Regression (LR).
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4.5 Structural Equation Models

Another type of models that draw on the bene�ts of representing relationships

through a directed graphical structure isStructural Equation Models (SEM). Con-

trary to BNs where the modelling approach is inherently stochastic and the in-

teractions are captured through conditional probabilities, SEMs use deterministic

equations used to link variables with cause and e�ect relationships (Pearl 2009):

yi = f(pai, εi) (4.13)

where pai are the parent nodes of yi and εi is the error term.

The functions f(pai, εi) in SEMs are commonly derived from linear combina-

tions of covariates
∑
βxκ, where xκ can be de�ned as a parent node from another

structural equation function. Contrary to BNs, SEMs graphs are allowed to form

cyclic structures. Figure 4.5 shows a simple 2-way SEM:

y1 y2

x1 x2 x3 x4

Figure 4.5: A 2-level Structural Equation Model

In this model, the structural equations are de�ned by the tuple:

y1 = w1y2 + β1x1 + β2x2 + ε1 (4.14)

y2 = w2y1 + β3x3 + β4x4 + ε2

In the �eld of transportation research, SEM models have been extensively

used in travel behaviour/travel demand applications (Golob 2003). For exam-

ple, Paulssen et al. (2014) used the hierarchical structure of a SEM to model

the travel behaviour of individuals using the values-attitudes-behaviours model of

cognition. Speci�cally, the authors used a questionnaire survey to gain insights

related to attitudes in transportation such as �exibility and ownership, values such

as power/hedonism and security and personal characteristics such as age, gender

and income. Using a two-layer linear regression SEM as input to the non-stochastic

component of a utility-based choice model, they found a signi�cant in�uence of
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personal characteristics to attitudes and values that contribute towards the choice

of transportation mode. Investigating the interactions between travel behaviour,

place-based accessibility and personal characteristics Simma & Axhausen (2003)

used a SEM to assess the signi�cance of endogenous variables (such as car own-

ership and gender) and exogenous variables (such as proximity to amenities) to

transportation mode choice. They found that the in�uence of personal character-

istics had stronger e�ect on individual's choice compared to place-based variables

such as the number of reachable facilities.

The ability of SEMs to capture endogenous and exogenous covariates as well

as interactions, led some authors to consider the use of SEMs as a way to opera-

tionalise the CA framework for di�erent applications. Exploring the capabilities

of children for being educated and being adequately sheltered, Krishnakumar &

Ballon (2008) used a latent SEM to estimate the interrelations between the latent

capabilities, endogenous and exogenous factors (such as household composition,

personal characteristics, availability and accessibility of educational institutions).

Their approach was based on a set of linear equations relating the di�erent strata

of the SEM through the covariance matrices of the structural equations coe�-

cients. In another study, Di Tommaso (2007) used a variant of SEM, Multiple

Indicator Multiple Causes model (MIMIC) to capture the signi�cance of personal,

household and environment characteristics on children's basic capabilities. Within

a MIMIC model, the covariate variables are used as input to the latent compo-

nent of the model and this relationship de�nes the structural part of the model.

The measurement part of a MIMIC model links the latent component with the

response components that constitute the measured variables.

4.6 Advantages and disadvantages between causal graph-

ical models

The previous sections explored di�erent classes of graphical models that could

be used to model a CA accessibility framework. From the multitude of graphical

model types that exists in the literature, only the ones that can be used to capture

causal relationships in a hierarchical manner were reviewed. In this section, the

advantages and disadvantages of these modelling frameworks relative to each other

are assessed.

Structural equation models represent relationships between variables using al-

gebraic equations (Bottou et al. 2013), which, in the majority of real world appli-

cations, are linear (Congdon 2007). This is achieved through a regression relation-

ship between the structural equations, implemented through the use of covariance
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matrices between the regression coe�cients (referred to as loadings in SEM liter-

ature). One of the most important advantages of SEM is the model's ability to

capture cyclic e�ects between variables. As such, reinforcing in�uence between a

cause and e�ect relationship can be e�ectively represented. Another advantage

mentioned in the literature is the ability of SEMs to represent counterfactuals

(Pearl 2009). Counterfactuals are statements relating to outcomes that were not

observed. For example, a counterfactual would be the statement: Would X have

taken the bus if the bus stop was not crowded? In this case, the observed variables

are that X did not take the bus and the bus stop was crowded. SEM captures this

statement by means of three assumptions (Lucas & Kemp 2015): First, events

that appear stochastic would be revealed as deterministic had all causal variables

been known. Practically in SEMs, this is accounted by including latent exogenous

variables. Second, these exogenous variables retain their values in both realised

and non realised outcomes. The third assumption relates to interventions. An

SEM assumes that a counterfactual outcome can occur only by a direct interven-

tion. Returning to the example above, this corresponds to the question: Would

taking the bus had occurred if we had forced the bus stop to be less full without

in�uencing the causes of bus stop busyness in any way that would introduce side

e�ects?

One disadvantage of SEMs is their limited ability to capture uncertainty in the

parameter estimates. This is especially true in the case of variables omitted from

a representation of phenomenon, either due to its complexity or due to the lack of

available data. Although SEMs incorporate any unobserved e�ects in the random

error term, this does not necessarily solve the problem of biased parameter esti-

mates as typically researchers impose a structure on these errors (most commonly

normality constraints) (Tomarken & Baker 2003). Furthermore, the assumptions

of SEMs that relate to reasoning behind counterfactual arguments are open to

criticism. According to (Lucas & Kemp 2015), it is natural to assume that people

adjust their assumptions about a cause of a phenomenon in order to explain a

counterfactual. Such type of inference is not possible in a SEM. Moreover, the

premise of a counterfactual as a result of an intervention is in contrast with the

counterfactual as if it was not-observed. Referring back to the example, people

are more likely to readjust their assumptions if they observe a non crowded bus

stop rather than if the bus stop was empty due to an intervention.

Both BNs and MRFs are stochastic models representing the relationship be-

tween random variables either through conditional probabilities or joint probabili-

ties of their Markov blanket (factor potentials). It is important to note that these

two classes of PGMs are not mutually exclusive as models involving products of
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potentials and conditional probabilities do exist and are commonly encountered

with hierarchical models (Buntine 1995). The inherent stochasticity of PGMs al-

low a sound representation of uncertainty for every random variable in the graph

(Koller & Friedman 2009). Being generative models, PGMs provide a complete

modelling framework that can be used to generate synthetic data given the model,

thus enabling the exploration of what-if scenarios. Moreover, PGMs allow a more

�exible representation on the nature of interactions between variables, as they

don't assume linearity in the relationship between them.

The directed structure of BNs allows propagation of information through con-

ditional probabilities, enabling thus causal inference. Being acyclic by de�nitions,

BNs do not allow cycles in their structure as this would compromise the valid-

ity of the node distributions. As a result, they can not model cyclic cause and

e�ect relationships. MRFs on the other hand, are more �exible in representing

interactions between variables. However, it is more di�cult to represent hierar-

chical cause/e�ect relationships due to the lack of directed edges in their graph

representation.

BNs are insu�cient for handling counterfactual arguments in their native form

(Pearl 2009). This is because information contained in the conditional probabilities

of the observed variables are not su�cient to uniquely determine countefactual

arguments (Balke & Pearl 1994). However, the probabilistic structure of BNs

allows easier integration of prior knowledge over the state of variables regardless

the observations, which can lead to a fully Bayesian speci�cation. This can be used

to infer counterfactual arguments by sampling the posterior predictive distribution

under counterfactual activity (Brodersen et al. 2015).

One very important advantage of BNs over SEMs and MRFs is their ability to

e�ectively combine bene�ts related to inferring higher level semantic information

from low level data, as well as assessing the signi�cance of the relationships between

the nodes of the model (see table 4.2). This is a very attractive property as it allows

the use of raw mobility data within accessibility evaluations, as well as allowing

the representation of accessibility measurement through the causal structure of

the CA.

The table below summarises a selected literature related to applications of

graphical models for di�erent transportation related challenges.

Authors Graphical

Model

Type

Model

Type

Data / Goal Advantages / Dis-

advantages
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Xiao et al.

(2015)

BN BN GPS traces /

Travel mode

detection

Good detection

accuracy compared

to other classi�ca-

tion methods / No

inclusion on charac-

teristics of travelers

or characteristics of

environment

Widhalm

et al. (2015)

UGM RMN CDR data / Ac-

tivity detection

Model accounted for

uncertainty due to

low data precision

/ accuracy for both

mobility data and

land use types /

No individual char-

acteristics taken

into account, model

resulted in activity

'clusters' rather than

recognising activity

types

Perrakis

et al. (2015)

BN BHM OD matrices /

Trip distribution

Model incorporates

both trip attraction

and production

in a probabilistic

framework / Coarse

modelling scale,

no modal split, no

attraction covariates

Sun et al.

(2014)

BN DP GPS , accelerom-

eters / Activity

detection, trans-

portation mode

Model agnostic to

di�erent input; no

training data re-

quired / Datasets

used represent ideal

conditions
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Golob

(2000)

SEM SEM Travel diaries /

Travel behaviour

Sociodemographic

and external covari-

ates are taken into

account / Model

doesn't take into

consideration the

spatial/temporal

dependency between

activities

Xiong et al.

(2015)

BN HMM Travel diaries /

Travel mode be-

haviour

Model captures

travel mode choice

evolution dynamics

together with house-

hold characteristics /

Transition dynamics

are evaluated at an

aggregated level -

all transportation

modes are assumed

to be available to the

users

Allahviranloo

& Recker

(2015)

UGM CRMF Geocoded travel

diaries (as a sur-

rogate for GPS) /

Activity detection

Methodology com-

bined the hierar-

chical nature of

activity classi�ca-

tion features with

socioeconomic ans

spatiotemporal

characteristics /

Ambiguous activity

classes, moderate

activity predictions
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Golob &

McNally

(1997)

SEM SEM Travel diaries /

Explaining house-

hold activity and

demand for travel

Breakdown of travel

demand for activities

by gender / Assump-

tions of normality

between travel times

and activity duration

hard to defend

Table 4.2: Literature summary

Finally, it is worth mentioning that in practice, graphical models have more

similarities than di�erences (Pearl 2009). For example, although BNs represent a

joint density over all random variables, the density factorises to individual quanti-

ties (the conditional probabilities and, in the case of Bayesian speci�cation, prior

probabilities). These quantities are thought to be equivalent to the structural

equations by some authors (eg. in the case of stochastic regression N(β0+β1x, σ))

(Bottou et al. 2013). This is also supported by a growing literature that imple-

ments both types of models as complimentary across di�erent application domains

(Duarte et al. 2011). In any case, for practical applications, a variety of approaches

within a single modelling framework seem to be more appropriate. This means

that the modelling approach should be able to incorporate both stochastic and

deterministic variables as well as directed and undirected relationships depending

on the modelling goal and the nature of the data.

4.7 Chapter summary

This chapter introduced the theory behind graphical models, following by a de-

scription of the most commonly used models of this class in transportation litera-

ture, with special focus on studies dealing with elements that could be associated

with inference of di�erent components associated with accessibility measurement.

From the di�erent graphical model types, only BNs satisfy the requirements

posed by the research objectives mentioned in chapter 1. These are summarised

by the requirement of expressing accessibility through the causal structure of CA

at an individual level, using unlabelled mobility data of di�erent spatial and tem-

poral resolution. These will be explored in the following chapters from two angles:

chapter 6 section 6.2 will assess the ability of BNs to infer the mobility component

of disabled individuals while assessing the degree of contribution of personal and

environmental characteristics, while chapter 6 section 6.3 will assess the capability
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of BNs to impute activity types from unlabelled data, a concept central in acces-

sibility evaluations. Using the results of these case studies, an explicit formulation

of accessibility through a CA will be given in chapter 6 section 6.4 through a case

study using London's Automatic Fare Collection data.

Before introducing the methodology of this thesis, a description of the datasets

used and the preprocessing steps followed will be given in chapter 5.
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Chapter 5

Data description and

preprocessing steps

5.1 Chapter overview

This chapter introduces the mobility data used in the case studies presented in

the remainder of the thesis. In particular, section 6.2 uses mobility data gener-

ated from low resolution smartphone devices and data generated from conventional

travel surveys in the context of exploring the relationship between personal charac-

teristics, environment variables and individual mobility. In this way, the potential

of using Dynamic Bayesian Networks (DBN) within the context of combining dif-

ferent factors and data sources is established. Section 6.3 uses a DBN together

with low resolution online geo-location data to investigate the limits of activity

type inference accuracy from unlabelled data. This knowledge is essential for the

purposes of chapter 7 which uses a combination of unlabelled passive mobility

data (AFC) and travel surveys (LTDS, RODS) to formulate the capabilities ap-

proach to accessibility model used to explore the link between social exclusion and

transport disadvantage in London.

5.2 Data requirements

Approaching accessibility through the structure provided by the CA, requires a

modelling framework capable of expressing accessibility components and their in-

teractions in a hierarchical, structured way that enables statistical reasoning. To

this extent, the assessment of the degree that these requirements are captured us-

ing DBNs would be bene�cial prior to the case study of chapter 7. Furthermore,

the premise of using a modelling framework that can use both travel surveys and

passive mobility data at the level of an individual should be evaluated in a ro-
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bust way using ground truth information, before scaling the methods to a fully

unlabelled dataset. Section 5.3 describes the dataset collected for this purpose.

Validation of the methodological framework using ground truth data is partic-

ularly relevant in the context of activity type inference from unlabelled mobility

data. Knowledge of activity types performed at a destination is out of reach

from opportunistic datasets collected from service providers (such as AFC data),

however they are one of the most important elements of accessibility evaluations.

Therefore there is a need to assess the limits of activity type imputation accuracy

using a dataset that provides ground truth information while at the same time

mimicking the settings encountered with low resolution mobility data. The char-

acteristics of the social media dataset described in section 5.4 makes it ideal for

such purpose.

Finally, the potential of unlabelled passive mobility data for the purposes of

accessibility evaluations within a recurring, cost e�ective and near real-time frame-

work is explored using London's AFC dataset. Compared to traditional travel sur-

veys, this dataset has some important properties that allows a deeper investigation

of equality levels in accessibility. First, it consists of trajectory data at the level

of the individual, allowing a more complete evaluation of mobility habits. Second,

it is generated as part of Transport for London (TfL) day to day business, which

makes for a continuous and cost e�ective update of individual trajectories. Third,

it can be coupled with additional travel survey data through a unique passenger

ID, allowing investigation of the in�uence of socioeconomic characteristics on the

levels of equality experienced by individuals. This dataset is further described in

section 5.5.

5.3 Low resolution smartphone data

For this mobility dataset, data from a bespoke developed geo-enabled smart-phone

application was used. The use of smart-phone applications in mobility studies has

seen increased interest from researchers in recent years in the �elds of activity and

transportation mode detection (Montini et al. 2015, Kim et al. 2014, Widhalm

et al. 2012). The main advantages of using such an approach are the ease and cost

e�ciency of data collection and the potential to achieve high spatial accuracy. The

latter is due to the prevalence of smart-phones equipped with GPS receivers and

accelerometers. On the other hand, the most common disadvantage that has been

reported is the increased battery demand on user's devices (Xiao et al. 2015, Wu

et al. 2016), especially when both GPS and accelerometer readings are logged.

However, for any practical applications, the accuracy and precision of the
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collected data is low, and this imposes an additional challenge for modelling

(Eftekhari & Ghatee 2016, Wu et al. 2016). This can be especially true for middle

to low end smart-phones.

Figure 5.1 shows some snapshots of the developed application.
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(a) Main menu of the app (b) Travel diary section

(c) Personal information section (d) General information section

Figure 5.1: Accessapp screenshots
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5.3.1 Data collection process and data idiosyncrasies

The developed smartphone application makes use of android and iOS location

Application Programming Interfaces (APIs) to log a user's coordinates in an non-

intrusive way, while simultaneously managing the trade-o� between battery use

and coordinate logging12.

The app was given to two individuals experiencing mobility di�culties. The

�rst volunteer is 40-59 years old, female, full-time employed and a crutches user

while the second is a 22-39 year old male, full-time employed and a mobility

scooter user. Accessapp was con�gured to record coordinates at regular time

intervals (2 minutes) if there is a signi�cant distance between two subsequent

position �xes. This distance was taken to be 30 meters. All information was

stored in a text �le in the internal storage of the phones which was then uploaded

to a secure FTP (File Transfer Protocol) server located at UCL computer science

department. All information was anonymised by a unique user ID during storing

and uploading. The data collection, storing and processing aspects of experiment

has been approved by UCL ethics committee (project ID 7111/001, see appendix

F).

The raw locations are presented in �gure 5.2 below. For the crutches user, the

temporal window of observations was 7 days in total, while for the wheelchair user

it was 3 days in total.

(a) Crutches user (b) Wheelchair user

Figure 5.2: Raw mobile phone location data

The main disadvantage of pipelining the location logging process through the

use of an API is that the researcher has limited control over location accuracy and

temporal resolution. As the API uses di�erent sensors to determine an individual's

location, the more sensors it uses the greater the location accuracy. Depending

on factors such as sensor availability at the moment of update and battery level,

this can vary. For example, a fused GPS/Wi-Fi update can have accuracy in the

1https://developers.google.com/maps/documentation/geolocation/intro
2https://developer.apple.com/documentation/corelocation
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order of tens of meters, while a GSM cell-tower update can have accuracy in the

order of hundreds of metres.

Moreover, the resulting datasets are characterised by data points with incon-

sistent temporal resolution, as the sampling interval is determined by the back-

ground smartphone applications that make use of location services. Figure 5.3

below shows the relationship between spatial accuracy and temporal resolution

for the two participants. The spatial accuracy was obtained by querying the API

for the estimated con�dence interval of the location estimate.

Figure 5.3: Accuracy vs resolution for the two participants

Such artefacts can have an important e�ect on the overall classi�cation task

by adding systematic (such as location "drift") and non systematic noise (such

as sudden "jumps" in location) that in�uence the regularity of point patterns,

thus increasing variability of the classi�cation features, such as speed (Figures 5.4,

5.5). This adds increased ambiguity in distinguishing the transportation modes

used, increasing the overlap between mobility states, especially for modes that are

characterised by more subtle changes, such as walking or dwelling.
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(a) Location "drift"
(b) Location "jump"

Figure 5.4: Examples of �jump� and �drift�

Figure 5.5: Boxplots showing the variability of the classi�cation feature. For

visualisation purposes, the speed was log transformed.

115



5.4 Low resolution online geo-location data

For the purposes of activity type inference, the mobility data used were obtained

from the location-based social network Foursquare for the Greater London Area.

Foursquare is a search-and-discovery location based service for smartphone users

that allows sharing of visited places via the check-in option. The service was

created in 2008 and was initially designed as a game. However, it very soon evolved

into a large scale social network community serving as a recommendation engine

around physical places (Noulas et al. 2011). The development of a dedicated and

easy to use API allowed researchers to source Foursquare check-in data for many

di�erent research goals, ranging from activity discovery (Noulas et al. 2011) to

prediction (Ye et al. 2013) to pattern classi�cation (Hasan & Ukkusuri 2014). The

choice of this dataset in the context of this study can be justi�ed on the following

premises:

� The sequential nature of individual check-ins (i.e publicising one's current

location to the social network) can be regarded as a trajectory if the indi-

vidual check-ins are connected chronologically (Zheng 2015). In this regard,

it has many similarities with other mobility datasets that are characterised

by chronologically ordered pairs of coordinates generated by a moving indi-

vidual (eg. AFC, CDR, location based social networks).

� Foursquare check-in data are associated with an individual's disclosure of

location together with semantic information on the nature of the location

(eg. restaurant, university etc.). The disclosed activity types can serve as

ground truth dataset to test the accuracy of the activity inference algorithm.

� Foursquare data holds and maintains a comprehensive database of POIs that

can be used in conjunction with the the check-in data for activity inference.

� As Foursquare data are primarily focused around leisure/entertainment ac-

tivities, they can be used to explore an individual's non-commuting activity

patterns.

Using the Foursquare API, check-in data along with venue information were

sourced for a period of 10 months (2010/12/31 - 2011/09/30). The following

sections describe the data preprocessing steps followed to reach to the e�ective

sample size used for this study.
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5.4.1 Data preprocessing

The vast majority of sourced Foursquare check-in data contain infrequent users

that use the service occasionally. For the purposes of this thesis, it is important

that a trajectory dataset for each individual is obtained in a way that resem-

bles other unlabelled mobility datasets (such as AFC or CDR data), so that the

methods and �ndings can be transferred to the case study using the AFC dataset

(chapter 6 section 6.4). For this reason, individuals that used the service with in-

terruptions between consecutive check-ins of more than a week were not included

in the analysis. This resulted in a decrease of the overall sample size as well as the

spatial and temporal extent of the study which should be taken into consideration

when interpreting the outputs. On the other hand, this step removes the bias

in activity type imputation accuracy that may result from applying the method-

ological framework to trajectories that are signi�cantly di�erent from the AFC

dataset used in chapter 6 section 6.4. The term "trajectory" in the context of this

study is the set of all check-ins for each individual Foursquare user throughout

the study period. The resulting dataset contained 50 unique users. The average

number of check-ins in each trajectory was 33, while the average time span for

those was 11 days (note that each day can contain multiple check-ins). Figure 5.6

below shows the distribution of check-ins counts for all individuals in the sample,

the date range of check-ins for each individual, as well as the spatial distribution

of check-ins.
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(a) Boxplot of check-ins for all trajectories.

(b) Boxplots of time span of check-ins for

each individual trajectory.

(c) Spatial distribution of check-ins for all

trajectories.

Figure 5.6: Foursquare POI and labour demand data along with the downsampled

dataset

5.4.2 Activity detection feature space

Similar to past literature on activity type inference using mobility data (Chen

et al. 2016), a Points of Interest (POI) database was used as the activity detection

feature space. Speci�c approaches on the way POIs are used for the task vary in

the literature. Huang et al. (2010) introduced the notion of a geometric construct

for each POI that is a function of static parameters, such as POI footprint, attrac-

tiveness (popularity of the POI) as well as temporal parameters such as time of

day and day of the week. They then evaluated the intersections of an individual's

GPS trajectory with respect to this construct to determine the activity of an indi-

vidual, with the highest number of potential intersections determining whether the

POI is selected as an activity place. In another study, Yuan et al. (2012) assigned

a POI vector to regions in the city derived from the road network geometry. To-

gether with GPS data, they used this vector within an Latent Dirichlet Allocation

(LDA) model to assign a function to each region. A similar model was used by
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Zhang et al. (2016) in the context of discovering common interests from individual

trajectories. Within the context of LDA, the authors used a POI database as an

analogy to words in topic modelling. The POI vector that corresponded to the

topic to be discovered was de�ned using a bu�er area around bus stops with the

underlying POI database.

Determination of the bounding area of the POI feature vector was driven by

two factors:

� The need for a generalisation of the methodology to other mobility datasets

as far as possible.

� The need to establish an accuracy assessment framework under di�erent

con�gurations of POI feature vectors.

Speci�cally, the activity feature space is de�ned to be the area bounded by

di�erent walking isochrone levels (levels of equal walking time) centered at a

Foursquare check-in location on the road network. An isochrone based approach

is common in transport planning and accessibility studies (Transport for London

2010, Dodson et al. 2006, Wu & Hine 2003). Moreover, as already mentioned

in section 2.2.1.2, an isochrone approach is often applied within the context of

cumulative-based accessibility indicators, accounting for the potential destinations

that could be reached from the check-in location. As mentioned in section 3.4,

this potential is of major importance for representing capabilities.

The isochrone levels were chosen to re�ect di�erent accuracy levels of mobility

data, corresponding to walking distance along the road network ranging from 5 to

20 minutes at 5 minute intervals. For the computation, data from the open source

road network database OpenStreetMap was used, assuming a constant walking

speed of 4.5 km/hr.

This process generates areas that can be related to mobility data of varying

precision. For example, the case of the 10 minute level isochrone corresponds

to an approximate distance from the check-in point of 300-500 meters, precision

often encountered with mobile phone cell-tower data, depending on the antenna

con�guration (Widhalm et al. 2015).

Next, the individual Foursquare POI venue names were aggregated to higher

level categories using the default Foursquare category hierarchy to ensure consis-

tency between the low level POIs and the higher level activity types. This includes

categories such as "Arts and Entertainment", "Colleges and Universities", "Food",

"Outdoors and Recreation" and "Shops and Services". Finally, the POI feature

vector was de�ned to be the POI counts per individual category that intersect
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each area bounded by the isochrones. The distribution of POIs across the study

region is shown in �gure 5.7.

Figure 5.7: Distribution of POIs throughout the study area.

Figure 5.7 suggests a considerable imbalance among the POI categories that

re�ects the core purpose of Foursquare service: allowing users to share their

leisure/entertainment activities. Imbalanced datasets have been the subject of

a signi�cant body of research as they can deteriorate the performance of any clas-

si�cation/clustering algorithm by introducing a bias towards the majority class

(Krawczyk 2016). As a result, there have been numerous attempts to allevi-

ate this problem ranging from simple random under/oversampling of the ma-

jority/minority class to more sophisticated ones exploiting the structure of the

classi�cation feature space (eg. ADASYN, SMOTE). Within an unsupervised

classi�cation setting, the problem of an imbalanced dataset becomes even more

complicated as there is no training set to assist in the identi�cation of the minor-

ity class in order to equalise the dataset accordingly. In light of this, this study

used land use information to downsample the Foursquare POI vector within each

activity detection isochrone polygon. The degree of undersampling for each activ-

ity class was calculated using the UK's 2011 Census labour demand data as the

fraction of the total count of jobs in each isochrone polygon. This includes counts

of jobs for 20 industry sectors at an 'output area' geographic aggregation level.

This geography corresponds to polygons that are adjusted to contain at least 40

households, the target size being 125 households. For this study, 4 industry sectors

were used in line with the Foursquare POI categories: Education; Wholesale and

retail trade; Accommodation and food service activities; Arts, entertainment and
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recreation. For the activity category 'Outdoors & Recreation' the ratio of green

spaces to the general output area was used, as derived from the OpenStreetMap

land cover dataset. The �nal dataset is the product of an elementwise multipli-

cation of two vectors for each isochrone polygon: the original Foursquare POI

vector and the vector containing the fraction of jobs to the total number of jobs

per activity class, as derived from the labour demand data.

For illustration purposes, the Figure 5.8a displays the proportion of activity

categories using the labour demand data within each output area, Figure 5.8b

shows the resulting proportion of Foursquare POIs per activity (displayed as ag-

gregated counts per output area), and the �nal proportion of POIs after applying

undersampling is shown in Figure 5.8c. The black bounded polygons in this �gure

represent the extent of the OA while the size of the individual colored patches

inside each OA correspond to the ratio of each activity category with respect to

the sum of all activities inside the OA.
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(a) Ratio of labour demand data categories per OA.
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(b) Ratio of Foursquare POI categories per OA.

(c) Ratio of Foursquare POIs after performing downsampling. (d)

Figure 5.8: Foursquare POI and labour demand data along with the downsampled

dataset
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As it can be seen in Figure 5.8c, the �nal dataset maintains the general shape

of the spatial distribution of Foursquare POI activity types (Figure 5.8b), while

at the same time allowing for additional clusters to form (e.g. the Elephant and

Castle shopping area around Walworth), a result of the undersampling process

using the labour demand dataset (Figure 5.8a).

It is important to note that the resulting dataset is treated in a completely

unsupervised setting, using only mobility characteristics of each trajectory and

the isochrone derived POI vector in the model.

5.5 Oyster card/London Travel Demand Survey data

This section will begin by providing a description of London's AFC system, the

Oyster Card dataset, before proceeding in explaining the association between the

Oyster card and London Travel Demand Survey (LTDS) data. Then, it will de-

scribe the sequence of preprocessing steps undertaken to produce the dataset that

is used in the case study of chapter 7.

5.5.1 Automatic Fare Collection Systems

Automatic Fare Collection Systems (AFC) systems were introduced as an alterna-

tive to traditional ticketing services, completely replacing or supplementing paper

tickets with RF-ID (Radio Frequency ID) based reusable cards for some cities

(Blythe 2004). As a technology, AFC is not new and has been used by transport

service providers for almost 20 years. AFC o�ers a structured way of collecting

�nancial and trip data of passengers and, in many cases, personal information such

as age, gender and disability status. Transport service providers use this informa-

tion to manage fare collection, help relieve passengers from some of the burden of

manual ticket validation and improve security and overall user experience.

Besides managing the transport service, this structured way of representing

passenger journeys has opened up a range of opportunities for applications that

range beyond the original scope of the technology. Speci�cally, AFC data allows

researchers to explore issues related to service reliability (Uniman et al. 2010,

Freemark 2013, Wang et al. 2011), demand forecasting (eg. reconstruction of origin

destination matrices) (Zhao et al. 2007, Barry et al. 2002), investigating human

mobility patterns (Foell et al. 2014), applying potential accessibility measures

(Smith, Quercia & Capra 2012) as well as inferring trip destination types (Han &

Sohn 2016).

Compared to conventional interviews/travel diary studies, AFC data provide

several advantages (Pelletier et al. 2011, Bagchi & White 2005). These range from

124



practical advantages such as reducing the burden on users as well as reducing the

cost of data collection process, to advantages relating to the nature of the sample

such as o�ering larger sample size for di�erent population groups (if AFC data

are linked to socioeconomic characteristics). Moreover, AFC data allow access

to continuous trip data over longer periods of time, thus enabling longitudinal

studies.

On the other hand, such data present additional modelling challenges to re-

searchers. These can be summarised to lack of labels, sparseness, low spatial and

temporal resolution as well as the lack of validation/reference datasets for activity

types performed at destinations. Furthermore, is important to note that machine

generated data such as AFC data, are only relevant to the individuals using the

services that generated the data.

The problem of inferring activity types from AFC data is closely related to

the problem of extracting semantic information from unlabelled mobility data dis-

cussed in section 2.3.2. To summarise, activity imputation from AFC data is a

complex problem that is actively pursued using a very diverse set of methodological

frameworks, ranging from simple rule based approaches, to discrete choice anal-

ysis and network/spatial statistical methods, to advanced machine learning and

probabilistic methods. In terms of secondary data used to assist inference, a wide

range of di�erent sources have been utilised, including POIs, land use information,

data from social media applications and household surveys.

The implications of the third challenge mentioned above are wider and are

directly related to the scope of the studies using AFC data from public transport

service providers: Inference/analysis results from AFC data are only relevant in

the context of public transport use by an individual. This limits the scope of

accessibility analysis as, by de�nition, such data do not cover journeys made by

cycling or walking, journeys made by complementary modes of travel (such as

dial a ride services), journeys made by private transport modes (car, taxis) etc.

This is of particular importance and must be kept in mind by policy makers when

interpreting modelling results derived from such data.

Nevertheless, the bene�ts of AFC data, especially the potential for longitudinal

analysis at the individual level, make them an attractive complimentary data

source to traditional accessibility audits. This is especially true within urban

settings where public transport accounts for nearly 35% of the total journeys

made (Transport for London 2011).
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5.5.2 Data description

This section provides a description of London's Oyster card AFC system, along

with secondary data that are used: the London Travel Demand Survey and Ord-

nance Survey POI data.

5.5.2.1 Oyster card AFC

TfL's own AFC system uses RF-ID stamped cards (called Oyster cards) as a uni�ed

transportation ticketing system for many public means of travel. This includes the

underground (including Overground service), National Rail and other rail services

as well as buses and trams. Within these cards, information related to individual

trips is captured each time the Oyster card is used. For rail services (including

the underground) a passenger is required to "tap" their card on the Oyster card

reader at the station at the beginning of the journey, at intermediate stops in

case of changing to an overground service, and at the end of the journey during

exit. The total amount of fare is then deducted from the Oyster card balance

according to a zonal fare system. Users may also use other contactless payment

types such as credit/debit cards or smartphones in place of Oyster cards, which

are also recorded by TfL. Here, we use the term Oyster card to refer to all of these

payment types.

Bus services use a di�erent approach for fare collection using Oyster cards.

As London buses implement a �xed fare approach, bus passengers are required to

touch their Oyster card while boarding. A �xed amount of fare is then deducted

from their Oyster card balance regardless of the alighting stop. As a consequence,

bus records lack alighting information. The procedure to infer bus boarding stops

and alighting stops is elaborated on in section 5.5.3

A brief description of the most important Oyster card dataset characteristics

for this research is given in (Reades 2014):

� Dataset contains population groups, as determined by the di�erent fare types

(adult, children, student, elderly people, disabled people).

� Dataset contains enter/exit information in case of travel by rail, bus route

number in case of travel by bus.

� Dataset contains transaction time/day information.

� Dataset contains unique pseudo ID (in the sense that the data remain anony-

mous) for each record, generated by TfL.
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Recognising the limitations of this type of data architecture, TfL have sought

to utilise ancillary datasets to overcome the lack of boarding information. One

such dataset is London's Automatic Vehicle Location (AVL) system, called iBus.

iBus is a collection of systems that enable real time location tracking and

monitoring of London's bus �eet. Those systems include, among others, telematic

technologies, tacheometers, GPS, gyroscopes and speedometers installed on every

bus. iBus's ultimate goal is to record a bus's actions near stops. The way this

is achieved is by recording four time stamps, each one signifying a speci�c bus

operation, namely: bus is near a stop, bus is opening the doors, bus is closing

the doors and bus is pulling away from the stop. These four records are then

used to determine the approximate time that a bus is at a stop. Using this time-

stamped information, TfL has developed a data matching algorithm that associates

a particular AFC record with the corresponding bus stop as determined by the

iBus data. Although the AFC dataset provided had already undergone the above

described procedure to infer boarding stops, this was not the case for alighting

bus stops and exit stations for tram.

The Oyster card dataset provided for this study is an 8 week sample from

the end of October to the middle of December 2013, which TfL has prepared and

shared with academic institutions for research purposes. Cleaning and canonical-

isation of the dataset was done following Reades (2014).

5.5.2.2 London Travel Demand Survey (LTDS)

The Oyster card data does not contain personal information on sociodemographic

characteristics. However, such information can be extracted from secondary data,

in particular the LTDS.

The LTDS is an annual recurring questionnaire survey carried out at a house-

hold level aimed at probing TfL's customers' sociodemographic background and

travel patterns, with a geographic coverage extending up to outer Greater London,

within the M25 boundary. According to Transport for London (2011), during the

survey all members of the household sample are interviewed and complete details

of the travelling habits of the interviewees are recorded. The survey is comprised of

three questionnaires: a household level questionnaire that collects socioeconomic

and demographic details, an individual questionnaire capturing information on

characteristics such as sex, age and health status, and �nally a travel diary taken

on the same day of the survey. The travel diary includes information about the

travel mode and locations of origins and destinations.

The sample size of the survey is approximately 20,000 individuals. The infor-

mation is used by TfL to generate travel patterns which are used to improve its
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services (Ortega-Tong 2013) and further understand the travel needs of London's

citizens, particularly disadvantaged population groups (TfL 2014). Besides this,

LTDS data have been used in research in a variety of di�erent contexts. Exploring

taxi drivers routing choices, Manley (2016) have used LTDS data to estimate the

propensity of trip generation for speci�c activities in the context of a spatial inter-

action model. In another study, LTDS data have been used to correlate walking

behaviours of young children based on household socioeconomic and environmen-

tal variables (Steinbach et al. 2012). Within a similar research objective, Sarkar

et al. (2015) have used LTDS data to relate walkability of streets to the amount of

green areas. The data-set provides very important insights linking mobility and

socio-demographic characteristics for marginalised population groups. However, it

lacks speci�c location information on the daily mobility habits of individuals that

could be used to better inform transportation planning.

Figure 5.9 below shows some basic sociodemographic characteristics of the

2011/12 LTDS data.
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(a) Income (left) and ethnic background (right)

(b) Age group (left) and employment status (right)

Figure 5.9: General sociodemographic background of LTDS grouped by gender

During the 2011/2012 LTDS survey, respondents were asked if they were willing

to provide their Oyster card unique ID for TfL to undertake further analysis of

their travels. Since then, the relevant data has been stored by TfL's Customer

Experience department, resulting in a database of approximately 12,000 cards and

10 million transactions from mid-June 2011 to March 2014.

Similar to iBus/Oyster card, a sample of this database was provided to aca-

demic institutions for research purposes. The time window of the data overlapped

with that of the iBus/Oyster card sample described in section 5.5.2 for the period

of October/mid-December 2013. However, the provided LTDS/Oyster database
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SVBALANCE

FULLFARE

DISCOUNTEDFARE
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HOSTDEVICEKEY
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one-one

PPTTIMEVALIDITYKEY

PPTZONEKEY

..........

LTDS
OYSTER

for i in LTDS unique PRESTIGEID do:

for j in Oyster unique PRESTIGEID do:

if exists:

append j in IDS;

list IDS;

Figure 5.10: LTDS/Oyster matching process

sample contained only a subset of the original Oyster card column span and most

importantly, it lacked the association of the raw iBus/Oyster card dataset with

bus boarding stop. As bus boarding stop information is important for this case

study, a matching process was necessary to reconstruct the individual trajecto-

ries for bus journeys and associate the raw iBus/Oyster card records with LTDS

sociodemographic characteristics. This consisted of a one-to-one matching rela-

tionship between the two datasets for all columns of LTDS/Oyster database and

the corresponding subset of iBus/Oyster card columns for each unique user ID

(Figure 5.10).

Table 5.1 provides a description of the LTDS Oyster card columns that where

used to match the iBus Oyster card records.
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Table 5.1: Description of columns of Figure 5.10

Column Description

DAYKEY TfL day code

PPTPRODUCTCODEKEY If a season ticket (as opposed to pay-as-you-go)

of some type was in e�ect.

DEVICEKEY Key of di�erent Oyster card readers (eg. Gate,

on bus, validation).

ROUTEID The route id in case of a bus journey.

SVBALANCE Balance amount.

FULLFARE Indication of a full fare.

DISCOUNTEDFARE Indication of a discounted fare.

CARDTYPEKEY Key for di�erent Oyster cards (eg. discount, el-

derly, sta� etc.).

HOSTDEVICEKEY Key for the device host.

NLC National Location Code. A four-digit number

allocated to every railway station and ticket is-

suing point.

TRANSACTIONTIME Transaction time in minutes after midnight.

JNYSTATUS Journey status (eg. Entry, exit, continuation,

bus).

The matching process resulted in 224 unique Oyster card users. This is around

2.4% of the LTDS/Oyster database sample. This proportion might seem small,

however, considering the limited iBus/Oyster card time window and the conser-

vative process of the matching algorithm (not considering IDs from matching that

contained corrupted records, partially matched records, incompatible length of

matching records etc.), it is su�cient for the needs of chapter 7. In the absence of

a complete matched dataset, this conservative data matching process minimises

the risk of including erroneous samples in the case study which could introduce

bias in the interpretation of the �ndings. This dataset will be referred to as Oyster

card/LTDS for the rest of the thesis.

For the the case study of chapter 7, three population groups were de�ned, a

group with low income individuals, individuals > 60 years old, and an uncon-

strained population sample (further details are given in chapter 7).

Figure 5.11 below shows the geographic distribution of visited places for each

population group.

As can be seen, the majority of visited locations for the unconstrained and
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Figure 5.11: Visited places per population group.

> 60 years old population groups is generally concentrated within the boundaries

of Inner London, particularly near the City of London . This is not surprising since

the majority of employment opportunities are located in this area. On the other

hand, the geographical distribution of the low income population group appears

to span radially from Inner London, with a signi�cant concentration around the

Tottenham area.

5.5.2.3 Ordnance Survey POIs

Similarly to section 5.4, POI data are used for the task of activity type inference.

However, contrary to section 5.4 where the nature of the mobility dataset dic-

tated a use of a leisure oriented POI database, this time a more complete POI

database was used. This was provided from Ordnance Survey (OS) Points of In-

terest 2013 dataset. This dataset has a UK wide coverage and consists around 4

million geographic features with location, functional information and addresses,

where possible. The database was created in 2002 and is maintained and updated

on a continual basis (more than four times a year). The POIs themselves are

assimilated from 150 di�erent suppliers and receive regular quality checks on an

ongoing basis (Ordnance Survey 2018). This fact makes the OS POI database

more complete compared to the Foursquare data used in chapter 6 section 6.3

since it undergoes independent reviews, although the database cannot be consid-

ered 100% complete. The POI records, however, have a quality �ag attached with

them which can be used to inform users about the level of uncertainty associated

with their attributes. The complete dataset is grouped into 10 themes: Acco-
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OS category

groupings

POI categories Example POIs

Accommodation,

eating and drink-

ing

Accommodation; Eating and drink-

ing

Pub, bar, cafe,

restaurant etc.

Outdoors and

recreation

Gambling; Outdoor pursuits; Sports

and entertainment support services;

Sports complex; Venues, stage and

screen

Stadium; library;

theater; park etc.

Education and

health

Animal welfare; Education support

services; Health practitioners and

establishments; Health support ser-

vices; Primary, secondary and ter-

tiary education; Recreational and

vocational education

school; university;

hospital; dentist

etc.

Retail Clothing and accessories; Food,

drink and multi-item retail; House-

hold, o�ce, leisure and garden; Mo-

toring

supermarket;

shop; retail park

etc.

Commercial Ser-

vices

Construction Services; Engineering

Services; Consultancies; Personal

consuming Services; Repairing

o�ces; work-

places etc.

Table 5.2: OS POIS used in this case study

modation, eating and drinking, Commercial services, Attractions, Outdoors and

Recreation, Education and health, Public infrastructure, Manufacture and produc-

tion, Ratail, Transport. These are then further disaggregated into more detailed

categories that describe speci�c functions of POIs.

From the 10-fold classi�cation scheme de�ned by OS (Ordnance Survey 2012),

four were considered representative for non-workplace activities (Accommodation,

eating and drinking, Outdoors and recreation, Education and health, Retail) and

one for employment activities (Commercial services) (Table 5.2). Note that under

this scheme, any employment activities related to education and health will be

part of the Education and health activity type. Figure 5.12 shows the distribution

of the POI categories across central London.
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Figure 5.12: OS POI distribution across the study area.

5.5.3 Data preprocessing

This section describes the preprocessing steps followed to derive the observation

vector used in the case study of chapter []. These comprised the following tasks:

� Interaction with public transport:

� Inferring bus and tram alighting stations. This step describes the al-

gorithm for determining the bus stops and tram stations an individual

used for alighting.

� Activity type inference:

� Determination of activity space classi�cation vector. This step de-

scribes the data and processes used to derive the vector which is used

for activity type inference.

5.5.3.1 Inferring bus boarding and alighting information

As already noted in section 5.5.2, augmentation of Oyster card data with the iBus

system resulted in determination of boarding stations for bus journeys. However,

this is not the case for alighting stops. As a result, there is a need for a prepro-

cessing step to complete the observed Oyster card/LTDS journeys.

The problem of inferring alighting information from incomplete AFC data is

not new and has been studied by many authors using such data in their research.

For example, Barry et al. (2009) have built a querying procedure that makes use

134



of trip-chaining between subsequent ticket validations to infer destinations from

boarding only data. In their research, New York City's AFC (called Metrocard)

was used. On a similar approach, Zhao et al. (2007) and Wang et al. (2011)

have used consecutive trip segments to infer alighting information, the �rst using

data from Chicago's AFC system with the second using Oyster card data. The

underlying assumptions for all the above methods are explained in Barry et al.

(2002). These are based on the intuition that people tend to use the destination of

their previous trip to start the subsequent one. Moreover, people tend to end their

last trip of the day at the same station from which the made the �rst trip. These

assumptions are not always correct, as many people could be using a di�erent bus

stop to board, rather than the one that they originally exited.

Nevertheless, despite these shortcomings, research has showed that these two

simple rules hold for the great majority of users (Gordon 2012, Zhao et al. 2007).

In this research, the trip-chaining approach was followed for determining the

exiting station for bus and tram data. The general �owchart of the querying

algorithm is shown in Figure 5.13.

Figure 5.13: Flow chart of destination determination
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The algorithm starts by inspecting the public transport trips per day for each

individual. Here, a trip is de�ned by a sequence of Oyster card records that signify

the start and end of a particular segment of a journey. If there is only one trip,

then the algorithm exits, marking the alighting procedure as unsolvable. If there

are more than one trip segments then the algorithm proceeds in checking whether

that trip was the �rst one of the day. If it is, the bus alighting algorithm proceeds

in checking the transportation mode in the AFC records. If the transportation

mode is rail, then alighting information already exists in the AFC records and the

algorithm proceeds to examine the next trip of an individual. If the transportation

mode during boarding is bus or tram, the algorithm assigns the boarding point of

the next trip as alight, provided that the distance between them is within 8 minutes

walking distance along the road network for bus, or 12 minutes along the network

for tram (OpenStreetMap was used as the base road network infrastructure) with

an average walking speed of 4.5km/h (Evans 2009). If the trip is the last trip

of the day for the individual, then the boarding point of �rst trip of the day is

assigned as alight bus stop/rail station, provided the transportation access points

satis�es the distance criterion mentioned earlier.

5.5.3.2 Determination of activity space classi�cation vector

The methodology for determining the activity space vector for the task of desti-

nation inference is similar to section 5.4.2. This time, however, a series of extra

preprocessing steps were undertaken so that features such as location of public

transport access points, duration of stay and trip chaining can be taken into ac-

count.

Public transport access points catchment area

This catchment area can vary signi�cantly between di�erent individuals depending

on factors such as walking speed and distance from a transportation access point

to a location of an activity. Within an accessibility framework, these factors

are in�uenced by the personal characteristics of an individual (eg. age, disability,

socio-economic status) as well as place based environmental characteristics such as

the level of deprivation of an area. For example, in a survey investigating the travel

preferences of individuals from social disadvantaged groups (such as lone mothers,

people with disabilities and ethnic minority groups) in London, respondents have

reported an average walking duration of 15-20 minutes, reaching up to 40 minutes

to reach basic activities such as shopping (Wixey et al. 2005). This is a considerable

increase compared to the o�cial acceptable estimated walking duration from a

transportation access point to a point of interest, which ranges from a maximum
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of 8 minutes for bus stops to 12 minutes for rail in London (assuming a �xed

walking speed of 4.5 km/hour and not taking into account factors such as walking

abilities and environmental factors) (Evans 2009). It is also beyond the limits of

minimum acceptable accuracy achievable by using a more detailed activity type

categorisation as demonstrated in section 6.3.

The methodology for computing the catchment area that will bound the ob-

servation POI vector is similar to that of section 5.4.2. An isochrone network

based approach is used with 4 isochrone levels: 5/10/15/20 minutes walking time

(assuming 4.5 km/h walking speed). Following the discussion above, in this case

study, a di�erent approach was taken to account for the increased uncertainty in

activity detection for longer isochrone bands.

Speci�cally, a linear downweighting scheme was applied to the POI counts

in each isochrone band. As such, the POI counts bounded by the 5 minute

isochrone remain unchanged, while the 5/10 minute, 10/15 minute and 15/20

minute isochrones are downweighted by 40%, 60% and 80%, respectively. The

choice of the three cuto� points was dictated by the need to avoid forming a

uniform activity type classi�cation feature space which results from the size of

the isochrone area. This way, the contribution of the outer isochrone layers to

activities is proportionally reduced with each distance interval.

Di�erentiating between trip chain and end of journey

Although di�erentiating between trip chaining and end of journey3 is straight-

forward for tube/rail (as this information is readily available in the Oyster card

records), this is not the same for journeys made up of bus/tram trip segments. For

this task, a minimum duration threshold approach between subsequent trip seg-

ments was adopted (Chang & Zhao-Cheng 2016). In particular, a trip is considered

part of a journey if it is within the maximum transportation mode interchange

times. For rail and tram services, the interchange times were taken from an o�cial

request to the service provider submitted in 2015 (Freedom of Information 2015).

Figure 5.14 below shows the distribution of interchange times for all rail services

within the Greater London Area.

To estimate bus interchange times per bus stop, London's iBus API, was

queried for a period of a week (1-7 April 2014) at 10 second intervals and ev-

ery single response was archived. Part of the API response are predictions of the

estimated arrival times for each vehicle and each bus stop across London. Using

the time of the API call as reference, the "due to arrive" time was calculated by

3A trip is de�ned as a segment of a journey while a journey is de�ned as a sequence of trips

ending at a destination
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Figure 5.14: Distribution of rail interchange times.

subtracting the reference timestamp from the estimated arrival time. The result

was taken as an approximation of the true arrival time of the vehicle at a bus

stop. Subtracting subsequent arrival times for every vehicle and every bus stop

gives an indication of the distribution of waiting times, which are taken to be a

proxy for interchange times. In this way, a more realistic indication of interchange

times is obtained, as factors such as delays due to tra�c congestion are taken into

consideration. Figure 5.15 shows the distribution of bus interchange times for all

bus stops in London.

Figure 5.15: Distribution of bus interchange times.

In both cases, the 95th percentile was taken as a cuto� for determining whether

an alighting point is considered to be a destination for an activity or an interchange

between transportation means. In the case of rail services, this was 15 minutes,

while for buses this was 36 minutes. This included roughly 96% of the total

Oyster card/LTDS observations. This was used as an end of journey �ag in the
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Oyster/LTDS dataset used in activity type inference.

Using duration of stay as a weighting function

One of very basic components of an activity (besides location, start time etc.) is

its duration. This property has been used to di�erentiate between activities in

the context of rule based approaches (Huang et al. 2010) as well as probabilistic

activity clustering approaches (Allahviranloo & Recker 2015, Han & Sohn 2016),

particularly for di�erentiating between employment and non-employment activi-

ties.

Having access to the combined Oyster/LTDS data, it is possible to utilise

the employment status of individual users to inform the decision threshold with

respect to duration. This in turn can provide insights on the nature of employment

/ non-employment dichotomy.

To do this, individual daily journeys4 were calculated for each unique Oyster

card ID. Then, the duration between individual trips was computed by using only

the records that are less likely to belong to an interchange trip. Then the distri-

bution between subsequent daily AFC transactions for individuals with di�erent

employment statuses (�gure 5.16) was plotted and examined.

The second mode of the distribution of �gure 5.16a, peaking around 9 hours

could be attributed to full time employment activities. This is shifted relative

to the regular 7.5-8 hour working pattern which could in turn be attributed to

the low spatial/temporal resolution of AFC data (not accounting for walking time

to and from transportation access points) combined with the way the duration

between journeys was calculated (the reference for computing the duration between

journeys was the journey's alighting times). The same pattern appears for full-time

self-employment (�gure 5.16c) with the second mode peaking around 10 hours,

re�ecting the di�erent working pattern. Individuals that are part-time employed

(�gure 5.16d) and students (�gure 5.16d) display a di�erent working/studying

pattern, following less distinct duration cut-o� locations which could be attributed

to the more �exible nature of part-time employment and education related activity

types.

Using the information above, the probability of an activity belonging to "work-

ing/studying" category was modulated using the probability density function of a

logistic random variable:

4A daily journey is de�ned to be the journey between the �rst and last "tap" of a day for an

individual
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f(x;µ, σ) =
e−

µ−x
σ

σ(1 + e−
µ−x
σ )2

(5.1)

where x is the duration in hours, µ the location parameter and σ the standard de-

viation (scale). The parameters µ and σ were adjusted to re�ect di�erent working

assumptions as assessed empirically by the duration of stay distribution of �gure

5.16.

(a) Full-time paid employment (b) Student/school pupil

(c) Full-time self-employment (d) Part-time paid employment

Figure 5.16: Distribution of duration between transactions for di�erent employ-

ment types, with logistic cumulative distribution functions (CDF) overlayed. Note

that the histograms were normalised and the CDFs were scaled accordingly.

Equation 5.1 was then used to weight the POI vector corresponding to Em-

ployment/Education activity types.

5.6 Chapter summary

In this chapter, the datasets used to construct the observation vectors used in the

following chapters were introduced. A variety of mobility data were used, having

the common characteristic of being (or treated as) unlabelled trajectory points.

Initial exploration and preprocessing revealed both systematic and random errors
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that diminish the quality of information contained. Attributes such as imbalanced

activity type classes, ambiguous transportation mode determination vector, low

spatial and temporal resolution and incomplete information, make formulation

of a capabilities approach to accessibility model from unlabelled mobility data

challenging. As a result, the proposed methodology should be robust enough to

provide inferences under the uncertainty introduced by the data idiosyncrasies.

In terms of data preprocessing, the class imbalance characterising the Foursquare

dataset was addressed by performing proportional downsampling using UK's labour

demand data. The combined Oyster card/LTDS dataset was constructed by per-

forming a one to one record matching for each individual's trajectory between the

two datasets. Bus alighting station was imputed using a querying algorithm fol-

lowing the intuition that people tend to use the destination stop as boarding for

the following journey. For both Foursquare and Oyster card/LTDS, the POI obser-

vation vector was constructed following an isochrone approach using the alighting

points as isochrone centroids. For the Oyster card/LTDS in particular, the POIs

bounded by the di�erent isochrone bands were proportionally weighted depending

on maximum walking time. Finally, the duration of stay was used as a weighting

function for di�erentiating between Employment/Education activity types.

141



Chapter 6

Methodology

6.1 Chapter overview

This chapter develops the necessary components for the formulation of the Capa-

bilities Approach to Accessibility (CAA) model introduced in section 6.4. In the

context of the requirements of this thesis described in section 1.1, the modelling

approach should allow a) expressing the di�erent accessibility components in a

hierarchical way that allows statistical reasoning, b) combining di�erent sources

of data (such as passive mobility data and travel survey data) and c) extraction

of semantic information (such as activity types and transportation modes) from

low level mobility data. To address these requirements, a collection of three inter-

related Dynamic Bayesian Networks (DBN) are de�ned and developed.

In particular, section 6.2 develops a DBN for transportation mode detection

that takes into account personal and environmental characteristics. This is accom-

plished by fusing data from travel surveys and machine generated mobility data in

a complementary way. The results of this section have been published in the article

"Who you are is how you travel: A framework for transportation mode detection

using individual and environmental characteristics" in the journal Transportation

Research Part C: Emerging Technologies (Bantis and Haworth 2017).

Section 6.3 develops a DBN for inferring activity types accounting for the po-

tential activities an individual might be performing at a destination. Given the low

spatiotemporal resolution of data generated by service providers (e.g. transporta-

tion or mobile network operators), this section performs a robust assessment of the

degree of accuracy achievable. The �ndings of this section have been published in

the article "Non-Employment Activity Type Imputation from Points of Interest

and Mobility Data at an Individual Level: How Accurate Can We Get?" of the

ISPRS International Journal of Geo-Information (Bantis and Haworth 2019).

Finally, section 6.4 consolidates the modules developed in sections 6.2 and 6.3

142



and de�nes a DBN structured around the Capabilities Approach (CA). Using this

model, the link between social exclusion and transport disadvantage in investigated

in the case study of chapter 7. Parts of this chapter have been published in the

article "Assessing transport related social exclusion using a Capabilities Approach

to accessibility framework: A dynamic Bayesian network approach" of journal

Journal of Transport Geography (Bantis and Haworth 2020).

Figure 6.1 shows the structure of the framework. The models of sections 6.2

and 6.3 are responsible for fusing, pre-processing heterogeneous data sources and

extracting semantic information from passive mobility data, while the model of

section 6.4 combines the outputs of the two modules and de�nes the accessibility

model structured around the CA.

Figure 6.1: Roadmap for developing the Capabilities Approach to Accessibility

(CAA) model.

6.2 Transportation mode detection using individual and

environmental characteristics

This section describes the DBN used for combining diverse datasources and infer-

ring transportation modes from unlabelled mobility data. In particular, section

6.2.1 describes how the personal and environmental characteristics are included

in the DBN, as well as the way the dynamic element is expressed in the model

speci�cation. Furthermore, it describes the data augmentation strategy for fusing

travel survey and passive mobility data in the modelling process. The perfor-

mance and feasibility of this speci�cation is demonstrated within the context of
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using mobility data from a custom developed smartphone app (see section 5.3) to

simultaneously infer individual transportation modes used and assess the e�ect of

personal and environmental characteristics in the mode choice (section 6.2.2).

6.2.1 Model speci�cation

The model is conceptually represented by the the graph of �gure 6.2. Within

the context of transportation mode detection using unlabelled mobility data, the

potential modes used by an individual is determined using speed readings (see

section 5.3).

Figure 6.2: Schematic representation of the model
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Table 6.1: Description of nodes in Figure 6.2

Node Description

v1...t Speed

s1...t Transportation mode states

Dir Dirichlet distribution

α Concentration parameter vector for the personal

preferences

τ Precision vector of speed node

η Deterministic function of mean for the speed

node

β Coe�cient of external covariates

X1...t External covariates

The di�erent transportation modes were modelled using a categorical proba-

bility distribution, having outcomes as described by a predetermined set of trans-

portation modes such that
∑
sκ = 1 where sκ are the event probabilities. For

this research four di�erent categories were used: being stationary, walking, riding

the bus/driving a car and travelling by rail. The emission probabilities P (vt | st)
were modelled as as a mixture of Gaussian distributions representing the range of

velocities each travel mode can take (Patterson et al. 2003, Liao, Patterson, Fox

& Kautz 2007).

A common problem encountered with the above approach during inference

is related to the identi�ability, or label-switching, between the candidate classes.

This refers to permuting the subscripts of the mixture components without chang-

ing the likelihood in such as a way that the interpretability of inferred classes is lost

(Congdon 2010). Various strategies have been suggested in the literature to deal

with this problem, from imposing an sorting structure (ascending or descenting) on

the Gaussian components (Zucchini & MacDonald 2009), to the use of informative

priors (Congdon 2010). Due to its simplicity, a sorting structure has been applied

in this study such that µ1t < µ2t < ... < µκt for κ ∈ {stationary, walk, bus, rail}.
The initial probability of using a particular transportation mode P (s0) was eval-

uated following the condition for a stationary Markov Chain following (Zucchini

& MacDonald 2009). This states that the vector x is the stationary distribution

for the stochastic matrix P if and only if:

x(I − P +U) = 1 (6.1)
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where x is the vector of non negative elements of the stationary distribution, I is

the κ × κ identity matrix, P is the transition matrix and U is an κ × κ matrix

with all elements equal to one.

Two assumptions are made at this point which are important for constructing

the CAA model presented in the following sections:

1. Socio demographic characteristics have a persistent e�ect on the ability of

individuals to transition from one transportation mode to another

2. Environmental characteristics have a non persistent e�ect on the ability of

individuals to transition from one transportation mode to another

The �rst assumption is related to the personal circumstances of an individual

when switching between di�erent transportation modes. For example, an indi-

vidual with disabilities might prefer to use a transportation mode that is more

accessible compared with the other, and this preference is assumed to be constant

regardless the data one is observing.

On the other hand, external factors, such as whether an individual is located

within the catchment area of a bus or a rail station, are assumed to change through-

out an individual's trajectory. For example, an individual moving within the radius

of bus stops, is more likely to be using a bus.

6.2.1.1 Including external covariates

For this study, a 30 meter radius around bus stops and rail stations was taken as

threshold to de�ne the binary covariates depending on whether a person is located

within, or outside this radius.

This threshold corresponds to a compromise between the maximum achievable

accuracy when the API is using a WiFi/Cell tower level accuracy and the minimum

achievable accuracy when using the GPS sensor. Other spatially varying covariates

that are assumed to in�uence an individual's mobility can be included. These

could range from socio economic features such as crime levels, to features that

characterise the aesthetic quality of a route (Evans 2009). For this study, the Index

of Multiple Deprivation (IMD) was taken as a proxy for the level of attractiveness

of an area. IMD is an index made up of seven sub-indices relating to features

such as income level, employment, health, education skills, barriers to housing

and services, crime and living environment. The index ranks the di�erent UK

census areas from most deprived to least deprived (UK Government 2015).

For this study, the values were normalised to have zero mean and unit variance

to assist inference as the scale di�erence between IMD and proximity covariates

146



ranges from one to two orders of magnitude. Figure 6.3 below shows the location

traces of the mobility scooter participant together with the levels of IMD for each

census area.

Figure 6.3: IMD overlaid with a participant's traces. The value of the covariate

changes according to the census area he/she is located. The red traces correspond

to the wheelchair participant, while the yellow to the crutches participant.

6.2.1.2 Including personal characteristics

Personal characteristics depending on age and disability were used to shape the

prior belief of a person using one transportation mode over another. The choice

of the shape of prior distribution that can be used to re�ect the prior belief has

received much attention in literature. Three approaches to specifying prior distri-

butions can be found (Gelman et al. 2013): Uninformative, informative and weakly

informative prior distributions. Uninformative prior distributions are constructed

in a way that have minimal impact on the posterior quantities, so that inferences

are dominated by information related to the observed data. A related concept is

weakly informative priors with the di�erence that in this case, the prior distribu-

tion contains enough information to keep inferences within reasonable bounding

values without capturing any explicit knowledge about the state of the model. In-

formative prior distributions on the other hand, are constructed to re�ect the state

of knowledge about the possible values of the model parameters before observing

any data. For this case study, an informative approach was followed, where the

prior belief was expressed by drawing samples from an asymmetric Dirichlet prior

distribution during inference.

The choice of a Dirichlet distribution prior is a natural choice for this prob-

lem given the fact that it is the conjugate prior of the categorical distribution

of transportation states. This section describes the approach for determining the

concentration parameters of the Dirichlet distribution.

The vector of values of the concentration parameters was used to control the
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Table 6.2: p-values of chi-squared test between transportation modes and sociode-

mographic variables using the LTDS dataset.

Bus Walk Rail Disability Age Income

Bus NA

Walk 2.13e-219 NA

Rail 2.55e-242 2.13e-219 NA

Disability 3.14e-13 0 6.39e-210 NA

Age 2.21e-52 4.70e-117 5.049e-312 2.93e-284 NA

Income 9.73e-121 0.1080 6.16e-158 6.63e-125 4.07e-167 NA

Sex 9.64e-11 0.1962 1.06e-29 0.0034 0.2626 9.97e-15

level of prior belief in the preferences of an individual towards the transporta-

tion modes. Smaller (0 < α < 1) values of α express less uncertainty in the

preference of a transportation mode over the other. On the other hand, bigger

values (α > 1) express more uncertainty on the preference of an individual for a

transportation mode. A concentration parameter vector with unit values would

represent complete ignorance over the preferences of a user, or a user with no

particular preferences. Most commonly, values between 1-5 are used if the con-

centration parameters are assumed to be pre-set, or they can be assigned a prior

distribution, most commonly a Gamma distribution (Congdon 2003).

In this study, the calculation of di�erent concentration parameter priors was

based on the London Travel Demand Survey (LTDS) dataset described in section

5.5.2.

Examining the pairwise di�erences between the frequencies of journeys using

di�erent transportation mode and variables such as age, income, sex and disability

using a Pearson's chi-squared test for the LTDS data (Table 6.2), one could see

that for most variables there is a signi�cant di�erence between the frequency of

transportation mode use and socio-demographic characteristics. This suggests

an overall strength of association between these variables. Exceptions are the

variables income and sex in relation with walking.

The overall work�ow of concentration parameter calculation is shown schemat-

ically in Figure 6.4.

148



LTDS

frequency of travelling

using di�erent modes

ID Never Once a month ... Always

#1 0 1 ... 0

#2 0 0 ... 1

#... ... ... ... ...

#N 1 0 ... 0

ID Age Disability Genre

#1 35− 40 1 M

#2 20− 25 0 M

#... ... ...

#N 45− 50 0 F

Covariates X

Multiple logistic regres-

sion

Predicted probabilities

Pκ = eXiβ∑
j e
Xjβ

ακ,∼ TN(pκ, τ, a, b),

for κ ∈ {1...#modes},
for i ∈ {1...N}

Figure 6.4: Concentration parameter calculation work-�ow using LTDS data

The participant responses from LTDS datasets to walking, using the bus and

rail transportation modes were dummy coded into multiple binary variables based

on the frequency of use. The breakpoint condition in the coding procedure was

the use of the respective transportation mode for more than once per month.

The resulting data were then used in a multiple logistic regression model with

independent variables being age and binary coded disability status and sex of

the individuals. The predicted probabilities of using each transportation mode

were then calculated using the actual age and disability status for each of the

two participants in this study. The resulting values were used when modelling

the mean parameter in the truncated normal distributions before including them

as concentration parameters in the calculation of the Dirichlet prior. This was

to allow for increased uncertainty between di�erent transportation modes while

ensuring that the values drawn were all positive. The stationary state was given

a value of 1 for all participants re�ecting lack of knowledge for this speci�c state.

The bene�ts of the above procedure are three-fold. First, by injecting prior

knowledge in the model, the inference procedure becomes more robust as the

posterior is weighted away from unlikely values as determined by past studies.

149



(a) Male aged between 20-39, disabled,

α = [1.93, 1.75, 1.64]

(b) Female aged between 40-59, dis-

abled, α = [1.91, 1.75, 1.44]

Figure 6.5: Dirichlet distribution results

Second, this procedure allows the determination of the extent of in�uence of socio-

demographic characteristics shared amongst population groups when assessed at

the individual level. Third, in this way, a framework for combining information

from di�erent sources is introduced, allowing for a more detailed representation of

mobility behaviour.

The Figure 6.5 below shows the resulting Dirichlet distributions for the two

participants in the study. In this �gure, each corner of the triangle corresponds

to a potential transportation mode, while the z axis corresponds to the Dirichlet

probability mass.

More formally, the �nal model is de�ned in equation 6.2:

P (sκt |sκt−1) ∼ Cat(p), (6.2)

P (mκ) ∼ N(0, 10−3),

ηt = β0 + β′X,

P (µκ) = ηtm
κ,

P (vκt |sκt ) ∼ N(µκ, τκ) where µ1 < µ2 < µ3 < µ4

The hyperpriors in this model were:

P (p) ∼ Dir(α), (6.3)

P (ακ) ∼ TrN(aκ, 0.01, 0.1 < bound < +∞),

P (β1..#covariates) ∼ N(0, 10),

P (τκ) ∼ Gamma(0.001, 0.001)

where β is a vector of regression coe�cients and β0 is the intercept term both
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are assumed to be distributed as a normal distribution with mean 0 and precision

10−5, and X is the matrix of external covariates.

6.2.2 Results

This section provides the results of travel mode detection using the speci�ca-

tion described in the previous sections. All inferences were carried out within

a Bayesian framework, using Markov Chain Monte Carlo (MCMC) methods. A

MCMC is a numerical approximation algorithm that attempts to approximate

the posterior distribution by drawing sequential samples, with the distribution of

the sample draws depending on the last sample drawn. The sequential nature of

the samples, allows the approximate distribution to improve at each step of the

simulation and converge towards the "true" posterior distribution (Gelman et al.

2013). The fundamental desired property of an MCMC algorithm is to create a

Markov process whose stationary distribution is a speci�ed posterior, so that long

enough simulations generate samples which are close enough to the target distri-

bution. Many di�erent MCMC algorithms have been designed with this property

in mind, with Metropolis-Hastings being one of the most widely used ones. The

algorithm uses a proposal distribution g(x∗|x) to update the state of the variable x

by drawing candidates x∗ from g(x∗|x) and computing the acceptance probability

α(x∗, x) = min(1, g(x|x
∗)π(x∗)

g(x∗|x)π(x) ) where π(x) is the target distribution (Neal 2000).

For this case study, di�erent MCMC sampling schemes were employed for the dif-

ferent stochastic nodes of the Bayesian network. Speci�cally, for the categorical

nodes (P (sκt | sκt−1)) a discrete Metropolis sampling scheme, and for the continu-

ous nodes (P (mκ), P (µκ) , P (p), P (ακ), P (β1..#covariates), P (τκ)) a combination

of Metropolis-Hastings, Adaptive Metropolis and Gibbs (Hit and Run sampler)

(Brooks et al. 2011).

For all models, 5×105 iterations were used to approximate the unknown param-

eters. Convergence was assessed using visual methods and Geweke's convergence

diagnostic. The �rst involves inspecting the MCMC chains for non-stationarity

while the second compares the mean and variance using a Z-score test between the

�rst and last segment of the Markov chain to assess whether there are statistically

signi�cant di�erences (Geweke et al. 1991) (�gure 6.6):

z =
θ̄a − θ̄b√

V ar(θa) + V ar(θb)
(6.4)

where α and β are the �rst and last part of the chain respectively. For this

application, this was taken to be 10 and 50% respectively.

The tests indicate that convergence has been achieved although additional
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samples would have improved the characterisation of posterior quantities. This

is particularly evident for the crutches user where the mixing of the samples was

slower compared to the wheelchair user. Increasing the standard deviation for

the latter to allow for more values to be rejected could improve mixing in the

latter case. The acceptance ratio for all parameters for both users was found to

be satisfactory, within the range of 0.2-0.245. In �gure 6.7 below, the convergence

diagnostics are shown for the v node of �gure 6.2.

Figure 6.6: Geweke Z-scores for the speed nodes. The majority of the samples are

within two standard deviations from the mean of the �rst and the last segment of

the MCMC chain.

The posterior distributions of the inferred speeds for the two participants are

shown in �gure 6.8 below. As it can be seen, the inferred speed is considerably

di�erent, especially for the walking mode. This is to be expected considering the

fact that the two participants use di�erent mobility aids when travelling without

using car/public transport.

The dynamics of the participants interactions with the di�erent transportation

modes was captured in the transition matrices. These are stochastic matrices

with each row representing a categorical distribution of switching between modes.

This corresponds to the transition probability P (sκt | sκt−1) of the model. Figure

6.9 below shows the posterior quantities of the transitions probabilities between

di�erent transportation modes.

For both participants, the e�ect of external factors on their movements was

found to be either very small or statistically non-signi�cant, given that the zero

value is contained within the 95% credible intervals, and this was true for di�erent

β covariates. The exception was the wheelchair user, where the IMD had a positive
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(a) MCMC traces and autocorrelation plots for the wheelchair user

(b) MCMC traces and autocorrelation plots for the crutches user

Figure 6.7: MCMC traces and autocorrelation plots for the two participants. The

slow mixing of the crutches user can be seen from the tendency of the MCMC

chain to make small jumps when proposing new speed values.

(a) Posterior speeds for the crutches user (b) Posterior speeds for the wheelchair

user

Figure 6.8: Posterior quantities of the speed node (v). The histograms are nor-

malised. The unit of measurement is m/s.
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(a) Posterior mean transition prob-

abilities for the crutches user
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(b) Posterior mean transition prob-

abilities for the wheelchair user

Figure 6.9: Transition probabilities for the two participants. The color coding

corresponds to each row of the transition matrix with values as indicated from the

corresponding arrows.

e�ect of 0.35 (Figure 6.10). These correspond to the β nodes of the model in �gure

6.2.

Looking at the internal e�ects as expressed by the concentration parameters of

the Dirichlet distribution, (the α node of �gure 6.2), one observes that the values

have shrunken towards values less than one, concentrating the Dirichlet distribu-

tion towards each individual categorical node and re�ecting increased certainty of

preferences of one transportation mode over the other (�gure 6.11).

For the s node in �gure 6.2 model the posterior classi�cation travel mode de-

tection accuracy was assessed using the participant's own travel mode labelling.

Figure 6.12 below shows the posterior median quantities for all data points, cate-

gorised by day.
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(a) External factors e�ect for the

crutches user

(b) External factors e�ect for the

wheelchair user

(c) External factors e�ect for the

wheelchair user

Figure 6.10: Posterior quantities for the IMD, proximity to bus stops and prox-

imity to rail stations.

(a) Concentration parameters for the

crutches user

(b) Concentration parameters for the

wheelchair user

Figure 6.11: Posterior quantities for the truncated normal priors of the Dirichlet

concentration parameters. The color coding represents the corresponding categor-

ical distributions and is the same as Figure 6.9.
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(a) Crutches user day 1 (b) Crutches user day 2, α =

[1.91, 1.75, 1.44]

(c) Wheelchair user day 1 (d) Wheelchair user day 2

Figure 6.12: Posterior medians of the categorical node (s) of the model. The red

line correspond to the self-labeled value while the blue line corresponds to the

inferred quantities. The yellow faces are the 95% credible intervals of the MCMC

simulation.

6.2.2.1 Performance evaluation

The performance of the proposed method was compared to other popular classi�ca-

tion algorithms, namely Random Forests (RF), Support Vector Machines (SVM's)

and Multilayer (MPL). It is important to notice that, contrary to the aforemen-

tioned classi�ers, the proposed method is essentially an unsupervised classi�cation

procedure, and as such a training step is not needed. For this task, 70% of the

data-sets were used during the training procedure, and 30% for testing. The

benchmark for comparison was the participants self-labeled true states.

The overall classi�cation accuracy using the proposed method is illustrated in

the confusion matrix (�gure 6.13). It can be seen that missclassi�cation mostly

occurred between the walk and the bus travel modes. This can be explained by

considering the lower accuracy of data generated by mobile phone API's, together

with the low mean speed of travel for buses in peak hours in London, which could

be as low as 6km/h (Transport for London | Every Journey Matters 2017). The

same holds true for missclassi�cation artefacts between walking and stationary

states, which could be attributed to the e�ects of "sudden jumps" and "drift" in

location. The overall accuracy was 71% for the wheelchair user and 78% for the

crutches user.

156



(a) Confusion matrix for the crutches

user

(b) Confusion matrix for the wheelchair

user

Figure 6.13: Confusion matrices between the self labeled data and the inferred

transportation modes for the proposed method. The color-bar corresponds to the

number of data points.

Next, a RF classi�er was employed. Maximum accuracy was achieved for train-

ing 10 trees in the forest. No restrictions were placed for the maximum number

of features for each individual tree. Looking at the results of the RF classi�er,

missclassi�cation is more profound for the walking mode. This is especially true

for the wheelchair user dataset which proved to be challenging in terms of classi�-

cation performance. The overall accuracy was 79% for the crutches user and 67%

for the wheelchair user.
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(a) Confusion matrix for the crutches

user

(b) Confusion matrix for the wheelchair

user

Figure 6.14: Confusion matrices between the self labeled data and the inferred

transportation modes for the RF classi�er.
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Next, a SVM classi�er was employed with an exponential kernel. Maximum

accuracy was achieved with a penalty parameter of 1 and a γ value of 1
#features The

algorithm was found to perform comparatively well to both RF and the proposed

method. The accuracy for the wheelchair user was 62% while for the crutches user

was 71%.

(a) Confusion matrix for the crutches

user

(b) Confusion matrix for the wheelchair

user

Figure 6.15: Confusion matrices between the self labeled data and the inferred

transportation modes for the SVM classi�er.

Finally, a Multilayer Perceptron (ANN) was employed using backpropagation

for the training procedure. The total number of hidden layers that yielded maxi-

mum accuracy was 15. The algorithm performed comparably to both the proposed

method and RF and overperformed the SVM. For this classi�er the accuracy for

the wheelchair user was 69% while for the crutches user was 70%.

159



(a) Confusion matrix for the crutches

user

(b) Confusion matrix for the wheelchair

user

Figure 6.16: Confusion matrices between the self labeled data and the inferred

transportation modes for the MLP classi�er.

To assess whether the classi�cation results between the di�erent methods were

statistically signi�cant, a chi-squared test was carried out between the classi�-

cation results of the proposed method and the results of RF, SVM and MLP

classi�ers. The null hypothesis is that the di�erence in the classi�cation results

could be generated by chance alone. Looking at the p-values, the proposed method

produced statistically signi�cant results for all of the transportation modes for the

wheelchair user and for nearly half the transportation modes for the crutches user.

The corresponding chi-squared statistics and p-values are presented in tables 6.3

and 6.4 below:

Mode Statistic RF SVM MLP

Stationary
chi-sq 7.4976 2.9728 7.2529

p-value 0.0576 0.2261 0.0266

Walk
chi-sq 29.6063 29.6905 28.929

p-value 1.67E-06 1.60E-06 2.32E-06

Bus
chi-sq 0.4605 1.9966 2.28382

p-value 0.7943 0.57310 0.31920

Rail
chi-sq 5.48766 5.48766 1.72545

p-value 0.06432 0.0643 0.4220

Table 6.3: Chi-squared statistic and p-values for the crutches user.
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Mode Statistic RF SVM MLP

Stationary
chi-sq 10.2118 6.7393 21.7692

p-value 0.0060 0.0344 7.29E-05

Walk
chi-sq 30.2307 30.4187 67.8636

p-value 1.23E-06 1.13E-06 1.22E-14

Bus
chi-sq 13.0388 71.4039 36.9357

p-value 0.0045 2.14E-15 4.75E-08

Rail
chi-sq 12.2690 21.1491 0.8027

p-value 0.0021 9.80E-05 0.6694

Table 6.4: Chi-squared statistic and p-values for the wheelchair user.

Finally, to assess the generalisation of the model to di�erent datasets, the pro-

posed method was employed to a GPS dataset of 5 individuals. The temporal

resolution of this dataset was 60 seconds of each subsequent GPS point, while the

spatial accuracy according to the horizontal dilution of precision value was ≤ 2.5

which translates to a good accuracy level for most applications (Langley et al.

1999). The temporal domain of this dataset spanned for over a week for all partic-

ipants. Since information about the individual socio-demographic characteristics

of participants was unavailable for this sample, an uninformative Dirichlet prior

distribution was used for modelling the e�ect of personal preferences. The per-

formance of classi�ers was tested against the individuals self-labelled data. The

hyper parameters of SVM, RF and MLP were tuned for di�erent values using the

exhaustive grid search method. The results are presented in the table below along

with the corresponding results of SVM, RF and MLP classi�ers. As it can be

seen, the proposed method performed comparably when compared to SVM, RF

and MLP classi�ers.
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Table 6.5: Performance evaluation using a GPS sample of 5 individuals.

Classi�er Stationary Walk Bus/Car Rail Recall

Pr. method

0.94 0.05 0.0 0.0 0.94

0.28 0.64 0.03 0.05 0.65

0.03 0.04 0.92 0.01 0.92

0.02 0.04 0.01 0.94 0.94

Precision 0.94 0.65 0.88 0.91 Acc: 0.90

RF

0.91 0.05 0.03 0.01 0.91

0.36 0.49 0.12 0.02 0.49

0.18 0.08 0.65 0.08 0.65

0.07 0.05 0.16 0.72 0.72

Precision 0.92 0.53 0.44 0.84 Acc: 0.82

SVM

0.89 0.09 0.02 0.01 0.89

0.29 0.61 0.03 0.08 0.61

0.04 0.08 0.77 0.11 0.77

0.09 0.02 0.09 0.81 0.81

Precision 0.95 0.43 0.53 0.79 Acc: 0.85

MLP

0.91 0.05 0.03 0.01 0.91

0.36 0.49 0.12 0.02 0.49

0.18 0.08 0.65 0.08 0.65

0.07 0.05 0.16 0.72 0.72

Precision 0.92 0.53 0.44 0.84 Acc: 0.82
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6.2.3 Discussion

The posterior quantities for the speed of the two participants in the study were

found to be di�erent when compared with each other. This can be attributed to

numerous reasons. As already mentioned, the mobility aids each participant is

using are di�erent, in�uencing the walking speed in di�erent ways. In addition,

each participant is using di�erent rail transportation modes, namely the London

Overground rail service for the crutches user and the National rail services for the

wheelchair user. These two services have very distinct speed signatures, the �rst

one being a city wide transportation mode with more frequent stops while the

latter being used for intercity travels with fewer intermediate stops. Looking at

the state transition probabilities, a detailed insight on the way the participants

use the di�erent transportation modes can be made. The high probabilities for

staying at each node, are the result of the coordinate by coordinate classi�cation

process. The relatively low transition probabilities of the wheelchair user re�ect

the fact that this individual uses the public transportation fewer times in the

weekly sample of the analysis. This is contrasted with the crutches user that

interacts with the public transportation network in a more regular way. In terms of

frequency of transportation mode use, the crutches user is characterised by higher

Walk/Rail transition probabilities, while the wheelchair user by higher Walk/Bus

probabilities.

With regards to the overall strength of the travel mode preferences as expressed

through the concentration parameters, the small (< 0.5) posterior value of the con-

centration parameter of the Dirichlet prior for the bus travel mode, particularly in

relation to rail services of the crutches user re�ects the lack of use of this particular

mode. This update signi�es rede�nition of the LTDS derived assumptions, where

the likelihood of bus use is greater. The uncertainty over the use of di�erent public

transportation modes of the wheelchair user is re�ected by the increased overlap

of the posterior concentration parameters. The exception is the walk state, which

is in line with the prior assumptions for this user as expressed from LTDS.

Posterior inferences of external covariates has shown that their in�uence on

the travel mode classi�cation process varies between the two participants. In

particular, proximity to available transportation modes and IMD had a reduced

e�ect on participants interaction with the transportation modes, the magnitude of

which is di�erent between them. This magnitude varied between being statistically

non signi�cant and having a signi�cant, but small e�ect. The former was the case

for proximity to available transportation modes, while the latter was relevant for

IMD. This could re�ect the fact that the di�erent use of transportation modes,

as expressed by the di�erent speed values, is not in�uenced signi�cantly by the
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chosen covariates. However, given the low accuracy of traces, this assertion should

be veri�ed by the use of more accurate position data.

In the context of the CAA modelling, the developed hierarchical DBN o�ers the

advantage of providing information about the degree of interaction of individuals

with the available transportation modes, together with the extensibility required

to include a wide range of variables in�uencing it. Judging from the posterior

densities of the concentration parameters, internal factors inherent to a person's

capabilities, as expressed by the shape of the Dirichlet prior, play an important role

in the interaction with the di�erent transportation modes. On the other hand,

external covariates have a limited e�ect on the inferred modes. The proposed

approach is also able to characterise the transition dynamics of an individual

through the use of the transition matrix.

6.3 Inferring activity types from unlabelled mobility

data

This section's goal is to describe the DBN for activity type inference from un-

labelled mobility data. In particular, section 6.3.1 de�nes the structure of the

model, taking into account the potential activities that can be reached within a

given isochrone polygon. Section 6.3.2 provides a detailed accuracy assessment

of the degree of achievable accuracy under di�erent model con�gurations using

the social media dataset described in section 5.4. The methods and learnings are

transferred in the context of the CAA model described in section 6.4.

6.3.1 Model speci�cation

Similarly to section 6.2, the process of inferring activities from mobility data and

additional evidence was formulated through a dynamic Bayesian Network.

The range of potential activities can be represented as the vector of potential

destinations per activity category, as de�ned by the activities catchment area. In

studies that involve activity type inference, and in particular the ones that use

topic modelling methods, the nature of activity types at a destination can be

captured by Points of Interest (POIs) (Gao et al. 2017). Approaching activity

inference this way allows for a more direct quanti�cation of uncertainty in ac-

tivity estimates by assigning a probability at each potential activity depending

on the absolute counts of potential destinations. Given the discrete nature of

the set of activity events, this vector is assumed to follow a Multinomial distri-

bution z ∼ Mult(p1...κ, n) with parameters p1...κ being the activity probabilities

with
∑
p1...κ = 1 and n being the total number of potential activities. Within a
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Bayesian setting, the activity event probabilities can also be modelled as random

variables following a distribution (prior distribution). The parameters of this dis-

tribution can then be used to encode any prior information that is assumed to

in�uence the activity event probabilities. Such information can relate to the char-

acteristics of mobility data, such as activity start time and activity duration. Due

to distribution conjugacy, a natural choice of prior distribution for multinomial

random variables is the Dirichlet distribution, de�ned by a concentration param-

eter α1...κ with αi > 0. The concentration parameter vector controls the amount

of probability mass assigned to an activity event before any potential destinations

are observed.

6.3.1.1 Specifying the prior distribution

In the case of activity inference using POI data as feature vector, specifying an

uninformative prior distribution would lead to the posterior activity estimates to

be dominated by the likelihood derived from the POI data, re�ecting the propor-

tion of activities residing within an activities catchment area. For the Dirichlet

distribution, this translates to setting the concentration parameter vector to an

array of ones: α1...κ = 1 which results in drawing prior samples from a uniform

distribution on the probability simplex. On the other hand, an informative prior

using characteristics of the trajectory such as start time and duration will weight

the simplex accordingly.

The e�ect of the Dirichlet prior on the Dirichlet/Multinomial posterior param-

eter estimates can be seen from the form of the posterior. The Dirichlet probability

density function is:

f(p|α) =
Γ(
∑κ

i αi)∏κ
i Γ(αi)

κ∏
i

pαi−1i (6.5)

The posterior then is the product of the prior with the data likelihood:

f(p|Data) = f(p|α)
∏

yi∈Data
f(yi|p)

∝
κ∏
j

p
αj−1
j

∏
yi∈Data

κ∏
j

pyij

=
κ∏
j

p
αj−1+

∑
yi∈Data

yi

j

(6.6)

where yi is the POI vector in an activity isochrone polygon.

It follows from eq. 6.6, that the posterior is also Dirichlet distributed with

the concentration parameters acting as pseudocounts, weighting the parameter
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estimates towards the prior distribution, an e�ect that is referred to as "shrinkage"

(Gelman et al. 2013). Using this property, the propensity of activity types at a

particular point in time can be included in the model as a vector of probabilities,

prior observing the Multinomial POI vector.

In the context of the Dirichlet/Multinomial model of this study, the shape of

the Dirichlet concentration parameter vector α can be used as a means to adjust

the speci�c activity type distribution throughout the set of trajectory locations

for an individual. High α values (depending on the base measure) indicate that

speci�c activity types are more likely to occur compared to the ones with relatively

low values.

For this study, the concentration parameters were estimated from the full

Foursquare dataset following an empirical Bayes approach. Within this approach,

the prior distribution is estimated from the data and is considered an approx-

imation to a complete hierarchical analysis where a probability distribution is

placed on the prior distribution parameters (Gelman et al. 2013). In this way,

posterior activity estimates for an individual are allowed to be in�uenced by the

full Foursquare population level activity estimates. In a setting using a di�erent

dataset, such information can be obtained from supplementary data such as travel

surveys as demonstrated in section 6.2.

Using the complete Foursquare dataset, a combination of checkin time and

duration between subsequent checkins was used by calculating a gaussian ker-

nel density estimate (KDE) for each activity type at each trajectory point and

generating samples for each checkin/duration pair (�gure 6.17). Note that the

duration variable does not correspond to duration of stay, as this information

is not available in the Foursquare dataset. Nevertheless, duration as calculated

by the time elapsed between subsequent checkins has been used in studies using

datasets with similar shortcomings, such as AFC (Lee & Hickman 2014, Alsger

et al. 2018). The sampled values were organised in a vector for each activity type

and each activity location. To ensure the concentration parameters follow an ex-

ponential distribution with rate proportional to the magnitude of KDE density

for each check-in/duration pair and allow for more �exible priors, the resulting

values were multiplied by Gamma distributed random variables with shape and

rate parameters of the Gamma distribution a = b = 1.
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Figure 6.17: KDE contour plots of checkin time and duration between checkins

for each activity type category

6.3.1.2 Specifying the dynamic component

In general, the sequence of activity types within an individual's trajectory are

characterised by recurring patterns. Among other factors, this is the result of

an individual's activity type scheduling processes (Kitamura et al. 1997). This

property has been recognised by researchers as important for a number of reasons.

First, it allows for a more realistic modelling of activity type patterns that is com-

parable with human decision making process (Allahviranloo & Recker 2013) and

second, it enables more robust modelling, especially if the task is predictive infer-

ence. As already demonstrated in section 6.2, a particularly ubiquitous framework

for modelling transition dynamics are Markov models. Markov models use the se-

quential nature of observations to estimate a transition probability matrix which

can then be used to generate future model states. Speci�c examples within the task

of activity modelling include the work of Allahviranloo & Recker (2013), where

the parameters a�ecting activity sequencing were speci�ed through the use of a

Support Vector Machine model, while activity sequencing was modelled through
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the use of CRFs. Other authors (Liao, Patterson, Fox & Kautz 2007) have used

dynamic Bayesian Networks to model daily activity sequences given features such

as previously inferred transportation mode and duration of trip segment as derived

from GPS trajectory data.

A disadvantage of the use of Markov models in the context of many applica-

tions is their "memory-less" property. This speci�es the conditional dependency

of a future state with respect to the immediate previous one. For activity mod-

elling this is a strong assumption as activities usually depend on temporal factors

rather than the sequence that were carried out. For example, activities related to

education is more likely to be dependent on the time of day rather than the na-

ture of the previous activity. Nevertheless, the memory-less assumption has been

widely adopted in the literature for trip purpose inference (Popkowski Leszczyc &

Timmermans 2002, Han & Sohn 2016).

For this study, the dynamic component was modelled using a transition prob-

ability matrix with the rows specifying transition probabilities between di�erent

latent activity types. A transition matrix T of an K state Markov process is given

by:

T =


π(1, 1), π(1, 2), . . . , π(1,K)

π(2, 1), π(2, 2), . . . , π(2,K)
...

π(K, 1), π(K, 2), . . . , π(K,K)

 (6.7)

where each entry corresponds to the probability that the system transitions to

state j given the state was i at the previous step:

π(i, j) = P (xt+1 = j|xt = i) (6.8)

The rows of the transition matrix were modelled using independent Dirichlet

distributions with all concentration parameters equal to one, corresponding to

no prior assumptions related to the sequence of activity types. This allows the

resulting transition probabilities to be inferred only by the sequence of activity

types while ensuring the rows of the transition matrix pi = π(m, i) is 0 ≤ pi ≤ 1

and
∑
pi = 1. This is a fairly common Bayesian approach when the transition

probabilities are unknown or uncertain (Jaulmes et al. 2005, Bertuccelli & How

2008).

Consolidating the above, the model structure is illustrated in Figure 6.18. In

this �gure, the greyed square nodes represent observed data while circle nodes rep-
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resent stochastic variables. The matrix notation represents the transition matrix

between κ activity types.

.....

.....

.....


Dir(1)1

...

Dir(1)κ



αt

poi1 poi2 poi3 poin

d1 d2 d3 dn

z1 z2 z3 zn

Figure 6.18: Graphical representation of the DBN used for activity inference.
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More formally, the model is:

p(dn|T, αdurti ) ∼ Dir(αdurti ) (6.9)

with likelihood


f(x, αdurti )

f(Trow=argmax(dn−1), α
dur
ti−1

), if ti−1-3<ti<ti−1+3

f(x, αdurti ), otherwise

,

p(zn|dn) ∼Mult(poin, dn)

For this study, a varying prior αdurt was introduced, that changes depending

on the hour of day at a location i ( ti = {1...24} ) and the time lapsed between

subsequent locations (dur), speci�ed in section 6.3.1.1.

The transition matrix was used to update the likelihood of the hidden activity

sequence vector d under the assumption that an activity state is dependent on the

previous state only if it falls within the same temporal window with the previous

activity. This temporal window was speci�ed to be +/- three hours from the

check-in time to re�ect plausible activity sequences among in the trajectory.

Table 6.6 below summarises the notation of the model:

Variable Description

poi POI- derived classi�cation vector within an

isochrone boundary

z Multinomial probability distribution of activi-

ties.

d Dirichlet distribution on z.

α Concentration parameter vector derived from

time of day and duration between check-ins.

T κ× κ transition matrix.

t Hour of day index.

i, n Check-in index, Total number of check-ins per

individual Foursquare user.

κ Activity categories index.

Table 6.6: Description of variables of �gure 6.18
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6.3.2 Results

The model speci�cation described in section 6.3.1 was applied to each individual

Foursquare sequence of check-ins for each individual (trajectories). As has already

been mentioned, this dataset is used within a completely unsupervised setting, us-

ing only the (weighted using labour demand data) Foursquare POI vector, activity

sequence dynamics and check-in time/duration between check-ins as input to cal-

culate activity type probability vector. Inference was performed using the well

known Metropolis-Hastings sampling scheme described in detail in (Neal 2000).

A lognormal proposal distribution is used with the step scale modi�ed in each

iteration to increase the acceptance ratio. In the case of Dirichlet distribution,

proposed values were normalised to sum to one to produce a valid proposal vector.

For the rest of the model's nodes, an adaptive metropolis algorithm was used

(Haario et al. 2001), with a scaled covariance matrix for the jump distribution to

minimise the likelihood of invalid proposals. For each dataset corresponding to

an individual's trajectory, two parallel MCMC chains were initiated with random

starting values, for a total number of 10000 iterations. The �rst 1000 samples were

discarded as not representative of the posterior distribution.

Next, the posterior quantities are presented for the inferred variables, having

as benchmark POI vectors under the 5 minutes walking distance isochrone. Con-

vergence of the MCMC chains was assessed using Geweke's diagnostic (Geweke

et al. 1991). Stochastic variables that have z values within two standard deviation

values around zero signify a MCMC chain that have converged. Figure 6.19 shows

a plot with Geweke's z score for the inferred stochastic variables of the model for

all participants.

As it can be seen, the bulk of the z scores lie within the boundaries of two

standard deviations from zero. For the remaining variables, additional samples

would have assisted convergence.

The posterior distribution of the latent parameter vector dn corresponds to the

probabilities of activities inside an isochrone polygon (in this case the 5-minute

boundary). The results for each participant is shown in Appendix C. As it can

be seen, the inferred concentration parameter vector α had a smoothing e�ect in

the posterior quantities of activities for nearly all participants. In contrast, in the

case of sparse data distributions (isochrone polygons having very few POIs) the

posterior quantities are dominated by the empirical Bayes prior, as in the case for

user #16 or #17 for example.

The posterior densities of the transition matrix capture the interactions of

the users with the activities, provided that these occurred within the speci�ed

time framework set out by the model. Figure 6.20 below shows the posterior
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Figure 6.19: Geweke's z score for all stochastic variables

distributions for all users and for each element of the transition matrix.

Figure 6.20: Transition matrix posterior distributions for all users. The �gure titles

P00 . . . P43 refer to transition probabilities between activity types. The transition

probabilities of individual users for each transition are overlaid in each sub�gure.

Modelling the transition dynamics between activities provides an additional

insight to the activity patterns of individual users. In the case of this study,

a bimodality can be observed between the interaction of activity Colleges and

Universities with the rest of activities. This could potentially be attributed to
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student and non-student population groups. The same is observed for Outdoors

and Recreation activity which could signify users with di�erent outdoor activity

levels. It should be noted that the �nal column of the transition matrix can be

derived in a deterministic way by 1−
∑

j Pij as the rows of the matrix must sum

to one.

Finally, it should be noted that although the model provides interesting insights

on the mobility patterns of individual users, interpretation of these patterns at

an aggregated level should be done with caution and should not be regarded as

representative for the whole population of Foursquare users. This is due to the

limited number of trajectories used in this analysis.

6.3.2.1 Performance of activity type inference under di�erent POI con-

�gurations

Using the self reported check-in activities of each individual user, the performance

of the activity inference model could be evaluated under each di�erent POI con-

�gurations corresponding to the di�erent isochrone extents.

In addition to accuracy, two additional measures of performance were used:

The AUROC (Area Under Receiving Operating Curve) and log-loss metric.

A ROC summarises the performance of a classi�cation algorithm by represent-

ing the trade o� between true positive (recall, sensitivity) TPR = TP
TP+FN and

false positive detection rate (1 - speci�city) FPR = FP
FP+TN . Computing these

two metrics for di�erent thresholds and plotting these two quantities against each

other yields a ROC.

By calculating the area under ROC (commonly by trapezoidal integration)

one obtains the AUROC metric which ranges between 0-1, with 1 corresponding

to perfect classi�cation performance, and a value of 0.5 corresponding to a random

classi�er. This metric has several advantages over other metrics such as accuracy,

since it is not sensitive to class distribution prior to inference and giving low

scores to "one class only" classi�ers (Bradley 1997). Moreover, it has an intuitive

statistical interpretation, as it represents the probability that a randomly chosen

false positive sample will have a lower probability than a randomly chosen false

negative sample (Huang & Ling 2005).

It should be noted that the AUROC metric has traditionally been used within

supervised classi�cation settings, within which the classi�cation algorithm is trained

with a ground truth dataset. However, in this study, inference of the unknown

model parameters was performed using the information contained in the POI vec-

tor and assumptions about user's activity patterns as included through the prior

and the transition matrix. Nevertheless, since the encoding of the POI vector
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is the same with the ground truth self reported check-in activities, it is possible

to use this metrics to assess activity detection performance under the di�erent

con�gurations of POI vectors.

For the computation, the argmaxκ(di) of the posterior distribution of the di

random variable was taken for each user trajectory. Since AUROC is de�ned over

binary classi�cation frameworks, the activity classes were binarised with respect

to each over, and the metric was computed for each individual activity class.

In addition, to assess the correspondence of the posterior probability vectors

di of each isochrone bounding area with users's self-reported activities, the log-loss

was computed, having as reference a degenerate distribution constructed by the

ground truth check-in activities per isochrone area. Log-loss naturally quanti�es

the performance of a model whose output is a probability distribution. As a

function, it is closely related to cross-entropy and Kullback-Leibler divergence in

information theory and, in the case of binary output, is de�ned as −ylog(p) +

(1 − y)log(1 − p) where p is the predicted class probability. This formula can

be extended to the multiclass case by summing over the separate losses for each

class label −
∑K

κ=1 yκlog(pκ). A value of 0 indicates a perfect correspondence (no

information loss) while larger values correspond to less correspondence between

the two distributions.

6.3.2.2 Performance assessment using AUROC

Looking at the 5 minute isochrone Area Under Receiver Operating Curve (AU-

ROC) values (�gure 6.21), one could see that for the majority of Foursquare users,

the model resulted in values �uctuating around 0.6 for all activity categories, par-

ticularly for Food and Shop and Retail. This is to be expected since Food and

Shop and Retail categories were the dominating activity labels for the major-

ity of the POIs included in the 5-minute isochrone area. For activity categories

Outdoors and recreation and Arts and Entertainment there is a relatively high

number of AUROC values �uctuating around 0.5 indicating that for such cases,

the model's output is indistinguishable from a random classi�er. Under closer ex-

amination, situations such as sparse POI vectors or class confounding POIs within

an isochrone area seem to trigger this behaviour. For the cases where AUROC

values are below 0.5, the model systematically miss-classi�ed the correct activity

for the particular isochrone area. This behaviour mostly occurs when a POI vec-

tor con�icts with the ground truth activity category by a large extent, together

with repeated user visits to the problematic isochrone area within a trajectory.

An example is a repeated user visit to an outdoor area that is within an isochrone

polygon containing a disproportionate large number of Food POIs. In this case,
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the classi�er will repeatedly miss-classify the activity as a Food activity resulting

in an AUROC value below 0.5. A similar behaviour can also occur in the presence

of sparse POI vectors where the posterior distribution of activities is dominated

by the empirical Bayes prior, which, for some individual activity check-ins, does

not correspond to the ground truth.

Figure 6.21: AUROC values for all user trajectories (5-min isochrone)
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At a 10 minute walking distance isochrone, model's performance deteriorates

for all activity categories, with more individual trajectories displaying systematic

errors during activity inference. For some individual trajectories however, increas-

ing the extent of the isochrone area seemed to have improved results for Outdoors

and Recreation. This behaviour is most likely related to the more dispersed nature

of Outdoor POIs within the 10-minute isochrone.

Figure 6.22: AUROC values for all user trajectories (10-min isochrone)

Further, at a 15 minute level isochrone, all activity inferences shrink further

towards the AUROC 0.5 value, with increasing number of trajectories being sys-

tematically missclasi�ed. At this level of resolution, most of the meaningful struc-

ture is lost from the data, resulting all activity categories behaving similarly. A

similar situation occurs at the 20-min isochrone level.

Figure 6.23: AUROC values for all user trajectories (15-min isochrone)
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Figure 6.24: AUROC values for all user trajectories (20-min isochrone)

6.3.2.3 Performance assessment using log-loss

While the AUROC metric is useful technique to summarise the performance of a

classi�cation model under di�erent data settings, it doesn't provide any insights

on the performance of the classi�er with respect to the probabilistic output of ac-

tivities inference per icoschrone area. To address this, the log-loss was calculated,

having as reference a (degenerate) distribution constructed using the ground truth

check-in activities. To avoid numerical errors, a small jitter of the order of 10−3

was added to the reference distribution. A log-loss value of 0 assumes no informa-

tion loss between the two distribution while increasing values indicate increased

information loss.

Looking at log-loss values for the 5-minute isochrone (Figure 6.25) one could

see that the majority of participant trajectories lie bellow a mean log-loss value

of around 1.4, which translates to probability of 0.246 (e−1.4) per each isochrone

area, an improvement over a random guess for the 5 activity categories of this case

study. Looking at the 1st and 3rd quartile spread of log-loss values, one could see

that activity predictability varies greatly between and within users, indicating that

the limits of activity predictability is both user and location dependent. The log-

loss values gradually increase with increased isochrone bands, signifying gradual

deterioration of results.

6.3.2.4 Accuracy assessment

Using the revealed activity types reported by the Foursquare users, the absolute

accuracy for each individual can be calculated. Figure 6.26a shows the histogram

of accuracy values for each individual trajectory and each isochrone band. For

the 5 minute isochrone one observes a bimodality in the individual accuracies,
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Figure 6.25: Log-loss boxplots of all user trajectories

the �rst mode peaking around 0.4 while the second around 0.7. Under closer

examination, trajectories with few data points and very sparse POI vectors seem

to result in lower accuracy, as activity type inference is dominated by the checkin

time/duration prior.

Finally, the model's output for the 5-minute isochrone is compared against

two popular generative models in activity type inference: a hidden markov model

(HMM) with Gaussian emission probabilities for check-in time and duration be-

tween subsequent check-ins, and a LDA model using the 5 minute isochrone POI

vector as words, the individual check-in locations as documents and the activity

types as (latent) topics (�gure 6.26b). Contrary to the proposed method where

the output probabilities are assigned to the corresponding POI activity type cate-

gories through the multinomial distributed POI vector, the labelling of the output

of HMM and LDA correspond to activity type clusters and as such it requires

an extra step of interpretation to assign semantic properties. In this study, this

was done by attributing the ground truth activity type to the corresponding la-

bel according to a majority count of labels belonging to the particular activity

type. As it can be seen, overall the proposed method resulted in increased accu-

racy compared to the HMM. The LDA model performed reasonably well, however
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it lacked the �exibility to provide accuracy results for the individual trajectories

that have that potential compared to the proposed method. The mean accuracy

values for the three methods were 0.43, 0.52 and 0.56 for the HMM, LDA and

proposed method respectively. Finally, the confusion matrices for all three models

are presented in �gure 6.26c.
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(a) Histograms of individual accuracy val-

ues for the proposed method.

(b) Proposed method, HMM and LDA ac-

curacy values.

(c) Proposed method, HMM and LDA confusion matrices .

Figure 6.26: Accuracy histograms and confusion matrices for the proposed method,

HMM and LDA.
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6.3.3 Discussion

The DBN used in this case study allowed for di�used estimates as the informed

Dirichlet prior acts as a smoothing agent introducing pseudocounts to the Multino-

mial model through the Dirichlet/Multinomial conjugate property. The degree of

smoothing depends on the prior information introduced by the Dirichlet concentra-

tion parameter. In the absence of data that could relate to personal characteristics

as in the modelling approach of section 6.2, this case study used an empirical Bayes

Dirichlet prior as an agent to incorporate population level characteristics dusting

inference. Similarly to section 6.2, individual user's activity transition dynamics

were modelled through a Markov speci�cation using a stochastic transition matrix,

allowing the extraction of characteristic activity pro�les for each individual user.

The choice of isochrone levels was based on common assumptions related to

maximum walking distance an individual is willing to traverse from a point of

access (Transport for London 2010), and thus it allows the �ndings to generalise to

other mobility datasets such as Automatic Fare Collection systems and cell-tower

mobility data within dense urban settings. The former is of particular importance

considering the fact that the following chapters use a lower resolution smart card

dataset.

The performance of the model under the di�erent isochrone con�gurations was

assessed using the AUROC and log-loss metrics. Results have shown that activ-

ity detection bene�ts most from the 5-minute isochrone, however the 10-minute

isochrone retains its integrity for most individual trajectories, particularly for cat-

egories such as Colleges and Education and Outdoors and Recreation. Larger

isochrones yield inferior activity detection results triggered by systematic errors in

the data and the lack of within activity class structure that can be exploited from

the model as determined by AUROC values. The overall accuracy of the 5/10-

minute isochrone activity type inference seem to be in par with other relevant

studies (e.g. Allahviranloo & Recker 2015, Shen & Stopher 2013, Allahviranloo &

Recker 2013) for non home/work related activities. However, the current study

bene�ts from being validated in an unsupervised classi�cation setting using re-

vealed individual activity types, as opposed to proxy ground truth data such as

travel surveys or synthetic data (e.g. Yin et al. 2017, Hasan & Ukkusuri 2017).

Similarly to the approach of section 6.2, limitations of this modelling approach

can be found in the the computational intensive nature of the MCMC simulations

which makes this framework not suitable for real-time applications. Moreover, it

is unclear how this model will perform for inferring activities other than the ones

that can be solely determined by characteristics of the build environment such

as employment and home. It is speculated though that the modular structure of
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this framework would be able to account for this challenge, either by modifying

the likelihood function or by specifying an informed prior to incorporate added

information such as duration of stay or sociodemographic characteristics. This is

explored further in the following section.

6.4 A Capabilities Approach to accessibility: Model

formulation

So far, sections 6.2 and 6.3 have shown how some of the core components of

accessibility studies (interaction with transportation modes and interaction with

available activities) can be extracted from unlabelled mobility data using DBNs.

This section's goal is to consolidate the methodological approaches introduced

in chapters 6.2 and 6.3 and formulate a Capabilities Approach to Accessibility

(CAA) model, expressing the relationship between the accessibility components

using the Capabilities Approach (CA). Following the schematic 3.1 of section 3.5.1

schematic 6.27 below presents a high level view of the approach.

Speci�cally, at the top of the hierarchy the functioning vectors consists of the

personal characteristics, which are assumed to be individual dependent and persis-

tent throughout an individual's trajectory. These are informed using travel survey

data and de�ne the prior assumptions within a Bayesian setting (see section 6.2).

The environmental characteristics on the other hand, are assumed to vary through-

out an individual's trajectory, depending on the location. This dynamic compo-

nent is captured through the use of transition matrices between activity types and

transportation modes, the rows of which are modelled using the environmental

characteristics. Both personal and environmental characteristics inform the latent

capabilities, which are characterised by a) the potential destinations/opportunities

that are available to a person and b) the potential public transportation modes

an individual can use to access them.

At the bottom of the hierarchy are the realised functionings, which are used

to infer the capabilities. These are a) the available opportunities bounded by

the activity space for each destination and b) the transportation modes used by

the individual. This process is relevant for each individual and is dynamic, in

the sense that the results in each time step in�uence the results of the next time

step in the trajectory. Further implementation details are given in section 6.4.1

within the context of exploring the link between transport disadvantage and social

exclusion in London. The data input for this model are individual trajectories from

London's AFC system (Oyster card), however, as demonstrated in sections 6.2 and

6.3 the overall methodological framework developed (�gure 6.1) is able to account
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Figure 6.27: Roadmap for developing the Capabilities Approach to Accessibility

(CAA) model.

for diverse sources of unlabelled data (such as CDR, GPS, social media data etc.).

The study focuses on three population groups: individuals having annual

household income below ¿15000, individuals > 60 years of age and an uncon-

strained base population group. The choice of those population groups was based

on two factors: the sample size of each group and past research providing evidence

of population groups with signi�cantly di�erent accessibility levels compared to the

majority of the population (Páez et al. 2010, Hickman et al. 2017, Kamruzzaman

et al. 2016, Titheridge et al. 2009).

6.4.1 Model speci�cation

In the speci�cation of this case study, two distinct but interacting components of

an individual's act of reaching opportunities are included:

� Ability to interact with the available public transportation modes

� Ability to interact with the available destinations/opportunities
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Similarly to sections 6.2 and 6.3, the relationship between these components

as well as the personal characteristics and external factors were modelled using

dynamic Bayesian networks. This time however, the link between capabilities

and functionings is made explicit by providing a de�nition of the elements of the

capabilities set and how these relate to the observed functionings.

6.4.1.1 Inclusion of personal characteristics

Although it is generally agreed that the personal characteristics of an individual

in�uence mobility to a large extent, it has been argued that such variables express

the potential of individuals to travel and as such they can not be used on their own

to characterise accessibility (Kamruzzaman et al. 2016). Moreover, as these factors

tend not to change over large periods of time, they cannot be used to describe

the day to day interaction with the available transportation means and activity

types. Nevertheless, personal characteristics provide the core information for many

accessibility related studies and as such they have been used in conjunction with

other datasets for identifying social exclusion (Casas 2007), de�ning the extent of

activity spaces (Li & Tong 2016) and measuring access to activities and public

transport (Wixey et al. 2005).

In this context, personal characteristics is an overarching term including the

demographic characteristics and potential resources that could bene�t or impede

accessibility of an individual. Throughout the literature, variables such as eth-

nicity, age, gender, health, occupation status as well as income and access to car

(Hananel & Berechman 2016, Preston & Rajé 2007, Simma & Axhausen 2003)

have been found to be some of the most signi�cant explanatory variables of an

individual's access to destinations.

For this case study, two di�erent data sources were used:

� LTDS survey described in section 5.5 for interacting with the available public

transportation modes

� London's Rolling Origin Destination Survey (RODS) for interacting with the

available activity types at a destination

Inclusion of personal characteristics in the model was based on the speci�ca-

tion of section 6.2. Sections 6.4.1.1 and 6.4.1.1 describe the procedure for both

transportation mode and activity types.

Transportation mode modelling

Contrary to section 6.2 where the vector of personal characteristics was limited to
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age and disability status, the direct link between Oyster card records and LTDS

allows the extension of the factors in�uencing an individual's interaction with

the public transport modes to include a wider range of sociodemographic char-

acteristics and resources. Table 6.7 below provides a description of the variables

considered:
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Variable Cardinality Description

Age Continuous Age of the respondent

Income 11 Gross household income before tax

Household

members

Continuous Number of household members

Travel pass 4 Whether the respondent possesses a

travel pass

Disability 9 Disability type

Car license 2 Holds a full driving license

Occupation 9 Main occupation

Free pass 2 Whether the respondent hold a free

travel pass

Sex 2 Sex of the respondent

Working sta-

tus

12 Respondent's working status

Ethnic group 19 Respondent's ethnic group

Health prob-

lem

2/2 Long/short term health problem

Car use as

driver

8 Frequency of car use

Car use as a

passenger

8 Frequency of car use as a passenger

Regular taxi

use

8 Frequency of black cab use

Private taxi

use

8 Frequency of use of minicab, Dial a

ride etc.

Walking 8 Walking frequency

Table 6.7: LTDS personal characteristics used in the case study
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Similarly to section 6.2.1, a set of individual binary logistic regression mod-

els were �tted for each transportation mode κ ∈ {Bus,Rail, T ram} category to

compute the relative frequency of an individual using a particular transportation

mode given the set of covariates/factors of table 6.7. The choice of individual bi-

nary logistic regression models over a multinomial regression model was based on

the absence of mutually exclusive transportation choices over the set of available

transportation means, as well as the absence of category speci�c covariate/factor

information. Similarly to section 6.2.1, the breakpoint to coding the response

variables was the frequency of use of a particular transportation mode (more than

once per month).

The results of the logistic regression analysis using the updated variable vector

can be found in Appendix A. In all cases, the baseline category was the outcome of

not using the particular transportation mode frequently, while the log odds ratio

is de�ned as the logarithm of the ratio between the two outcomes:

log(
P (Y = 1)

P (Y = 0)
) = βX (6.10)

where β is the vector of regression coe�cients and X is the design matrix of

covariates/factors.

Exponentiation of the coe�cients β in the above equation, allows the recovery

of the relative in�uence of a particular variable expressed as the odds-ratio of a

unit increase in Xi for i ∈ {1...#variables}.
In the case of travelling by bus, disability, income, working status, possession

of a travel card as well as car were found to have a statistically signi�cant e�ect

in determining the use of bus over the rest of the transportation modes. Higher

incomes (> 75000£ per year) have a decreasing in�uence of using the bus over

the rest of the modes, with odds ratio of 0.5. Low income statuses such as being

a student, being unemployed or the inability to work because of a health problem

increase the odds of choosing the bus by a factor ranging between 1.7-2. In terms

of commodities, possession of a travel card increases the odds of using the bus,

while access to a car decreases the odds by 0.84.

Examining the results of the logistic regression for rail, disability, age, income,

sex, employment status, type of profession and ethnic group are among the so-

ciodemographic variables that have a statistically signi�cant e�ect on the odds of

choosing a rail over the bus and tram. Similarly to bus, mobility impairment has

a decreasing e�ect ranging between 0.5-0.6. Besides mobility impairment, cog-

nitive impairment also has a decreasing e�ect in using rail over the rest of the

transportation modes. Age has a marginal, but statistically signi�cant decreasing
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e�ect on rail frequency of use (0.97). Income on the other hand has an increasing

e�ect for a wide range of income strata over 50000¿. Participant's gender was

also found to be statistically signi�cant, increasing the odds of using rail modes

by 1.45 in the case of male. Similar to the results for bus, being unemployed,

retired, working from home or volunteering decreases the odds of using rail over

the rest of the modes. Finally, ethnicity was found to have a signi�cant e�ect

with the factor Other White (English/Welsh/Scottish/Northern Irish) decreasing

the odds by 0.54 and Arab increasing the odds by 1.81.

Results for choosing tram over bus and rail revealed a statistically signi�cant

e�ect for the variables household members, car license, free travel pass as well

as ethnic group. In particular, the odds of choosing tram over the rest of trans-

portation modes increases marginally by a factor of 1.13 with increasing household

members. On the other hand, possession of a car and absence of free pass decreases

the odds by a factor of 0.56-0.68. Ethnicity was found to have strong increasing

e�ect for a wide range of ethnic groups (Chinese, Indian, African and Caribbean,

Mixed or multiple ethnic groups) ranging from a factor of 8-13 when determining

the odds of tram frequency of use.

Figure 6.28 below shows the results of the individual logistic regressions on

predicting the transportation mode given sociodemographic characteristics on the

test dataset after performing a 70-30% train-test split on LTDS data.
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(a) Confusion matrix for rail use (b) Confusion matrix for bus use

(c) Confusion matrix for tram use

Figure 6.28: Confusion matrices for the individual LTDS regressions

Destination purpose modelling

The in�uence of personal characteristics for the task of destination inference was

determined using the RODS dataset. The RODS survey is a recurring yearly

questionnaire survey conducted at TfL's underground stations for the purposes of

capturing information about London underground users' journeys. The dataset

contains a multitude of variables such as: Line loading by section/line and time

of day, route choice by origin-destination pair, numbers and types of interchanges,

estimated and expected journey time, destination shop/activity as well as personal

characteristics such as sex, age and disability etc. RODS distinguishes a journey's

destination purpose by the types speci�ed in table 6.8. The total number of

the questionnaire respondents was 31854, with the majority (around 84%) of the

destination type responses being Travelling to work.

To be consistent with the OS POI categories RODS destination purposes were

re-categorised according to the categories of OS POI dataset. For the category

Eating & Drinking, the destination names (in the case they existed) were matched

to the corresponding names in the OS POI dataset. For the rest of the destination

categories, the re-categorisation was based on table 6.8.
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RODS destination cate-

gories

OS groupings

Shopping Retail

Theatre /cinema /concert /

Sporting activity /event

Outdoors and Recreation

Museum /exhibition Outdoors and Recreation

School /college /university (as

student)

Education and Health

Personal business (e.g. doc-

tor/dentist)

Education and Health

Normal workplace /Other

workplace /employers busi-

ness

Work

Table 6.8: Re-categorising RODS destination purposes

Contrary to the methodology followed for determining the in�uence of per-

sonal characteristics on transportation mode described in the previous paragraph

(Transportation mode modelling), the range of destination categories was

modelled using multinomial logistic regression with work being the baseline cat-

egory. This was due to the lack of overlap between di�erent destinations, as the

RODS dataset contains one destination purpose per record. The frequency of ob-

servations in the dataset is heavily skewed towards the work category, accounting

for nearly 83% of the total records. As a result, prior to the implementation of the

regression model, work category was randomly downsampled to match the relative

frequency of the remaining destination categories. The �nal dataset included 200

samples for each destination category, 30 % of which was kept for testing pur-

poses. The variables used for predictors were chosen to be disability, age, sex and

self-reported arrival time.

Looking at the regression results (Appendix B), self-reported arrival time was

found to have a statistically signi�cant e�ect in predicting the destination purpose

for all categories relative to the baseline category (Employment). In all three

cases, the odds-ratio is > 1 indicating that later hours of day increase the odds

of predicting categories other than the baseline, with Eating and Drinking and

Sports and Entertainment having the largest odds ratio. Age was found to have a

signi�cant e�ect as well for the categories Education and Health and Outdoors and

Recreation. For the category Education and Health the odds ratio was found to be

< 1 indicating that increased age decreases the odds of predicting this destination
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Variable Cardinality Description

Disability 2 Whether the respondent has re-

ported a disability that limits their

journey

Sex 3 Male/Female/not answered

Age Continuous Age if the respondent

Arrival time Continuous Estimated arrival time of the re-

spondent

Table 6.9: RODS personal characteristics used in the case study

category over the baseline. This is not the case for Outdoors and Recreation

where the odds ratio was found to be 1.34. Finally, the factor disability was found

to have a signi�cant e�ect for Sports and Entertainment, increasing the odds for

predicting this category over the baseline category nearly four times when a person

has not reported a disability. Besides time of day, the covariates used did not have

any statistically signi�cant e�ect in predicting the categories Eating and Drinking

and Retail, a fact which manifested itself in reduced predictive accuracy for these

categories. This can be attributed to the increased class overlap between these two

activity categories, as well as the reduced precision of Retail and reduced recall for

Eating and Drinking category. Figure 6.29 shows the results of the Multinomial

regression on the test dataset derived from the 70-30 % train-test split process.

Similarly to the LTDS dataset, the RODS multinomial logistic model was used

to predict the most likely destination purpose from the Oyster card/LTDS dataset.

6.4.1.2 Including external factors

In the scope of the CAA, external factors refer to environment variables that

could in�uence the choice of an activity type within an activity space, or variables

related to availability/reliability of public transport services. Similarly to chapter

6.2, these variables are assumed to change as the individual moves through space.

Di�erent data sources were used for this task in this case study. This included

census statistics, data from UK's Department of Transport, the London Metropoli-

tan Police Service and OpenStreetMap as well as data derived from an individual's

trajectory (such as trip duration). Similarly to section 6.4.1.1 these are presented

both for transport mode modelling and activity type modelling.

Transportation mode modelling

External variables in�uencing an individual's ability to use the public transport
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Figure 6.29: Confusion matrix of RODS multinomial regression

modes can be diverse and multi-faceted, ranging from the transportation network

attributes, such as connectivity, to characteristics of the wider physical and social

environment such as safety/security and street lighting (Wixey et al. 2005). For

this case study, two variables were included: Public Transport Accessibility Levels

(PTAL) and trip duration.

London's PTAL Public transport accessibility level (PTAL) is a measure of

service availability, used in a variety of contexts ranging from transport and urban

planning (Evans 2009) to equity in transport provision (Wu & Hine 2003).

London's PTAL was �rst designed by the borough of Hammersmith and Ful-

ham in 1992, and after a series of reviews and tests, it has been agreed by the

borough-led PTAL development group as the most appropriate method for cal-

culating accessibility to public transport in London (Transport for London 2010).

The index is particularly attractive in public transport appraisals since it combines

di�erent measures of transport quality of service such as:

� Walking time from any geographical point to the public transport access

points
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� Reliability of available modes of transport

� Number of services available within the catchment geographical area

� Average waiting time

One the other hand, its calculation does not take into account:

� The speed or utility of accessible services

� Crowding, congestion or the ability to board a service in general

� The ease of interchange

Calculation of PTAL is relatively easy and straightforward. The reader is

referred to Transport for London (2010) for details. The �nal output is 6 levels

of accessibility covering the Greater London Area ranging from low to high (0-6).

Levels 1 and 6 are further subdivided for clarity.

As it can be seen from �gure 6.30, PTAL essentially quanti�es the density of

public transport in an area. For the purposes of the analysis, PTAL levels were

given a weight from 1 to 9 (lowest to highest including the subdivision of classes

1 and 6).

Figure 6.30: London PTAL
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Trip duration Trip duration is the second external variable used in modelling

an individual's transition between public transport modes. This variable has been

widely used within di�erent accessibility contexts ranging from space-time prism

approaches (Kwan 2013) to utility based accessibility measures (Geurs et al. 2010)

as it is believed to be one of the most important infrastructure based accessibility

indicators.

Having reconstructed the individual trip segments for rail, bus and tram jour-

neys (see section 5.5.3.1) it is possible to calculate the duration of a trip segment.

For tube services this is straightforward as it can directly be derived from trans-

action times during a 'tap' in and out. However, for bus and tram services, where

the alighting stop/station is inferred, trip duration has to be estimated. For this

case study, individual trip duration and total travel time of the bus/tram trips

was computed by placing requests to TfL's uni�ed API journey planner with the

following con�guring parameters:

� Date of travel: Taken from the Oyster card transaction time

� Travel mode: Bus only/Tram only

� Max walking time: None

TfL's journey planner API response is a list of travel options matching the

query criteria for a particular origin/destination pair. From these potential routes,

only the ones that contained the bus route number as appearing in the Oyster

card/LTDS dataset were selected. The mean travel time was then computed from

all the candidate bus routes/tram services, and assigned as trip duration for the

particular trip segment.

Destination purpose modelling

External variables associated with the destinations where the di�erent activity

types are located can either support or impede the choice of an activity. From the

multitude of variables referenced in the literature (such as street furniture, width

of street etc.) (Evans 2009), deprivation, proportion of green areas, tra�c and

crime stand out as being important factors in�uencing the choice of activity.

Index of multiple deprivation (IMD) The level of deprivation of an area

is considered to be an important variable contributing to transport related social

exclusion (Casas et al. 2009, Kamruzzaman et al. 2016) as well as the ability of an

individual to participate in social and economic opportunities (Titheridge et al.

2009).
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National statistical agencies regularly collect such datasets, and for the UK

there exists theIndex of Multiple Deprivation (IMD), which assigns a composite

score to an area derived from data related to income, employment, education,

health, crime, housing and environmental quality (McLennan et al. 2011).

The advantage of using such an index is that it greatly simpli�es the analysis

as it allows the indirect inclusion of di�erent characteristics of the environment

through a uni�ed index. However, it assumes that all individuals respond to the

di�erent deprivation components in a similar way when reaching for a particular

activity. This is a strong assumption as people with di�erent capabilities might

weight the relative in�uence of these components in a di�erent way.

For this case study, data from 2011 were used as they are thought to be more

representative of the 2013 Oyster/LTDS dataset. Figure 6.31 below shows the

IMD values in London at lower super output area (LSOA) level, which is a geo-

graphic area used for small area statistics in England and Wales. The data were

standardised to be within the 0-1 range.

Crime rates Crime has been identi�ed by many authors as a negative factor

in�uencing accessibility (Pyrialakou et al. 2016, Evans 2009). This can vary for

di�erent individuals depending on personal characteristics such as gender and age

(Church et al. 2000, Schmöcker et al. 2008). For this study, London's metropolitan

police API was used to retrieve all reported crimes 1 for a period of four years

(2014-2017). The data were aggregated at the LSOA level. The dataset was

standardised by the population density for each LSOA to give an indication of

the crime rate, and min/max scaled to range between 0 and 1 for computational

convenience. Figure 6.32 below shows the resulting dataset.

1The crime categories considered were: Anti-social behaviour, Criminal damage and arson,

Drugs,Other theft, Violence and sexual o�ences, Other crime,Burglary, Vehicle crime,Public

order, Shoplifting, Theft from the person, Possession of weapons, Robbery,Bicycle theft.
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Figure 6.31: London IMD
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Figure 6.32: Standardised crime rates
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Proportion of green areas Urban design elements have been argued to con-

tribute to the con�dence, movement and transportation choice for individuals be-

longing to speci�c population groups, particularly the elderly and disabled (Evans

2009). These design elements can be anything that a�ects the quality of the built

environment such as railings, signs of vandalism and street furniture. For this

study, the fraction of green areas was computed as a proportion of the total LSOA

area as it has been shown to a�ect positively the aesthetics and perceptions of

people for urban areas (Smardon 1988). The green areas were taken from OSM

API using the tags that refer to the presence of greenery2. Figure 6.33 below shows

the resulting dataset. As before, the values were min/max scaled to be within the

0-1 interval3.

Figure 6.33: Standardised green space areas

2The OSM tags used were: leisure, park, garden, dog_park, allotments, forest, grass, green-

�eld, meadow, orchard, recreation_ground, village_green, wood, fell, grassland, heath, scrub,

wood
3For this study, the scaling re�ects the assumption that the proportion of greenspace in an

area doesn't have a negative seasonal or diurnal impact to the ability of people to reach their

activities, e.g. when it is dark or when it is winter
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Tra�c volume The fourth covariate considered is tra�c counts for the Greater

London Area. The volume of tra�c is considered to have a negative impact on

accessibility as higher volumes are thought to cause feelings of danger of travel,

threat, anxiety, insecurity and stress (Evans 2009). Areas with high tra�c volume

have also been found to correlate with deprived areas, resulting in increased tra�c

related deaths compared to more a�uent areas (DfT 2014). For this study, the

tra�c counts were used for the motorways and primary roads for the Greater Lon-

don Area for all motorised vehicles, sourced by UK's department for transport4.

For reasons of consistency, the tra�c counts were re-aggregated at an LSOA level,

standardised by population density and min/max scaled to be within the 0-1 range.

Figure 6.34 below shows the resulting dataset.

Figure 6.34: Standardised tra�c counts

4The vehicle categories used were: Cars/Taxis, motorcycles, heavy goods vehicles, light good

vehicles
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6.4.2 De�ning the capabilities

By de�nition, the set of capabilities should be constructed in a way that re�ects an

individual's choice to realise their desired goals, as well as the potential opportuni-

ties an individual has to make those choices. According to Hananel & Berechman

(2016), an evaluation of the capabilities set should start by explicitly stating what

these are. In the context of accessibility and adopting the de�nition of capabilities

from Tyler (2006), these are framed around:

� the ability to engage with available opportunities and

� the ability to use the public transport system to do so.

The �rst bullet point is related to the probability distribution of activity types

bounded by the isochrone polygon, while the second is related to the probability

distribution of using the di�erent public transport modes at each access point in

a trajectory.

In particular, this case study will be investigating the following elements:

� Potential access to activities

� Potential mobility

� Public transport mode and activity type dynamics

6.4.2.1 Potential access to activities

This element of the capabilities set describes the potential range of activity types

that are reachable within the walking time from a public transport access point

de�ned by the activity space isochrone.

Similar to section 6.2, the e�ect of personal characteristics on the likelihood

of reaching an activity type was captured through a Dirichlet distribution, using

the concentration parameter vector αz. This represents the degree of prior belief

that an individual is likely to be performing one activity type over the other. For

example, it might be that prior studies indicate that arrival time between 11:00-

12:00 pm and age group < 21 years old can be used to determine education over

employment activity. This assumption can be represented by setting αeducation >

αemployment.

Smaller (0 < αz < 1) values of αz express less uncertainty in the preference of

an activity type over the other. On the other hand, larger values (αz > 1) express

more uncertainty about the preference of an individual for an activity type. In

this study, the calculation of the shape of the prior was based on RODS data by
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generating predicted probabilities for each activity type based on age, sex, disabil-

ity status and arrival time. These were then used to construct the concentration

parameter vector αz. Similarly to section 6.3, the resulting predicted probabilities

were multiplied with Gamma distributed random variables with shape and rate

parameters of the Gamma distribution a = b = 1 to ensure that the concentration

parameters follow an exponential distribution with rate proportional to the RODS

predicted probabilities.

It has already been mentioned that, by de�nition, capabilities are not observed

and should be treated as latent (hidden) quantities. Within quantitative studies

in the CA literature and particularly within econometrics, di�erent latent variable

models have been applied to infer capabilities from observed functionings. Ex-

amples include dimensionality reduction methods such as Principal Component

Analysis (PCA) and factor analysis as well as statistical models such as SEMs (eg.

Generalised Linear Latent and Mixed (GLLM) models, MIMIC models) (Krish-

nakumar 2007, Anand et al. 2011). The advantages and disadvantages of these

models have already been discussed in previous sections (section 4.6).

In the modelling speci�cation of this case study, the set of potential activities

is represented as a sequence of latent (unobserved) stochastic variables which,

similarly to section 6.3, are inferred by:

� the combination of duration of stay and the number of de�ned POI types

that are deemed reachable by foot from the public transport access point,

as determined by the isochrone polygon and

� the propensity of performing each activity category based on personal char-

acteristics as inferred from the RODS dataset.

The stochastic element allows the incorporation of uncertainty in the inference

of activities as a function of the di�erent con�gurations of the states of all other

variables in the model.

6.4.2.2 Potential mobility

This element of capabilities describes the potential of public transport use from

the modes that are available. Similar to potential accessibility, potential mobility

is represented by a latent stochastic quantity that is inferred using:

� the propensity of public transport use given an individual's sociodemo-

graphic characteristics as inferred from the LTDS dataset and

� the observed public transport modes used throughout their trajectory from

the Oyster card dataset.
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In the context of this study, potential mobility was modelled using a categori-

cal random variable over the Oyster card transportation mode types. This time,

the propensity of an individual to use one mode over another was modelled using a

multinomial regression on the LTDS dataset. In this case, the personal character-

istics determining the choice of transportation mode were age, income, possession

of travel pass, disability, car license, sex and ethnic group. The predicted proba-

bilities were then recovered and used to shape the prior belief of using one mode

over the others through the Dirichlet concentration parameters.

6.4.2.3 Public transport mode and activity type dynamics

As already mentioned in chapter 3, the notion of processes in the CA is central (Sen

1992). Processes can be best understood by considering the cumulative e�ects of

time in people's beings or doings (Comim 2003). Within this framework, reaching

destinations and interacting with public transport can be considered an evolving

process that is shaped by an individual's choices over the available opportunities

and transportation modes. This dynamic aspect has also been emphasised in

accessibility studies, although approached from di�erent angles (eg. through the

evolution of the space-time prism in time geography).

A big challenge in both the CA and accessibility studies is the incorporation

of this dynamic element in evaluative frameworks. Within the CA, this is due to a

variety of reasons. First, the CA puts emphasis on the diversities among individu-

als in a society by looking at variations in personal characteristics, environmental

conditions and personal resources. As Comim (2003) puts it, this focuses on in-

terventions aimed at compensating or enabling the disadvantaged groups in some

ways, which in turn focuses on comparisons using static snapshots of individual

states of being or doing. Indeed, most studies that focus on change are limited

to comparing relative numbers between di�erent static states. Second, the un-

de�ned implementation framework of the CA makes it di�cult for researchers to

incorporate the dynamic element. This is of particular importance, since any dy-

namic evaluation needs to be made within the context of an individual's interaction

with public transport/activities. Ignoring the evolution of an individual's personal

characteristics/commodities and the environment could provide a false perception

that a condition that leads to reduced accessibility is being addressed. Within

accessibility studies, the dynamic element re�ects changes in the transportation

infrastructure as well as the attractiveness of destinations (Moya-Gómez et al.

2018) but could also re�ect changes of an individual's circumstances such as time

budget (Kwan 2013).

The underlying assumption that is made in this modelling step is that charac-
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teristics of the environment have a varying e�ect on the ability of an individual to

reach an activity. For example, the levels of deprivation change from location to

location, and this is expected to in�uence the choice of performing an activity type

at a particular location. Similarly, the existence of more transportation options

(expressed as increased levels of transport accessibility) are expected to in�uence

the choice of transportation modes.

For this case study, the approach followed to capture the transportation mode

state dynamics in sections 6.2 and 6.3 was used to frame the dynamic nature

of the proposed CAA. In particular, the transitions between the transportation

modes (from n to n − 1, where n ∈ {1...N} and N is the sequence of Oyster

card 'taps') were included through separate Multinomial regressions over those

external factors. These separate row regressions were organised in a row stochastic

transition matrix and used in the calculation of the likelihood of potential mobility.

A similar approach was followed for modelling the transition dynamics of the

di�erent imputed activity types from the sequence of isochrone locations. This

resulted in two square row stochastic matrices, a 5x5 matrix for the 5 activity

categories Tz and a 3x3 matrix for the transportation modes Tm.

The posterior distributions of the Multinomial regression coe�cients used to

model the rows of the transition matrices can inform the predictive potential of the

external factors on the output probabilities as an individual travels in space. In

the context of this study, when referring to 'external factors', what is meant is the

external covariates within the regression framework. Within the CA literature, the

use of a regression framework to estimate the degree of contribution of di�erent

external factors is not new. For example, Krishnakumar (2007) used the estimated

coe�cients of a SEM to elaborate on the exogenous factors in�uencing human

development variables such as health, knowledge and political freedom. Similarly,

Di Tommaso (2007) used the estimated coe�cients of a MIMIC model to assess

the in�uence of external factors on capabilities such as health and leisure activities.

For this modelling speci�cation, the output probabilities of the transition ma-

trices correspond to the transition potential between the di�erent PT modes and

the di�erent activities. In a Bayesian setting, a normal prior distribution is placed

on each coe�cient for each row category:

βκi ∼ Normal(0, 10−3) (6.11)

for κ = {1...K} categories and i = {1...#covariates} external variables. The

external variables included in modelling of transportation modes was Trip dura-

tion, PTAL, while for activities the external variables included were Crime, Green

areas, Tra�c, IMD.
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The use of transition matrices to capture the dynamic component of a system is

not new within the wider urban systems literature and has been used in di�erent

contexts such as microsimulation of sociodemographic e�ects of individuals in

transport demand models (Goulias & Kitamura 1992), simulation of the future

urban land use scenarios by including the density of transport in the calculation of

transition matrix (Barredo et al. 2003) as well as modelling the co-evolution of land

use and transport provision (Levinson & Chen 2005). Regarding the coe�cients

of explanatory variables to inform on the e�ect of di�erent external factors on

capabilities, there are numerous examples within the CA literature supporting

this approach (Hickman et al. 2017, Anand et al. 2011, Krishnakumar 2007).

6.4.3 De�ning the functionings

The above described capabilities are mapped to the attainable functioning vectors

a person can achieve given personal characteristics/external variables. These are

measurable quantities which are observed and used to infer the unknown quantities

of the latent capabilities variables.

For this case study, functionings are considered to be an individual's realised

mobility behaviour as evidenced by the Oyster/LTDS card sequence of "taps",

which are translated to the public transport modes an individual can use at a

particular point in time. The available opportunities on the other hand, are trans-

lated to all potential activity types an individual can reach from a particular public

transport access point by walking. The two functioning vectors are then:

mκ = {Bus, Rail Tram} (6.12)

zκ = {Employment, Sports and Entertainment,

Education and Health, Eating and Drinking, Retail}

zκ is an observed stochastic variable assumed to follow a multinomial distri-

bution over the isochrone de�ned POI vector counts. The transportation mode

vector mκ is assumed to follow a categorical distribution with the probability pa-

rameter p being determined by the transition matrix Tm and the e�ect of personal

characteristics.

6.4.4 Bringing it all together: De�ning the structure of the CAA

model using Bayesian networks

The CAA model consists of two distinct but intertwined modules: 1) activity

inference and modelling and 2) mobility modelling. These are combined using
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a switch variable that activates the relevant module depending on whether an

individual is using public transport, or assumed to be performing an activity.

Figure 6.35 illustrates a graphical representation of the joint model.

poi taps

s

z r

d

αz

Tz

m

αm

poi taps

s

z r

d

Tz

m

Xβz Xβm

. . .

Tm Tm

accessibility module accessibility modulemobility module mobility module

t = 1 t = 2 t = n. . .

Figure 6.35: Graphical representation of the dynamic Bayesian network used for

activity inference.

Similarly to previous chapters, the individual's personal characteristics are in-

cluded as stochastic nodes on the top level hierarchy of the dynamic Bayesian net-

work for both inference modules. This re�ects the idea that information encoded

in these variables propagates to the subsequent nodes of the network. Within the

context of the network, these are stochastic variables that follow a prior distri-

bution that is shaped from personal characteristics. Similarly to section 6.3, the

prediction results from the �tted LTDS/RODS driven regressions using an indi-

vidual's personal characteristics were multiplied with Gamma distributed random

variables (a = b = 1). For the prediction probabilities, the softmax function was

used:
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s1...κ =
eX
′β̂∑K

κ=1 e
X′β̂κ

(6.13)

α1...κ ∼ s ∗Gamma(a, b)

p ∼ Dirichlet(α1...ακ)

where c are the predicted probabilities. β̂ are the estimated LTDS/RODS regres-

sion coe�cients.

External variables are included in the transition matrices Tz and Tm for activity

type and transportation mode modelling respectively. For Tz, this included Crime,

Proportion of Green areas, Tra�c and IMD. For Tm this included travel duration

and PTAL. The �gure below shows the regression submodel used to construct the

rows of the transition matrices:

c1 c2 cκ

s1 s2 sκ

softmax

X β

Figure 6.36: Row transition estimation using external factors

where X is the external variable design matrix and softmax represents the soft-

max function.

The transition sequences for the inferred activities/transportation modes spec-

i�ed per each category were constructed as follows:

where yi = argmax(zi) in the case of activities, and yi = mi in the case of

transportation mode.
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Algorithm 1 Construction of transition sequence

1: procedure Construct transition sequence(input = c1...κ)

2: for i in 1 : N do

3: for κ in K do

4: if yi = κ then

5: append yi−1 to c
κ

Essentially, the algorithm generates a transition dataset from one category to

another by looping through the trajectory locations and identifying if a transition

between location n and location n− 1 is related to activity types/transportation

mode k. For example, consider a trajectory with transportation modes bus1, bus2,

rail3, bus4. In this case, the row of the transition matrix corresponding to bus

related transitions will be inferred using the sequence bus, rail as there is one

bus/bus related transition (from n = 1 to n = 2) and one bus/rail related transi-

tion (from n = 2 to n = 3)

Variables c1, c2...cκ were then assumed to follow a Categorical distribution over

the above transition sequences:

β ∼ Normal(0, 10−3) (6.14)

s1...κ =
exp(α+ βXn)

1 +
∑K−1

κ=1 exp(α+ βκXn)

c1...κ ∼ Categorical(s1...κ)

The transition matrices Tm and Tz are then constructed using the inferred sκ:

T =


sκ=1

sκ=2

...

sκ=K

 (6.15)

Furthermore, the activity related personal characteristics αz were included

directly in the computation of the likelihood of d, as it is assumed to directly

in�uence the probability of activity within an isochrone:
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Algorithm 2 Computation of the likelihood of Tm, Tz, m and d

1: procedure Compute Tm likelihood(input = s1...κm )

2: logp = 0

3: for row in Tm do

4: logp =+ dirichlet likelihood(valuerow, s
1...κ
m )

5: procedure Compute Tz likelihood(input = s1...κz )

6: logp = 0

7: for row in Tz do

8: logp =+ dirichlet likelihood(valuerow, s
1...κ
z )

9: procedure Compute d likelihood(input = Tz, αz)

10: logp = dirichlet likelihood(value, αz)

11: P = Unconditional Probability(Tz)

12: logp =+ dirichlet likelihood(value0, P)

13: for i in 1 : N do

14: logp =+ dirichlet likelihood(valuei, Trow=argmax(di−1))

15: procedure Compute m likelihood(input = Tm, αm)

16: logp = dirichlet likelihood(value, αm)

17: P = Unconditional Probability(Tm)

18: logp =+ dirichlet likelihood(value0, P)

19: for i in 1 : N do

20: logp =+ dirichlet likelihood(valuei, Trow=argmax(mi−1))
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In the context of MCMC inference with Metropolis-Hastings algorithm, the

value parameter in Algorithm 2 is generated by a normal proposal distribution

(or Poisson in the case of discrete variables) and acceptance/rejection is evaluated

according to the computed likelihood. The function Unconditional Probability was

computed using equation 6.1.

Moving down the causal structure of the model, the latent activities are rep-

resented by:

P (dn|αz, Tz) ∼ Dir(αz, Trow=argmax(dn−1)) (6.16)

P (zn|dn) ∼Mult(poin, dn)

where Dirichlet(α) represents a Dirichlet distribution de�ned by a concentration

parameter vector α and Mult represents a multinomial distribution with proba-

bility vector d and a total count of POI elements n.

Since, given the nature of the dataset, there are no observations on the choice of

activity by an individual, these are imputed from the duration of stay and the POI

counts inside an isochrone area. The assumption is then that P (zκ|d) de�nes the

functionings, representing what can potentially be achievable inside the isochrone

area given the POI/duration dataset. Algorithm 2 provides the pseudo-code for

computing the likelihood of d node.

Similarly to chapter 6.2 the extent of personal in�uence is determined by the

predicted probabilities of performing an activity given the personal characteristics

as determined by the RODS dataset (e.q. 6.13).

An individual's mobility (in this case study the use of public transport), is

represented by a categorical distribution r ∼ Cat(m) over the sequence of Oyster

card "taps". Similarly to z, the probability vector p over each "tap" was modelled

through a latent Dirichlet variable m. Doing so, allows the modelling the di�erent

transportation modes through a probability distribution for each public transport

access point. The e�ect of personal characteristics αm was also included in the

likelihood computation as, similarly to d, they are assumed to persist throughout

an individual's trajectory:

P (mn|αm, Tm) ∼ Dir(αm, Trow=argmax(mn−1)) (6.17)

P (rn|mn) ∼ Cat(mn)

In this case, the notion of functionings is more straightforward as the Oyster

card "taps" are direct observations of the actual choice of public transport mode

made by the individual.

209



Finally, the node b is a stochastic variable acting as a switch that controls

which module is activated for inference (accessibility or mobility). It is assumed

to follow a Bernoulli distribution, the probability of which is determined by the

duration of stay relative to the cuto� value determined from the 95th percentile

of the distribution of interchange times for bus and rail services (in the case of rail

services, this was 15 minutes while for buses this was 36 minutes). For example,

if the duration of stay between two subsequent bus trips is more than 36 minutes,

then it is more likely that an activity is carried out at the stop (as opposed to

being an interchange stop).

P (b) ∼ Bernoulli(p) (6.18)

At the very bottom of the hierarchy of Figure 6.35 the square nodes represent

the observed mobility and POI data used to infer the parent nodes.

The MCMC sampling step methods used for each node of the model were:

� b, z, r, βm, βz, c
1...κ, s1...κ, β, αm, αz: Metropolis-Hastings

� d,m, Tz, Tm: Adaptive Metropolis

A total of 20000 sampling iterations were made (2 runs of 10000 samples

each), with starting values of the stochastic variables sampled from the prior dis-

tributions. The simulations were stored in separate SQLlite databases with size

≈500MB for each individual, while the complete simulation required ≈100 minutes

to complete per individual trajectory. Convergence was achieved for the major-

ity of nodes in the model, however, nodes that are characterised by deterministic

components and increased collinearity were more di�cult to sample. In particular,

sampling from the transition matrices was more challenging, most probably due to

the complicated likelihood of this node. To overcome this problem, a combination

of di�erent sampling schemes was used for each node in the model together with

adjusting the scale of MCMC algorithm depending on the acceptance rate. Fur-

thermore, an accuracy assessment was performed on the activity type detection

component of the CAA model with 9 participants. In general, the performance of

the model was comparable to the results of section 6.3, this time however, higher

overall accuracy could be achieved due to increased predictability of Employment

and Education activities. Detailed convergence diagnostics are given in Appen-

dices D and E.
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6.5 Chapter summary

In this chapter, the technical implementation of the CAA was introduced in sec-

tion 6.4 building on the model speci�cations of sections 6.2 and 6.3. This model

was applied using unlabelled, passive mobility data from London's AFC system

together with travel survey data. The elements of the capabilities set were ex-

plicitly de�ned and linked with an individual's personal characteristics, external

variables and functionings using a dynamic Bayesian network structure.

The following chapter (chapter 7) presents the results for all nodes of the CAA

model using the Oyster/LTDS data. These are then used within the context of

evaluating the risk of transport social exclusion experienced by individuals when

using the public transport to reach their day to day activities.
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Chapter 7

Assessing transport related social

exclusion using a capabilities

approach to accessibility model:

Results

7.1 Chapter overview

In this chapter, the individual accessibility patterns resulting from the output of

the modelling framework of chapter 6 are discussed, particularly in relation to

individuals belonging to the unconstrained (baseline) group. The results are then

used to formulate a framework for assessing relative transport disadvantage and

social exclusion experienced by individuals belonging to the unconstrained, >60

and low income population group (section 6.4). For this task, a popular entropy

based equality index is applied to the posterior quantities of the Capabilities Ap-

proach to Accessibility (CAA) model. Finally a discussion of the results in relation

to the distribution of the individual equality indices is o�ered, aiming to highlight

aspects of social exclusion and transport disadvantage experienced by some indi-

viduals. The analysis and discussion of this chapter has been published in the

article "Assessing transport related social exclusion using a Capabilities Approach

to accessibility framework: A dynamic Bayesian network approach" of journal

Journal of Transport Geography (Bantis and Haworth 2020).
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7.2 A Capabilities approach to accessibility model: Re-

sults

This section describes the results for all the core variables of the CAA model. At

the end of each subsection, a more consolidated description of the results is given,

by enumerating the main �ndings for each variable.

7.2.1 Distributions of activity types

The use of passive trajectory data in the CAA modelling framework enables the

evaluation of activity type probabilities for each individual in the sample through-

out the day. The posterior distribution of activity types corresponds to the la-

tent d node, which expresses the posterior distributions of activity types given

the individual's sociodemographic characteristics, duration of stay and number of

reachable POIs from the alighting point. Figure 7.1 below shows the posterior

quantities of P (d) for the trajectories of all users in the unconstrained Oyster card

sample. The x-axis (labelled Time in the �gure) shows the time of day throughout

an individual's trajectory while the z-axis (labelled P (d) in the �gure) shows the

probability of performing an activity type throughout the day. The y-axis (labelled

Users in the �gure) shows the corresponding distribution for each individual in

the sample.
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(a) Eating and drinking (b) Education and health

(c) Retail (d) Outdoors and Recreation

(e) Employment

Figure 7.1: Posterior distributions of activity types for the unconstrained population sample
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It can be seen that there is a similarity between Eating and Drinking (�gure

7.1a) and Retail (�gure 7.1c) activity types, re�ecting the overlap between the

POIs belonging to these categories inside an activity space isochrone. For both

of these activity types, the posterior probabilities increase throughout the day

for the majority of individuals, peaking around mid-afternoon. This re�ects the

intuition that these types of activities tend to be performed later in the day. For

the posterior distributions of activity type Education and Health (�gure 7.1b)

there seems to be a within-category split throughout the day, with the probability

for some individuals performing this activity type peaking in the morning, while

for others it peaks later in the afternoon or persists throughout the day. An

explanation for this pattern could be the aggregated nature of this activity type,

as education activities tend to peak in the morning while health activities tend to

persist throughout the day.

The posterior probabilities for Employment (�gure 7.1e) are considerably higher

in the time window between 8:00-10:00AM compared to the rest of the activity

types, re�ecting the start of an individual's working day. The probabilities then

gradually decrease throughout the day, mirroring the increasing pattern of the rest

of the activity types.

On the other hand, the posterior probabilities for activity type Outdoor and

Recreation (�gure 7.1e) almost never reach a level above the random probability

assignment, given the total number of activity categories (P (d) < 0.2). An pos-

sible interpretation of this result is the lack of POI data and the infrequency of

performing this activity compared to the rest of the POI categories, particularly

considering the use of public transport.

The posterior quantities for the individuals in the low income group and the

>60 years old group were similar to the unconstrained group for all categories (�g-

ures 7.3,7.2). For the low income group one notable di�erence is the shorter tails

of the distributions for the majority of the individuals for the Employment activ-

ity (�gure 7.2e). This could signify reduced �exibility in using public transport to

reach this activity compared to the unconstrained population group. Moreover, the

probabilities of Eating and Drinking (�gure 7.2a) and Retail (�gure 7.2c) activity

types is signi�cantly lower throughout the day, remaining below the threshold for

random probability allocation for the speci�ed number of activity types (< 0.2).

Contrary to the rest of the population groups, for the > 60 years old group the

Education and Health (�gure 7.3b ) category is characterised by a gradual increase

over the later hours of the day for the majority of the individuals. This could be

attributed to health related activities as opposed to Education related activities.

This is in contrast to the low income group where Education and Health activ-
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ity for a signi�cant number of individuals is peaking between 10:00AM-15:00PM

(�gure 7.2b). Together with Employment activity, the posterior probabilities for

Education and Health dominate the rest of activity types, signifying the presence

of students in the low income population group. The Employment (�gure 7.3e)

activity type for the > 60 years old group seems to dominate the daily trajectory

of this group for the early hours of the day. This is not surprising considering

the fact that the majority of the individuals in this group were below the UK

national pension age (63 years for women and 65 years for men). Nevertheless, a

general shift of this activity type can be observed to slightly later hours of the day

compared to the rest of the target groups of this study, re�ecting some �exibility

in using the public transport to access employment.
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(a) Eating and drinking (b) Education and health

(c) Retail (d) Outdoors and Recreation

(e) Employment

Figure 7.2: Posterior distributions of activity types for the low income population sample
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(a) Eating and drinking (b) Education and health

(c) Retail (d) Outdoors and Recreation

(e) Employment

Figure 7.3: Posterior distributions of activity types for the over sixty years old population sample

218



Figure 7.4 shows aggregated boxplots of posterior distributions for the di�erent

activity types, for all individuals in the target groups for both weekdays and

weekends. As it can be seen, the general pattern of activity distribution remains

with the exception of employment activity which is considerably lower on the

weekends.

(a) Aggregated activity distribution boxplots for all individuals (weekdays)

(b) Aggregated activity distribution boxplots for all individuals (weekends)

Figure 7.4: Aggregated activity type boxplots for the three population groups.
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Summarising, the �ndings for this posterior quantity are:

� Non-employment probabilities for Eating and Drinking and Retail activities

increase in the later hours of the day for the unconstrained group.

� Employment probabilities are higher in the morning hours for the uncon-

strained group.

� Low income group employment distributions are narrower compared to the

unconstrained group.

� Low income non-employment activity probabilities are lower compared to

the rest of the population groups.

� > 60 group education and health probabilities increase in the later hours of

the day.

� > 60 group employment activity appears to be more �exible throughout the

day.

7.2.2 Distributions of transportation modes

The next posterior quantity of interest is the distribution of transportation modes

for each individual in the focus population groups. Similarly to section 7.2.1, the

use of individual trajectories enables the evaluation of transportation modes used

by individuals throughout the day. This corresponds to the latentm node of model

6.35 and relates to the mobility element of the de�ned capabilities. Similarly to

the d node, the results for the unconstrained population group are presented per

activity type (�gure 7.5). The segmentation per activity type was made by taking

the activity with the highest probability from each individual activity distribution

at a visited location.

220



(a) Posterior means Bus/Eating and Drink-

ing

(b) Posterior means Rail/Eating and Drink-

ing

(c) Posterior means Tram/Eating and

Drinking

(d) Posterior means Bus/Education and

Health

(e) Posterior means Rail/Education and

Health

(f) Posterior means Tram/Education and

Health

(g) Posterior means Bus/Retail (h) Posterior means Rail/Retail (i) Posterior means Tram/Retail
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(j) Posterior means Bus/Outdoors and

Recreation

(k) Posterior means Rail/Outdoors and

Recreation

(l) Posterior means Tram/Outdoors and

Recreation

(m) Posterior means Bus/Employment (n) Posterior means Rail/Employment (o) Posterior means Tram/Employment

Figure 7.5: Posterior means for the unconstrained population group
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Looking at activity type Eating and Drinking (�gures 7.5a, 7.5b, 7.5c), indi-

viduals in the unconstrained population group appear to be using the bus ser-

vices uniformly throughout the day, with the probabilities increasing in the after-

noon/evening. Individuals accessing this activity using rail services appear to form

two distinct temporal clusters, the �rst one characterised by high probabilities in

the late morning hours with the second by peaking in the afternoon/evening, a

pattern which could be associated with lunchtime/leisure hours. Posterior prob-

abilities for the tram service appear to be relatively low compared to the rest of

transportation modes. This can be attributed to the absence of tram observations

in the sample, re�ecting the limited spatial coverage of this service. This is further

discussed in section 8.4 of this thesis.

The situation with travelling by bus is similar for activity Education and Health

(�gures 7.5d, 7.5e, 7.5f). However, here the temporal clustering observed for rail

services in the Eating and Drinking activity type is missing. Moreover, there ap-

pears to be a grouping between individuals characterised by relatively low proba-

bilities for approximately half of them (0.45 > P (m) > 0.25 ) and relatively high

probabilities for the other half (P (m) > 0.45). In addition, fewer people in this

population group were found to be performing this activity type (35 individuals

in total. The exception is the Outdoors and Recreation activity type).

A very similar pattern between bus and rail services is observed with activity

type Retail (�gures 7.5g, 7.5h, 7.5i). Here, the probabilities gradually increase

throughout the day, peaking in the afternoon/evening hours for the majority of

individuals, following the general pattern of shop opening times. For this activity

type, rail seems to be the dominant transport mode.

Finally, �gures 7.5m 7.5n and 7.5o show the posterior results for activity type

Employment. It can be seen that both bus and rail services are characterised

by a similar pattern, de�ned by the morning commuting to work activity which,

compared with the rest of the activity types, occupies a narrower temporal window

of high probabilities between 7:00-11:00AM, levelling o� in the afternoon/evening.

Compared to using the bus, there is a slightly higher probability of using rail to

reach this activity for the majority of individuals in the sample. Similar to the

rest of the activity types, for tram services the probabilities are signi�cantly lower,

re�ecting the lack of tram related transactions in the Oyster card sample.

For activity type Outdoors and Recreation the posterior probabilities of using

the di�erent transportation modes remained random (P (m) ≈ 0.33). This can be

attributed to the low posterior probabilities for the model's d node.

Next the transportation mode posterior distributions for the low income group

is shown in �gure 7.6.
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(a) Posterior means Bus/Eating and Drink-

ing

(b) Posterior means Rail/Eating and Drink-

ing

(c) Posterior means Tram/Eating and

Drinking

(d) Posterior means Bus/Education and

Health

(e) Posterior means Rail/Education and

Health

(f) Posterior means Tram/Education and

Health

(g) Posterior means Bus/Retail (h) Posterior means Rail/Retail (i) Posterior means Tram/Retail
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(j) Posterior means Bus/Outdoors and

Recreation

(k) Posterior means Rail/Outdoors and

Recreation

(l) Posterior means Tram/Outdoors and

Recreation

(m) Posterior means Bus/Employment (n) Posterior means Rail/Employment (o) Posterior means Tram/Employment

Figure 7.6: Posterior means for the low income population group
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Compared to the unconstrained population group, the probabilities of using

public transport to reach activity type Eating and Drinking are signi�cantly lower,

with nearly half of individuals in this group assigned to this activity type. Travel-

ling by bus is the predominant transport mode for this activity type (�gures 7.6a,

7.6b,7.6c). The posterior probabilities for Education and Health activity type (�g-

ures 7.6d,7.6e,7.6f) are slightly higher for using the bus compared to rail services,

and the same holds for the Retail activity type (�gures 7.6g,7.6h,7.6i). In terms

of the overall shape of the distributions, Retail seems to follow the trend observed

in the unconstrained population group, coinciding with retail shops' most pop-

ular times. Looking at the Employment activity type (�gures 7.6m,7.6n,7.6o),

the shape of posterior distributions for bus, rail and tram services is signi�cantly

wider than the unconstrained sample, characterised by two peaks. These are in

the morning and early afternoon, most likely re�ecting the varying schedule of

part-time workers. Finally, for this population group, only one individual was

attributed with reaching the Outdoors and Recreation activity type with higher

probability of using the rail services.

For the > 60 population group (�gure 7.7), the probability of using the bus

and using rail to reach activity type Eating and Drinking seem to compliment each

other, with the probabilities of bus use being higher in the morning/afternoon and

rail being higher in the afternoon/evening hours (Figures 7.7a, 7.7b). Overall, the

probabilities of using the bus versus rail is similar for Education and Health, with

rail services appearing to have a slightly shifted distribution mode toward the

afternoon hours (�gures 7.7d, 7.7e). The pattern of use of di�erent transportation

modes to reach Retail (�gures 7.7g, 7.7h, 7.7i) appears to be similar to the rest

of population groups. However, here the distribution of transport modes used

throughout the day appears to be wider for a signi�cant number of individuals.

Moreover, compared to the rest of the groups of interest, more people are found

to be using the bus for reaching Outdoors and Recreation activities.
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(a) Posterior means Bus/Eating and Drink-

ing

(b) Posterior means Rail/Eating and Drink-

ing

(c) Posterior means Tram/Eating and

Drinking

(d) Posterior means Bus/Education and

Health

(e) Posterior means Rail/Education and

Health

(f) Posterior means Tram/Education and

Health

(g) Posterior means Bus/Retail (h) Posterior means Rail/Retail (i) Posterior means Tram/Retail
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(j) Posterior means Bus/Outdoors and

Recreation

(k) Posterior means Rail/Outdoors and

Recreation

(l) Posterior means Tram/Outdoors and

Recreation

(m) Posterior means Bus/Employment (n) Posterior means Rail/Employment (o) Posterior means Tram/Employment

Figure 7.7: Posterior means for the over sixty years old population group
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Figures 7.8 and 7.9 below show aggregated boxplots of the transportation

mode posterior distributions for all individuals in the three population groups,

categorised by weekdays and weekends. It can be seen that the overall use of

public transport for activity Employment is generally lower in the weekends for

the unconstrained and > 60 group, particularly for using the bus. For the low

income group, using rail for reaching activity Eating and Drinking is lower in the

weekends compared to weekdays. On the other hand, weekdays dominate the use

of public transport to reach Education and Health for the > 60 population group.

Figure 7.8: Aggregated transportation mode boxplots (weekdays)
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Figure 7.9: Aggregated transportation mode boxplots (weekends)
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The �ndings for this posterior quantity are summarised below:

� Accessing Eating and Drinking activities by rail are peaking in late morning

and afternoon/evening for the unconstrained group. Bus use is uniform.

� Rail is the dominant mode for Retail in the unconstrained group, peaking

afternoon/evening.

� A grouping in the probabilities is observed between individuals of the un-

constrained group for Education and Health for all transport modes.

� Accessing Employment using rail has slightly higher probability compared

to the rest of the modes. For all modes, the commuting pattern to work is

evident.

� Low probabilities for reaching Eating and Drinking, bus use dominates for

low income group.

� Slightly higher probabilities for bus use for Education and Health activity

for low income group.

� Double peak of Employment activities for low income group, with wider

distributions for bus, rail.

� Use of bus and rail compliment each other for Eating and Drinking for the

> 60 group.

� Education and Health activity shifted towards the afternoon hours with sim-

ilar probabilities of bus and rail for the > 60 group.

7.2.3 Activity and mobility dynamics

Using individual trajectories from the passive mobility data, it is possible to eval-

uate the dynamics of activity types reached and transportation modes used for

each individual. In the context of the CAA, these are represented by the tran-

sition matrices Tm and Tz are presented. Intuitively, these matrices capture the

transition dynamics for the accessibility and mobility modules of the CAA model

(�gure 6.35), taking into consideration the e�ects of external factors as individuals

transition from one transportation mode/activity to another during the trajectory.

It is important to note that, contrary to Tm where the transportation mode states

are inferred using the observed Oyster card modes, Tz captures the transition

dynamics of inferred activity types.
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7.2.3.1 Activity type transitions

Figure 7.10 below presents the posterior distributions for each element of the ac-

tivity type transition matrix Tz for all individuals in the unconstrained population

sample.

Figure 7.10: Posterior densities for Tz for the unconstrained population group

It can be seen that the transition patterns from activity type Employment

to all other activities vary signi�cantly between individuals, ranging from 0.2 <

P (Tz) < 0.8, with an overall mean probability of ≈ 0.4 for the transition from

all other types to Employment, making this the dominant sequence in this group.

Looking at the transition between Education and Health and Education and Health,

individuals seem to be divided into two clusters, one with relatively low probability

P (T11) < 0.2 and one with probabilities P (T11) > 0.2, a behaviour which could be

attributed to the students/pupils in the sample. Relatively high probabilities for

many individuals are also observed between transitions Retail/Retail, Eating and

Drinking/Retail.

Results for the low income population group are shown in �gure 7.11. The
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transition patterns are very similar with the unconstrained population group.

However, in this case the probabilities of transitioning from Employment to all

other activity types is lower on sample population level P (Tz) < 0.2.

Figure 7.11: Posterior densities for Tz for the low income population group

Finally, �gure 7.12 below presents the results for the > 60 years old population

group. Again, the results here are very similar to the rest of the target groups,

with the dominant transition sequences being between Employment and the rest

of activity types.

The �ndings for this posterior quantity include:

� Employment related transition probabilities dominant with increased vari-

ability between individuals for the unconstrained group.

� Education and Health related transition probabilities appear clustered be-

tween individuals.
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Figure 7.12: Posterior densities for Tz for the over sixty population group

� Low income group appear to have slightly lower Employment related tran-

sitions.

� > 60 group transition probabilities are similar to the unconstrained group.

7.2.3.2 Transportation mode transitions

The posterior densities of Tm nodes are presented in �gures 7.13, 7.14, 7.15 below

for each element of the transition matrix.

Looking at the unconstrained population group, there is a clear tendency to

persistently transition from rail services to rail services (Tm11) with a population

level probability of P (Tm11) ≈ 0.65, a behaviour which could largely be attributed

to commuting to employment activities. The transition probabilities from bus to

rail are also relatively high in the sample (P (Tm01) ≈ 0.45), on par with transi-

tion from bus to bus (P (Tm00) ≈ 0.475). The transition from rail to bus on the

other hand (P (Tm10) ≈ 0.305) is comparatively low, indicating that, on average,
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Figure 7.13: Posterior densities for Tm for the unconstrained population group

individuals of this sample seem not to prefer �nishing their journey on the bus

if rail was the prior choice. As expected, due to the lack of tram transactions in

the sample but also due to the limited coverage of tram services, on average the

transition probabilities between the rest of the transportation modes and tram

is relatively small. This is con�rmed by the uniform allocation of probabilities

between tram and the rest of the modes. This pattern is similar to the over sixty

and low income population groups.

Transition probability patterns for the > 60 population group (Figure 7.14) are

di�erent, providing evidence that, on average, there is an increased likelihood of us-

ing the bus persistently throughout a trajectory (P (Tm00) ≈ 0.73 ). The opposite

is true for transitioning from bus to rail (P (Tm01) ≈ 0.24 ). Transitioning from rail

to all other modes appears to be less clustered (P (Tm11) ≈ 0.40, P (Tm10) ≈ 0.45

), indicating perhaps the less frequent use of rail services in this target group.

Finally, the low income population group (Figure 7.15) provides evidence of a

broader spread of transition probabilities amongst individuals for the bus services,

with a tendency to prefer using the bus throughout the trajectory (P (Tm00) ≈
0.55) compared to transitioning from bus to rail (P (Tm01) ≈ 0.41). The overall
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Figure 7.14: Posterior densities for Tm for the over sixty population group

pattern of rail use is similar to the> 60 population group, showing a uniform distri-

bution of transitions between rail/bus and rail/rail (P (Tm10) ≈ 0.46, P (Tm11) ≈
0.43).

The �ndings for this node can be summarised as:

� rail/rail, rail/bus transition probabilities higher, while bus/rail compara-

tively low for unconstrained group.

� bus/bus related transitions higher for > 60 and low income groups.

� rail/bus and rail/rail appear uniform for > 60 and low income groups.
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Figure 7.15: Posterior densities for Tm for the low income population group
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7.2.4 Degree of contribution of external factors

External factors β that are assumed to in�uence an individuals' transportation

mode/activity type dynamics are included in the modelling framework through

the computation of transition matrices Tz, Tm. Each row of the transition ma-

trices were modelled using a categorical distribution with probability derived by

a softmax function (see section 6.4.4) on the place based covariates described in

section 6.4.1.2. The categorical distributions were de�ned as sequences of state

transitions from one state to the rest (section 6.4.2.3). Examining the posterior

regression coe�cients for each state allows one to assess the contributions of each

factor on the transition probabilities from one mode/activity type to all others.

7.2.4.1 Activity types

The four external factors for transitioning from activity type κ to κ included in

the accessibility module of the model in �gure 6.35 were:

� βκ,0: IMD

� βκ,1: Proportion of green spaces

� βκ,2: Tra�c density

� βκ,3: Crime rate

Figure 7.16 below shows boxplots of β posterior densities for each individual

in the unconstrained population group. The colorbar maps to the mean value of

the covariate e�ect.
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Figure 7.16: Posterior densities for beta for the unconstrained population group
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Interpreting the results in the context of the model of equation 6.14, IMD

seems to be the only covariate that has a weak but statistically signi�cant e�ect

for Retail and Employment related transitions for some individuals, given that the

zero value is not contained within the Q1-Q3 interquartile range de�ned by the

posterior samples. A positive sign in these coe�cients signi�es an increase in the

chances of performing Retail and Employment related activity transitions as IMD

increases. It is interesting to observe that for many individuals there is an inverse

relationship in the IMD coe�cient sign between Retail and Employment. This

means that, for any transition sequence, a unit increase of IMD will increase the

probability of one category and decrease the other depending on the coe�cient

sign. The rate of change between the probabilities varies for each individual and

can be recovered using the softmax function on the inferred coe�cients. As an

example, increasing the IMD covariate by 0.1 for individual #25 (with coe�cient

vector βIMD = [−0.051,−0.059,−0.031,−0.085, 0.177]) results in an increase in

the probabilities of Employment related transitions by 0.01 and a decrease of 0.002

in Retail related transitions (assuming all other variables are constant). On the

other hand, for individual #2 a same increase in IMD results in an increase for

Retail by 0.005 and a decrease in Employment by 0.002 (with coe�cient vector

βIMD = [−0.022, 0.002, 0.18,−0.117,−0.060]). An increase of activity type prob-

abilities as a result of an increase in IMD may seem counter-intuitive, however,

it should be taken into consideration that the trajectories for those individuals

are characterised by repeated visits to areas of high IMD and, combined with the

results of the rest of the CAA model's nodes, could be an indication of people

experiencing higher risk of being spatially restricted to areas of high deprivation.

It should be noted that this change is not constant and increases (or decreases)

exponentially according to the softmax function.

For the remaining activity types (and the majority of individuals) the coe�-

cients were found statistically non-signi�cant given that the 0 value is contained

within the interquantile range. This is not surprising since the majority of Oyster

card transactions were related to Retail and Employment activity type transitions.

The β posterior densities for the over sixty years old population group are

similar to the unconstrained population group with the most variation observed

for the coe�cients of Retail and Employment related transitions. Again here, the

coe�cient sign varies among individuals, with some having a decreasing e�ect in

the probabilities of the transition sequence, and other individuals having an in-

creasing e�ect (Figure 7.17). Similarly to the unconstrained group, the magnitude

of the covariate e�ect for Employment related transitions is greater compared to

Retail. As an example, an increase of the IMD covariate for individual #3 hav-
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ing coe�cient vector βIMD = [−0.108,−0.193,−0.004,−0.148, 0.425] results in an

increase of Employment related transitions by 0.015.

Finally, Figure 7.18 presents the results for the low income population group.

Similarly to the rest of the target groups, IMD seems to be the only covariate with

a statistically signi�cant e�ect for some individuals. However, contrary to the rest

of the groups, the coe�cient is signi�cant for the Education and Health and Em-

ployment related activities. A possible reason for this could be the relatively large

proportion of students in this group. To illustrate the e�ect of the coe�cients to a

unit change of IMD by 0.1, Education and Health transition probabilities increase

by 0.25 for individual #8 with βIMD = [−0.247, 0.744,−0.18,−0.2,−0.121].
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Figure 7.17: Posterior densities for beta for the over sixty years old population group
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Figure 7.18: Posterior densities for beta for the low income population group
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The above described �ndings can be summarised to:

� Covariate e�ects and signs vary across individuals.

� IMD covariate e�ect weak but statistically signi�cant for Retail and Em-

ployment for may individuals in the unconstrained and > 60 population

groups.

� The IMD e�ect is larger for Employment.

� IMD covariate e�ect is weak but statistically signi�cant for Education and

Health and Employment for some individuals in the low income group.

7.2.4.2 Transportation modes

The external factors for all transitions using transportation mode m to mode m

included in the mobility module of model 6.35 were:

� βm,1: Trip duration

� βm,2: PTAL index

� βm,3: xhr Cyclic variation covariate (sin(2π/24)) for time of day

� βm,4: yhr Cyclic variation covariate (cos(2π/24)) for time of day

Looking at the results for the unconstrained sample in �gure 7.19 below, both

Trip duration and PTAL covariates seem to have a statistically signi�cant e�ect

(positive or negative) for all three transportation mode transitions for many of the

individuals in the sample. For the majority of individuals of this population group,

a unit increase of the PTAL covariate results in an increase in the probability of

Rail related transitions. Intuitively, this makes sense since higher PTAL values

are associated with a better coverage transportation network. For example, for

individual #3 in the sample, an increase of PTAL by 1 results in an increase of

Rail probabilities by 0.03 and a decrease in Bus related transition probabilities by

0.027.

The results of the over sixty population group are shown in �gure 7.20. Sim-

ilarly to the unconstrained population group, both PTAL and Trip duration co-

variates have a statistically signi�cant e�ect for Bus and Rail related transitions.

For the majority of individuals in this group, a unit increase of Trip duration

results in an increase of probability of bus related transitions accompanied with

a decrease in rail transition probabilities, while the inverse holds true for a unit
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increase of PTAL. As an example, an increase of Trip duration by 1 minute re-

sults in an increase of Bus related transitions by 0.0002 for individual #8 with

coe�cient vector βdur = [0.21, 0.20, 0.23]. On the other hand, a unit increase of

PTAL covariate for this particular individual βPTAL = [0.12, 0.27,−0.39] results

in a decrease of Bus transition probabilities by 0.024 and an increase of Rail by

0.06.

Finally, the posterior regression coe�cients for the low income population

group are presented in �gure 7.21. Again, both PTAL and Trip duration co-

variates were found to have a statistically signi�cant e�ect for some individuals

in the sample. However, contrary to the unconstrained group, the magnitude of

coe�cients for Bus related transitions appears to be larger, driven by the bus

dominated transport mode sequences for this target group. Depending on the

nature of these transitions, for some individuals a unit increase of PTAL results

in an increase of Rail over Bus related transitions while a unit increase of Trip

duration results in an increase of Bus over Rail (e.g. individual #7).
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Figure 7.19: Posterior densities for beta for the unconstrained population group
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Figure 7.20: Posterior densities for beta for the over sixty population group
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Figure 7.21: Posterior densities for βm for the low income population group
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Summarising, the �ndings for this node include:

� PTAL and Trip duration are statistically signi�cant for many individuals in

all groups.

� The magnitude of coe�cients for bus higher for the low income group.

7.2.5 Degree of in�uence of sociodemographic characteristics

Sociodemographic characteristics were included in the CAA model shown in �gure

6.35 as prior distributions derived from �tting a set of multinomial regressions on

external data, namely the LTDS and RODS dataset (section 6.4.1.1). While the

primary purpose of including such information in the model is to assist the task

of activity type/transportation mode inference using the unlabelled Oyster card

dataset, examining the �nal posterior distributions of the priors after observing

the Oyster card transactions can reveal the degree of alignment between any prior

assumptions on the levels of accessibility/mobility and the data. For the CAA

model, the prior assumptions were incorporated through modelling the concen-

tration parameters of the Dirichlet prior using the predicted probabilities as the

mean parameter of a set of truncated normal distributions.

7.2.5.1 Activity types

Figure 7.22 below shows the prior and posterior distributions for the concentration

parameters of activity types for all three population groups. For visualising the

prior, random samples were generated for each activity space/individual through-

out the day derived from RODS predicted probabilities using sex, age and arrival

time as predictors. To visualise the resulting probabilities of the concentration

parameters, a total number of 100 samples were drawn from a Dirichlet distribu-

tion using the posterior αz. Note that in all cases, the individuals were sorted by

increasing Employment probabilities.

Looking at the unconstrained population group of �gure 7.22 one could see

that, overall, the shape of Dirichlet posterior follows the prior for the majority of

individuals. This is less pronounced for the over sixty and low income population

group, with the posterior estimates moving away from the prior for the majority of

individuals. This is not surprising, as the predicted probabilities derived by RODS

regression do not take into account variables such as income or employment status.

In all population groups, the posterior Dirichlet for activity type Outdoors and

Recreation has moved away from the prior, re�ecting the lack of this particular

activity type in the inferred Oyster card data.
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(a) Prior Dirichlet samples for the uncon-

strained Oyster group.

(b) Posterior Dirichlet samples for the un-

constrained Oyster group.

(c) Prior Dirichlet samples for the over sixty

population group.

(d) Posterior Dirichlet samples for the over

sixty population group.

(e) Prior Dirichlet samples for the low income

population group.

(f) Posterior Dirichlet samples for the low

income population group.

Figure 7.22: Prior and posterior Dirichlet samples for the di�erent population

groups.

Summarising:

� Prior/posterior distributions for the e�ect of sociodemographic characteris-

tics are in line for unconstrained group.

� Posterior distributions di�erent from prior for the > 60 and low income

group.

7.2.5.2 Transportation modes

The prior/posterior probability distributions for the mobility part of the CAA

model (�gure 6.35) is shown in �gure 7.23 below. Contrary to activity types, the
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predicted probabilities in this case were generated through �tting three indepen-

dent binary logistic regressions on the LTDS dataset, this time using a wider set

of sociodemographic variables. Due to the absence of arrival time as a covari-

ate, the resulting transportation mode prior distributions persisted throughout an

individual's trajectory.

Similar to the case of activity types, the prior/posterior relationship of Dirichlet

probability samples for the unconstrained population group appear to be consis-

tent, with the di�erence of a probability reduction for Tram services �uctuating

around the random 0.33 probability threshold. On the other hand, the posterior

Dirichlet samples for the individuals on the remaining population groups deviate

from the prior assumptions for nearly all Oyster card users. In particular, the

posterior proportion of transportation modes for the > 60 population group was

found to have higher probabilities for Bus services. The prior assumptions for the

low income population group have also been updated after observing the Oyster

card trajectories. For this population group, the use of Rail services was updated

with higher probabilities together with a reduction in the corresponding Bus use

for a small portion of the sample. Furthermore, the prior peaks of Tram use have

also been smoothed, appearing to complement the Bus probabilities.
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(a) Prior Dirichlet samples for the uncon-

strained Oyster group.

(b) Posterior Dirichlet samples for the un-

constrained Oyster group.

(c) Prior Dirichlet samples for the over sixty

population group.

(d) Posterior Dirichlet samples for the over

sixty population group.

(e) Prior Dirichlet samples for the low income

population group.

(f) Posterior Dirichlet samples for the low

income population group.

Figure 7.23: Mobility prior and posterior Dirichlet samples for the di�erent pop-

ulation groups.

Summarising:

� Results show a prior/posterior consistency for the e�ect of sociodemographic

attributes for the unconstrained group.

� For the > 60 group, prior assumptions related to the e�ect of sociodemo-

graphic attributes for bus use have been increased.

� For the low income group, prior assumptions related to the e�ect of sociode-

mographic attributes for rail use have been slightly increased.

7.2.6 Results summary

In this section, the posterior quantities de�ned in the model of section 6.4 were

presented for each of the models' nodes. The results revealed a number of dis-

tinct accessibility patterns which could be associated with di�erent qualitative

characteristics of the three population groups.
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In particular, the probabilities of the low income group for activity types Eating

and Drinking and Retail were found to be considerably smaller compared to the

> 60 and unconstrained target group, providing evidence of reduced access to

these activity types. Moreover, the temporal patterns of Employment activity

type was found to vary between the three target groups, indicating di�erent levels

of �exibility when reaching for this activity type. The probabilities of transitioning

from Employment to all other activity types was also found to be larger in the

unconstrained and > 60 group compared to the low income group. In terms

of the transportation modes used to reach the di�erent activity types, the three

target groups are characterised by di�erent proportions, with the unconstrained

group appearing to be Rail dominated. On the other hand, the low income group

appears to make use of the Bus more, while for the > 60 group the distribution

is more balanced. These results are also re�ected in the posterior distributions

of the transportation mode transition matrix, with probabilities of transitioning

from Rail to all other modes being signi�cantly larger compared to the rest of

target groups.

In terms of external factors used to model the individual activity type transi-

tions, only IMD was found to have a weak but statistically signi�cant e�ect for

all target population groups, with Retail and Employment related transitions be-

ing a�ected the most from a change of this covariate. For transportation mode

related covariates, both Trip duration and PTAL were found to have a signi�cant

in�uence in Bus and Rail related transitions for the majority of individuals in the

sample.

Finally, the relationship between the prior before and after observing the data

for activity type inference, revealed that the individual characteristics such as

income and age play an important role in shaping the distributions of di�erent

activity types. This was more evident for the individuals that have greater dis-

crepancy between the prior before and the posterior after data were observed. For

the low income group, this discrepancy was even greater for all de�ned available

modes.

These results will be analysed further in the next section, which will seek to

examine the within and between population group variations in posterior densities,

using cross entropy as a tool to provide evidence of social exclusion and transport

disadvantage experienced by some individuals.
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7.3 Evaluating individual based social exclusion using

the Capabilities approach to accessibility model

In this section, the results of section 7.2 are evaluated with regards to assessing rel-

ative transport disadvantage and social exclusion between the unconstrained, > 60

and low income population group. For this task, a popular entropy based equality

index is applied to the posterior quantities of each member of the capabilities set.

Finally a discussion of the posterior results in relation to the distribution of the in-

dividual equality indices is o�ered, aiming to highlight aspects of social exclusion

and transport disadvantage experienced by some individuals. The analysis and

discussion of this section has been published in the article "Assessing transport

related social exclusion using a Capabilities Approach to accessibility framework:

A dynamic Bayesian network approach" of journal Journal of Transport Geography

(Bantis & Haworth 2020).

7.3.1 De�ning an accessibility assessment framework

within the context of social exclusion

Regarding the de�nition of an accessibility comparison framework, some authors

(Van Wee & Geurs 2011) argue that speci�cation of a minimum threshold under

which lack of accessibility results in increased social exclusion requires a degree

of moral judgment, and as such is primarily a political choice dependent on the

history and values of a particular society. Others (Pereira et al. 2017) argue

that it is the responsibility of institutions and policy makers to assess the impact

on equality caused by an intervention on the wider population, and how this

can be addressed. In any case, the problem of setting a minimum acceptable

accessibility threshold remains an open challenge (Hananel & Berechman 2016,

Farrington & Farrington 2005). To that end, literature focused on assessing the

social outcomes of transport interventions seems to favor theories that focus on

relative di�erences between individuals/groups of individuals rather than absolute

levels of accessibility (Lucas et al. 2016, El-Geneidy, Buliung, Diab, van Lierop,

Langlois & Legrain 2016). The premise is that the least advantaged members

of society should bene�t the most from any interventions aimed at improving

accessibility. Even in this case, however, moral judgment by decision makers on

what constitutes an acceptable range of di�erences is inevitable. Nevertheless,

such an approach is a clear step towards identifying the factors that contribute

the most to di�erent levels of accessibility, which can then guide policy makers to

speci�c decisions that will maximise accessibility bene�ts for the least advantaged

groups.
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Within transportation literature, comparison of di�erent levels of accessibility

outcomes has been approached in di�erent ways (Geurs et al. 2016). The �rst

involves comparing accessibility levels of individuals belonging to the same group

of needs (horizontal equity). These groups can be people from the same socioe-

conomic backgrounds, gender, ability etc. The second refers to the comparison

of individuals across di�erent backgrounds (vertical equity). The third compares

accessibility levels in the spatial domain (spatial equity) and �nally, the fourth

compares population groups with di�erent needs and abilities (social equity). In

terms of tools used to quantify accessibility outcomes from an equity perspective,

researchers have used di�erent statistical measures, ranging from simple ones (such

as the variance or the range) to more complex ones such as the Atkinson and Kolm

inequality measures (Ramjerdi 2006). It is important to note that these indices

benchmark the comparison against an idealised state, and from this perspective

they measure equality. To derive arguments related to equity, an empirical inter-

pretation of results is required.

A commonly used measure is the Gini index (Geurs & Ritsema van Eck 2001,

Neutens, Schwanen, Witlox & De Maeyer 2010, Delbosc & Currie 2011b). This is

a statistical dispersion measure that uses the curve produced by the cumulative

distribution function of one variable (typically an accessibility measure, income,

service supply etc.) and of the proportion of ordered population. A commonly

reported disadvantage of the Gini index is the lack of decomposability. This means

that the index is not easily decomposed for di�erent population groups, so that

the sum of the di�erent components equals the total amount of the Gini index

(World Bank Group 2005). In this regard, the Gini index can be considered as a

measure of horizontal equity (Camporeale et al. 2017).

Another statistical measure used to quantify accessibility outcomes from an

equity perspective is the Theil index (Delafontaine et al. 2011, Santos et al. 2008).

Its formulation is based on information theory's de�nition of entropy, with the

di�erence that it uses the base of natural logarithm and the accessibility measures

used are normalised by the population mean. Theil's index satis�es most of the

desirable properties of an equality measure (World Bank Group 2005), such as be-

ing scale invariant, population independent and decomposable. It also satis�es the

Pigou-Dalton Transfer sensitivity, which states that transfer of bene�ts from those

who are better-o� to those who are not reduces inequality levels. Another reported

bene�t is computational e�ciency since, contrary to the Gini index, Theil's index

can be computed in linear time (Delafontaine et al. 2011). In addition, since the

index is based on the theoretical properties of entropy, it is possible to be modi�ed

to be used within other information theoretic entropy based frameworks such as
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relative entropy between individuals or population groups (Roberto 2015).

Entropy based measures are attractive for the task of assessing equality levels

of individuals within and between population groups within the CA based acces-

sibility framework. This is because entropy based indices can be directly applied

to the output posterior probability distributions of the Bayesian network for each

individual, providing information on the levels of diversity between the probabil-

ity distributions of nodes. The results can then be used to provide evidence on

reduced access to activity types/public transportation modes.

7.3.2 A Theil index based assessment framework

Within the developed framework of CAA, two components of an individual's ability

to reach opportunities were identi�ed and quanti�ed, given personal characteristics

and external factors: 1) potential accessibility to di�erent activity types using the

public transport, and 2) potential mobility of using public transportation modes.

The �rst one is related to the concept of equality of reaching opportunities while

the second is related to issues of transport disadvantage. The next step of the

analysis is to further explore these components using the posterior quantities as a

basis of comparison.

As already noted, entropy based measures have been used within the context

of measuring equity, with the Theil index being an example. Within the wider

accessibility literature, index has been proposed as theoretically capable of quan-

tifying accessibility related equity issues (Van Wee & Geurs 2011) and has been

applied as an equity evaluation tool for di�erent case studies. Examples include

equity evaluation under di�erent con�gurations of public service opening hours

(Delafontaine et al. 2011) and developing performance indicators of accessibil-

ity measures to quantify cohesion e�ects of transport infrastructure investments

(López et al. 2008).

The Theil index quanti�es the actual entropy relative to the maximum en-

tropy of the data and practically is a measure of the di�erence between complete

randomness and uncertainty and the observed state of the dataset (equation 7.1):

STheil =
N∑
i=0

( xi
Nx̄

ln
Nx̄

xi

)
(7.1)

Smax = lnN

T = Smax − STheil

where x is a vector of non-negative elements, STheil is the observed entropy and

Smax is the theoretical maximum entropy of the dataset.
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It is interesting to observe that the above formulation is similar to Kullback-

Leibler (KL) divergence (or relative entropy) if the vector x is a valid discrete

probability distribution, as is the case of the posterior distributions of the CAA

model �gure 6.35, and Smax is the maximum entropy de�ned by the cardinality

of the event set. Kullback-Leibler divergence is a common probability divergence

measure used to compare probability distributions within the context of applica-

tions in information theory (Cohen & Kempermann 1998) and statistics (Pardo

2005).

By de�nition, T ≥ 0, with 0 meaning that the distribution is identical to the

uniform distribution (the observed entropy is equal to the maximum) and higher

values signifying increased deviation from the uniform case and thus increased in-

equality. It is important to note that the index is invariant under state switching

in the set. For example two individuals, one using the bus 90% and the remaining

modes 5% of the time, and a second individual using the rail 90% and the remain-

ing modes 5% of the time, will be assigned the same Theil value. This doesn't take

into consideration which transportation mode is more favourable under a given cir-

cumstance. From this perspective, arguments related to equity are not possible by

assessing the output of the index alone, and some qualitative discussion of results

is needed. This is also true for the weighted version of the index, as the weight-

ing scheme needs to be decided to re�ect equity considerations. Moreover, the

uniform level of equality speci�ed by maximum entropy represents a theoretical

case that links to egalitarian approaches under the idea of equality of opportunity

(Pereira et al. 2017). However, as has already been acknowledged in section 2.5, it

is legitimate to expect a certain level of inequality to exist, provided that they are

caused by an individual's own choices and not unfavourable circumstances such

as having low income.

For the purposes of identifying individuals that experience a relative disad-

vantage, the posterior distributions will be compared and contrasted using the

Theil index against the state of complete equality characterised by maximum en-

tropy. Since the Oyster card dataset doesn't provide any information related to

an individual's preferences or desires, Theil values will be assessed under the as-

sumption that any signi�cant deviations of the individual Theil values from the

group population mean could be attributed to particularities of the group (eg. low

income, age), treating individual preferences as random �uctuation in the Theil

values within the group.
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7.3.2.1 Potential accessibility to activities

This element of the capabilities set corresponds to the (weighted) distribution

of activity types that are assumed to be reachable within 5/10/15/20 minutes

walking time from a transportation access point (see section 5.5.3.2). The equality

assumption made here is that, throughout an individual's trajectory, all de�ned

activity types should be equally reachable by an individual regardless of factors

such as age, income etc., and thus the distribution of these activity types should

approach the uniform distribution. A deviation from this hypothetical scenario

is assumed to trigger issues of social exclusion as a certain level of options to

participate in activities is not available given the trajectory.

Figure 7.24 below shows density plots of Theil indices for the posterior activity

type distributions for each population group. The Theil values in this plot were

calculated using the mean distribution over each individual's trajectory sequence,

resulting in one index for each individual:

Figure 7.24: Density plots of Theil indices for the three population groups

Using a one way ANOVA test (table 7.2), the di�erence between the means

between all three population groups were found to be statistically signi�cant at

the .05 signi�cance level (F − value = 4.424, p = 0.013), indicating that they

belong to di�erent distributions (rejecting the null hypothesis).

The low income group has the largest mean compared to the rest of the groups,

signalling overall increased inequality levels. The distribution of Theil indices for

the over sixty and unconstrained population groups are similar. However, the tail

of the unconstrained population group is considerably longer compared to both

remaining groups. Under closer examination, these outliers (> 75% percentile, T >

0.45) are characterised by high Employment probabilities (> 0.6) with Shopping
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group count mean std. 75

perc.

Uncon-

strained

181 0.18 0.11 0.31

Over

sixty

30 0.12 0.09 0.25

Low in-

come

13 0.21 0.06 0.23

(a) Descriptive statistics

sum.

sq.

df F p-

value

group 0.105 2.0 4.42 0.013

Residual 2.62 221.0 NA NA

(b) One way ANOVA

Table 7.2: Desciptive statistics and one way ANOVA for the Theil indices

activity type being second highest. The demographic status of these individuals

is composed of a mix of ethnic statuses, while the place of residence is outer

London in most cases. All of the individuals in this sample are in permanent full

time employment in central London, with activity patterns being limited to <4-5

unique locations.

The outliers (> 75% percentile T > 0.23) of the low income group on the

other hand, are characterised by individuals who are part-time workers and stu-

dents, again residing in outer London. Their ethnic background is a mix of

Asian/Arab/Black or Black British - African and Black or Black British - Caribbean

with age spanning from 21 to 38 years old. The household characteristics are lone

parents or couples with children. Compared to the outliers of the unconstrained

group, the number of unique locations visited is greater. However, the mean

distance between these locations (9.5km) is much smaller compared to the un-

constrained group (20.4km). This pattern could be explained by the relatively

high rates of travelling by bus and provides evidence of a reduced space where

activities can take place compared to the unconstrained group. In the absence of

access to individual preference mechanisms, it is di�cult to make assertions as to

whether this pattern is due to genuine individual choices or whether it is related

to higher risk of social exclusion. However, given that in London the price of a

single bus journey is nearly half the price of rail and taking into consideration the
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sociodemographic pro�le of these individuals, it is likely that the observed pattern

is due to necessity.

Finally, looking at the demographic characteristics of the outliers of the > 60

population group (> 75% percentile, T > 0.24), the ethnic backgrounds are mainly

White - English/Welsh/Scottish/Northern Irish/Other White residing in outer

Greater London with place of employment in Greater London area, inside the

M25 motorway. All of the individuals in this percentile were employed full time

with annual income ranging between ¿25,000-100,000. Similarly to the uncon-

strained population group, these individuals have high Employment activity type

probabilities (∼ 0.5). However, the probabilities for the rest of the activity types

appear to be more balanced. This population subgroup has the greatest number

of unique visited locations compared to the unconstrained and low income groups.

However, contrary to the low income group, the mean distance between these lo-

cations is slightly larger (10km), a fact which could be explained by the higher

rate of travelling by rail for activity Eating and Drinking.

7.3.2.2 Potential mobility

This element of the capabilities set expresses an individual's potential mobility

through a probability distribution over the set of public transport modes used

throughout a trajectory. The equality assumption here is similar to potential

accessibility: all transportation modes should be equally available regardless of

any personal or place based characteristics. It is important to note that this

assumption is useful only in the context of benchmarking the individual Theil

values, as it is well known that the public transportation network is designed so

that each mode complements the other. Moreover, as in the case of Tram services

in London, some transportation modes are operating on a local scale only, so

by default are not readily available to the general population. Nevertheless, by

evaluating the individual Theil indices in a relative way, it is possible to identify

cases where the use of a transport mode is not possible due to factors beyond the

control of an individual, a fact which could relate to transport disadvantage.

Figure 7.25 below shows density plots of Theil indices for the posterior trans-

portation mode distributions for each population group:

Similar to Section 7.3.2.1, a one way ANOVA test was performed which resulted

in failure to reject the null hypothesis, concluding that the distributions belong to

the same population (table 7.4). However, this result could be an artefact of the

lower cardinality of the transportation mode set, particularly considering the very

low use of Tram services, resulting in small di�erences in Theil values.

Exploring the distributions qualitatively, one notices a bimodality in all three
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Figure 7.25: Density plots of mobility Theil indices for the three population groups

group count mean std. 75

perc.

Uncon-

strained

181 0.07 0.03 0.1

Over

sixty

30 0.073 0.029 0.11

Low in-

come

13 0.06 0.02 0.09

(a) Descriptive statistics

sum.

sq.

df F p-

value

group 0.00038 2.0 0.23 0.79

Residual 0.18 221.0 NA NA

(b) One way ANOVA

Table 7.4: Descriptive statistics and one way ANOVA for the Theil indices of

transportation modes

population groups, meaning that, for those individuals, the use of one transporta-

tion mode dominates over all others. It is interesting to observe that, in contrast

to the unconstrained population group, the second mode of the low income group

is attributed to very high probabilities of Bus use. Examining the outliers (> 75%

percentile, T > 0.1) of the low income distribution, one notices that the majority

of individuals in this set are a subset of the low income outliers of section 7.3.2.1.
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This fact provides further evidence of the potential for social exclusion for these

individuals.

7.3.2.3 Public transport and activity dynamics

This element of the capabilities set aims to quantify the degree of interaction

with activity types/transportation modes through the use of transition matrices

informed by external factors. Regarding the interaction with activity types, the

equality assumption here is that the an individual is less likely to be socially ex-

cluded if they maintain a uniform level of interaction with the available activities,

as this translates to more frequent trips per activity type, a characteristic thought

to map to increased levels of social involvement (Schönfelder & Axhausen 2003).

A similar rationale holds for interaction with public transport modes as expressed

through the mobility transition matrix, in that increased levels of transition be-

tween modes could translate to an expansion of the set of activities within reach.

Figures 7.26a and 7.26b below show the Theil values between the three population

groups for the activity type transition matrix.

(a) Density plots of Theil indices for the ac-

tivity types transition matrix

(b) Density plots of Theil indices for the mo-

bility transition matrix

Figure 7.26: Distributions of Theil indices for the transition matrices

The ANOVA test for the three population groups (table 7.5) failed to reject

the null hypothesis (same distributions), however for the low income group there

are some outliers that seem to have increased Theil values.

Similarly to 7.3.2.1, the employment status of outliers (> 75% percentile,

T > 0.2) of the low income group are a mixture of student, part-time and full

time workers, residing in outer Greater London. Not surprisingly, these individ-

uals are characterised by increased probabilities of transitions related to Health

and Education (for the student and part-time employed individual) and increased

transition probabilities related to Employment for the full time workers. The lat-
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group count mean std. 75

perc.

Uncon-

strained

181 0.06 0.05 0.094

Over

sixty

30 0.072 0.066 0.10

Low in-

come

13 0.097 0.06 0.15

(a) Descriptive statistics

sum.

sq.

df F p-

value

group 0.007 2.0 1.21 0.298

Residual 0.55 221.0 NA NA

(b) One way ANOVA

Table 7.5: Descriptive statistics and one way ANOVA for the Theil indices of

activity transition matrices

ter is the same for nearly all outliers of the unconstrained and > 60 population

group.

The ANOVA test for the distribution of individual mobility transition matrices

(table 7.6) has rejected the null hypothesis (F − value = 8.908, p = 0.0002) which

translates to the statement that the means of the Theil distributions are di�erent.

Looking at the mean Theil values for all three population groups in �gure 7.26b,

the > 60 and low income groups seem to have similar inequality levels (T̄ = 0.21

for low income, T̄ = 0.20 for > 60). However, for the individuals with Theil

values belonging to the tails of the distribution, the levels of inequality seem to

be particularly high. The qualitative pro�le of those individuals is similar to the

above (mixture of employment statuses and residing in Outer London) with very

high transition probabilities of using a particular mode (Bus or Rail).

263



group count mean std. 75

perc.

Uncon-

strained

181 0.12 0.09 0.19

Over

sixty

30 0.20 0.10 0.27

Low in-

come

13 0.21 0.17 0.29

(a) Descriptive statistics

sum.

sq.

df F p-

value

group 0.17 2.0 8.908 0.0002

Residual 2.22 221.0 NA NA

(b) One way ANOVA

Table 7.6: Descriptive statistics and one way ANOVA for the Theil indices of

transportation mode transition matrices
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7.4 Discussion and conclusions

As already noted in section 7.3.1, the link between social exclusion and transport

disadvantage is a complex one that has been approached through di�erent ways in

the literature. Having as a starting point the results of the CAA model, the case

study using the Oyster/LTDS data showed that there are explicit links between

limited access to opportunities and reduced access to public transport which can

be further explored using passive unlabelled mobility data.

The general trend for distribution of activities throughout the day is similar

in the three population groups, a fact which is not surprising given the fact that

activity types were imputed, and not observed, from secondary data. However,

including assumptions about the nature of the sociodemographic background of

individuals allowed the shaping of head and tails of these distributions, particularly

for Employment activity type.

Comparably, the low income population group was found to have smaller prob-

abilities of activity type Eating and Drinking which could be linked to the reduc-

tion of the capability of using the public transport for reaching entertainment

related activities. Although it is hard to make assertions due to the reduced sam-

ple size, it is nevertheless interesting to observe that the activity type that has the

lowest probability range is the one that is the most elastic compared to Employ-

ment or Education and Health for example. On the other hand, the probabilities

of activity type Education and Health are higher for the low income group. Con-

sidering that a large number of individuals in this population group are students,

this fact comes as no surprise.

For all population groups, activity type Outdoors and Recreation was found to

have the lowest probabilities compared to the rest of the activity types. Besides

the limited number of POIs attributed to this category type, the RODS predicted

probabilities using the Oyster card sociodemographic data placed on this category

as a prior were weak relative to the rest of the activity types (the mean value of

performing activity type Outdoors and Recreation was ≈ 0.13 for all individuals

in the Oyster sample). This �nding, together with the fact that Outdoors and

Recreation had the highest accuracy of prediction (following Employment see sec-

tion 6.4.1.1) makes the assertion of absence of such activity types from the dataset

plausible, as opposed to being an artefact of the modelling process. This point is

further discussed in section 8.4 where a discussion around the modelling and data

limitations is presented.

A further breakdown of results can be made by examining the distributions of

transportation mode use in relation to each activity type. For the unconstrained
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population group, this revealed increased diversity in the probability distributions

among individuals on the relative use of public transport, particularly for Eating

and Drinking and Education and Health activity types. This could be an indication

of the varying capability levels experienced by di�erent people when reaching

these activities. Overall, for this population group, the probability of using Rail

services to reach the di�erent activity types is higher compared to the rest of the

modes. The exception is Education and Health where Bus seems to be higher (≈
0.42 for Bus and ≈ 0.36 for Rail). Assuming that these activities predominantly

map to individuals who are either students/pupils or people that require medical

care, decreased levels of Rail use compared to Bus provides evidence of reduced

capability of using the Rail services by those individuals.

The use of Bus services is also the predominant mode of transport for the

low income group for all activity types, a �nding that is in line with existing

evidence (Transport for London 2011). This should hardly come as a surprise, as

cost is a signi�cant barrier to transport in London, particularly for rail services.

Other reasons mentioned in the literature for increased bus use is the possession of

bus/rail cards for the low income groups, however, judging from the LTDS pro�le,

none of the individuals in the group reported possessing one. The predominant

use of bus for people in this group could also be the main reason for the observed

geographical pattern, which is characterised by a tendency to avoid inner London

(see �gure 5.11). This fact, combined with reduced participation in activities

as determined by the increased Theil index for this group, provides evidence of

transport disadvantage compared to the rest of the groups.

Furthermore, the distribution of transportation mode use for the Employment

activity type has been found to have a distinct multimodal shape throughout the

day, characterised by relatively high probabilities in the morning and afternoon.

This pattern could be explained by the mixture of employment statuses of the

individuals in this group: full-time employed, part-time employed and students.

Compared to the rest of the groups, individuals in the over sixty sample have

wider distributions of public transport use throughout the day, spanning a tem-

poral window between morning and early evening. It is di�cult to interpret this

shape of transport use distribution, as from a data driven perspective, this group

had the least number of transactions on average (≈ 30 transactions per individual)

compared to the rest of the groups (≈ 32 for low income and ≈ 38 for the uncon-

strained group) which contributes to increased uncertainty of estimates. This fact

coincides with evidence of non-travel (people who do not make trips) for this pop-

ulation group (Transport for London 2011) in London. From this perspective, it

is di�cult to make assertions of increased capability of using the public transport
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network throughout the day compared to the unconstrained population group.

In terms of individual levels of equality as determined using the Theil index,

the distribution of individual Theil values for the low income group is characterised

by a statistically signi�cant larger mean compared to the rest of the population

groups. This provides evidence of increased levels of inequality experienced by this

group, as the range of activities that are being reached is narrower. Examining the

sociodemographic variables of the tails of this distribution (individuals belonging

over the 75% of the Thiel distribution, a total of 10 individuals) using the matched

Oyster card and LTDS IDs, further probing of the personal characteristics con-

tributing to exclusion from activities and access to transportation modes can be

deduced: 90% belong to black, Asian and minority ethnic backgrounds, 70% are

women, all of them report income earned below ¿15,000 and all of them reside in

outer Greater London. Moreover, the labour pro�le for these individuals is more

unstable, with 8/10 people being either part-time employed or students.

In contrast, the sociodemographic pro�le of the Theil values of the tail of

distribution for the unconstrained population group (16 individuals) consisted of

44% belonging to black, Asian and minority ethnic backgrounds, 62% women, all

of them earning 25,000¿ or more and 67% residing in outer Greater London areas

with 15/16 being full time employed. The sociodemographic pro�le of the outliers

of > 60 population group is similar to the unconstrained group (13 individuals)

with 63% women, all of them earning 25,000¿ or more and 80% residing in outer

Greater London areas and 9/13 individuals being full time employed. However, the

ethnic background of the individuals in this group is di�erent with 10% belonging

to black, Asian and minority ethnic backgrounds with the rest being White/British

white. Judging from the above pro�les, it is clear that the low income group is

characterised by most of the risk factors that could result in social exclusion.

The general pattern of transition probabilities between activity types was found

to be similar in the three population groups. One notable exception was the rela-

tively low transition probabilities of Employment for the low income group. Em-

pirically, this pattern could be attributed to the nature of working status of the

individuals in the sample, half of whom were students, 25% full-time and 25%

part-time employed. Moreover, this population group was found to have a larger

distribution mean, providing evidence of less uniform transitions between activi-

ties. Indeed, examining the outliers of the Theil distribution, one notices increased

transition probabilities for either education or employment related activities, de-

pending on the individual's employment status.

Looking at the results of the mobility transition matrix, a number of inter-

esting transportation habits are revealed. For a signi�cant number of individuals
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belonging in the unconstrained population group, the use of Rail services seem

to persist throughout their trajectory, characterised by high Rail/Rail and low

Rail/Bus transition probabilities. On the other hand, the inverse seems to be

true for the > 60 and low income population groups, with high Bus/Bus and low

Bus/Rail probabilities. This transition pattern is less uniform for the low income

group, judging from the increased Theil values. Although it is di�cult to make

assumptions on the drivers behind this modal split pattern, it seems that, besides

factors commonly mentioned in the literature such as egress and waiting time

(Fearnley et al. 2018), sociodemographic factors (such as employment status and

income) also play a role in the modal split patterns of individuals. In each case,

the lack of sensitivity in switching between di�erent public transport modes could

be regarded as a reduced capability of using the public transportation network

that can result in transport disadvantage.

The results from row-wise multinomial regression for modelling the mobility

transition matrix showed that for many individuals in the unconstrained group,

PTAL and Trip duration have a signi�cant covariate e�ect. Furthermore, Trip

duration coe�cient was found statistically signi�cant and positive for the majority

of individuals for the > 60 and low income population group. This provides

evidence stating that increased travel time accounts for increased transition rates

from bus to all other modes. The e�ect of the PTAL covariate on transition

sequences was found to be marginally signi�cant and positive for the majority of

individuals of all population groups. Contrary to the unconstrained group, the

magnitude of this coe�cient was larger for bus related transitions for the low

income and > 60 groups.

The e�ect of chosen covariates for modelling the activity transition sequences

was less profound, making assertions related to a population level contribution

of external factors di�cult. The individual based modelling approach however,

allows identi�cation of people that might experience a relative disadvantage, de-

pending on the sign and magnitude of coe�cients such as IMD. For example,

in both the unconstrained and over sixty population groups, there is a consider-

able number of individuals with signi�cant positive coe�cients for the covariates

related to transitions from Retail and from Employment. From a data driven per-

spective, this result makes sense since the majority of imputed activity types were

related to Retail and Employment transition sequences. Empirically, this could

also be interpreted as a relative disadvantage considering that these individuals

are accessing activity types that are consistently located in areas characterised by

high deprivation.

Travel diary driven assumptions about activity type inference have been found

268



to follow the passive mobility data su�ciently, judging from the overall alignment

between prior/posterior for the majority of individuals in the unconstrained pop-

ulation group. However, disaggregation using age and income revealed deviations

from the overall prior shape, which were larger for the Employment activity type.

Lack of prior/posterior alignment was more profound in the case of potential mo-

bility inference for the over sixty and low income population group. For the former,

the probability of using the Bus services was increased after observing the data

while for the latter the probabilities of di�erent transport use was reshu�ed in

a way that characteristic public transport use signatures emerged for each indi-

vidual user, providing further evidence of the need for a more granular approach

on transportation mode modelling. To this end, the use of passive mobility data

appears to be a promising alternative.

7.5 Chapter summary

In this chapter, the results of the CAA model introduced in section 6.4 were pre-

sented and evaluated in the context of exploring the link between social exclusion

and transport disadvantage. For this task, unlabelled data from London's Oyster

card dataset were used, linked with sociodemographic characteristics from Lon-

don's LTDS. Building on the inferential capabilities of Bayesian networks, a set of

latent nodes were de�ned and used to represent an individual's interaction with ac-

tivity types and public transport modes given their sociodemographic pro�le and

characteristics of the built environment. Results were compared and contrasted

between three population groups: low income individuals, people over sixty years

old and an unconstrained population group using Theil's index.

The results show that applying the proposed methodological framework to

the Oyster card dataset can reveal distinct accessibility/mobility patterns at an

individual level, in spite of the limited temporal window of observations. Using

the dataset's LTDS association, these patterns can be related to individuals with

a disadvantaged sociodemographic pro�le, providing further evidence on the link

between social exclusion and transport disadvantage.
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Chapter 8

Conclusions

8.1 Chapter overview

This chapter presents the conclusions of this thesis. In section 8.2 a summary of

each chapter is provided, focusing on the main outcomes. The following section

(8.3) provides the potential contributions to the literature across the di�erent �elds

that this thesis touched. Section 8.4 discusses the limitations of the proposed

approach, both from a modelling and from a data perspective. Finally, section 8.5

presents a general conclusion and outlook.

8.2 Thesis summary

The introduction of this thesis (chapter 1) de�nes the scope of this thesis. Sev-

eral challenges have been identi�ed related to both the conceptual framework on

which individual accessibility measures are based and on the challenges of using

unlabelled mobility data to apply such measures in empirical studies. Regarding

the former, the main challenge relates to the di�culties in expressing individ-

ual accessibility within a modelling framework that can account for the complex-

ity of the interacting factors that shape the individual accessibility components,

namely using di�erent transportation modes and reaching di�erent destinations-

opportunities. The latter refers to one additional modelling requirement: the

extraction of high level semantic information related to accessibility components

from low level mobility data. This is of particular importance given the existence

of individual trajectory data from di�erent sources and, at the same time, a con-

siderable challenge given the low spatial and temporal resolution and the noisy

nature of such data.

Chapter 2 provides the research background of this thesis. In particular, it

elaborates on the role of accessibility in issues such as transport related social ex-
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clusion and the link of accessibility to the di�erent theories of social justice. More-

over, a description of the most commonly used numerical accessibility measures

was given together with their strengths and weaknesses, along with a discussion of

how these were applied in the context of assessing issues such as social exclusion

and transport disadvantage, with special focus on the use of unlabelled mobility

data. The chapter concluded by postulating that expressing accessibility through

the lens of the capabilities approach (CA) is a promising alternative for this task.

This assertion was further explored in chapter 3. In this chapter, a brief

overview of the CA is provided, together with a literature review on the appli-

cation of this approach within the wider transportation literature. The common

theme of the reviewed studies is that the CA does provide a theoretical framework

upon which the di�erent components and the de�ning factors of accessibility can be

expressed. Furthermore, in this chapter, the potential of using existing numerical

accessibility measures within the CA was discussed. It was argued that existing in-

dividual accessibility measures fail to capture the causal structure and interactions

of the personal characteristics/external environment/capabilities/functionings re-

lationship. In response to this, the chapter concluded by proposing the use of

probabilistic graphical models for this task.

Chapter 4 started by providing some fundamentals of graphical models to-

gether with a basic categorisation of the di�erent types of models. By examining

their suitability in terms of expressing accessibility through the causal structure

dictated by the CA from unlabelled mobility data, dynamic Bayesian networks

were selected as the most promising approach.

Chapter 5 introduces the datasets used in the case studies of this thesis along

with the required preprocessing steps. These included mobility datasets from a

bespoke developed smartphone app, mobility data from the social media appli-

cation Foursquare and mobility data from London's smart card system. For the

latter in particular, preprocessing steps included constructing a hybrid dataset

within which Oyster card transactions with bus boarding information. The result-

ing dataset is combined with socio-demographic LTDS data to produce individual

trajectories with background personal characteristics information. Furthermore,

this chapter introduced the algorithm used for inferring bus and tram alighting

points by means of trip-chaining. Moreover, the notion of activity spaces was

introduced as the basic unit for activity type inference along with the weighting

function that was used to di�erentiate between Employment/Education and the

rest of the activity types.

Chapter 6 presents the overall methodology for the formulation of the Capa-

bilities Approach to Accessibility (CAA) model. In particular, section 6.2 intro-
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duces the base dynamic hierarchical Bayesian network framework used in CAA,

in the context of transportation mode detection using data from low resolution

smartphones combined with travel survey data. Within this speci�cation, infor-

mation related to individual personal characteristics is included at the top level

of the hierarchy as a prior distribution, under the assumption that such charac-

teristics persists throughout an individual's trajectory. External covariates, on

the other hand, are modelled through the rows of a transportation mode state

transition matrix following the assumption that such space dependent variables

change throughout an individual's trajectory. It was found that, depending on

the individual's mobility characteristics, assumptions on the degree of in�uence

of personal characteristics and external covariates based at population level sec-

ondary data do not always hold. Moreover, the transportation mode transition

dynamics for each individual re�ected on the probabilities of each row of the tran-

sition matrix revealed some insights on the extent of use of public transport by

each individual. In terms of transportation mode detection accuracy, the proposed

model was found to outperform the most commonly used classi�ers for this task:

RF, SVM and ANN (MLP). This section is based on the �ndings of Bantis &

Haworth (2017).

In section 6.3 the proposed dynamic Bayesian network was reformulated in the

context of activity type inference using Foursquare check-in mobility trajectories

and POI data. Here, the main focus was the performance of the model in terms

of activity type inference under di�erent isochrone con�gurations. The model was

found to achieve accuracy which is on a par with the reported accuracy thresholds

in the literature for the 5 and 10 minute isochrone levels, in spite of belonging to

the unsupervised classi�cation models family. However, this performance is highly

dependent on the nature of activity types. In particular, activity types associated

with sparse POI vectors or class confounding POIs seem to produce results that are

indistinguishable from a random classi�er, or in some cases introduce systematic

classi�cation errors. In such cases, the degree of prior belief as expressed through

the prior distribution plays an important role, as it tends to dominate over the

sparse data likelihood. The results of this chapter are published in Bantis &

Haworth (2019). Section 6.4 consolidates the results of sections 6.2 and 6.3 and

introduces the CAA model. All components of the model are explicitly de�ned

(capabilities/functionings/personal and external characteristics) along with the

input/output of the mode. Various elements appearing in this section have been

published in Bantis & Haworth (2020).

In an attempt to investigate how the notions of capabilities and functionings

have been approached within transport disadvantage, chapter 7 provides the in-
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ference results of CAA model using passive mobility data (Oyster card) and travel

survey data (LTDS/RODS) for each node of the model. In section 7.2 The pos-

terior quantities for all model's nodes are disaggregated by individual/population

group. In general, the overall trend of potential accessibility (as expressed through

the posterior distribution of activity types for each individual) appears to be simi-

lar. Closer examination, however, allowed some key di�erences to emerge between

the population groups. In particular, the posterior probabilities of the low income

group appear to be lower for "elastic" activity types, such as Eating and Drinking.

Moreover, activity type posterior results demonstrated that, depending on the in-

dividual, there exists considerable variability in the probabilities of activity types

throughout the day, even within the same population groups. Disaggregating the

results further to account for the transportation mode used, the di�erences are

more pronounced. Again, within-group variations are signi�cant, however over-

all, use of Bus services is the predominant mode of transport for the low income

group, as opposed to Rail services for both the unconstrained and the over sixty

group. Furthermore, the transition probabilities for the low income group revealed

a low transition rate between Employment and the rest of the activities, re�ect-

ing the employment status split of the individuals of this group (mix of students,

part-time and full-time employed). The probabilities for transportation modes

were higher for Bus related transitions for both the low income and over sixty

population group. The e�ect of the chosen external variables for both activity

type and transportation mode transitions were found to vary across individuals

considerably. Finally, the degree of prior belief on the e�ect of personal charac-

teristics was consistent with their posterior counterparts for activity types (with

the exception of Outdoors and Recreation activity). However, for transportation

modes there was a considerable deviation for the low income and > 60 group

between the prior/posterior correspondence, essentially reshaping the logistic re-

gression derived assumptions related to the choice of transportation mode from

sociodemographic characteristics.

Finally, section 7.3 provided a framework for evaluation of transport related

social exclusion using the model's posterior quantities over the elements of the

capabilities set based on Theil's index. Individual indices per population group

(low income, over sixty years old and unconstrained group) were benchmarked

against maximum entropy, which translates to the theoretical conditions of com-

plete equality. The sociodeomographic pro�le of individuals with the highest in-

equality levels correlated with those of low income, non white ethnic backgrounds

residing in outer Greater London areas for nearly all elements of the capabilities

set, suggesting that these individuals could experience higher risk of transport
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related social exclusion.

8.3 Contributions to the literature

This section highlights the potential contributions to the literature from the out-

comes of this thesis. These are divided in two areas: contributions to accessibility

literature and contributions to transport literature.

8.3.1 Contributions to accessibility literature

The formulation of accessibility through a CA framework potentially addresses

the following challenges in accessibility literature:

1. A data driven/graphical model approach to CA operationalisation was in-

troduced.

2. By using the output of the model, justice theoretic evaluations based on

equality can be performed at an individual level.

3. Combining accessibility and mobility, a framework for multimodal accessi-

bility per activity type categories is introduced.

4. Using individual level trajectory data, the proposed model allows re-evaluation

of prior assumptions on travel behaviour based on empirical evidence.

5. Using unlabelled mobility data of low resolution, particularly from trans-

portation network providers, the scope of accessibility appraisals is broad-

ened.

8.3.2 Contributions to transportation literature

Through the use of low resolution unlabelled data the proposed modelling frame-

work contributes to addressing the following challenges in transportation litera-

ture:

1. By including personal characteristics and variables related to the wider en-

vironment, improved transportation mode detection accuracy compared to

commonly used classi�ers is achieved, even with a limited observation feature

vector.

2. By using a hierarchical dynamic Bayesian network over POIs bounded by an

isochrone in an unsupervised classi�cation setting, activity type detection

accuracy can be achieved that is on a par with supervised classi�cation
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methods. This is of signi�cant importance considering that ground truth

information is absent for most service provider generated mobility data.

3. By using ground truth Foursquare data, the limits of activity type detection

accuracy was assessed for data of increasingly lower resolutions (such as

AFC, cell-tower data). This is done by evaluating the model's performance

at di�erent isochrone levels.

4. By modelling the transitions between transportation modes/activity types

using row-wise multinomial regressions, the proposed model allows the ex-

plicit inclusion of external variables in the evolution of state space.

5. By modelling the Dirichlet distribution concentration parameters using ex-

ternal data, personal information related to mobility/accessibility patterns

can be introduced in the modelling process.

8.4 Limitations

In this section, some limitations of this thesis are identi�ed and elaborated focusing

on two areas: modelling framework and data limitations. These could serve as

opportunities for further development of the proposed methodology.

8.4.1 Modelling limitations

Although considerations regarding the spatial and temporal structure of obser-

vations were implicitly included in the modelling framework through the use of

space (eg. isochrones at an alighting point and space varying covariates) and time

dependent mobility data (eg. Oyster card, geo-location data), explicit spatial

and temporal correlations between observations have not been accounted for. In

the discrete case of public transport access points as areal units, these correla-

tions could be caused by the spatial con�guration of bus stops/rail stations, and

have been found to be statistically signi�cant at an aggregated level (Bantis et al.

2015). Given the nature of the model where the focus is on the individual, one

option would be to include a spatial autologistic term in the row-wise multino-

mial regressions of transition matrices. During the experimentation phase of this

study, such terms were introduced by imposing a neighbouring structure de�ned

by a 5km threshold at each access point and a 2 hour temporal window between

observations. However, this introduced added complexity in the model making

MCMC sampling extremely long and convergence di�cult. Furthermore, due to

the limited number of unique destinations per individual trajectory, information
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sharing between neighbouring units was found to be weak (as evidenced by the

non-signi�cant spatial and temporal posterior e�ect). As a result, it was decided

not to include such terms in the �nal model.

Another modelling limitation that should be taken into account when inter-

preting results particularly for the posterior distributions of activity types, is re-

lated to the nature of unsupervised classi�cation framework adopted in this study.

Within this, activity type inference is solely determined by the distribution of

POIs within an isochrone, the prior assumptions on the individual's propensity to

perform an activity type given personal characteristics and characteristics of the

external environment. For activity type Outdoors and Recreation all these data

sources fall back compared to the rest of activity types. As a result, for nearly all

participants, the posterior probabilities of performing this activity type �uctuated

around the random threshold of 0.2. If the focus is making assertions regarding

this particular activity type, extra considerations need to be taken in the calcu-

lation of the likelihood. As an example, this could be expressing an extra source

of information, such as being weekday or weekend. Another way is to weight the

observation vector by a POI capacity variable, using social media data such as

Twitter. This could be achieved by modifying the informative prior on the activ-

ity type probabilities. If such a modi�cation is not possible, then an option is to

include an extra likelihood term (eg. through soft data-factor potential) increasing

the likelihood of this activity type according to the capacity of POIs and/or type

of day (weekend/weekdays) and decrease it otherwise (Jordan et al. 2004).

8.4.2 Data limitations

In all three case studies in this thesis, passively generated mobility data of varying

spatiotemporal resolution were used to infer accessibility/mobility quantities and

readjust the prior assumptions in light of evidence. As such, any generalisations

to population level characteristics should be made keeping this important con-

sideration in mind. This is especially true for the case study using Oyster card

data where transport related equality claims were made between three population

groups: a low-income, over sixty and the unconstrained population group. As

the sample size of these groups is unequal, it is important that considerations re-

lated to homogeneity of variance hold, particularly for the distribution of activity

types where the one-way ANOVA test turned out to reject the null hypothesis

(populations with equal mean). Repeating the test with a non parametric version

of ANOVA (Kruskal-Wallis H-test) has also resulted in rejection of the null hy-

pothesis (statistic=7.48, p-value=0.023) increasing the con�dence of the equality

assertion made in section 7.3.
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Furthermore, the varying sample size of Oyster card data for the di�erent

population groups has an impact on the geographic representativeness of the study

area. While for the unconstrained and over sixty sample the visited locations

appear to be uniform throughout the study area, the visited locations of the low

income group appear to cluster radially across the study area (see Figure 5.11).

Although a positive correlation exists between the index of deprivation and the

visiting locations of the low income group (OLS slope 0.013 compared to a negative

correlation for the unconstrained group with OLS slope -0.044 and the over sixty

group with OLS slope -0.001) which intuitively is what would one expect, it is

di�cult to make any �rm assertions regarding the geographic representativeness

of this population group.

With regards to the temporal extent of chapter 7, the available dataset did

not allow any deeper evaluation of the way individuals adjust their activity/travel

behaviour in the face of an event that could impact accessibility. Such an event

can be related to personal characteristics (such as a change in employment status)

or can be infrastructure related (for example, an introduction of a new public

transport connection. A future direction could involve using an extended time span

together with information on signi�cant events to assess whether an adaptation

of behaviour is represented in the evolution of mobility/accessibility nodes of the

model.

Moreover, the absence of tram journeys from the sample can be considered a

direct result of the state of tram services in the city, where tram journeys rep-

resent less than 1% of the total journeys made each year (Transport for London

2019). Considering that the �nal Oyster card/LTDS sample of 224 individuals was

around 2.4% of the total Oyster card sample provided, the chances of encountering

individuals using tram services as the primary mode of transport are slim. As a

result, to be able to make claims on mobility/accessibility patterns of tram users,

strati�ed sampling is needed targeting this subgroup explicitly.

Finally, it should be noted that the results of chapter 7 are bounded by the

quality of information provided by the Oyster/LTDS sample. For example, pop-

ulation groups that are thought to present high risk of transport related social

exclusion such as the unemployed, disabled and retired were not represented in

the sample. It would be of great value if the analysis was repeated with these

groups, as it would demonstrate the degree of robustness of the proposed method-

ological framework.

Related to the above, it is important to note that while chapter 7 represented an

individual's potential accessibility to activities and potential mobility using public

transport through the Bayesian network structure, access to an individual's actual
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"wants" and "desires" behind their choices remains out of reach and can only be

uncovered through extensive qualitative studies. For example, people with lower

income may choose to eat and drink out less due to lack of resources. Transport

accessibility may be a factor, but its e�ect might be exaggerated by the lack of

access to the drivers behind the choices made by those individuals. Nevertheless,

the current structure of the proposed model could be used to identify deviations

from the average equality levels so that further investigation can be undertaken.

Future directions will be steered towards a qualitative validation of the �ndings.

8.5 Conclusion and outlook

In this thesis, a novel approach to evaluating individual accessibility was proposed

by framing the modelling methodology through the CA. Following the hierarchical

structure of the CA, the di�erent components that shape an individual's ability

to reach opportunities were explicitly modelled in a probabilistic way through

the notions of latent capabilities and observed functionings. The potential of the

proposed methodological framework to evaluate individual based transport based

social exclusion was assessed through a case study using London's AFC data. It

was found that the proposed framework could identify individuals that exhibit high

risk of social exclusion by comparing the distributions of the capabilities sets.

The implementation methodology was based on dynamic Bayesian networks us-

ing low resolution mobility data from di�erent sources. The hierarchical nature of

the model allows the incorporation of assumptions related to mobility/accessibility

behaviour while at the same time the dynamic nature of the model was used to

include characteristics of the built environment that change throughout an indi-

vidual's trajectory. The model has been applied to data of di�erent spatial and

temporal resolution and exhibits strong performance in both transportation mode

and activity type inference compared to existing models.

Abstraction of the proposed model to the entirety of service provider's data

is challenging but achievable. It is challenging due to the level of detail of the

model, together with the nature of probabilistic inference. Achievable due to

recent advances in sampling schemes (e.g. Hamiltonian Monte Carlo, Variational

Inference) that have the potential of reducing sampling autocorrelation and achieve

faster convergence.

Further to the potential of transportation service provider's data, London and

other cities across the world are encouraging transactions using contactless pay-

ments instead of AFC data. This fact, together with the wide adoption of contact-

less payments for consumer purposes, would enable merging of mobility patterns
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with consumer habits, providing insights to an often overlooked element of acces-

sibility which is access to non-employment recreation/retail/consumer activities.

The use of low resolution data in the case studies presented in this thesis

enables the application of the model to datasets of increased population cover-

age such as data obtained from mobile phone network operators. Indeed, the

isochrone approach adopted in the derivation of the activity type observation vec-

tors mimics the spatial resolution of GSM cell-tower data obtained in urban areas.

Furthermore, the use of such data would allow for a more re�ned de�nition of the

mobility component of accessibility that goes beyond the use of public transport.

Questions such as the following could then be interrogated: To what extent active

transportation (e.g. bicycles) compliments more traditional modes of transport?

Do they expand the range of activity types reached? What is the role of mobil-

ity as a service applications (MaaS) such as Uber in the ability of individuals to

reach activities, particularly for vulnerable population groups such as the elderly?

Interrogating these questions would require reformulation of the model within the

context of transportation mode detection described in section 6.2.

Related to the use of the potential data sources described above, it is important

that any modelling attempts are not compromising aspects of an individual's right

of personal information. This is especially true for data of increased �delity such

as mobile-phone operator data. Careful consideration needs to be taken to prevent

any prospects of individual identi�cation through their trajectories. Appropriate

aggregation should be applied, ideally within pre-de�ned census boundaries. Such

a step would provide the additional bene�ts of directly relating the individual

trajectories to census data, as well as allowing the incorporation of spatial statistics

methods such as accounting for spatial autocorrelation between the census tracts.

Furthermore, although the case studies presented use London as the city of

reference, the proposed modelling framework could be applied to other cities in

the UK or internationally, provided that data on mobility trajectories and activity

type proxies exist. To this end, the ubiquitous use of smartphones by the majority

of population makes the application of the model to other cities plausible. In this

way, accessibility evaluations across di�erent cities can be achieved, providing the

background for assessing transport related social exclusion across di�erent cities.

Finally, it is worth pointing out that the proposed model has the potential

to be used in areas beyond assessing individual accessibility, and into the realm

of urban, transportation planning and behavioural modelling. As the output of

the model is mobility and activity type patterns, these can be used to spot devel-

opment opportunities as well as to provide an estimate of the capacity of utility

services required (such as electricity, connectivity etc.) for those. City planners
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and developers can then assess the potential to invest in new businesses and homes

in those areas, depending on the levels of access and activity participation. Within

transportation planning, the output of the model can directly inform about the

need to expand or complement the existing transportation network, depending on

the demand of available activities in a given area. Within the �eld of behavioural

modelling, the CAA model can provide the input needed for creating realistic

agents within a simulation context (e.g. modelling the responses of people during

a pandemic). This is achieved through the explicit causal link between passive

mobility data and sociodemographic characteristics, which allows the extraction

of detailed dynamic spatiotemporal activity and transportation signatures from

unlabelled data.

In light of the ever increasing trend of urbanisation, accessibility is likely to

be a major problem for future cities, as current infrastructure will be stressed to

accommodate the needs of an increasing urban population. With the levels of

inequality in transport likely to increase as a result of competition for resources,

policy makers will need more information on the causes of transport related social

exclusion. To that extent, new technologies combined with big data that provide

interpretable results could provide evidence to promote equity.

Policy makers have a huge responsibility for promoting people's well-being in a

fair fashion, especially in these politically unstable and uncertain times. Decision

making is a di�cult task, and in that line of argument, policy makers will need

to move away from aggregated indices and embrace the complexity of transport

related social exclusion as a phenomenon, in order to promote a fairer public

transport system for everyone. Accessibility as a concept has the potential to

make signi�cant contributions to this, and as such, it should continue to evolve

both in theoretical formulations and implementation methods.
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Appendix A

Results of Logistic regression for

LTDS

The intercepts were 15.81, 3.01, -6.87 for the categories Bus, Rail, Tram respec-

tively.

Variables

Bus Rail Tram

eβ p-value eβ p-value eβ p-value

Disability Type: Wheelchair

user

0.441 0.0006 0.028 0.5762 1.274 0.5689

Disability Type: Mobility 0.747 0.0108 0.000 0.6314 0.759 0.2205

Disability Type: Visual 0.851 0.6946 0.430 0.7942 0.000 0.9842

Disability Type: Hearing 1.032 0.9528 0.896 0.9535 0.000 0.9881

Disability Type: Learning 0.655 0.5019 0.128 0.5258 1.504 0.5367

Disability Type: Mental

health (0607 onwards)

0.497 0.0211 0.017 0.5498 0.726 0.5644

Disability Type: Serious long-

term (0607 onwards)

1.011 0.9610 0.389 0.8623 0.108 0.0282

Disability Type: Other 0.809 0.4822 0.070 0.6386 0.254 0.1773

Age 1.000 0.9538 0.000 0.9788 0.994 0.2214

Income: ¿100,000 or more 0.519 0.0000 0.000 2.0623 0.041 0.0019

Income: ¿15,000 - ¿19,999 0.920 0.5618 0.822 0.9755 0.959 0.8748

Income: ¿20,000 - ¿24,999 0.936 0.6395 0.674 1.0479 1.292 0.3112

Income: ¿25,000 - ¿34,999 0.843 0.1798 0.114 1.1752 1.268 0.3184

Income: ¿35,000 - ¿49,999 0.792 0.0615 0.081 1.1960 0.766 0.3126

Income: ¿5,000 - ¿9,999 0.927 0.5754 0.156 0.8686 1.004 0.9874

Income: ¿50,000 - ¿74,999 0.810 0.0904 0.000 1.5977 1.033 0.8979

Income: ¿75,000 - ¿99,999 0.594 0.0003 0.001 1.5509 0.304 0.0094
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Income: Do not know 0.968 0.8003 0.002 1.3469 0.894 0.6301

Income: less than ¿5,000 0.923 0.6348 0.572 0.9359 1.057 0.8399

Income: Refused 0.740 0.0105 0.012 1.2666 1.165 0.4893

Sex 0.990 0.8569 0.000 1.4553 1.012 0.9177

Working Status: Part-time

paid employment (less than 30

hours a week)

1.164 0.1092 0.192 0.8984 1.662 0.0150

Working Status: Full-time

self-employment (30+ hours a

week)

1.236 0.0351 0.000 1.4954 1.435 0.1712

Working Status: Part-time

self-employment (less than 30

hours a week)

1.178 0.2657 0.080 1.2690 1.350 0.4167

Working Status: Stu-

dent/school pupil

2.092 0.0000 0.477 1.0842 0.889 0.6712

Working Status: Waiting to

take up a job

0.947 0.8703 0.369 1.3166 1.233 0.7811

Working Status: Unemployed

and looking for job

1.704 0.0015 0.001 0.6610 1.091 0.7835

Working Status: Unable to

work because of long-term ill-

ness or disability

1.924 0.0041 0.000 0.4652 1.377 0.4382

Working Status: Retired 1.268 0.0795 0.000 0.6052 1.055 0.8549

Working Status: Regular un-

paid Voluntary Work

1.249 0.4222 0.721 0.9202 1.690 0.2584

Working Status: Looking af-

ter home or family

1.253 0.0993 0.000 0.4760 0.850 0.5938

Working Status: Other non-

working

0.845 0.6844 0.647 1.1793 0.614 0.6418

Occupation: Middle or junior

managers

1.094 0.5407 0.461 1.1055 0.801 0.5526

Occupation: Modern profes-

sional occupations

0.942 0.5598 0.085 1.1757 0.544 0.0200

Occupation: Routine manual

and service occupations

1.436 0.0252 0.001 0.6649 0.666 0.2401

Occupation: Semi-routine

manual and service occupa-

tions

1.248 0.1359 0.237 0.8672 0.805 0.4704
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Occupation: Senior managers

or administrators

0.902 0.3891 0.216 1.1534 1.328 0.3235

Occupation: Technical and

craft occupations

0.783 0.0975 0.017 0.7249 0.804 0.5486

Occupation: Traditional pro-

fessional occupations

0.829 0.1413 0.005 1.4350 1.338 0.3362

Household Members 0.971 0.1613 0.000 0.8336 1.136 0.0022

Has a driving license 0.845 0.1031 0.000 1.6414 0.684 0.0434

Free travel pass 0.533 0.0000 0.000 0.7073 0.564 0.0061

Bus pass: Monthly 0.627 0.9994 0.356 0.5795 0.545 0.9924

Bus pass: Not asked 0.000 0.9793 0.296 1.7793 0.2 0.9927

Bus pass: Weekly 0.616 0.9994 0.390 0.6106 0.2 0.9928

Ethnic group: Asian or Asian

British - Chinese

0.567 0.0735 0.246 1.3747 13.771 0.0147

Ethnic group: Asian or Asian

British - Indian

0.766 0.2958 0.136 0.7471 9.111 0.0312

Ethnic group: Asian or Asian

British - Other Asian back-

ground

0.948 0.8435 0.634 1.1014 8.209 0.0417

Ethnic group: Asian or Asian

British - Pakistani

0.794 0.4429 0.520 0.8600 2.920 0.3570

Ethnic group: Black or Black

British - African

1.593 0.0903 0.844 0.9624 8.599 0.0359

Ethnic group: Black or Black

British - Caribbean

1.349 0.2878 0.016 0.6140 12.250 0.0148

Ethnic group: Black or Black

British - Other Black back-

ground

1.390 0.4073 0.857 0.9512 10.767 0.0298

Ethnic group: Mixed or multi-

ple ethnic groups - White and

Black Caribbean

1.157 0.7103 0.789 1.0820 6.662 0.1048

Ethnic group: Mixed or multi-

ple ethnic groups - White and

Asian

0.793 0.6113 0.144 0.5835 4.792 0.2745

Ethnic group: Mixed or multi-

ple ethnic groups - White and

Black African

0.682 0.4413 0.290 0.6796 33.272 0.0015
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Ethnic group: Other Ethnic

group - Any Other

1.249 0.5008 0.345 0.7947 0.000 0.9778

Ethnic group: Other Ethnic

Group - Arab

4.577 0.0542 0.087 1.8129 6.152 0.1446

Ethnic group: Other Mixed or

multiple ethnic background

1.948 0.1555 0.358 0.7397 6.268 0.1393

Ethnic group: Other White 0.833 0.4584 0.609 0.9090 3.748 0.1994

Ethnic group: Refused 1.151 0.8662 0.949 0.9646 0.000 0.9930

Ethnic group: White - En-

glish/Welsh/Scottish/Northern

Irish

0.648 0.0696 0.001 0.5499 7.710 0.0437

Ethnic group: White - Irish 0.806 0.4673 0.171 0.7266 6.870 0.0752

Ethnic group: White - Other

British

0.688 0.2293 0.430 1.2338 2.724 0.4182

Car use: 2 days a week 0.932 0.5506 0.905 1.0145 1.273 0.4320

Car use: 3 or 4 days a week 0.706 0.0027 0.277 0.8805 0.914 0.7718

Car use: 5 or more days a

week

0.275 0.0000 0.000 0.4551 0.728 0.2749

Car use: At least once a fort-

night

1.264 0.2194 0.018 1.6114 0.608 0.4366

Car use: At least once a

month

1.949 0.0015 0.810 0.9554 0.742 0.6004

Car use: At least once a year 1.822 0.0003 0.124 1.2715 0.444 0.1178

Car use: Never used 2.206 0.0000 0.033 1.2901 1.012 0.9678

Car use: Not used in last 12

months

2.211 0.0000 0.783 1.0339 1.291 0.3985

Car as a passenger use: 2 days

a week

0.898 0.2252 0.188 0.9027 0.736 0.1171

Car as a passenger use: 3 or 4

days a week

0.861 0.1450 0.432 0.9330 0.837 0.3979

Car as a passenger use: 5 or

more days a week

0.865 0.2403 0.001 0.7135 0.826 0.4453

Car as a passenger use: At

least once a fortnight

1.194 0.0988 0.105 1.1608 0.623 0.0517

Car as a passenger use: At

least once a month

1.092 0.3310 0.913 0.9914 0.721 0.0984

Car as a passenger use: At

least once a year

0.923 0.3291 0.892 0.9900 0.933 0.6899
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Car as a passenger use: Never

used

1.275 0.0692 0.155 1.1685 0.532 0.0553

Car as a passenger use: Not

used in last 12 months

1.019 0.8636 0.396 0.9233 1.001 0.9978

Regular taxi use: 2 days a

week

1.022 0.9366 0.808 1.0711 0.682 0.5940

Regular taxi use: 3 or 4 days

a week

0.856 0.6388 0.285 1.5356 2.271 0.2251

Regular taxi use: 5 or more

days a week

0.538 0.1751 0.154 0.5002 0.000 0.9889

Regular taxi use: At least

once a fortnight

0.993 0.9727 0.408 1.2073 0.677 0.4735

Regular taxi use: At least

once a month

0.981 0.9184 0.811 1.0480 0.575 0.2531

Regular taxi use: At least

once a year

0.781 0.1641 0.039 0.6855 1.041 0.9247

Regular taxi use: Never used 0.795 0.2077 0.000 0.3882 0.854 0.7094

Regular taxi use: Not used in

last 12 months

0.785 0.1781 0.000 0.4021 0.792 0.5827

Private taxi use: 2 days a

week

0.918 0.7290 0.320 0.8204 1.484 0.3443

Private taxi use: 3 or 4 days a

week

0.883 0.7416 0.043 0.5627 0.000 0.9824

Private taxi use: 5 or more

days a week

0.339 0.0279 0.661 0.8094 0.000 0.9901

Private taxi use: At least once

a fortnight

1.155 0.4294 0.177 0.8185 1.233 0.5275

Private taxi use: At least once

a month

1.005 0.9769 0.405 0.8979 0.974 0.9301

Private taxi use: At least once

a year

0.752 0.0592 0.008 0.7272 0.851 0.5551

Private taxi use: Never used 0.662 0.0104 0.016 0.7378 0.897 0.7112

Private taxi use: Not used in

last 12 months

0.620 0.0022 0.000 0.5963 1.178 0.5602

Walking: 2 days a week 1.773 0.0006 0.232 1.2300 1.128 0.7779

Walking: 3 or 4 days a week 2.591 0.0000 0.000 1.7564 1.135 0.7458

Walking: 5 or more days a

week

3.208 0.0000 0.000 2.6672 1.082 0.8232
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Walking: At least once a fort-

night

1.003 0.9923 0.276 0.7065 1.087 0.9168

Walking: At least once a

month

0.406 0.0027 0.008 0.4209 1.264 0.7328

Walking: At least once a year 0.333 0.0006 0.740 0.8845 1.134 0.8562

Walking: Never used 1.326 0.5804 0.763 0.8270 0.000 0.9900

Walking: Not used in last 12

months

0.242 0.0000 0.104 0.5091 0.622 0.5059
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Appendix B

Results of Multinomial regression for RODS

The baseline category was work. The intercepts were 0.00002, 0.0067, 0.0003, 0.000007 for the categories Eating/Drinking,Education/Health,

Retail, Sports/Entert. respectively.

Variables
Eating/Drinking Education/Health Retail Outdoors/Recr.

eβ p-value eβ p-value eβ p-value eβ p-value

Time of day 2.4327 < 2.2e-16 1.8640 8.841e-12 2.0164 1.731e-14 2.4212 < 2.2e-16

Sex: Male 2.4094 0.5153 0.8637 0.8725 2.6512 0.4367 0.8794 0.9081

Sex: Fe-

male

2.2946 0.5378 1.3935 0.7136 4.1259 0.2561 1.0952 0.9345

Disability 2.4238 0.10190 1.7134 0.2611 1.9576 0.1685 3.9963 0.0135

Age 1.0117 0.9053 0.8184 0.0279 1.00068 0.9940 1.3403 0.00262
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Appendix C

Posterior activity type

distributions for all participants

of section '6.3'

The purple line indicates ground truth check-in activities.
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Figure C.1
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Appendix D

CAA model convergence

diagnostics

This section presents the convergence diagnostics for the MCMC simulations for all

variables of �gure 6.35. It begins by discussing model convergence using within and

between MCMC chain diagnostics. It then provides an indication of the model's

accuracy by using a limited self-labelled Oyster card dataset, before discussing the

results of the simulations. The posterior quantities for the capability variables of

section 6.4.2 are presented, grouped by the population groups speci�ed in section

6.4.

D.1 Convergence diagnostics

Two methods of assessing the convergence of the MCMC simulations were consid-

ered: The �rst follows a within MCMC chain approach and uses visual inspection

of the chains and the associated auto-correlation plots as well as Geweke's z-score,

while the second adopts a between chain approach using the Gelman and Rubin

R̂ statistic.

D.1.1 Within chain convergence

The most straightforward approach of assessing MCMC chain convergence is by

inspecting the chains for elements of asymptotic behaviour. If the sequence of

samples appear to have a constant mean and variance, this could provide evidence

of sampling from the target posterior distribution. This should be repeated for all

stochastic variables as convergence of one does not necessarily imply convergence

of the other variables. For this study, trace plots (plots of the simulated MCMC

samples) as well as their auto-correlation plots are used as a means of qualitative
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assessment of convergence (Lawson 2009). In line with the preceding case studies

of this thesis, Geweke's z-score was used as a means of formal indication of within-

chain convergence.

The remainder of this section presents the results for the > 60 population

group. Results for the unconstrained and low income groups are presented in

appendix E.

Inspecting the trace plots and auto-correlation plots for the 30 individuals of

the > 60 population group for the d node of model 6.35. Figure D.1 below shows

the results for all dκi of each individual.

Figure D.1: Trace and auto-correlation plots of dκi for all individuals in the > 60

group (Red: Eating and Drinking, Blue: Education and Health, Green: Retail,

Purple: Sports and Entertainment. 2500 burn in applied)

Judging from the trace plots, the MCMC chains do not seem to present any

signs of non-stationarity. The auto-correlation plots suggest various degrees of

correlation between subsequent samples, however this seems to decrease with in-

creasing lags. High auto-correlation suggests that the MCMC algorithm explores

the parameter space with reduced e�ciency, which doesn't contribute signi�cantly

to the determination of the chain's statistical parameters. The process of "thin-

ning" (keeping every other n sample of the chain) is often suggested to reduce

auto-correlation in the chains (Kruschke 2010). However, some authors suggest

that such remedy is only computational, reducing the e�ective number of samples

used to approximate the posterior distribution (Brooks et al. 2011). In this study,

a combination of di�erent approaches was used to reduce auto-correlation, includ-

ing thinning, di�erent burn-ins and a combination of di�erent MCMC algorithms

for di�erent nodes (eg. Metropolis-Hastings, Adaptive Metropolis).

Next, the Geweke's z-scores for all dκi variables of the individual models were

computed for the �rst 10% and last 50% of the chains. Figure D.2 below shows
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the distributions of z-score values for all chains.

Figure D.2: Gewekes z-scores of dκi for individuals in the > 60 group (Red: Eating

and Drinking, Blue: Education and Health, Green: Retail, Purple: Sports and

Entertainment)

As it can be seen, the bulk of the z-scores lie within two standard deviations

of the mean, indicating convergence. For the remaining scores, we allow 5% of the

calculated scores to lie outside this range due to type I errors of multiparameter

signi�cance tests. For the variables outside these ranges, Gewekes z-scores indicate

that more samples are needed to provide an indication of chain convergence.

The same approach was applied for the m nodes of the model, corresponding

to potential mobility of public transport means. Figures D.3 and D.4 below show

the trace and Geweke's plots for Bus and Rail transport for all individuals over

sixty years old in the sample.

The above plots present similar characteristics with d nodes, with the excep-

tion of some bus variables having relatively high auto-correlation (> 0.1). Re-

parametrisation of the models is suggested by some authors as a way to reduce

auto-correlation (eg. variable zero mean centre) (Browne 2004), however, for this
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Figure D.3: Trace and auto-correlation plots of mκ
i for all individuals > 60 years

old in the sample (Red: Bus, Blue: Rail. 2500 burn in applied)

Figure D.4: Gewekes z-scores of mκ
i for individuals over sixty (Red: Bus, Blue:

Rail)

model is not an option due to the discrete nature of the mobility variables, so

thinning and extending the length of the chains was applied as an alternative for

reducing auto-correlation.

Next, the convergence diagnostics are provided for the transition matrices Tz

and Tm (Figures D.5, D.6, D.7, D.8). Sampling from those nodes was more di�-

cult as indicated the convergence plots. Since some of the external covariates used

in modelling the sequence of transitions are correlated (particularly nodes such as

trip duration and PTAL), they introduce collinearity in the β external parameters,

making the MCMC simulations less e�cient. In the context of Bayesian inference,
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this translates to the fact that transition sequences don't provide enough infor-

mation to explain the individual coe�cients. In such cases, adjusting the scale of

the MCMC algorithm depending on the acceptance rate can help towards more

e�cient sampling. On the modelling side, introducing stronger prior assumptions

when forming the model can help di�erentiate the e�ect of the covariates and

provide more stable estimates (Gelman et al. 2013). However, since there is no

reliable source of information that could be used to introduce an informative prior

for the covariates, a thinned version of the chain (keeping every other sample) was

used to generate the coe�cients' statistics.

Figure D.5: MCMC chains and auto-correlation plots of Tz for individuals over

sixty (Red: Eating and Drinking, Blue: Education and Health, Green: Retail,

Purple: Sports and Entertainment. 2500 burn in applied)
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Figure D.6: Gewekes z-scores of Tz for all individuals over sixty years old.
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Figure D.7: MCMC chains and auto-correlation plots of Tm for individuals over

sixty (Red: Bus, Blue: Rail. 6000 burn in applied)

Figure D.8: Gewekes z-scores of Tm for all individuals over sixty years old
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Next, the convergence diagnostics for the external factors (βz,m), intercepts and

internal covariates (αz,m) are presented in Figures D.9,D.10, D.11, D.12. Again,

the e�ect of relatively high correlation of the external mobility covariates is evident

from the slow mixing of the chain as illustrated by the autocorrelation plot in their

regression coe�cients.

Figure D.9: MCMC chains and auto-correlation plots of βm for individuals over

sixty

Figure D.10: MCMC chains and auto-correlation plots of βz for individuals over

sixty. 5000 burn in applied
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Figure D.11: MCMC chains and auto-correlation plots of interceptm,z for individ-

uals over sixty (Red: mobility, Blue: activities). 2500 burn in applied

Figure D.12: Gewekes z-scores of interceptm,z for all individuals over sixty years

old. (Red: mobility, Blue: activities)
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The convergence results for the internal parameters modelled through the

Dirichlet concentration parameters are presented in �gures D.13, D.14, D.15 and

D.16. Chain mixing for these nodes was generally acceptable judging from Geweke's

z-scores and the trace and auto-correlation plots.

Figure D.13: MCMC chains and auto-correlation plots of αm for individuals over

sixty (Red: Bus, Blue: Rail, Green: Tram. 2500 burn in applied)

Figure D.14: Gewekes z-scores of αm for all individuals over sixty years old. (Red:

Bus, Blue: Rail, Green: Tram)
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Figure D.15: MCMC chains and auto-correlation plots of αz for individuals over

sixty (Red: Eating and Drinking, Blue: Health and Education, Green: Retail,

Purple: Sports and Entertainment, Yellow: Employment. 2500 burn in applied)

Figure D.16: Gewekes z-scores of αz for all individuals over sixty years old. (Red:

Eating and Drinking, Blue: Health and Education, Green: Retail, Purple: Sports

and Entertainment, Yellow: Employment)
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The convergence diagnostics for the rest of the population groups of interest,

namely people with income lower than 15000¿ and the unconstrained population

sample is presented in appendix E.

D.1.2 Between chain convergence

Often, especially for over-complicated models, single long MCMC chain runs are

considered inadequate to assess the convergence of the sampling procedure (Con-

gdon 2007). Instead, multiple chains with random initial starting values are pre-

ferred to ensure that sampling is not "trapped" within a small region of the feature

space. The Gelman-Rubin statistic (Gelman & Rubin 1992) is a diagnostic that

uses an analysis of variance approach to check convergence of multiple chains. The

general premise is that if convergence has been achieved, then the output of the

chains will appear similar. The statistic uses the within and between chain sample

variance, assessing their di�erence:

B =
n

m− 1

m∑
j=1

(θ̄j − θ̄)

W =
1

m

m∑
j=1

[
1

n− 1

n∑
i=1

(θij − θ̄j)] (D.1)

where B is the between variance,W the within chain variance and θ is each MCMC

estimate.

These values are then used for an estimate of the marginal posterior variance:

ˆV ar(θ|y) =
n− 1

n
W +

1

n
W (D.2)

The Gelman-Rubin R̂ statistic is then:

R̂ =

√
ˆV ar(θ|y)

W
(D.3)

In practice, R̂ values close to one (with values around 1.5 as a rule of thumb)

are desirable as an indication of convergence because as n goes to in�nity the

marginal posterior variance ˆV ar(θ|y) and the within chain variance W will tend

to be the same and coincide with the true variance of the estimate. The R̂ value

was computed for all stochastic nodes of the model for each individual using the

2 × 10000 sample chains. Figure D.17 below shows the results per population

group:
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Convergence seems to have been achieved based on the R̂ values (< 1.5) for the

majority of variables for the three population groups of the Oyster card sample.

(a) R̂ values for the unconstrained Oyster

sample.

(b) R̂ values for low income population

group.

(c) R̂ values for over sixty population group.

Figure D.17: Gelman-Rubin R̂ values for the di�erent population groups.

D.1.3 Activity type inference accuracy assessment

As already mentioned in section 6.3, a major limitation encountered in nearly all

studies focusing on discovering urban activities using unlabeled trajectory data is

the lack of ground truth information that could be used to verify experimental

results. Instead, authors use secondary information such as travel surveys (Yin

et al. 2018, Han & Sohn 2016, Alsger et al. 2018) to validate activity types related

to non-commuting patterns or employ logic rules for activities such as home and
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work (Wang et al. 2017). This is due to the unsupervised nature of inference,

where learning of model parameters is performed without access to a reference

dataset.

The limits of activity type inference accuracy using Bayesian networks and

under di�erent isochrone con�guration settings has been explored in chapter 6.3.

In particular, using Foursquare trajectory data, an overall accuracy of 56% was

achieved for non-commuting to work activities, with activity detection results

decreasing signi�cantly for isochrone levels over 5min walking time. This provided

an indication of the expected achievable accuracy levels using mobility datasets

of low spatial resolution. However, it would be bene�cial to perform a similar

task with a similar dataset for this case study. For this task, a separate sample

of 9 individuals was used to validate the activity type inference results of the

CAA model (Sari Aslam et al. 2019). After accessing the Oyster card trajectory

data from Transport for London, the volunteers were asked to label their data

points with the activities performed at the vicinity of the transport access point.

However, since the Oyster card records of the reference sample are not linked to

iBus data, there was no possibility to determine the boarding and alighting bus

stops. As a result, activity types are only relevant to rail services. Table D.1 below

summarises the socioeconomic characteristics of the 9 volunteers.

303



ID Sex Age Employment Income Ethnic group

79200886 M 30 to

40

Student Below

25,000

British/Turkish

79200885 F 30 to

40

Full-time em-

ployment

Between

25000 to

40000

British

79200884 F 30 to

40

Full-time em-

ployment

Between

25000 to

40000

British/Colombian

79200881 F 20 to

30

Student Below

25,000

Chinese

79200883 M 40 to

50

Full-time em-

ployment

Between

25000 to

40000

British-Chinese

79200887 F 30 to

40

Student Below

25,000

Polish

79200882 M 20 to

30

Student Below

25,000

Chinese

79200089 F 30 to

40

Full-time em-

ployment

Below

25,000

British/Turkish

79200888 F 30 to

40

Full-time em-

ployment

Below

25,000

British/Pakistani

Table D.1: Socioeconomic characteristics of volunteers
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The information described above was then used to shape the prior distribu-

tions of activity types as described in section 6.4.1.1. For the purposes of this

assessment, only the accessibility module of �gure 6.35 was used. Inference was

carried out by running two parallel MCMC chains of 5000 samples each. Figure

D.18 below present the aggregated activity types confusion matrix for all volun-

teers in the sample. For the purposes of this assessment, the argmax(P (d)) was

used as a benchmark for the inferred activity types. The overall accuracy for the

9 volunteers in the sample was 76%.

Figure D.18: Confusion matrix for inferred activities

As it can be seen from �gure D.18, the results are consistent with the re-

sults presented in chapter 6.3, with the exception that in this case, the increased

predictability of employment and education activities drive the overall accuracy

higher. For the non commuting to work activities, the results are again charac-

terised by a high overlap between Eating and Drinking and Retail category types.
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Appendix E

Convergence diagnostics for

people with income < 15000¿,

unconstrained population sample

E.1 people with income < 15000¿

E.1.1 d node

Figure E.1: MCMC traces and auto-correlation plots for the d nodes.
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Figure E.2: Gewekes z-score plots for the d nodes.
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E.1.2 m node

Figure E.3: MCMC traces and auto-correlation plots for the m nodes.

Figure E.4: Gewekes z-score plots for the m nodes.
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E.1.3 Tz node

Figure E.5: MCMC traces and auto-correlation plots for the Tz node.
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Figure E.6: Gewekes z-score plots for the Tz nodes.
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E.1.4 Tm node

Figure E.7: MCMC traces and auto-correlation plots for the Tm node.
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Figure E.8: Gewekes z-score plots for the Tm nodes.
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E.1.5 β node

Figure E.9: MCMC traces and auto-correlation plots for the βm node.

Figure E.10: MCMC traces and auto-correlation plots for the βacc node.
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Figure E.11: Gewekes z-score plots for the β nodes.
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E.1.6 intercept node

Figure E.12: MCMC traces and auto-correlation plots for the intercept nodes.

Figure E.13: Gewekes z-score plots for the intercept nodes.
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E.1.7 α node

Figure E.14: MCMC traces and auto-correlation plots for the αm nodes.

Figure E.15: MCMC traces and auto-correlation plots for the αz nodes.

E.2 Unconstrained sample

E.2.1 d node
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Figure E.16: Gewekes z-score plots for the αm nodes.

Figure E.17: Gewekes z-score plots for the αz nodes.

Figure E.18: MCMC traces and auto-correlation plots for the d nodes.
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Figure E.19: Gewekes z-score plots for the d nodes.
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E.2.2 m node

Figure E.20: MCMC traces and auto-correlation plots for the m nodes.

Figure E.21: Gewekes z-score plots for the m nodes.
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E.2.3 Tz node

Figure E.22: MCMC traces and auto-correlation plots for the Tz node.
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Figure E.23: Gewekes z-score plots for the Tz nodes.
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E.2.4 Tm node

Figure E.24: MCMC traces and auto-correlation plots for the Tm node.
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Figure E.25: Gewekes z-score plots for the Tm nodes.
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E.2.5 β node

Figure E.26: MCMC traces and auto-correlation plots for the βm node.

Figure E.27: MCMC traces and auto-correlation plots for the βacc node.
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Figure E.28: Gewekes z-score plots for the β nodes.
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E.2.6 intercept node

Figure E.29: MCMC traces and auto-correlation plots for the intercept nodes.

Figure E.30: Gewekes z-score plots for the intercept nodes.
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E.2.7 α node

Figure E.31: MCMC traces and auto-correlation plots for the αm nodes.

Figure E.32: MCMC traces and auto-correlation plots for the αz nodes.
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Figure E.33: Gewekes z-score plots for the αm nodes.

Figure E.34: Gewekes z-score plots for the αz nodes.
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Appendix F

Ethics forms
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IMPORTANT: ALL FIELDS MUST BE COMPLETED. THE FORM SHOULD BE COMPLETED IN PLAIN 
ENGLISH UNDERSTANDABLE TO LAY COMMITTEE MEMBERS. 

SEE NOTES IN STATUS BAR FOR ADVICE ON COMPLETING EACH FIELD. YOU SHOULD READ THE 
ETHICS APPLICATION GUIDELINES AND HAVE THEM AVAILABLE AS YOU COMPLETE THIS FORM. 

APPLICATION FORM 

SECTION A  APPLICATION DETAILS 

 

A1 
 

Project Title: Coping with crisis - disabled people in emergencies in urban areas 
 

Date of Submission:         Proposed Start Date: 01/09/2015 

UCL Ethics Project ID Number: 7111/001 Proposed End Date:  01/09/2016 

If this is an application for classroom research as distinct from independent study courses, please provide  
the following additional details: 

Course Title: N/A  Course Number: N/A 

 

A2 
 

Principal Researcher  
Please note that a student – undergraduate, postgraduate or research postgraduate cannot be the Principal Researcher for Ethics 
purposes. 

Full Name:  Dr John Twigg  Position Held: Principal Research Associate 

Address:  301 Chadwick Building, CEGE, UCL, 
WC1E 6BT 

Email:  j.twigg@ucl.ac.uk 

Telephone:  020 7679 1551 

Fax:        

Declaration To be Signed by the Principal Researcher  

▪ I have met with and advised the student on the ethical aspects of this project design (applicable only if the 
Principal Researcher is not also the Applicant). 

▪ I understand that it is a UCL requirement for both students & staff researchers to undergo Disclosure and 
Barring Service (DBS) Checks when working in controlled or regulated activity with children, young people or 

vulnerable adults. The required DBS Check Disclosure Number(s) is:          

▪ I have obtained approval from the UCL Data Protection Officer stating that the research project is compliant 

with the Data Protection Act 1998. My Data Protection Registration Number is:        

▪ I am satisfied that the research complies with current professional, departmental and university guidelines 
including UCL’s Risk Assessment Procedures and insurance arrangements. 

▪ I undertake to complete and submit the ‘Continuing Review Approval Form’ on an annual basis to the UCL 
Research Ethics Committee. 

▪ I will ensure that changes in approved research protocols are reported promptly and are not initiated without 
approval by the UCL Research Ethics Committee, except when necessary to eliminate apparent immediate 
hazards to the participant. 

▪ I will ensure that all adverse or unforeseen problems arising from the research project are reported in a timely 
fashion to the UCL Research Ethics Committee. 

▪ I will undertake to provide notification when the study is complete and if it fails to start or is abandoned. 

 

SIGNATURE:  DATE:       

           



                                      

 2 

 

A3 
Applicant(s) Details (if Applicant is not the Principal Researcher e.g. student details): 

Full Name:  Thanos Bantis 

Position Held: EngD student 

Address: 24 Exbury House, Ferndale Road, SW9 8AZ Email:  thanos.bantis.13@ucl.ac.uk 

Telephone: 07572078554 

Fax:        

Full Name: Dr Catherine Holloway 

Position Held: Lecturer 

Address: GM06, Chadwick Building, CEGE, UCL, 
WC1E 6BT 

Email:  c.holloway@ucl.ac.uk 

Telephone: 207 679 1568 

Fax:        

 

A4 
 

Sponsor/ Other Organisations Involved and Funding  

a) Sponsor:  UCL   Other institution  

If your project is sponsored by an institution other than UCL please provide details: This project is sponsored by an 
ESPRC studenship fund 

 

b) Other Organisations: If your study involves another organisation, please provide details. Evidence that the relevant authority has 

given permission should be attached or confirmation provided that this will be available upon request.       

c) Funding: What are the sources of funding for this study and will the study result in financial payment or payment in kind to the 

department or College? If study is funded solely by UCL this should be stated, the section should not be left blank. This project 
is funded through the ESPRC studenship. The research will not result in any form of financial payment 
to the department or College. 

 

A5 
 

Signature of Head of Department or Chair of the Departmental Ethics Committee 

(This must not be the same signature as the Principal Researcher) 

I have discussed this project with the principal researcher who is suitably qualified to carry out this 
research and I approve it.  The project is registered with the UCL Data Protection Officer, a formal 
signed risk assessment form has been completed, and appropriate insurance arrangements are in 
place. Links to details of UCL's policies on data protection, risk assessment, and insurance arrangements can be found at: 

http://ethics.grad.ucl.ac.uk/procedures.php 

UCL is required by law to ensure that researchers undergo a Disclosure and Barring Service (DBS) 
Check if their research project puts them in a position of trust with children under 18 or vulnerable 
adults.  
*HEAD OF DEPARTMENT TO DELETE BELOW AS APPLICABLE* 

 I am satisfied that checks: ( 1 ) have been satisfactorily completed 
  

If checks are not required please clarify why below. 

 

Chair’s Action Recommended:  Yes       No 

A recommendation for Chair’s action can be based only on the criteria of minimal risk as defined in the Terms of Reference of the UCL 

Research Ethics Committee. 

 

PRINT NAME: Nicola Christie  
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SIGNATURE:   DATE: 11.06.2015 

SECTION B  DETAILS OF THE PROJECT 

 

B1 
 

Please provide a brief summary of the project in simple prose outlining the intended value of the project, giving necessary 
scientific background (max 500 words). 
 

A fundamental aspect of individuals’ well-being is the ability to reach and engage with the opportunities one 
values. A person's mobility, although an important aspect towards this goal, it is not sufficient on its own. 
Attempting to understand people's ability to reach and engage with their day-to-day activities requires a 
more holistic approach as there is a plethora of other dimensions that influence the degree at which 
opportunities become accessible. These dimensions can take the form of environmental and socio-
economic factors, available material resources and so on. 
 
Moreover, in a dynamic urban environment, disruptions caused by an emergency can also influence an 
individual's ability to reach and complete their day-to-day activities. Usually, the word "emergency" is used 
to describe large scale disruptions to a system (such as natural or man-made disasters), however, even 
small scale perturbations, such as localised public transport service cancellations, can have significant 
impact to individuals’ well-being. This impact is not the same for every individual, with population groups 
such as mobility impaired people being affected disproportionally. This is especially true given the 
increased reliance of mobility impaired people on public transport, as well as the transportation 
disadvantages they face compared to the rest of the population. Even in small localised disruptions, such 
as limited access to public transport or disrupted bus route services caused by a flood event, there exists 
evidence of negative impact to mobility impaired people's access to goods and services. 
 
Acknowledging the above, a question naturally rises: How do people with mobility impairments negotiate 
with such disruptions? Taking the question further: to what extent is peoples’ well-being degraded by 
limited access to goods and services in case of an emergency? 
 
This research aims at being an intersection between accessibility and disability studies, approached from a 
people’s resilience to emergencies viewpoint. Although data related to journey patterns as well as level of 
disability are regularly collected by state agencies (such as the Office of National Surveys, Department of 
Transport, Transport For London etc.) and in general allow for structural forms to manifest, they fail to 
provide detailed information on the individual level. This implication is of great importance in the case of 
understanding the transportation patterns of mobility impaired people in emergencies, since a 
disaggregated approach is necessary to observe the amount of variation not only within mobility impaired 
people (e.g. wheelchair users, crutches users) but also relative to the rest of the population. 
 
To this end, quantitative data collected by a mobile phone application coupled with qualitative 
questionnaires regarding the users’ travel habits, provide the potential to evaluate the influence of different 
factors in the overall ability of people to cope with potential disturbances to their mobility. 

 

B2 
 

Briefly characterise in simple prose the research protocol, type of procedure and/or research methodology (e.g. 
observational, survey research, experimental).  Give details of any samples or measurements to be taken (max 500 words). 
 

The part of the research requiring ethical approval is the use of a mobile phone application. This 
application will log the location of the user at regular time intervals while incorporating a “personal 
information” and a “travel diary” questionnaires where a user will be able to enter information regarding 
his/her journeys. This will allow the determination of mobility characteristics for people with different 
mobility capabilities, and evaluate the significance of different barriers in their ability to complete a set of 
everyday functions (such as go to work, visit friends etc.) 
 
Specifically, in the personal information section of the application the user will be able to provide 
information on age, gender, marital status, whether he/she has a disability status, whether he/she uses a 
mobility aid, a personal assistant, a car and finally the user’s occupation status (see attached 
questionnaires).  
 
The “travel diary” section of the application is designed to give the user the opportunity to specify the 
purpose of travel, whether he/she is traveling alone, the travel means used and weather these were the 
preferred choices, as well as the opportunity to report anything that has caused disruptions to the journey. 
The user will receive a notification at the end of each day, prompting the completion of the questionnaires.  
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The time-stamped location logging is done passively, while the application is executed in the background. 
The accuracy is dependent on the availability of sensors (mobile cell towers, Wi-Fi hotspots and GPS) and 
can be as coarse as 500m to as accurate as 10m. This will result in a trajectory which the user can view 
and add qualitative characteristics by means of the travel diary questionnaire. Besides longitude and 
latitude, the application logs: date, time, accuracy of the estimated location and acceleration.  
 
Besides the above, an important variable as recognised in the literature which allows individuals to cope in 
emergencies is the extent of social networks/social activity. In order to estimate the extent at which the 
user is socially active, the call details of the user are logged after they are anonymised by the application. 
Specifically, outgoing, incoming and missed calls are anonymised and logged along with date, time and 
call durations (if any).  
 
Moreover, the application passively scans the environment for Bluetooth devices in the vicinity and logs the 
corresponding available device IDs. This was done to estimate whether a user is socially active by means 
of exploiting any regularities in the appearance of Bluetooth devices.  
 
All information is stored in a text file in the internal memory of the users’ phone which they can then choose 
to upload to a secure FTP (File Transfer Protocol) server located at UCL computer science department. All 
information is anonymised by a unique user ID during data saving and uploading. Sensitive information 
such as phone numbers and Bluetooth device IDs, are encrypted before storage using a hashed-based 
algorithm. This algorithm obscures the real data, replacing them by a coherent encrypted code. This way, 
the researcher does know that there where calls made/received to a specific person, but has no way of 
determining what the phone number of that person is. The same is true for the Bluetooth devices. 
 
This high detailed dataset will act as ground truth which can then be used to construct unique 
spatiotemporal distributions of users’ activities depending on the level of mobility impairment.  

Screenshots of the application interfaces as well as the questionnaires are attached. 

Attach any questionnaires, psychological tests, etc. (a standardised questionnaire does not need to be attached, but please provide 
the name and details of the questionnaire together with a published reference to its prior usage). 

 

B3 
 

Where will the study take place (please provide name of institution/department)?  
If the study is to be carried out overseas, what steps have been taken to secure research and ethical permission in the study country? 
Is the research compliant with Data Protection legislation in the country concerned or is it compliant with the UK Data Protection Act 
1998?  

The study will take place in London, UK 

 

B4 
 

Have collaborating departments whose resources will be needed been informed and agreed to participate?  
Attach any relevant correspondence. 

N/A 

 

B5 
 

How will the results be disseminated, including communication of results with research participants?  

All information will be available to the users by means of communicating the student researcher or by 
means of a dedicated website, where people will have the opportunity to view their trajectories and all other 
information collected using their unique user ID. The final aggregated results of the overall project will be 
available to the participants on demand. 
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B6 
 

Please outline any ethical issues that might arise from the proposed study and how they are be addressed.  Please note that 
all research projects have some ethical considerations so do not leave this section blank.  

Since the focus of the study is evaluating the mobility patterns of population groups such as mobility 
impaired users, special care has been given so that the application is as non-intrusive as possible, both in 
the application interface and in the context of the questions within the scope of the project. This was 
achieved by designing the app such that all information is recorded with minimal user effort/input. 

To preserve user anonymity the application doesn’t log any personal information revealing the identity of 
the user such as name, address, telephone number, email etc. Instead, it assigns an identifier code made 
from randomly collected serial numbers of phones internal sensors (this being the unique user ID). This 
way, a unique identifier for each phone can be obtained without pointing to the true user’s identity. 

However, since the application is location aware, in theory a user could be uniquely identified by his/her 
location. In order to minimise any possibility of this, the data uploading process is done by using a 
password protected UCL internal server, such that no third party software or services act as mediums (for 
instance Dropbox, Google Drive etc.). 

Another type of sensitive information collected by the application is participants call history and available 
Bluetooth devices. In order to protect their confidentiality a Secure Hash Algorithm (SHA-1) was used to 
convert all telephone numbers to unique codes obscuring any links to the original data. Such algorithms 
are commonly used for password protection purposes. 

Another ethical consideration arising from employing a mobile application for data collection purposes is 
informed consent. Although the users are presented with a description of the type of data collected when 
they first install the application as well as information on how to withdraw from participating as a dedicated 
feature within the application (see attachments: “Project Information”), they might have difficulties realising 
what is the actual goal of the project. To address this issue, they will be given a printed version of the same 
informed consent for signing when introduced to the application as well as a full debrief of the project in 
person.  

All collected data will be used for the sole purpose of the project and will not be disclosed to third parties.   

 

SECTION C DETAILS OF PARTICIPANTS 

 

C1 
 

Participants to be studied 

C1a. Number of volunteers: 20-30  

Upper age limit: None  

Lower age limit: 18  

 
C1b. Please justify the age range and sample size: 

The age range is reflecting the need to include most age groups in a position to use the public transport for 
their accessibility needs. The sample size is reflecting the need to include a sufficient sample for statistical 
analysis.  

 

C2 
 

If you are using data or information held by a third party, please explain how you will obtain this. You should confirm that 
the information has been obtained in accordance with the UK Data Protection Act 1998. 

N/A 
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C3 
 

Will the research include children or vulnerable adults such as individuals with  

a learning disability or cognitive impairment or individuals in a dependent or unequal relationship?   Yes     No 

                                                                                                                          
How will you ensure that participants in these groups are competent to give consent to take part in this study? If you have relevant 
correspondence, please attach it. 

Although the nature of the data collection method could potentially involve people with severe mobility 
impairments in need of a carer or personal assistant, it is not within the scope of the project to include 
people that do not personally consent in the use of the data generated by the app for research purposes. In 
this view, the informed consent and information sheet presented within the lifecycle of the app is intending 
to provide absolute transparency to the user on the way the data are collected and treated. 

 

C4 
 

Will payment or any other incentive, such as gift service or free services, be made to any research participant?  
 

  Yes     No 

             

If yes, please specify the level of payment to be made and/or the source of the funds/gift/free service to be used. 

Although this is not fully specified at this stage, most likely amazon vouchers will be provided as an 
incentive to participating. Since there are no other monetary sources for funding, this will be covered by 
part of the student’s available research funds. 

 

Please justify the payment/other incentive you intend to offer. 

      

 

C5 
 

Recruitment 

(i) Describe how potential participants will be identified: 

Self-identified 

(ii) Describe how potential participants will be approached: 

Primarily through UCL’s Transport Accessibility Rehabilitation Services Advisory Network webpage 
(http://www.cege.ucl.ac.uk/tarsan/Pages/TARSANEvents.aspx) 

(iii) Describe how participants will be recruited: 

After contacting the student researcher they will be given details on downloading, installing and using the 
app. 

 
Attach recruitment emails/adverts/webpages. A data protection disclaimer should be included in the text of such literature.   

 

C6 
 

Will the participants participate on a fully voluntary basis?    Yes   No 

 

Will UCL students be involved as participants in the research project?  Yes  No 

 

If yes, care must be taken to ensure that they are recruited in such a way that they do not feel any obligation  

to a teacher or member of staff to participate. 

 

Please state how you will bring to the attention of the participants their right to withdraw from the study without penalty? 

The Project information section of the app will specify ways that people can withdraw from the research 
should they wish to. UCL students could participate on a fully voluntary basis after being self-identified.   
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C7 
 

CONSENT 

Please describe the process you will use when seeking and obtaining consent. 

Consent will be obtained by using the lifecycle of the application. This is described as follows: 

When the user installs the application, the application will navigate to an Information Consent form where 
information regarding the objective, aim, potential benefits and data gathered will be provided. The user will 
then be given the option to agree and continue to the main application, or disagree. In the second case, the 
application will automatically exit. Once the user chooses to agree, this initial disclaimer will not be 
presented again to avoid redundancy. Additional information about ways to communicate, withdraw the 
data or any other queries will be given in the main menu of the application. Please see attached 
screenshots for more information.  

Furthermore, a full debriefing will be given in person during the recruitment process as well as physical 
copies for Informed Consent and Information Sheet. 

A copy of the participant information sheet and consent form must be attached to this application. For your convenience proformas 

are provided in C10 below. These should be filled in and modified as necessary.  

 

In cases where it is not proposed to obtain the participants informed consent, please explain why below 

 

C8 
 

Will any form of deception be used that raises ethical issues?  If so, please explain. 

N/A 

 

 

 

C9 
 

Will you provide a full debriefing at the end of the data collection phase?     Yes     No 

 If ‘No’, please explain why below. 

User will be offered the option to retrieve his data at any point. More information about the uses and types 
of data collected will be integrated in the lifecycle of the application. 

 

 

 

C10 
 

Information Sheets And Consent Forms 

Please see attached.   

A poorly written Information Sheet(s) and Consent Form(s) that lack clarity and simplicity frequently delay ethics approval of 
research projects.  The wording and content of the Information Sheet and Consent Form must be appropriate to the age and 
educational level of the research participants and clearly state in simple non-technical language what the participant is agreeing to.  
Use the active voice e.g. “we will book” rather than “bookings will be made”.  Refer to participants as “you” and yourself as “I” or “we”.  
An appropriate translation of the Forms should be provided where the first language of the participants is not English.  If you have 
different participant groups you should provide Information Sheets and Consent Forms as appropriate (e.g. one for children and one 
for parents/guardians) using the templates below.  Where children are of a reading age, a written Information Sheet should be 
provided.  When participants cannot read or the use of forms would be inappropriate, a description of the verbal information to be 
provided should be given.  Please ensure that you trial the forms on an age-appropriate person before you submit your application. 

 
 

 

SECTION D DETAILS OF RISKS AND BENEFITS TO THE RESEARCHER AND THE RESEARCHED 

 



                                      

 8 

D1 
 

Have UCL’s Risk Assessment Procedures been followed?            Yes      No 

 
If No, please explain. 

The project will not deal with any hazardous processes or materials. The application is designed to be non-
intrusive, requiring minimal physical or mental interaction to participants, hence no ergonomic hazards due 
to repetition, awkward postures etc. were identified. 

 

D2 
 

Does UCL’s insurer need to be notified about your project before insurance cover can be provided?        Yes      No 

 

The insurance for all UCL studies is provided by a commercial insurer. For the majority of studies the cover is automatic. However, for 
a minority of studies, in certain categories, the insurer requires prior notification of the project before cover can be provided. 
 
If Yes, please provide confirmation that the appropriate insurance cover has been agreed. Please attach your UCL insurance 
registration form and any related correspondence. 

N/A 

 

D3 
 

Please state briefly any precautions being taken to protect the health and safety of researchers and others associated with 
the project (as distinct from the research participants).  

N/A 

 

D4 
 

Will these participants participate in any activities that may be potentially stressful or harmful in connection with this 

research?                Yes  No 

 
If Yes, please describe the nature of the risk or stress and how you will minimise and monitor it. 

N/A 

 

D5 
 

Will group or individual interviews/questionnaires raise any topics or issues that might be sensitive, embarrassing or 
upsetting for participants?  

  Yes  No 

If Yes, please explain how you will deal with this. 

N/A 
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D6 
 

Please describe any expected benefits to the participant.  

Although no direct benefits to the applicant have been identified, the users will be given the opportunity to 
view and download their trajectory data as well as some summary statistics of their activity. This will be 
done via a dedicated website. 

 

D7 
 

Specify whether the following procedures are involved: 

Any invasive procedure(s)  Yes  No    

Physical contact       Yes  No 

Any procedure(s) that may cause mental distress   Yes     No 

  

Please state briefly any precautions being taken to protect the health and safety of the research participants. 

N/A 

 

 

D8 
 

Does the research involve the use of drugs?    Yes        No 

 

If Yes, please name the drug/product and its intended use in the research and then complete Appendix I    

N/A 

 

Does the project involve the use of genetically modified materials?  Yes    No             

If Yes, has approval from the Genetic Modification Safety Committee been obtained for work?  Yes  No      

If Yes, please quote the Genetic Modification Reference Number:       

 

D9 
 

Will any non-ionising radiation be used on the research participant(s)?  Yes  No 

If Yes, please complete Appendix II. 

 

D10 
 

Are you using a medical device in the UK that is CE-marked and is being used within its product indication? Yes  No 

If Yes, please complete Appendix III. 
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CHECKLIST 

 
Please submit ether 12 copies (1 original + 11 double sided photocopies) of your completed application form for full 
committee review or 3 copies (1 original + 2 double sided copies) for chair’s action, together with the appropriate supporting 
documentation from the list below to the UCL Research Ethics Committee Administrator. You should also submit your 
application form electronically to the Administrator at: ethics@ucl.ac.uk 

 

Documents to be Attached to Application Form (if applicable) Ticked if Tick if 
 attached not relevant 

Section B: Details of the Project  

• Questionnaire(s) / Psychological Tests   

• Relevant correspondence relating to involvement of collaborating   
department/s and agreed participation in the research.   

Section C: Details of Participants 

• Parental/guardian consent form for research involving participants under 18     

• Participant/s information sheet    

• Participant/s consent form/s   

• Advertisement   

Section D: Details of Risks and Benefits to the Researcher and the Researched 

• Insurance registration form and related correspondence    

Appendix I: Research Involving the Use of Drugs 

• Relevant correspondence relating to agreed arrangements for dispensing                               
 

with the pharmacy 
 

• Written confirmation from the manufacturer that the drug/substance has                                  
has been manufactured to GMP 
  

• Proposed volunteer contract    

• Full declaration of financial or direct interest   

• Copies of certificates: CTA etc…   

  

Appendix II: Use of Non-Ionising Radiation  

Appendix III: Use Medical Devices   

 
Please note that correspondence regarding the application will normally be sent to the Principal Researcher and copied to 

other named individuals. 
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Questionnaires: 
 

Personal Information Travel Diary 

Age 

18-22 

What was the purpose of today’s 

travel? (Choose more than one journey 

if necessary) 

Work 

23-39 Education 

40-59 Medical 

60+ Shopping 

Gender 

Male Visit friends / Family 

Female 
Leisure / 

Entertainment 

Marital Status 

Single 

Who were you travelling with? 

Travelling alone 

Married / Living with 
partner / Living with 
family 

Personal Assistant 

Registered disabled  
Yes Friends 

No Family 

      
Work / Business 

colleagues 
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Mobility Aid 

No mobility 
requirements 

What travel means did you choose? 

(Choose more than one if necessary) 

Walk 

Wheelchair (self-
propelled) 

Tube  

Wheelchair (attendant-
propelled) 

National Rail / 

Overground 

Mobility scooter Car (as a driver) 

Crutches Car (as a passenger) 

Other Taxi / Minicab 

Occupation 

Employed full time Didn’t travel 

Employed part-time 
Other (please specify 

in the textbox below) 

Unemployed 

Was the chosen travel means your first 

choice? 

Yes 

Student No 

Retired 
Did you experience anything unusual 

that disrupted your trip? 

Feeling unwell 

Do you have a Personal 

Assistant? 
All the time Bad weather 
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Some of the time Disrupted service 

Rarely Social discrimination 

  

Never 
Other (please specify 

in the textbox below) 

Do you have access to car? 

All the time     

Some of the time     

Rarely     

Never     
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1) Informed Consent View, appearing when the user first installs the app 

Text:  
Informed Consent: Thank you for installing AccessApp and contributing to 

scientific research! What am I contributing to? The project you are participating 

is titled: Coping with crisis - disabled people in emergencies in urban 

environments The overall aim of the project is to examine how people with 

different mobility requirements interact with the environment (eg. public 

transport) in order to complete their day to day activities and how this might 

change in case of a disruption. As such, people with different mobility 

requirements are welcome to contribute. What's in for me? Personal analytics - 

data related to our mobility patterns are becoming increasingly important in 

decision making. We provide new ways to view and analyse your mobility 

patterns All data are available for downloading from the accompanying website 

A copy of the final report will be available to you on request 

What is collected? 

Your location. Depending on your preferences (e.g. GPS) this could be as coarse 

as 300m or as accurate as 10m 

The information related to the questionnaires in the app 

Aggregated, anonymous information related to your call history. This is to 

determine the role of social activity in case of disruptions in your mobility 

patterns. 

Aggregated, anonymous information related to the Bluetooth devices in the 

vicinity of your phone. 

For more information go to the relevant tab in the app! 
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2) Main Menu. Appears when user taps on Agree – Go to app button 

Start Button: App starts logging all relevant information passively. 

Specifically: Time stamped network based location, bearing, heading, 

acceleration, call history, Bluetooth devices 

Stop Button: App stops and all data are uploaded on the server 

Show on map Button: Shows the past locations of the user 
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3) Personal Info 

Save Button: Saves and uploads all information to the server 
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4) Travel Diary 

Save Button: Saves and uploads all information to the server 
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5) Project Information 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Text: How does it work? Main Menu - Start button 

The application starts logging the location by tapping the Start button on the Main Menu. From that point, the coordinates will be stored in a text file in a folder called 

AccessAppData along with time, date, accuracy and acceleration.  

From this moment the application passively work in the background so you don't have to do anything anymore. 

Main Menu - Stop 

The Stop button stops the logging and uploads all location, call history and Bluetooth data to a secure ftp server at UCL. 

Please remember to push the Stop button after a period of time (e.g. end of each day) to upload the data and the Start button to continue using the app! The app will trigger a 

notification as a reminder. 

Main Menu - Show on map 

By tapping this you are navigated to a map showing the past visited locations. 
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Personal Info 

Here you can fill in some general information about yourself. All information provided will be used to explain the mobility patterns. By tapping the Save button, the information will 

be uploaded to the secure ftp server. 

Travel Diary 

This questionnaire is providing information regarding your mobility habits. By tapping the Save button, information is uploaded to the ftp server. 

Please remember to fill in and Save the Travel Diary questionnaire every day. You will receive a notification at the end of each day prompting you to do so. 

Project Information 

This project is funded by the Research Council (ESPRC) and carried out by the Centre of Urban Sustainability and Resilience, University College London. A user can choose to stop 

using the app at any time and request for his/her data to be deleted by emailing the student researcher. Using the app implies consent to participate. 

Student Researcher: Thanos Bantis email: thanos.bantis.13@ucl.ac.uk 

Thank you for using the app! 
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Forms 
 
 
 

Information Sheet for               in Research Studies 
                                                
You will be given a copy of this information sheet. 

Title of Project: Coping with crisis - disabled people in emergencies in urban areas 

This study has been approved by the UCL Research Ethics Committee (Project ID Number): 7111/001 

Name       

Work Address       

Contact Details        (*For students, we strongly advise against the use of a personal contact number) 

We would like to invite            to participate in this research project.             

Details of Study:  

Thank you for installing AccessApp and contributing to scientific research!  

What am I contributing to?  

The project you are participating is titled: Coping with crisis - disabled people in emergencies in urban 

environments. The overall aim of the project is to examine how people with different mobility requirements interact 

with the environment (e.g. public transport) in order to complete their day to day activities and how this might 

change in case of a disruption. As such, people with different mobility requirements are welcome to contribute.  

What's in for me?  

• Personal analytics - data related to our mobility patterns are becoming increasingly important in decision 

making. We provide new ways to view and analyse your mobility patterns. All data are available for 

downloading from the accompanying website, or by contacting the student researcher by email. Since all 

your data is automatically anonymised please use the unique identifier located at the bottom of Project 

Information tab 

• A copy of the final report will be available to you on request 

 

What is collected? 

• Your location. Depending on your preferences (e.g. GPS) this could be as coarse as 300m or as accurate 

as 10m 

• The information related to the questionnaires in the app 

• Aggregated, anonymous information related to your call history. This is to determine the role of social 

activity in case of disruptions in your mobility patterns. 

• Aggregated, anonymous information related to the Bluetooth devices in the vicinity of your phone. 

 

 

 

 

How does it work? 

The research is conducted by the use of AccessApp mobile phone app. The use of the app is very simple, below is a 

quick walkthrough the functionalities and what each button does. 

 

     Main Menu - Start button 

The application starts logging the location by tapping the Start button on the Main Menu. From that point, the 

coordinates will be stored in a text file in a folder called AccessAppData along with time, date, accuracy and 

acceleration.  
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From this moment the application passively work in the background so you don't have to do anything anymore. 

     Main Menu - Stop button 

The Stop button stops the logging and uploads all location, call history and Bluetooth data to a secure ftp server at UCL. 

Please remember to push the Stop button after a period of time (e.g. end of each day) to upload the data 

and the Start button to continue using the app! The app will trigger a notification as a reminder. 

     Main Menu - Show on map button 

By tapping this you are navigated to a map showing the past visited locations. 

     Personal Info 

Here you can fill in some general information about yourself. All information provided will be used to explain the 

mobility patterns. By tapping the Save button, the information will be uploaded to the secure ftp server. 

    Travel Diary 

This questionnaire is providing information regarding your mobility habits. By tapping the Save button, information is 

uploaded to the ftp server. 

Please remember to fill in and Save the Travel Diary questionnaire every day. You will receive a notification 

at the end of each day prompting you to do so. 

   Project Information 

This project is funded by the Research Council (ESPRC) and carried out by the Centre of Urban Sustainability and 

Resilience, University College London. A user can choose to stop using the app at any time and request for his/her data 

to be deleted by emailing the student researcher. In all correspondence please use your unique 15 digit identifier 

located at the bottom of the screen. Using the app implies consent to participate. 

Student Researcher: Thanos Bantis email: thanos.bantis.13@ucl.ac.uk 

 

Please discuss the information above with others if you wish or ask us if there is anything that is not clear or if you would 

like more information.  

 

It is up to you to decide whether to take part or not; choosing not to take part will not disadvantage you in any way. If you 

do decide to take part you are still free to withdraw at any time and without giving a reason.   

All data will be collected and stored in accordance with the Data Protection Act 1998.Thank you for reading this information 

sheet and for considering take part in this research.  

 

 
 
 
 

Informed Consent Form for                  in Research Studies 
                                                                          

Please complete this form after you have read the Information Sheet and/or listened to an explanation about the research.  

Title of Project: Coping with crisis - disabled people in emergencies in urban areas 

This study has been approved by the UCL Research Ethics Committee (Project ID Number): 7111/001 

 
Thank you for your interest in taking part in this research. Before you agree to take part, the person organising the research must explain 
the project to you. 

If you have any questions arising from the Information Sheet or explanation already given to you, please ask the researcher before you to 
decide whether to join in.  You will be given a copy of this Consent Form to keep and refer to at any time.  
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Participant’s Statement  

 

I       

 

• have read the notes written above and the Information Sheet, and understand what the study involves. 

• understand the nature of data gathered by the use of the app. 

• understand that if I decide at any time that I no longer wish to take part in this project, I can uninstall the app. If I 
still wish to collect my data I can contact the student researcher by using the unique Identifier located at the 
bottom of the Project Information tab in the app   

• understand that the information I have submitted will be published as a report and I will be sent a copy if I wish to. 
Confidentiality and anonymity will be maintained and it will not be possible to identify me from any publications. 

• consent to the processing of my personal information for the purposes of this research study. 

• understand that such information will be treated as strictly confidential and handled in accordance with the 
provisions of the Data Protection Act 1998. 

• agree that the research project named above has been explained to me to my satisfaction and I agree to take 
part in this study.  

 

Signed:         Date:       
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