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Abstract: X-ray phase contrast imaging is gaining importance as an imaging tool. However, it
is common for X-ray phase detection techniques to be sensitive to the derivatives of the phase.
Therefore, the integration of differential phase images is a fundamental step both to access
quantitative pixel content and for further analysis such as segmentation. The integration of noisy
data leads to artefacts with a severe impact on image quality and on its quantitative content.
In this work, an integration method based on the Wiener filter is presented and tested using
simulated and real data obtained with the edge illumination differential X-ray phase imaging
method. The method is shown to provide high image quality while preserving the quantitative
pixel content of the integrated image. In addition, it requires a short computational time making
it suitable for large datasets.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further
distribution of this work must maintain attribution to the author(s) and the published article’s title, journal
citation, and DOI.

1. Introduction

Differential interference contrast is an established microscopy technique for the visualization of
unstained biological specimens with poor transmission or reflection contrast to visible light [1].
However, the obtained images cannot be directly used to draw quantitative conclusions, as their
intensity is not linearly dependent on the phase distribution [2]. In recent years, phase imaging
was extended to the X-rays regime [3]. The enhanced contrast to soft tissues provided by phase
imaging, combined with the high penetration depth of X-rays, is opening interesting perspectives
for pre-clinical and clinical imaging [4]. However, the detection of phase changes for X-ray is
challenging, since phase gradients in a sample typically lead to refraction angles of the order
of microradians or less. Several techniques have been developed to translate such a refraction
angle into a change of intensity recorded on the detector [5]. The simplest implementation
is based on a pure interference effect, i.e. propagation-based, requiring a spatially coherent
X-ray source such as readily available at third generation synchrotron radiation facilities. The
combination of high coherence and high flux offered by such machines provides impressive
images, e.g. of whole animal organs with resolution down to the micron scale, which can be of
high value for pre-clinical investigations [6–9]. In the recent years, a lot of effort has been put
into translating X-ray phase imaging from synchrotrons to conventional X-ray sources, leading
to new phase detection schemes such as edge illumination and gratings-based [3,5,10]. The
availability of phase contrast techniques based on conventional sources and compact enough to fit
into a standard laboratory is opening the way to applications previously restricted to synchrotrons
[11,12]. However, similarly to differential phase microscopy with visible light, they do not
provide immediate access to phase, but only to its first or second derivative. Therefore, additional
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processing steps are required to quantitatively retrieve the phase. While the retrieval of the phase
from its second derivative is widely investigated for propagation-based phase imaging [13,14],
gratings-based and edge illumination imaging provide access to the first derivative of the phase, in
one or two directions depending on the experimental setup [15,16]. Generally speaking, the phase
from unidirectional differential phase contrast (DPC) images is retrieved by direct integration of
each image row (or column depending on the direction of phase sensitivity; from now on, we
will assume this to be the horizontal direction). However, noise in the DPC image and inevitable
limitations in the sampling frequency of the phase signal, leads to the formation of streak artifacts,
which severely affect the quality and the quantitative content of the integrated image. In the
framework of X-ray DPC imaging, several algorithms have been proposed to solve this problem,
mainly based on iterative approaches [17–19]. While they work well and largely prevent streak
artifacts, the required number of iterations can make these approaches very slow on large images,
possibly hindering their application to large CT datasets which usually consist of thousands
of projections. In this work, we present a non-iterative integration method for unidirectional
X-ray DPC images, based on an image model initially developed for differential interference
contrast microscopy with visible light [20,21]. The proposed method is based on the use of the
Wiener filter to estimate the phase signal while keeping the noise in the direction orthogonal to
phase sensitivity under control, thus preventing streak artifacts. We used simulated and real edge
illumination DPC images to compare the proposed integration method with direct and iterative
integration, and to test its quantitative response. We found that the method outperforms direct
integration while providing a reliable quantitative estimation of image values if used on DPC
images with a sufficiently high signal-to-noise ratio (SNR). At lower SNR levels, it still provides
good image quality, but larger variation in the quantitative response are observed. In addition,
it provides comparable image quality to the mentioned iterative approaches, but it does so in a
much shorter computational time, which makes it suitable to the integration of large datasets.
Finally, we used the method to integrate an experimental DPC edge illumination image of a
complex specimen.

2. Materials and methods

2.1. Algorithms

The algorithm proposed in this work is based on a model originally introduced to describe images
acquired with visible light differential phase microscopy [20,22]. However, the model can be
easily adapted to data acquired using X-ray systems with differential phase sensitivity, such as
edge illumination, taking into account that phase sensitivity is achieved in one direction only
[23,24]. In a unidirectional X-ray DPC image, the intensity value at the pixel location (x, y) is
equal to the refraction angle ∆θ, which is related to the unit decrement of the real part of the
refractive index δ at sample location (x,y,z) by the equation:

∆θ(x, y) =
∂ϕ(x, y)
∂x

=
ϕ(x + ∆x, y) − ϕ(x, y)

∆x
(1)

where ϕ =
∫
δ(x, y, z)dz. Its differential nature means the DPC image can be described as the

difference between the phase images calculated at sample position (x + ∆x, y) and (x, y) where ∆x
is equal to the sampling step of the image in the x direction. An equivalent formulation is given
by replacing ϕ(x + ∆x, y) − ϕ(x, y) with ϕ(x + ∆x/2, y) − ϕ(x − ∆x/2, y), since a shift within the
sampling step does not change the value of the function. Eq. (1) can also be written as:

∆θ(x, y) = 1/∆x · d(x, y) ∗ ϕ(x, y) (2)

where ∗ denotes convolution and d(x, y) = δ(x + ∆x/2, y) − δ(x − ∆x/2, y) is the difference of
Dirac’s delta functions at two image positions separated by one sampling step. To obtain ϕ(x, y),
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the Fourier transform of 2 is considered:

∆Θ(u, v) = 1/∆x · D(u, v)Φ(u, v) (3)

where ∆Θ(u, v), D(u, v) and Φ(u, v) are the Fourier transforms of ∆θ(x, y), d(x, y) and ϕ(x, y),
respectively. In particular:

D(u, v) = −2i sin(2π∆xu) (4)
The integrated phase ϕ(x, y) can thus be retrieved by taking the inverse Fourier transform of
∆Θ/D. However, division by D may enhance regions of the frequency spectrum where noise
is dominant. Furthermore, since D is known analytically, a problem occurs at the frequencies
for which 1/D has a discontinuities. A solution to this problem is offered by the Wiener filter.
Given a signal in the frequency domain in the form Y(f)=H(f)X(f)+N(f), the Wiener filter W(f)
provides a least square estimate of the function X(f) from the measured signal Y(f) while taking
into account the noise N(f) in the input image and a convolved function H (in real space) [25].
Using the Wiener filter we can write:

Φ(u, v) = W(u, v)∆Θ(u, v) · ∆x (5)

where W(u, v) is the Wiener filter in the frequency domain defined as:

W(u, v) =
D∗(u, v)

|D(u, v)|2 + 1/SNR(u, v)
(6)

and SNR(u, v) is the signal-to-noise ratio as function of the spatial Combining Eqs. (6) and (5),
the integrated phase image can be obtained as:

ϕ(x, y) = F −1
{︃

D∗(u, v)
|D(u, v)|2 + 1/SNR(u, v)

F {∆θ(x, y)}
}︃
∆x (7)

where F and F −1 denote the Fourier transform and its inverse. We note that for practical uses
SNR(u, v) is a-priory unknown, and is therefore typically approximated with an analytic function,
with a cutoff parameter that allows controlling the frequency response of the filter. While 2D
Gaussian functions have previously been used for this purpose [20], we propose the use of a
Butterworth filter because of its better response at high spatial frequencies [26]. We restricted the
filter to the vertical frequency only, considering the unidirectional property of the streak artifact
we aim to reduce, which also prevents any loss of details in the horizontal (phase sensitivity)
direction where edge-illumination allows achieving higher resolutions by "dithering" (a form of
oversampling, see [27]). The Butterworth filter used in this work is defined as:

SNR(u, v) =
s

1 + (v/v0)
2n ,∀u (8)

where v0 is the vertical cutoff frequency, and n is an integer.
The Wiener method discussed above is compared with direct integration and with an iterative

approach [17]. Direct integration is defined as the cumulative sum running along the image
rows. Given a M × N DPC image, the pixel at location (xm, yn) of the directly integrated image is
obtained as:

ϕ(xm, yn) = ∆x ·
m∑︂

i=1
∆θ(xi, yn) (9)

with n and m running from 1 to N and 1 to M, respectively. The iterative approach used as a
comparison aims to find the integrated differential profile ϕ(x, y) as the minimum of the objective
function:

F(ϕ) = | |Dxϕ − ∆θ | |
2 + λ | |Dyϕ| |

2 (10)
where | |.| | identifies the ℓ2 norm operator, ∆θ is the experimental differential image, Dx and Dy
are the operators taking the derivative along the horizontal and vertical directions, respectively,



Research Article Vol. 28, No. 26 / 21 December 2020 / Optics Express 39680

and λ is a regularization parameters controlling the noise in the vertical direction of the optimized
phase image [17].

2.2. Simulation

The proposed integration algorithm has been initially tested on a simulated DPC image of
Shepp-Logan numerical phantom obtained with an edge illumination system [23,24]. The
simulation is based on geometric optics, assuming δ = 7 · 10−7 and β = 1 · 10−9 for the brightest
region of the phantom. The values in the other regions are scaled according to their relative
intensity. The sample thickness is assumed to be 1 mm. The simulated edge illumination setup is
based on a detector mask with 20 µm aperture size and 50 µm pitch, and a matching sample mask
demagnificated by M = 1.25× [11]. The source is assumed to be monochromatic with energy 20
keV and to have a Gaussian shaped focal spot size with 70µm FWHM. The detector has a pixel
size of 50 µm and is characterized by a Gaussian shaped point spread function with a FWHM of
50 µm. Noise is assumed to be Poisson distributed. A full scan of the transmitted intensity as
a function of the relative mask displacement, referred to as illumination curve, is preliminary
obtained as:

IC(x) = (A1 ∗ S ∗ A2)(x) (11)

where A1 is the the pre-sample mask and S is the source shape, both re-scaled at the detector plane,
and A2 is the detector mask [28]. From the computational point of view, the masks have been
defined as square waves and all the function involved have been calculated with a sufficiently fine
sampling step [28]. Different images at different relative position on the IC (i.e. different masks
displacements) are then simulated using the Shepp-Logan phantom according to the algorithm
described in Algorithm 1 in Supplement 1. Specifically, five images have been simulated with the
mask shifted by ±12, ±9 and 0 microns with respect the aligned (i.e. 0) position (see Supplement
1), and used to retrieve the DPC image by pixel-wise Gaussian fit [29].

2.3. Experimental setups

Data obtained with different X-ray systems have been used in order to test the reliability of the
proposed method under different conditions, encompassing both synchrotron and conventional
sources. A 2.9 mm diameter acrylic rod was scanned at the SYRMEP beamline of the Italian
ELETTRA synchrotron (Trieste) [30], using 20 keV monochromatic X-rays. The detector pixel
size was 50µm and 60µm in vertical and horizontal directions, respectively. A 1 mm diameter
nylon wire was scanned at the ID17 beamline of the European Synchrotron Radiation Facility
(ESRF) in Grenoble, France, using 50 keV monochromatic X-rays [31]. Phase sensitivity was
achieved by an implementation of edge illumination based on two free-standing tungsten masks.
A full description of the setup, image acquisition procedure and phase-retrieval method has
been provided in a previous work [32]. SNR values equal to 22.5 and 7.9 have been found
for the DPC images of the acrylic rod and nylon wire, respectively; these were calculated as
SNR = Ifringe/σbck, where Ifringe is the value of the brightest phase peak and σbck is the standard
deviation of the air background, both expressed in radians. Finally, a beetle was scanned with
an edge illumination setup based on a laboratory source. This is a scanning system employing
the same masks, detector and system geometry previously described [33] but with the tungsten
source replaced by a Rigaku M007 molybdenum source operated at 40 kVp and 30 mA.

3. Results

3.1. Simulated data

The proposed integration method has been tested on simulated DPC images of the Shepp-Logan
phantom obtained from an edge illumination system using different photon statistics. The
comparison with the ground truth, with direct integration and with an iterative integration

https://doi.org/10.6084/m9.figshare.13253873
https://doi.org/10.6084/m9.figshare.13253873
https://doi.org/10.6084/m9.figshare.13253873
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algorithm is shown in Fig. 1. Figure 1(a) illustrates the result of the three integration methods
applied to a simulated DPC image with high photon statistic. 108 photons have been used in this
case, leading to a standard deviation in the background of DPC image of σ = 1 ·10−9 (in a 50×50
ROI). All methods show good agreement with the ground truth as shown in the line profiles. The
horizontal line profiles perfectly match the ground truth for both approaches, indicating no loss
of detail in the horizontal direction. In the vertical direction both the proposed and the iterative
algorithms fail to return a perfectly flat signal and a maximum difference of approximately 24%
with respect to the ground truth is found (see stars in the vertical line profile). This is due to the
suppression of some of the high frequencies in the vertical direction that are required to produce
a completely flat profile. The result of direct integration gets significantly worse as the photon
statistic decreases. Fig. 1(b) shows images obtained with 105 photons (background standard
deviation σ = 3 · 10−8). The direct integration now shows prominent streak artifacts that are
absent in the image integrated with the proposed and with the iterative algorithms. This is again
easily visible in the line profiles. In particular, the horizontal line profile shows that all the
integration methods leads to a good agreement with the ground truth, although a discrepancy can
now be observed in the flat region where the signal is expected to be zero (see black star). The
vertical profile reveals that the directly integrated image is now dominated by noise introduced
by streak artifacts. While the overall signal trend can be still distinguished, some fine details
are lost (see features indicated by the yellow and red triangles). Conversely, the line profiles
extracted from images integrated with the proposed algorithm and with the iterative one still
show a very good match with the ground truth, with fine details still clearly detectable (see yellow
and red triangles). Remarkably, no evident difference is found between the images obtained with
the proposed algorithm and with the iterative one, neither in terms of quantitative values nor
of preservation of fine details. This situation is exacerbated in the images simulated with 104

photons (background standard deviation σ = 1 · 10−7) in Fig. 1(c). In this case, the directly
integrated image is severely affected by streaks artifacts including in terms of quantitative content.
This is well visible in the line profiles. The horizontal profile for direct integrated image is fully
dominated by a linear drift due to the artifacts overlapping with the sample signal. In the vertical
profile neither details nor a clear trend can be identified. Conversely, both profiles obtained
from the proposed and the iterative methods still show a good agreement with the ground truth,
preserving image quantitative values and fine details (see yellow and red triangles). Also in
this case the match between the image obtained from the proposed algorithm and the iterative
one is very good. The vertical line profile reveals how the iterative algorithm returns a slightly
underestimated value compared to the proposed algorithm that is closer to the ground truth value.

3.2. Experimental data

The quantitative reliability of the proposed integration algorithm has been tested using DPC
images of an acrylic rod and a nylon wire acquired at different synchrotron radiation facilities
using monochromatic X-rays of different energy. The results are shown in Fig. 2. Panels (b) and
(d) show the results for the integration of DPC image of the acrylic rod acquired with 20 keV
monochromatic radiation, with panel (a) showing the corresponding DPC image. The relatively
low X-ray energy, results in a large refraction angle, and, therefore, in a high SNR value. Panel
(d) show line profiles extracted from averaging the rows in the areas highlighted in panels (b)
and (c) for the integrated phase obtained by direct integration (dashed red line) and with the
proposed algorithm (solid blue line), respectively, compared to the ground truth (solid black
line). The proposed algorithm has been applied with the following parameters: v0 = 0.1mm−1,
s = 3 · 104, n = 1. Both integration methods provide a good quantitative response, with a
maximum discrepancy of only about 8% from the theoretical values. This difference may be due
to material inhomogeneity. The results for the nylon wire, acquired with 50 keV monochromatic
radiation, are shown in Fig. 2(e) to (f). It should be noted that the overall image quality in this
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Fig. 1. Comparison of the proposed integration algorithm with direct and iterative integration
using simulated DPC images of the Shepp-Logan phantom. Panels (a),(b) and (c) shows
DPC images simulated using 108, 105 and 104 photons and the corresponding integration
results. The standard deviation of the background (σ) is reported on all DPC images. Line
profiles in the horizontal and vertical directions are compared against the ground truth for all
the methods and for all photon statistic. Black stars highlight disagreement in flat regions
while red and yellow triangles indicate a small feature which disappear in direct integration
as soon as the noise is increased, but is preserved by the proposed integration method and by
the iterative approach. The same region is also shown in the zoom-in insets.

case is lower, with several noisy regions visible in the DPC image in panel(e). Therefore, analysis
has been performed in a homogeneous region averaging over more rows than the previous case
(see red and blue rectangles in panels (f) and (g)). As already observed in the simulated case,
the lower SNR has a significant impact on the directly integrated image. While the maximum
value is close to the theoretical one, the profile of the wire is completely distorted because of the
streak artifacts (see panel (h)). On the other hand, the proposed integration method reproduces
the expected profile shape much better, while overestimating the integrated phase value of about
9% compared to the theoretical value, as shown in panel (h). The proposed algorithm has been
used with v0 = 0.08mm−1, s = 3 · 104, n = 1. It is worth noting that the background value
doesn’t go to zero on the right hand side of the wire and this is mainly due to a non perfect
sampling of the phase peak. The proposed algorithm requires selecting the cut-off frequency,
a user defined parameter typically chosen by visual inspection of the integrated image. The
change in the quantitative value of the image as a function of v0 therefore needs to be addressed.
Panel (i) and (j) report the percentage variation of the maximum of the integrated image as
function of the cut-off frequency v0 for both samples. This plot is usually referred to as the
L-curve [34]. In the plot for the acrylic rod (panel(i)), a variation of the cut-off frequency from 1
mm−1 to 0.001 mm−1 leads to a variation of the maximum of the integrated phase value from
9% to about 10.5% compared to the theoretical value. For cut-off frequencies around 1 mm−1

an insufficient amount of high frequencies is filtered out leaving streak artifacts in the image,
while around 0.001 mm−1 the image appears to be over-smoothed (see Supplement 1). Optimal
results seem to be obtained for v0 around 0.1 mm−1, which correspond to the curvature change of
the L-curve, usually assumed as the best value for a regularization parameter [34]. A similar
analysis is shown in Fig. 2(j) for the nylon wire. In this case, a larger variation is found, probably
because of the significant lower SNR. Decreasing the cut-off frequency from 0.5 mm−1 to 0.05

https://doi.org/10.6084/m9.figshare.13253873
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mm−1 leads to variations from −80% to 20% over the theoretical values. It is worth noting, again,
that the outermost points represent the extreme cases, where the image is either still affected by
streak artifacts, or over-smoothed (see Supplement 1). Remarkably, a good image quality and a
reasonable quantitative estimation can be still found around the same 0.1 mm−1 value, e.g. the
underestimation of about 9% observed in panel (h) was obtained with v0 = 0.08mm−1. Even
though a certain degree of freedom in the choice of the filter parameters exists, the previous
analysis reveals how the quantitative results obtained with the proposed integration method
depend significantly on the quality of the initial DPC image, which highlights the importance of
using a robust algorithm for phase retrieval [35].

Fig. 2. Panel (a) shows the DPC image with a line profile in the inset for the 2.9 mm
acrylic rod imaged at ELETTRA using 20 keV monochromatic X-rays. Panels (b) and (c)
show the result from direct integration and from the proposed algorithm using the following
parameters: ∆x = 0.06mmm, n = 1, s = 3 · 104 and v0 = 0.1mm−1. Panel (d) reports a
comparison of line profiles from both integrated images and the ground truth. Panels (e) to
(h) show the same comparison for the 1 mm nylon wire, imaged at ESRF with 50 keV X-rays.
The proposed algorithm has been used with the following parameters: ∆x = 0.01mm, n = 1,
s = 3 · 104 and v0 = 0.08mm−1 . For sake of comparison, for each sample, the line profiles
have been normalized to the maximum value expected for the ground truth. Panel (i) and
(j) show, for both samples, the percentage variation with respect to the ground truth, of the
maximum value of the line profiles obtained with the proposed algorithm as a function of
the cut-off frequency v0.

Finally, the proposed algorithm has been tested on a more complex biological specimens. The
results are shown in Fig. 3, which shows a ground beetle acquired using a scanning-based edge
illumination system implemented with a laboratory source [33]. Direct integration provides a very
poor results, as shown in Fig. 3(b): the image is dominated by streak artifacts, to the extent that

https://doi.org/10.6084/m9.figshare.13253873
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the insect is barely recognisable despite the strong DPC signal visible in panel (a). Conversely,
the result of integration using the proposed method (panel (c)) leads to a significant advantage in
terms of image quality. Details that were completely invisible in the directly integrated image are
now clearly visualized, as made even clearer by the zoomed-in regions on the right-hand side of
panels (b) and (c). Remarkably, the image integrated with the proposed method is very similar to
the one obtained with the iterative method shown in panel (d), with minimal differences being
immediately observable mainly in the centre of the specimen where a lower phase sensitivity is
achieved. This is also confirmed by the line profiles extracted from both images and reported in
panel (e). Finally, the application of the proposed method to a biological specimen producing a
weaker phase signal is reported in Supplement 1 for completeness.

Fig. 3. Panels (a) to (d) shows the DPC image of a beetle, the result of direct integration,
of integration using the proposed algorithm and the iterative approach, respectively [17].
Zoomed-in regions corresponding to the red rectangles are reported on the right-hand side of
all images. Panel (e) shows line profiles extracted from images integrated with the proposed
and the iterative algorithms. The proposed algorithm is used with the following parameters:
v0 = 0.05mm−1, n = 1 and s = 3 · 104. The iterative algorithm is used with λ = 0.01 and
200 iterations.

4. Discussion

The presented results clearly show that the proposed method outperforms direct integration,
especially when the SNR of the differential image is limited. Moreover, it provides very similar
image quality to previously proposed iterative phase integration approaches [17], but with the
advantage of a short computation time, which makes it more suitable to integrate large datasets
such as those obtained from CT scans. For example, a Matlab implementation of the proposed
algorithm running on a workstation based on a CPU Intel Xeon Gold 6134 3.20GHz, was tested
on 420 × 420 and 2320 × 2320 images taking 12 ms and 250 ms, respectively. It is worth noting

https://doi.org/10.6084/m9.figshare.13253873
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that, while iterative integration methods and the one proposed here look different, they share the
same theoretical basis. Iterative approaches are based on the minimization of an error function.
This task may require many computational resources depending on the number of parameters
slowing down the convergence of the algorithm. The image integrated with the proposed method
is also obtained as a least square solution, but calculated through the application of the Wiener
filter. Therefore, both approaches ultimately, minimize an error function [25]. This also explains
why the proposed method is much faster than an iterative one while providing similar results,
since the minimisation process is undertaken "a priori" by the use of the Wiener filter. Control
over the frequency content of the output image after application of the Wiener filter, is achieved
by approximating the signal to noise ratio required by its definition with an analytical function.
In the present work, the Butterworth filter was used. Three parameters needs to be optimized, i.e.
the order n, the filter amplitude s and the cut-off frequency v0. While these are quantitatively
related to the signal and noise content of the input image, the easiest way to find the best values is
by trial and error, by visually optimizing image quality for each integrated sample. We found that
the most critical parameter is the cut-off frequency v0, which has an impact on both the image
quality and the quantitative values of the image. An excessively low cut-off frequency results in
residual streak artifacts, while an excessively high one leads to an over-smoothing of the image in
the vertical direction (see Supplement 1). In addition, when the SNR of the input DPC image
is high, the quantitative content of the integrated image is almost independent from the cut-off
frequency if it is chosen within a reasonable range. Notably, the proposed method still delivers
a good image quality when the SNR of the DPC image is poor; however the variation in the
quantitative content of the integrated image as a function of the cut-off frequency becomes larger,
suggesting that care must be taken where quantitative conclusion are drawn. This notwithstanding,
a range of cut-off frequencies for which the algorithm provides a good quantitative estimate can
be still found. The amplitude s is a less critical parameter, and it is related to the value of the
SNR of the input image. A low amplitude is equivalent to an input image dominated by noise, for
which application of the Wiener filter returns an almost empty image as the "best estimate" of the
original signal. On the other hands, an excessively high value for the amplitude makes the filter
ineffective, resulting in residual streak artifacts (see Supplement 1). Finally, the order n affects
the sharpness of frequency cut-off. In all the cases we explored, we found that a low value around
1 or 2 works provides the best results, with higher values leading to an heavily oversmoothed
image in the vertical direction (see Supplement 1). The presented integration algorithm has been
developed and tested using unidirectional DPC images obtained from edge illumination, however,
other X-ray phase contrast techniques with unidirectional differential sensitivity, such as gratings
or crystal based, would also benefit from its application.
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