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Abstract: Strong invariants of even-dimensional topological insulators of independent
Fermions are expressed in terms of an invertible operator on the Hilbert space over the
boundary. It is given by theCayley transform of the boundary restriction of the half-space
resolvent. This dimensional reduction is routed in new representation for the K -theoretic
exponential map. It allows to express the invariants via the reflection matrix at the Fermi
energy, for the scattering set-up of a wire coupled to the half-space insulator.

1. Introduction

Dimensional reduction has been a source of inspiration in the field of topological insu-
lators in quite diverse contexts. It plays a prominent role in the field theoretic frame-
work [18] and it is invoked for the explanation of the periodic table [21,27]. Clearly also
the bulk-boundary correspondence [7,13,17] can be seen as a dimensional reduction as
it allows to connect d-dimensional topological bulk invariants to boundary invariants.
However, in its K -theoretic formulation [13,17] these boundary invariants are naturally
expressed in terms of operators decaying away from the lower dimensional boundary,
rather than being strictly supported by the boundary. Thiswork establishes this last gap in
a rigorous formulation of dimensional reduction for tight-binding Hamiltonians, namely
it shows how the boundary invariants can be calculated from suitable operators defined
on the Hilbert space over the lower dimensional boundary. Let us state right away the
main result of the paper, even though the definitions of the Chern numbers as well as
the precise assumptions and notations are only given in Sect. 2.

Theorem 1. Let d be even and H = H0 +λH1 be a covariant family of nearest neighbor
one-particle Hamiltonians on �2(Zd ,CL) which are a (possibly random) perturbation
λH1 of an operator H0 that is periodic in the first d − 1 directions of Zd . Suppose that
μ ∈ R lies in a gap of the spectrum of H. Then the strong invariant Chd(P) of the Fermi
projection P = χ(H ≤ μ) is given by

Chd(P) = −Chd−1
(
(Ĝμ+ıδ − ı 1)(Ĝμ+ıδ + ı 1)−1), (1)
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where δ > 0 is sufficiently small and Ĝz = �1(Ĥ − z)−1�∗
1 the restriction to the

boundary Hilbert space �2(Zd−1×{1},CL) of the resolvent of the half-space restriction
Ĥ of H to �2(Zd−1 × N,CL).

The proof of Theorem 1 will be given in Sect. 2. It also provides a new proof for the
two-dimensional case which was essentially already obtained in [2] based on eigenvalue
counting by intersection theory. The operator

V̂ z = (Ĝz − ı 1)(Ĝz + ı 1)−1

appearing on the r.h.s. of (1) acts on aHilbert space �2(Zd−1×{1},CL) over the boundary
(hyper-)surface and it only invokes the half-space Green matrix of the insulator. It is
shown in Theorem 5 below that the K1-class of V̂ z is the image of the Fermi projection
P under the K -theoretic exponential map. One of the delicate technical issues below is
the limiting behavior of V̂ z as �m(z) → 0. Our somewhat unsatisfactory treatment in
Sect. 2.4 below leads to the technical hypothesis stated in Theorem 1. Let us note that if
Ĥ = Ĥ0 is translation invariant along this surface, then the Green matrix Ĝz can readily
be linked to the well-knownWeyl–Titchmarch function and it is shown that the boundary
limit �m(z) → 0 exists and is a unitary operator. If furthermore H is also periodic
in the direction perpendicular to the boundary, then Ĝz can even be extracted from a
finite dimensional transfer matrix. As explained in Sect. 2.6 this suggests a numerical
technique to calculate Chd(P) which for d = 2 was successfully implemented in [2]
and much more extensively in [1]. For d = 4, for example, the numerical procedure
allows to calculate a second Chern number from a four-dimensional system as a three-
dimensional winding number. (It is, however, likely that this numerical approach is less
efficient than the technique of the spectral localizer [16].) From a theoretical perspective,
Theorem 1 is of interest because it allows to define an effective chiral Hamiltonian heff
on the doubled boundary Hilbert space

heff =
(

0 (V̂ z)∗
V̂ z 0

)
,

which has the same strong topological invariant as H . It hence provides an algorithmic
procedure for the dimensional reduction within the class of models considered, hence
realizing [7,9,18] in the present framework.Adual result expressing the strong invariants
of chiral bulk systems in odd dimensions (namely higher winding numbers) in terms of
a selfadjoint gapped operator on the boundary will be presented elsewhere.

The second contribution of this paper concerns a scattering theory formulation for the
invariants. For this purpose, one considers a set of identical wires which are perfectly
conducting at the Fermi energy and couples them to the half-space insulator. As the
insulator has no conducting states at this energy, the scattering matrix only consists of
a unitary reflection matrix. It is not the object of the present paper to study this set-up
within the framework of mathematical scattering theory, but we rather give an adhoc
derivation of a formula for the reflection matrix which, when properly defined as in
Sect. 3.3, is a covariant operator on the Hilbert space over the boundary Z

d−1 × {1}.
Once this is carefully spelled out, the following result is merely a corollary of Theorem 1.

Theorem 2. Let d, H, P, Ĥ , μ and δ be as in Theorem 1. Let Rμ+ıδ be the reflection
matrix near μ for the half-space Hamiltonian Ĥ coupled to a half-sided conducting
wires. Then

Chd(P) = −Chd−1(R
μ+ıδ).
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The proof of Theorem 2 is given in Sect. 3.4. For models in continuous physical
space and d = 2 this result was already obtained by Bräunlich et al. [5]. The higher
dimensional cases give a precise formulation to the suggestive discussion by Fulga et
al. [9]. Let us note that it is also possible to consider the scattering on a finite size
sample of the insulator with wires attached to both sides [5]. Then the reflection matrix
is not unitary for real energies, but for sufficiently long samples it is still invertible
and contains the same topological information. Let us also mention that Levinson’s
theorem is another element of scattering theory for which K -theoretic methods have
been implemented successfully [4,12]. In an extension of this approach [26], covariant
scattering matrices on a hypersurface similar to the above play a central role. More
precisly, the non-commutative winding of the scattering matrix in the energy variable is
shown to be equal to the surface density of states.

Notations We essentially follow the notations and the terminology of the monograph
[17]. In particular, Prodan and Schulz-Baldes [17] also contains a careful definition
of the operator algebras as well as the K -groups and the connecting maps of K -theory.
Nevertheless, the main results of this work are of analytic nature and strictly speaking do
not concern K -theory, but rather homotopy theory. More precisely, a new representative
for the image of the exponential map is given.Whenwewrite an equality [U ]1 = [V ]1 in
a K1-group it means that there exists a homotopyU ∼ V within the invertible operators
(possibly enlarged by amatrix degree of freedom). This is essentially sufficient to follow
the arguments below.

2. Dimensional Reduction in Topological Insulators

2.1. Description of the insulator and its strong invariants. Theorem 1 requires H to
be a covariant family of nearest neighbor Hamiltonians on �2(Zd ,CL) with d even. To
give a definition of these notions, let us sketch the algebraic framework for such random
operators as developed by Bellissard [3] and described in [17] where full details can be
found. Let (�, T,Zd ,P) be a compact probability space equipped with a Zd action T
with respect to which the probability measure P is invariant and ergodic. Then a family
A = (Aω)ω∈� of operators Aω each acting on �2(Zd ,CL) is called covariant if it satisfies
the covariance relation

U (a)AωU (a)∗ = ATaω, a ∈ Z
d ,

for the translationsU (a) on �2(Zd). A constant magnetic field can be dealt with by using
the magnetic translations instead. An operator Aω is called short range if there exists an
R such that its matrix elements πn Aωπ∗

m between sites n ∈ Z
d and m ∈ Z

d vanish for
|n − m| > R. Here πn is the partial isometry from �2(Zd ,CL) onto the fiber Hilbert
space CL over the site n, so that πn Aωπ∗

m is an L × L matrix. The set of all covariant
families of short ranged operators generates a C∗-algebra denoted by Ad . This algebra
has a non-commutative differential structure given by the (densely defined) derivations
induced by the position operators X j on �2(Zd):

∂ j Aω = ı[Aω, X j ], j = 1, . . . , d,

and a non-commutative integrationfixed by the invariant and ergodic probabilitymeasure
P:

T (A) =
∫

P(dω) TrL
(
π0Aωπ∗

0

)
.
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Here TrL denotes the trace over the fiber CL . If now P = (Pω)ω∈� is a given (smooth)
projection in Ad specifying a class in the group K0(Ad), its dth even Chern number is
defined by

Chd(P) = (2π ı)
d
2

d
2 !

∑

σ∈Sd
(−1)σ T

(
P∂σ(1)P · · · ∂σ(d)P

)
, (2)

where Sd denotes the symmetric group of permutations over d points and (−1)σ is the
signature of the permutation σ . This definition applies to the Fermi projection P =
χ(H ≤ μ) if the Fermi level μ lies in a gap of the (P-almost sure) spectrum of H , and
then provides the quantity in Theorems 1 and 2.

It remains to explain the nearest neighbor property of the Hamiltonian. It simply
states that the range is R = 1. This implies that Hω can be written in a block Jacobi
form

(Hωφ)n = An+1 φn+1 + Bn φn + A∗
n φn−1, n ∈ Z. (3)

Here φ = (φn)n∈Z with φn ∈ �2(Zd−1,CL), Bn = B∗
n are self-adjoint operators on

�2(Zd−1,CL), and An are invertible operators on �2(Zd−1,CL). Throughout it will be
supposed that An , A−1

n and Bn are uniformly (in ω) bounded operators. The dependence
on ω is suppressed unless it is of relevance. It is well-known that the spectrum σ(H)

is P-almost surely independent of ω. Furthermore, it is assumed that H describes an
insulator in the sense that the Fermi energy μ lies in a bulk gap 
 ⊂ R of the spectrum
of H .

2.2. The bulk-boundary correspondence. A boundary is introduced by restricting the
operators to a half-spacewhich is chosen to beZd−1×N ⊂ Z

d , as in [17]. The restrictions
of covariant operator families fromAd generate a C∗-algebra Âd of half-space operators.
It contains an algebra Ed of operators which are covariant along the boundary and fall
off away from the boundary. This algebra is isomorphic to Ad−1 ⊗ K where K are the
compact operators on �2(N) and this leads to a short exact sequence of C∗-algebras

0 → Ed → Âd → Ad → 0. (4)

On Ed the non-commutative derivatives ∂1, . . . , ∂d−1 are defined by the same formulas,
and the trace integration T (on Ad−1) is extended by the usual trace on K to a (densely
defined) trace T̂ . Elements of the group K1(Ed) are represented by an invertible operator
Û in the unitization E∼

d of Ed (or matrices with entries in E∼
d ). For such an operator

satisfying, moreover, differentiability and traceclass properties, the (d −1)th odd Chern
number is defined by (recall that d is even):

Chd−1(Û ) = ı(ıπ)
d
2 −1

(d − 1)!!
∑

σ∈Sd−1

(−1)σ T̂

⎛

⎝
d−1∏

j=1

(
(Û−1 − 1)∂σ( j)Û

)
⎞

⎠ . (5)

The subtraction of the identity in Û−1 − 1 is done to insure the traceclass property. Of
particular interest for the bulk-boundary correspondence is the imageExp[P]0 ∈ K1(Ed)
of a class [P]0 ∈ K0(Ad) under the exponential map Exp of K -theory described below.
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Theorem 3 ([13], Theorem 5.3.3(i) in [17]). Let d be even. For a differentiable projec-
tion P ∈ Ad and a differentiable invertible Û ∈ E∼

d such that [Û ]1 = Exp[P]0,
Chd(P) = Chd−1(Û ).

To put this theorem to work, one needs a representative Û representing Exp[P]0 in
the case where P = χ(H ≤ μ) is the Fermi projection. This can be done in terms of a
half-space Hamiltonian Ĥ ∈ Âd obtained by restricting H to the half-space [13,17]:

Û = e2π ı fExp(Ĥ). (6)

Here fExp:R → [0, 1] is a smooth non-decreasing function equal to 0 below and 1
above the insulating bulk gap of H containing μ. In particular, Chd−1(Û ) can be shown
to be well-defined. The aim of the following is to find different representatives for the
class [Û ]1 which only have non-vanishing matrix entries in a finite strip away from the
boundary and eventually only on the boundary itself.

2.3. Strict boundary formulation of boundary invariants. The operator Û − 1 given
in (6) is obtained by functional calculus from Ĥ with a function supported on a bulk
gap (of H ). This is known to imply a decay away from the boundary. More precisely,
for n ∈ N let �n : �2(Zd−1 × N,CL) → �2(Zd−1 × {n},CL) be the partial isometry
onto �2(Zd−1 × {n},CL) ∼= �2(Zd−1,CL), namely onto the Hilbert space over the sites
Z
d−1 × {n} of the half-space Zd−1 × N. Note the difference with πn used above acting

on �2(Zd ,CL). Then (e.g. [17])

‖�nÛ �∗
m‖ ≤ C e−β(n+m), n �= m,

with β > 0 andC which can be chosen uniformly inω. However, none of the restrictions
�nÛ�∗

m vanishes identically. Setting �[1,N ] = (�1, . . . ,�N ) with range �2(Zd−1 ×
{1, . . . , N },CL), one therefore obtains that

Û =
(

�[1,N ]Û �∗[1,N ] 0
0 1

)
+ KN ,

where KN ∈ Ed is an operator satisfying limN→∞ ‖KN‖ = 0. In particular, for N large
enough �[1,N ]Û �∗[1,N ] is invertible. Hence one can homotopy KN down to 0 without
violating the invertibility so that

[Û ]1 = [
�[1,N ]Û �∗[1,N ]

]
1

∈ K1(Ed).

Now the representative on the r.h.s. is by construction supported only on a strip of
width N off the boundary. Let us call this a strict boundary representative of the class
[Û ]1 that will lead to a strict boundary formulation of the invariant. Its Chern number
can now be calculated by (5), or alternatively without the subtraction of the identity,
namely for a (smooth) invertible V̂ ∈ Ed supported on a finite strip (such as the operator
�[1,N ]Û �∗[1,N ]),

Chd−1(V̂ ) = ı(ıπ)
d
2 −1

(d − 1)!!
∑

σ∈Sd−1

(−1)σ T̂

⎛

⎝
d−1∏

j=1

(
V̂−1∂σ( j)V̂

)
⎞

⎠ . (7)
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The next step is to show that one can use a suitable function of the restriction of the
resolvent of Ĥ instead of the restriction of Û . For z = μ + ıδ ∈ C let us set

Ĝz(n,m) = �n(Ĥ − z 1)−1�∗
m,

and

Ĝz
N = (

Ĝz(n,m)
)
n,m=1,...,N = �[1,N ](Ĥ − z 1)−1�∗[1,N ].

The next result shows that a Cayley transform of Ĝz
N represents [Û ]1 and hence provides

a newway to express the image of the K -theoretic exponentialmap in terms of resolvents.
The reader familiar with the connecting maps of K -theory of C∗-algebras readily sees
that this fact and the result leading to it is not restricted to the exact sequence (4), but
rather extends to a much larger class of exact sequences. On the other hand, Theorem 1
goes further and requires supplementary hypotheses and analytical arguments.

Theorem 4. For any even d and δ > 0 sufficiently small,

[Û ]1 = −
[
(2δ Ĝμ+ıδ

N − ı 1N )(2δ Ĝμ+ıδ
N + ı 1N )−1

]

1
,

where 1N = �[1,N ]�∗[1,N ].

Proof. Let us introduce two S1-valued functions F and Fδ on R by

F(E) = e−2π ı fExp(E), Fδ(E) = E − μ + ıδ

E − μ − ıδ
= 1 +

2ıδ

E − μ − ıδ
, (8)

where fExp has been defined before (6). Both functions are close to 1 for large E andmake
one negatively oriented loop, namely have a winding number equal to −1. Moreover,
limδ→0 Fδ(E) = 1 for E �= μ. The parameter δ is chosen small enough so that Fδ is
close to 1 outside of a neighborhood ofμ. There is still the freedom of choosing the non-
decreasing function fExp with derivative supported in the bulk gap 
 ⊂ R containing

μ. It will be chosen such that F coincides with Fδ on an interval [μ − δ
1
2 , μ + δ

1
2 ]. By

smoothly completing the function F and thus also fExp, one can assure

‖F − Fδ‖∞ ≤ Cδ
1
2 ,

for a suitable constant C . As Û∗ = F(Ĥ) by (6), one concludes

∥
∥Û∗ − Fδ(Ĥ)

∥
∥ ≤ Cδ

1
2 .

For δ sufficiently small, the invertibility of the finite-volume restrictions is not violated
and one concludes that

[Û∗]1 = [
�[1,N ]Fδ(Ĥ)�∗[1,N ]

]
1 = [

1N + 2ıδ Ĝμ+ıδ
N

]
1 = [

2δ Ĝμ+ıδ
N − ı 1N

]
1,

where the second equality of (8) was used. Note that this implies, in particular, that
2δ Ĝμ+ıδ

N − ı 1N is invertible. On the other hand, as 2δ Ĝμ+ıδ
N + ı 1N has a strictly positive

imaginary part (for δ > 0), it can be homotopically deformed into the identity and is
therefore trivial in K1(Ed). This concludes the proof. 
�
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2.4. Limit behavior of the Cayley transform of the resolvent. Due to Theorem 4, one is
led to study the operator

V̂ z
N ,ε = (2ε Ĝz

N − ı 1N )(2ε Ĝz
N + ı 1N )−1.

For z = μ + ıδ, ε = δ and δ > 0 sufficiently small it represents [Û∗]1 ∈ K1(Ed). As
the imaginary part of Ĝz

N , as usual defined by �m(G) = (2ı)−1(G −G∗), has the same
sign of the imaginary part of z, it follows that the operator Ĝz

N lies in the upper or lower
half-plane and is thus invertible for �m(z) �= 0 (see Appendix A). Therefore one can
also write

V̂ z
N ,ε = (

2εı 1N + (Ĝz
N )−1)(2εı 1N − (Ĝz

N )−1)−1
. (9)

Another implication of �m(Ĝz
N ) > 0, following from Proposition 5 in Appendix A, is

that

‖V̂ z
N ,ε‖ ≤ 1, �m(z) > 0. (10)

Hence z ∈ H �→ V̂ z
N ,ε is an analytic map from the upper half-plane H to the unit disc

D(H) ⊂ B(H) of operators as defined in Appendix A. It is a classical result that such
functions have non-tangential limit points

lim
δ↓0 V̂μ+ıδ

N ,ε (11)

for Lebesgue almost all μ, at least in the weak sense, e.g. Theorem 11.20 in [20]. For
periodic operators along the boundary,wewill showconvergence in normand to a unitary
operator. Note that if there were no spectrum of Ĥ at μ, then the Green matrix would
have no imaginary part and the limit would thus indeed be unitary. This corresponds to
a trivial insulator though, and will not be considered here. For a topological insulator,
there is spectrum of Ĥ at μ corresponding to boundary states and this does lead to
a non-vanishing imaginary part of the Green matrix. However, as such states are of
codimension 1 (in particular, they vanish in the density of states due to the bulk gap),
one may expect the resulting singularities to be removable. This is what is proven in the
following.

If Ĥ is periodic in the (d−1) directions tangential to the boundary, it can be partially
diagonalized by the Bloch–Floquet transformation:

Ĥ ∼=
∫ ⊕

Td−1
deık Ĥ(eık), (12)

where Ĥ(eık) is a half-sided block Jacobi operator on �2(N,CL). As Ĥ is supposed
to be of finite range, it follows that Ĥ(eık) can be seen as an analytic function in ζ =
eık which extends to an operator valued analytic function Ĥ(ζ ) on T

d−1
δ = {ζ ∈

C
d−1 | d(ζ,Td−1) < δ} where d is the euclidean distance. It satisfies

Ĥ(ζ )∗ = Ĥ
(
(ζ )−1).

Then Ĝz
N (ζ ) = �[1,N ](Ĥ(ζ ) − z1)−1�∗[1,N ] is a NL × NL matrix which is analytic in

z ∈ C\R and ζ ∈ T
d−1
δ satisfying

Ĝz
N (ζ )∗ = Ĝz

N

(
(ζ )−1).
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Moreover, this function extends to the real axis for many values of ζ . Recall that as μ

lies outside of the essential spectrum of H(eık), it does so also for Ĥ(eık). Hence Ĥ(eık)
has only discrete spectrum of finite multiplicity in a complex ball Bδ(μ) ⊂ C around
μ and, of course, these eigenvalues lie on the real axis for ζ = eık ∈ T

d−1. For such a
ζ = eık ∈ T

d−1 and �m(z) �= 0, let us now consider

V̂ z
N ,ε(ζ ) = (

2ε Ĝz
N (ζ ) − ı 1N

)(
2ε Ĝz

N (ζ ) + ı 1N
)−1

, (13)

for which

V̂ z
N ,ε(ζ )∗ = (

V̂ z
N ,ε(ζ )

)−1
. (14)

Except for a discrete set of singularities given the eigenvalues of Ĥ(ζ ), this function
extends to all z in (μ − δ, μ + δ) as a function with values in the unitary matrices. Due
to (10), V̂ z

N ,ε(ζ ) is bounded by 1 for �m(z) > 0. Another important point is that the

function z �→ V̂ z
N ,ε(ζ ) is meromorphic (notably without essential singularities) on a

strip with �e(z) ∈ (μ − δ, μ + δ) because z �→ Ĝz
N (ζ ) has only poles and V̂ z

N ,ε(ζ ) is a

rational function of Ĝz
N (ζ ). This implies that also z �→ V̂ z

N ,ε(ζ )−1 meromorphic on this

strip since each of its entries is given by a product of det(V̂ z
N ,ε(ζ ))−1 and the determinant

of a minor of V̂ z
N ,ε(ζ ). Moreover, as long as z ∈ (μ − δ, μ + δ) is not an eigenvalue of

Ĥ(ζ ), one has det(V̂ z
N ,ε(ζ )) ∈ S

1 so that det(V̂ z
N ,ε(ζ )) has no zeros on z ∈ (μ−δ, μ+δ).

It follows that there exists a δ′
0 > 0 such that V̂ z

N ,ε(ζ )−1 is also a uniformly bounded
function on a rectangle Kδ0,δ

′
0

= {z ∈ C | |�e(z) − μ| ≤ δ0, 0 < �m(z) ≤ δ′
0}. Hence

for z ∈ Kδ0,δ
′
0
and still ζ = eık ∈ T

d−1, (14) implies that also ‖V̂ z
N ,ε(ζ )‖ ≤ C for

some C > 0. Together, z ∈ Kδ0,δ
′
0
∪ Kδ0,δ

′
0

�→ V̂ z
N ,ε(ζ ) is bounded and by the Riemann

removable singularity theorem (applied to eachmatrix entry of V̂ z
N ,ε (ζ )), one can remove

the finite number of singularities. The continuously extended function is then unitary
for all z ∈ (μ − δ, μ + δ) and ζ = eık ∈ T

d−1.
It is furthermore necessary to show that V̂ z

N ,ε(ζ ) is differentiable in ζ . This can
be shown by applying the Riemann removable singularity theorem in several complex
variables (e.g. Theorem4.2.1 in [22]). Indeed, by analytic perturbation theory the discrete
eigenvalues of Ĥ(ζ ) are analytic curves in ζ , provided that the branches are labelled in
a suitable manner at level crossings. Therefore

A = {(z, ζ ) ∈ Bδ(μ) × T
d−1
δ | z eigenvalue of Ĥ(ζ )}

is an analytic set of complex codimension equal to 1 in the (standard) sense of [22],
unless there is no eigenvalue at all.Havingno eigenvalueswouldmean that the insulator is
trivial, a casewhich is not further investigated here. Then (z, ζ ) ∈ (Bδ(μ)×T

d−1
δ )\A �→

Ĝz
N (ζ ) is analytic and therefore, for any ε > 0, so is (z, ζ ) ∈ (Bδ(μ) × T

d−1
δ )\A �→

V̂ z
N ,ε(ζ ). The task is then to show that this latter function is bounded in a neighborhood

of A. Here we follow a less ambitious, but sufficient route and only check the analyticity
in ζ for fixed real z.

Lemma 1. For z ∈ (μ − δ, μ + δ) and ε > 0, the map ζ ∈ T
d−1 �→ V̂ z

N ,ε(ζ ) is real
analytic in each of its components.
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Proof. (The argument below is similar to that in the appendix of [4].) Because each
component is considered separately, it is sufficient to restrict to the case d = 2. Fix a
point ζ0 ∈ T

1 and choose δ′ such that the number of eigenvalue branches of Ĥ(ζ ) in
Bδ(z) is constant in a neighborhood Bδ′(ζ0) ⊂ C. Let P(ζ ) denote the finite-dimensional
spectral projection of Ĥ(ζ ) onto these eigenvalues and set Q(ζ ) = 1−P(ζ ). By analytic
perturbation theory both of these projections are analytic. Then the Green matrix Ĝz

N (ζ )

can be decomposed in a singular and a regular part. More precisely, let us set

s(ζ ) = 2ε �[1,N ]P(ζ )(Ĥ(ζ ) − z)−1�∗[1,N ],
r(ζ ) = 2ε �[1,N ]Q(ζ )(Ĥ(ζ ) − z)−1�∗[1,N ].

With these notations, 2ε Ĝz
N (ζ ) = s(ζ )+r(ζ ). Then ζ ∈ Bδ′(ζ0) �→ r(ζ ) is analytic and

ζ ∈ Bδ′(ζ0) �→ s(ζ ) is analytic away from singularities that have to be dealt with. Away
from these singularities, one can diagonalize s(ζ ) by an analytic basis change u(ζ ):

u(ζ ) s(ζ ) u(ζ )−1 =
(

η(ζ ) 0
0 0

)
, u(ζ ) r(ζ ) u(ζ )−1 =

(
a(ζ ) b(ζ )

c(ζ ) d(ζ )

)
,

where η(ζ ) is bounded away from 0, but has singularities. The block form of u(ζ )s(ζ )

u(ζ )−1 reflects that P(ζ ) and thus also s(ζ ) are of lower rank. Now replacing into (13)
leads to

V̂ z
N ,ε(ζ ) = (

s(ζ ) + r(ζ ) + ı 1N
)−1(

s(ζ ) + r(ζ ) − ı 1N
)
,

so that, suppressing the argument ζ on η, a, b, d for sake of notational simplicity,

u(ζ ) V̂ z
N ,ε(ζ ) u(ζ )−1 =

(
η + a + ı b

c d + ı

)−1 [(
η 0
0 0

)
+

(
a − ı b
c d − ı

)]
.

The first matrix inverse is bounded, and so is the second summand in the bracket. Indeed,
(η+a+ ı)−1 and (d + ı)−1 exist and have a negative imaginary part for z ∈ R and ζ ∈ T

1

because η, a and d are then selfadjoint. This guarantees the invertibility which persists
for ζ ∈ Bδ′(ζ0) as long as δ′ is sufficiently small. However, the first summand in the
bracket has a singularity. To show that it is compensated, let us calculate the matrix
inverse using the Schur complement σ = σ(ζ ):

σ = d + ı − c(η + a + ı)−1b.

Again for ζ ∈ T
1, one has c = b∗ so that −c(η + a + ı)−1b has a positive imaginary

part. Thus σ has a positive imaginary part and is thus invertible with uniformly bounded
inverse. Due to continuity this also hols on a small neighborhood Bδ′(ζ0). By the Schur
complement one has

(
η + a + ı b

b∗ d + ı

)−1 (
η 0
0 0

)
=

((
1 + (η + a + ı)−1b σ−1b∗)(η + a + ı)−1η 0

−σ−1b∗(η + a + ı)−1η 0

)
.

Now not only is (η + a + ı)−1 bounded, but also (η + a + ı)−1η = (1 + η−1(a + ı))−1.
Hence the whole matrix is bounded. In conclusion, u(ζ )V̂ z

N ,ε(ζ )u(ζ )−1 and thus also

V̂ z
N ,ε(ζ ) are bounded in a neighborhood of the singularities of η. Consequently these

singularities can be removed and V̂ z
N ,ε(ζ ) is analytic in ζ .
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Due to the smoothness of V̂ z
N ,ε(ζ ) in ζ , one can apply the inverse Fourier transform

and obtains a differentiable element V̂ z
N ,ε in the edge algebra Ed . The dependence of

V̂ z
N ,ε on ε can be analyzed by similar techniques and is also analytic. One concludes that

it is possible to deform ε within the positive reals, e.g. to ε = 1
2 , and then set

V̂ z
N = V̂ z

N , 12
= (

Ĝz
N − ı 1N

)(
Ĝz

N + ı 1N
)−1

.

One then has

[Û ]1 = −[V̂ z
N ]1, (15)

as long as �m(z) is sufficiently small so that the V̂ z
N remains invertible. In particular,

�m(z) = 0 is allowed for which V̂ z
N is unitary. The invertibility persists under weak

(possibly random) perturbations. 
�
Proposition 1. Let H = H0 +λH1 ∈ Ad with H0 periodic in the d − 1 directions along
the boundary and let μ �∈ σ(H). For δ > 0 and λ sufficiently small, V̂μ+ıδ

N is invertible
and

[Û ]1 = −[V̂μ+ıδ
N ]1.

Proof. Denote Ĝz,λ
N = �[1,N ](Ĥ0 +λĤ1−z1)−1�∗[1,N ]. The invertibility of Ĝ

z,λ
N + ı 1NL

is guaranteed due to a positive imaginary part. It hence has to be shown that Ĝz,λ
N − ı 1NL

remains invertible. By the resolvent identity,

Ĝz,λ
N − ı 1NL = Ĝz,0

N − ı 1NL − λ �[1,N ](Ĥ0 − z1)−1 Ĥ1(Ĥ0 + λĤ1 − z1)−1�∗[1,N ].

Now one first chooses δ > 0 sufficiently small so that Ĝz,0
N − ı 1N is invertible. Then

the second summand can be bounded by a constant times λδ−2. Choosing λ sufficiently
small the second summand thus does not violate the invertibility of Ĝz,λ

N − ı 1N . 
�
Let us conclude this sectionwith a few comments. Clearly, it is unsatisfactory to prove

the existence of the limit (11) only in the perturbative regime considered Proposition 1.
On the other hand, it is precisely the same regime for which Mourre estimates allow to
show that the edge spectrum is absolutely continuous [6,8]. Furthermore, going through
the above arguments in a quantitative way shows that the actual values of δ and λ

for which the estimates hold are not so small after all. Let us also note that it is an
interesting open question to analyze the fate of the limit in a mobility gap regime for the
bulk Hamiltonian.

Finally let us comment on the parameter k ∈ T
d−1. In the presentation above, it stems

from a partial Bloch–Floquet transform of a d dimensional insulator that is periodic in
the d − 1 dimensions along the boundary. Alternatively, it can simply be the parameters
of an external driving of a given setting. For the latter, the most prominent case is d = 2
corresponding to a time-periodic driving, see [5,17,28]. But it is also conceivable that
the driving parameters lie in another d − 1 dimensional parameter space, like the sphere
S
d−1. This case is also covered by the analysis in the paper, modulo modifications of

the bulk-boundary exact sequence.
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2.5. Image of the exponential map on the boundary. It now remains to show that V̂ z
N in

(15) can be replaced by V̂ z = V̂ z
1 . Combined with the bulk-boundary correspondence

as given in Theorem 3 this concludes the proof of Theorem 1.

Theorem 5. Let d be even and H = H0 + λH1 ∈ Ad with H0 periodic in the d − 1
directions along the boundary, δ > 0 and λ sufficiently small so that Proposition 1
applies for N = 1. Furthermore, let P = χ(H ≤ μ) ∈ Ad be the Fermi projection
below μ �∈ σ(H). Then

Exp[P]0 = −[(Ĝμ+ıδ − ı 1L)(Ĝμ+ıδ + ı 1L)−1]1.
The proof is based on further homotopy arguments combined with the Schur com-

plement formula and transfer matrix methods. We recall these standard tools in the
proof.

Proof. First of all, let us note that it is sufficient to consider the case λ = 0, namely
that of a partially periodic Hamiltonian H = H0. Indeed, the argument in the proof of
Proposition 1 allows to deform V̂μ+ıδ

N with λ without violating the invertibility, for all
N ≥ 1. Hence one can assume from now on that H ∼= ∫ ⊕

Td−1 deık H(eık). This simplifies
the arguments below because one can assume the energy to be on the real axis where
E �→ V̂ E

N is unitary, after the removal of the singularities explained in Sect. 2.3. In the
following, all objects hence depend on eık ∈ T

d−1 after a basis change, but this will be
suppressed in the notations.

The proof starts from (15) with V̂ z
N given in the form (9) with ε = 1

2 . It is now useful
to express Ĝz

N using the Schur complement formula corresponding to the splitting

�2(Zd−1 × N,CL) = �2(Zd−1 × {1, . . . , N },CL) ⊕ �2(Zd−1

×{N + 1, N + 2, . . .},CL), (16)

of the Hilbert space, for which

Ĥ =
(

HN �∗
N AN+1�N+1

�∗
N+1A

∗
N+1�N ĤN+1

)
.

Here HN is a finite size block Jacobi matrix and ĤN+1 a semi-infinite one for which we
set

G̃z
N+1 = �N+1(ĤN+1 − z 1)−1�∗

N+1.

Then by the Schur complement formula

Ĝz
N = (

HN − z 1 − �∗
N AN+1G̃

z
N+1A

∗
N+1�N

)−1
.

Replacing in (9) shows

V̂ z
N = (

HN − z 1 − π∗
N AN+1G̃

z
N+1A

∗
N+1πN + ı 1

)

(
HN − z 1 − π∗

N AN+1G̃
z
N+1A

∗
N+1πN − ı 1

)−1
.

Now for δ = �m(z) = 0, this is the Cayley transform of a selfadjoint operator (with
removable singularities stemming from G̃z

N+1) and therefore it is unitary. As HN − z is
then selfadjoint it can be homotopically turned down to 0 without violating the unitarity,
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and thus in particular the invertibility. Hence V̂ z
N can be homotopically deformed as

follows

V̂ z
N ∼ (−π∗

N AN+1G̃
z
N+1A

∗
N+1πN + ı 1

) (−π∗
N AN+1G̃

z
N+1A

∗
N+1πN − ı 1

)−1

=
(

1L(N−1) 0
0 AN+1(−G̃z

N+1 + ı(A∗
N+1AN+1)

−1)(−G̃z
N+1 − ı(A∗

N+1AN+1)
−1)−1A−1

N+1

)

∼
(−1L(N−1) 0

0 AN+1(−G̃z
N+1 + ı 1)(−G̃z

N+1 − ı 1)−1A−1
N+1

)
,

where in the last step A−1
N+1(A

−1
N+1)

∗ ∼ 1 in the positive operators was used for the
homotopies G̃z

N+1 ± ı(A∗
N+1AN+1)

−1 ∼ G̃z
N+1 ± ı 1 within the invertibles. Hence

[V̂ z
N ]1 = [

AN+1(G̃
z
N+1 − ı 1)(G̃z

N+1 + ı 1)−1A−1
N+1

]
1

= [
AN+1

]
1 +

[
(G̃z

N+1 − ı 1)(G̃z
N+1 + ı 1)−1]

1 − [
AN+1

]
1

= [
Ṽ z
N+1

]
1,

where

Ṽ z
N+1 = (G̃z

N+1 − ı 1)(G̃z
N+1 + ı 1)−1.

Now remains to show that Ṽ z
N+1 and V̂ z

1 are homotopic inside the invertible operators.
This is accomplished by studying the generalized eigenfunctions for block Jacobi opera-
tors (e.g. [24]), applied either for each k separately or extended to operator valued Jacobi
operators. The basic fact is that the (formal and not necessarily square integrable in n)
solutions φ = (φn)n∈Z of the Schrödinger equation Hφ = zφ at energy z ∈ C can be
calculated using the transfer matrices

T z
n =

(
(z 1 − Bn)A−1

n − A∗
n

A−1
n 0

)
, (17)

namely for n ≥ 1 one has

�z
n = T z

n �z
n−1, where �z

n =
(
An+1φn+1

φn

)
. (18)

Here the initial condition �z
0 selects one solution, and T z

1 is calculated with A1 = 1
(note that A1 is not part of Ĥ ). For z = E ∈ R, the transfer matrices satisfy

(T E
n )∗GT E

n = G, G = ı

(
0 −1
1 0

)
, (19)

namely T E
n is G-unitary (see Appendix B). The solutions (18) can either be obtained

for vectors φn or for operators φn , and of particular interest is the case where the φn
are operators of the same type as the An and Bn . A particular solution of this type is
produced by

�z
n =

(
An+1Ĝz(n + 1, 1)

Ĝz(n, 1)

)
, �z

0 =
(
Ĝz

−1

)
. (20)



Dimensional Reduction and Scattering Formulation

For z not in the spectrum of Ĥ , this solution decays at +∞ and it is known to be the only
operator solution with this feature. All of the above applies equally well to the half-sided
block Jacobi operator ĤN+1. Its initial condition at site N leading to a decaying solution
is given by

�̃z
N =

(
G̃z

N+1

−1

)
.

As ĤN+1 is merely a part of Ĥ and thus has the same decaying solutions at infinity, one
concludes that there is an invertible operator C such that

�z
N = �̃z

N C.

This identity just states that the two subspaces spanned by �z
N and �̃z

N coincide, a
property that can also be read off using the stereographic projection defined by:

�(�) = (a − ıb)(a + ıb)−1, � =
(
a
b

)
. (21)

One then has �(�z
N ) = �(�̃z

N ). As �z
N = T z

N . . . T z
1 �z

0, one obtains

�(T z
N . . . T z

1 �z
0) = (G̃z

N+1 + ı 1)(G̃z
N+1 − ı 1)−1 = (Ṽ z

N+1)
−1.

The l.h.s. can also be expressed in terms of Ĝz because the action of thematrix T z
N . . . T z

1
is under the stereographic projection, implemented by theMöbius actionwith the Cayley
transform (e.g. [23])

Mz · (V̂ z
1 )−1 = (Ṽ z

N+1)
−1, Mz = CT z

N · · · T z
1 C

∗. (22)

Here the Cayley transform is

C = 2− 1
2

(
1 −ı1
1 ı1

)
, (23)

and the Möbius action · is defined by
(
a b
c d

)
· Z = (aZ + b)(cZ + d)−1, (24)

provided the appearing inverse exists. For z = E ∈ R, this is the case because Mz

is in the generalized Lorentz group U(J ) of operators conserving the quadratic form
J = diag(1,−1) = CGC∗, see the proof of the Lemma 2 below, which also concludes
the proof of Ṽ z

N+1 ∼ V̂ z
1 . 
�

Lemma 2. Let M ∈ U(J ) ∩ Ad−1 ⊗ C
2×2 and V̂ ∈ Ad−1 unitary. Then

[M · V̂ ]1 = [ad−1]1 + [V̂ ]1,
where

M =
(
a b
c d

)
.

If M = C T μ C∗ where T μ is a transfer matrix at μ ∈ R defined as in (17) then
[ad−1]1 = 0.
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Proof. Let us recall the following facts (e.g. Lemma 2 of [23]). The identityMJM∗ =
J implies aa∗ −bb∗ = 1 which shows that aa∗ ≥ 1 so that a is invertible. Furthermore,
one deduces (a−1b)(a−1b)∗ = 1 − a−1(a−1)∗ < 1 so that ‖a−1b‖ < 1. Similarly, d is
invertible and ‖d−1c‖ < 1. Now

M · V̂ = aV̂ (1 + V̂ ∗a−1b)(1 + d−1cV̂ )−1d−1,

and 1 + V̂ ∗a−1b as well as 1 + d−1cV̂ are homotopic to the identity, the first claim
follows. Calculating M = CT μC∗ explicitly in terms of the entries A and B = B∗ of
T μ, one finds

ad−1 = (
(μ − B)A−1 − ı(A−1 + A∗)

)(
(μ − B)A−1 + ı(A−1 + A∗)

)−1

= (
(μ − B) − ı(1 + A∗A)

)(
(μ − B) + ı(1 + A∗A)

)−1
.

One can deform μ − B to 0 and A∗A to 1, showing the last claim. 
�

2.6. Numerical procedure. In dimension d = 2, Theorem 1 can and has been
used to numerically compute Chern numbers as winding numbers [1,2] when H ∼=∫ ⊕ deık H(eık) with a periodic one-dimensional operator H(eık). Indeed, when H(eık)
is a periodic operator on �2(Z,CL), then one can calculate V̂ z(eık) as the stereographic
projection of the contracting dimensions of the transfer matrix over one period. This
transfer matrix is a 2L × 2L matrix which for real z is G-unitary. Hence its spectrum
is invariant under the reflection on the unit circle and exactly half of its eigenvalues lie
inside the unit disc, so that the corresponding eigenspace of these contracting eigenvalues
is of dimension L and thus has a well-defined stereographic projection. Exactly the same
procedure also allows to determine V̂μ(eık) in higher even dimension d, but then one has
to compute a higher-dimensional winding number from eık ∈ T

d−1 �→ V̂μ(eık) which
in itself may then be a tough task (albeit of codimension 1). For d = 4, one can compute
Ch3(V̂μ) using the techniques of [11] or alternatively the spectral localizer [15]. This
then provides the second Chern number Ch4(P) of the 4-dimensional Hamiltonian.

3. Scattering on an Insulator

3.1. Scattering set-up. The Hamiltonian describing a semi-infinite wire coupled to a
semi-infinite insulator is of the form

HScat = ĤWire ⊕ ĤIns + HCoup. (25)

Here ĤIns ∈ Âd is the half-space restriction of a Hamiltonian HIns ∈ Ad as described in
Sect. 2. Also ĤWire is an operator of the same type, albeit on a left rather then right half-
space, and it will describe a conducting wire in the sense described in Sect. 3.2 below.
Hence HScat acts on the Hilbert space �2(Zd ,CL) ∼= (

�2(N−)⊕�2(N)
)⊗�2(Zd−1,CL)

where Z = N− ∪ N is decomposed in N− = {0,−1,−2, . . .} and N = {1, 2, . . .}. The
free reference Hamiltonian (for a two Hilbert space scattering set-up) is then HWire ⊕
HIns, but this will not be used below as we will essentially work in a standard quasi-
one-dimensional scattering formalism as used in the solid state community. The most
important point is that the focus will be on an energy E which lies in the gap of HIns and
for which the wire is perfectly conducting, see Sect. 3.2 below for the latter. This implies
that the scattering matrix SE at this energy only consists of a unitary reflection matrix
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as the transmission matrix vanishes. To further simplify, we suppose that the system can
be diagonalized by a Fourier transform along the boundary, as in (12):

HScat ∼=
∫ ⊕

Td−1
dk HScat(e

ık) =
∫ ⊕

Td−1
dk

(
ĤWire ⊕ ĤIns(e

ık) + HCoup
)
.

In particular, ĤWire and HCoup are supposed to be independent of k. This means that there
are infinitely many independent wires attached to the half-sided insulator with local and
identical coupling terms. Each wire is then described by a periodic block Jacobi matrix
of the form

HWire = A S + B + A∗ S∗, (26)

where A and B = B∗ are L × L matrices with A invertible, and S is the left-shift on
�2(Z). Under further hypothesis on A and B, this operator will be analyzed in Sect. 3.2.
For sake of simplicity, the coupling of the wire to the insulator is expressed in terms of
the same invertible matrix A:

HCoup = (
π∗
0 A π1 + π∗

1 A∗ π0
)
,

where π j is the partial isometries onto the fiberCL over the site j . Summing up, a matrix
representation of the quasi-one-dimensional scattering Hamiltonian at eık ∈ T

d−1 is

HScat(e
ık) =

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

. . .
. . .

. . . B A
A∗ B1(k) A2(k)

A2(k)∗ B2(k)
. . .

. . .
. . .

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

. (27)

The picture in Sect. 3.3 below also illustrates this Hamiltonian. The next sections analyze
this parametrized family of quasi-one-dimensional scattering Hamiltonians. This allows
to prove Theorem 2.

3.2. Description of the wire. The Hamiltonian HWire is diagonalized by the Fourier
transform

F : �2(Z,CL) → L2
(
T
1,

dp

2π

)
⊗ C

L , (Fψ)(p) =
∑

n∈Z
ψne

ıpn,

namely

FHWireF∗ =
∫

T1

dp

2π
HWire(e

ıp), HWire(e
ıp) = A e−ı p + B + A∗ eıp.

Note that the matrix HWire(eıp) is self-adjoint. By analytic perturbation theory,
HWire(eıp) has L eigenvalues El(p), l = 1, . . . , L , which at level crossings can be
chosen to be analytic. If φl(p) are the corresponding eigenvectors, one has

HWire(e
ıp) φl(p) = El(p) φl(p), l = 1, . . . , L . (28)
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As p runs through [−π, π) each eigenvalue leads to an energy band of HWire. The
spectrum of HWire is absolutely continuous if none of the eigenvalues is constant in p.
If such a constant energy occurs, then one also speaks of a flat band. It leads to a Dirac
peak in the density of states. It can be shown that there are no flat bands if A is invertible.
The latter is a standing assumption. Now let T E = T E

0 = T E
n for n ≤ 0 be the transfer

matrix at energy E ∈ R given by (17). There is a simple link between the eigenvalues
of the transfer matrix on the unit circle and the Bloch solutions (28).

Proposition 2. One has the following equivalence:

HWire(e
ıp) φ = E φ ⇐⇒ T E

(
eıp A φ

φ

)
= eıp

(
eıp A φ

φ

)
.

Proof. The lower equation of the second equality is trivially verified. The upper one is
precisely the Schrödinger equation on the left multiplied by eıp. 
�

The transfer matrix T E is a G-unitary and hence satisfies all the properties listed in
AppendixB. In particular, it is possible to associatedKrein signatures to every eigenvalue
on the unit circle, see Definition 1 in Appendix B. The following will be supposed
throughout.

Hypothesis The wire is perfectly conducting, namely its transfer matrix has only eigen-
values on the unit circle which are Krein definite in the sense of Definition 1.

Krein collision theory of unit eigenvalues states that the signature is conserved when
eigenvalues leave the unit circle (see [10,14,25]). Having only definite eigenvalues is
therefore a stability property which is part of the assumption on the wire. The hypothesis
also implies that the transfer matrix has no parabolic part corresponding to non-trivial
Jordan blocks for eigenvalues on the unit circle (see Corollary 1 inAppendix B). As there
is no hyperbolic part corresponding to eigenvalues off the unit circle neither, the transfer
matrix is fully elliptic. In physical terms: the wire has only open or conducting channels
so that there are no closed or evanescent channels. This allows to diagonalize the transfer
matrix just as in (35) by 2L × L matrices �E± of rank L consisting of eigenvectors for
eigenvalues of positive/negative signature. Using the Cayley transform (23) as in (36),
the basis change N E = (�E

+ , �E− )C satisfies

(N E )∗GN E = G, (N E )−1T EN E = 1
2

(
�E

+ + �E− −ı(�E
+ − �E−)

ı(�E
+ − �E−) �E

+ + �E−

)
,

(29)

where �E± are diagonal L × L matrices. Thus N E is a G-unitary diagonalizing T E to
a direct sum of real 2 × 2 rotation matrices multiplied by a phase factor. The entries of
N E are also denoted as follows

N E = (�E∨ , �E∧ ) = = 2− 1
2
(
�E

+ + �E− ,−ı(�E
+ − �E− )

)
.

Both�E∨ and�E∧ spanG-Lagrangian subspaces, and they areG-orthogonal to each other.
The (Krein) signature of unit eigenvalues of T E also determines the sign of the group
velocity. For this purpose, one has to analyze the dependence of T E and its eigenvalues
on E . The following result also shows that eigenvalues with positive/negative signature
leave the unit circle to the inside/outside as a positive imaginary part is added to the
energy, namely ζ contains an imaginary part.
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Proposition 3. Let λE be a unit eigenvalue of the transfer matrix T E with eigenspace
E E

λE . Further let I ⊂ R be an open interval such that E ∈ I �→ dim(E E
λE ) = 1 is

constant. Then

λE+ζ = λE exp

(

ı
1
ı (vE )∗(T E )∗G(∂ET E )vE

(vE )∗GvE
ζ + O(ζ 2)

)

, (30)

where vE is the eigenvector of T E to the eigenvalue λE . Moreover,

1

ı
(vE )∗(T E )∗G(∂ET E )vE > 0.

Hence the phase θ E = −ı log(λE ) satisfies

sign(∂EθE ) = ν+(λ
E ) − ν−(λE ).

Proof. By analytic perturbation theory, λE and vE are analytic in E (with proper choices
of branches, this holds even at level crossings, see Section III.1.5 of [29]). Deriving the
eigenvalue equation T EvE = λEvE , one finds

(∂ET E )vE + T E (∂EvE ) = (∂EλE )vE + λE (∂EvE ).

Now multiplying this equation from the left by (vE )∗(T E )∗G. As (vE )∗(T E )∗GT E =
λ
E
(vE )∗GT E , it follows that

(vE )∗G(∂ET E )vE = (∂EλE ) (vE )∗GvE .

This allows to calculate ∂EλE and therefore also (30). Furthermore,

1

ı
(T E )∗G(∂ET E ) =

(
(A−1)∗(E − B) (A−1)∗

−A 0

) (
0 −1
1 0

) (
A−1 0
0 0

)

=
(

(A−1)∗A−1 0
0 0

)
.

As the eigenvectors of T E never have a vanishing upper component, this shows the
claimed positivity and therefore concludes the proof. From this the last fact follows. 
�

3.3. Scattering states and reflection matrix. Scattering states of HScat have to be con-
structed by matching �E with the bounded solutions �E

+ and �E− in the wire as given in
Sect. 3.2. This matching can be done in a purely geometric way that leads to a definition
of the reflection matrix, by applying Proposition 7 in the Appendix B to �E , �E

+ and
�E− . In this section, it is verified that this procedure leads to the reflection matrix of the
scattering set-up described in Sect. 3.1. Indeed, there is only a reflection of incoming
states from the wire to outgoing states into the wire, namely there are no transmitted
states. The incoming states are those having a positive group velocity and, due to Propo-
sition 3, are thus corresponding to those initial conditions generated from eigenvectors
�E

+ of the transfer matrix T E with positive Krein signature (at fixed energy E). Sim-
ilarly, the outgoing states use initial conditions with negative Krein signature. Hence
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incoming/outgoing plane waves (ψ±,n)n≤0 at energy E are given in terms of vectors
w± ∈ C

L by

ψ±,n =
(
0

1

)∗
(T E )n�E±w± ∈ C

L .

Up to now, the plane wave states are generalized eigenstates of the Schrödinger equation
at energy E in the wire only, and not yet of the Hamiltonian HScat of the wire coupled to
the insulator. Toget such solutionsφ of HScatφ = Eφ, one has to take linear combinations
of ψ+ and ψ− in such a manner that they match the �2-solutions in the insulator. Due to
the nearest neighbor hopping, this matching can be studied at the sites 0 and 1 via

�E
+ w+ + �E−w− = �E wIns, (31)

for some suitable wIns ∈ C
L . Here �E is the initial condition of all decaying solutions

of ĤInsφ = Eφ in the insulator. Starting from the initial condition �E , it is obtained in
the insulator via the transfer matrices as in (18). The matching (31) is illustrated in the
following picture.

�

��E
+ w+

�E−w−
�E wIns

All states constructed from this matching are called scattering states. As the connection
between these incoming and outgoing states is linear, one then defines the reflection
matrix RE at energy E by:

w− = RE w+. (32)

As �E spans an L-dimensional subspace, Eq. (31) shows that there is at most an L-
dimensional space of such solutions. In fact, it is precisely of dimension L (for an elliptic
wire). Then there is a purely geometric way of extracting a unitary matrix. In order to
stress this, Proposition 7 in Appendix B restates the following result in that context.

Proposition 4. Suppose that the wire satisfies the above Hypothesis. Then the space
of scattering states is of dimension L and spanned by �E

+ + �E− RE where RE is a
unitary L × L matrix called the reflection matrix at energy E. It is given by a Möbius
transformation of the stereographic projection �(�E ):

(RE )−1 = (
C(N E )−1C∗) · �(�E ).

In terms of V̂ E = (ĜE − ı1)(ĜE + ı1)−1, one has

RE = (
C(N E )−1CT ) · V̂ E . (33)

Proof. The Eq. (31) can be written in a matrix form as

(�E
+ , �E− )

(
W+
W−

)
= �E ,
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with L × L matrices W±. Next recall that N E = (�E
+ , �E− )C is a G-unitary, so that

(�E
+ , �E− )∗G(�E

+ , �E− ) = J ,

where J = diag(1,−1) as above. Hence (�E
+ , �E− )−1 = J (�E

+ , �E− )∗G so that

(
W+
W−

)
= J (�E

+ , �E− )∗G�E .

Moreover, (�E
+ , �E− )−1 maps the G-Lagrangian subspace �E to a J -Lagrangian sub-

space. This implies that W ∗
+W+ = W ∗−W− and that this operator is invertible. Conse-

quently W−W−1
+ is unitary. Writing

(
W+
W−

)
=

(
1

W−W−1
+

)
W+ =

(
1
RE

)
W+,

this shows the first claim. On the other hand, using the stereographic projection (21)
and the fact that matrix multiplication with G-unitary before stereographic projections
becomes Möbius action with the Cayley transform (just as in (22))

�(�E ) = �
(
�E

+ + �E− RE) = �
(
N EC∗

(
1
RE

))
= (

CN EC∗) · (RE )−1,

which after inversion of the Möbius transformation shows the second claim. The last
formula follows since the decaying solutions in the insulator are given by (20) so that
�(�E ) = (V̂ E )−1. Hence (39) implies

(RE )−1 = (
C(N E )−1C∗) · (V̂ E )−1.

Calculating the inverse completes the proof. 
�
For the following, it is important to extend the reflection matrix RE to complex

energies z = E + ıδ with small imaginary part by using (33). The existence of an
analytic continuation of V̂ E is guaranteed, under the stated conditions, by Proposition 1.
Furthermore, recall thatN E is merely obtained from the spectral analysis of the transfer
matrix T E of the wire and therefore it also has an analytic extension off the real axis.
Hence (33) becomes

Rz = (
C(N z)−1CT ) · V̂ z . (34)

Let us stress that Rz ∈ Ed and that it is invertible and differentiable as long as Proposi-
tion 1 holds. Finally let us note that it is possible to rewrite (34) in terms of the Green
matrices of the half-sided wire and the half-sided insulator. For simplicity, let us give
the outcome in the case of A = 1 and B = 0:

Rz = (
Ĝz

Wire − Ĝz
Ins

)(
Ĝz

Wire + Ĝz
Ins

)−1
.

Similar expressions have in one-dimensional context been used for a detailed spectral
analysis of the underlying operators [19].
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3.4. Odd Chern number of the reflection matrix.

Proof of Theorem 2. Let us first consider the case λ = 0 so that Ĥ is given by (12). Due
to (33), one can apply Lemma 2 withM = C(N E )−1CT to deduce that

[RE ]1 = [ad−1]1 + [V̂ E ]1,
wherea andd are the diagonal entries ofM.AsN E and thus alsoa andd are independent
of k, it follows that

Chd−1(R
E ) = Chd−1(V̂

E ).

Now one can analytically extend both sides as in (34) by using Proposition 1. Combined
with Theorem 1 this completes the proof of Theorem 2. 
�

Acknowledgements We thank an anonymous referee for filling a gap in one of the proofs. This research was
partly supported by DFG grant SCHU 1358/6-1.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

A. Cayley Transformation of Operators

LetH be a separable Hilbert space and B(H) the bounded operators onH. Let us define
the upper half plane and unit disc of operators on H by

U(H) = {
Z = X + ıY : X = X∗ ∈ B(H), 0 < Y ∈ B(H)

}
,

D(H) = {
Z ∈ B(H) : Z∗Z < 1

}
.

Recall that an operator Z with positive imaginary part Y = 1
2ı (Z − Z∗) is invertible.

Proposition 5. The Cayley transform C· defined as the Möbius transformation with the
matrix C given in (23) by

C · Z = (Z − ı)(Z + ı)−1

is a bijection from the upper half-plane U(H) to the unit disc D(H).

Proof. Clearly

C · Z = 1 − 2ı(Z + ı)−1.

Hence |C · Z |2 = (C · Z)∗C · Z ≥ 0 can be multiplied out to

|C · Z |2 = 1 + 2ı(Z∗ − ı)−1 − 2ı(Z + ı)−1 + 4(Z∗ − ı)−1(Z + ı)−1

= 1 − 4
(
(Z + ı)−1)∗

Y (Z + ı)−1.

As Y > 0, one indeed concludes |C · Z |2 < 1. The inverse map is given by the Möbius
transformation with C∗. 
�

http://creativecommons.org/licenses/by/4.0/
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B. G-Unitaries and Some of Their Properties

The transfer matrices are G-unitary, namely they satisfy (19). Here G is a non-degenerate
indefinite sesquilinear form with inertia (L , L). This appendix collects a few facts about
the spectral properties of a G-unitary T coming from finite dimensional Krein space
theory, see [10,14,29] and also [25].
(1) If λ is an eigenvalue of T then also (λ)−1 is an eigenvalue.
(2) Two generalized eigenspaces Eλ and Eμ of λ and μ are G-orthogonal if λ−1 �= μ,
meaning that v∗Gw = 0 for all v ∈ Eλ and w ∈ Eμ.

Definition 1. Let T be a G-unitary and λ be an eigenvalue of modulus 1. Its (Krein)
signature (ν+(λ), ν−(λ)) is defined as the signature of the sesquilinear form G restricted
to the generalized eigenspace Eλ. Eigenvalues for which either ν+(λ) = 0 or ν−(λ) = 0
are called definite or of definite signature. An eigenvalue which is not definite is called
indefinite or of mixed signature.

The signature is the central concept of Krein collision theory of unit eigenvalues which
essentially states that the signature in the above sense has to be conservedwhen eigenval-
ues leave the unit circle (see [10,14,25]). The following result shows that for eigenvalues
on the unit circle the definiteness can be checked by only looking at eigenvectors (and
hence not at the generalized eigenvectors).

Proposition 6. Let λ be an eigenvalue of a G-unitary T with |λ| = 1. Then, for both
σ = ±,

νσ (λ) = 0 ⇐⇒ (−σ) v∗Gv > 0 for all eigenvectors v of λ.

Proof. The implication�⇒ is clear. For the converse, we show that the condition on the
r.h.s. actually implies that Eλ only consists of eigenvectors so that again the definiteness
follows. Hence let us suppose that there is a non-trivial Jordan block, namely that there
are vectors v and w such that T v = λv and T w = λw + v. Then

v∗Gw = v∗T ∗GT w = (λv)∗G(λw + v) = |λ|2v∗Gw + λv∗Gv.

Hence

λv∗Gv = (1 − |λ|2)v∗Gw = 0.

But this shows v∗Gv = 0, which is a contradiction to the hypothesis. 
�
The previous proof actually also shows the following result.

Corollary 1. Let T be a G-unitary and λ be an eigenvalue of modulus 1.
(i) If there is a non-diagonal Jordan block for λ, then λ is indefinite and there exists an
eigenvector v such that v∗Gv = 0.
(ii) If λ is definite, then all Jordan blocks are diagonal.

Next let us consider a G-unitary T which is purely elliptic, namely it has only spectrum
on the unit circle with trivial Jordan blocks. We will bring this matrix in its normal form.
There exist 2L × L matrices �± of rank L consisting of eigenvectors for eigenvalues of
positive/negative signature such that

(�+, �−)∗G(�+, �−) = J , (�+, �−)−1T (�+, �−) =
(

�+ 0
0 �−

)
, (35)
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whereJ = diag(1,−1) and�± are diagonal L×Lmatrices.Using theCayley transform
(23) and the basis change N = (�+, �−)C, one can then check

N ∗GN = G, N−1T N = 1
2

(
�+ + �− −ı(�+ − �−)

ı(�+ − �−) �+ + �−

)
, (36)

namely N is G-unitary diagonalizing T to a direct sum of real 2 × 2 rotation matrices
multiplied by a phase factor. The entries of N are also denoted as follows

N = (�∨, �∧) = = 2− 1
2
(
�+ + �−,−ı(�+ − �−)

)
.

Both�∨ and�∧ span G-Lagrangian subspaces, and they are G-orthogonal to each other.
The following geometric result show that a unitary R specifies the position of a G-
Lagrangian plane w.r.t. a coordinate system given by a G-unitaryN = (�∨, �∧). When
applied to the scattering set-up, this unitary is the reflection matrix.

Proposition 7. Let � span a G-Lagrangian subspace and let N = (�∨, �∧) be a
G-unitary. Define L × L matrices N and M by

� = �∨ N + �∧ M. (37)

Then the matrix

R = (N − ıM)(N + ıM)−1, (38)

is unitary. Furthermore1 is eigenvalue of R if andonly ifF = Ran(�)andE = Ran(�∨)

have a non-trivial intersection. More precisely,

dim
(
Ker(R − 1)

) = dim(F ∩ E).

Using the stererographic projection � defined in (21), one has

�(�) = (CNC∗) · R, (39)

where · denotes the matrix Möbius transformation as defined in (24).

Proof. First let note that N and M are indeed well-defined. Actually, the equation can
also be rewritten as

(
N
M

)
= (�∨, �∧)−1 �,

becauseN = (�∨, �∧) is invertible. AsN is G-unitary, also
(N
M

)
spans a G-Lagrangian

subspace and its stereographic projection is nothingbut Rwhich is hence unitary [25]. Let
us check that directly once again. Indeed, one has N∗M = M∗N from the G-Lagrangian
property. From this follows that

(N ± ıM)∗(N ± ıM) = N∗N + M∗M ± ı(N∗M − M∗N ) = N∗N + M∗M,

so that N ± ıM are both invertible and also

(N + ıM)∗(N + ıM) = (N − ıM)∗(N − ıM),

so that

(N − ıM)(N + ıM)−1 = ((N − ıM)∗)−1(N + ıM)∗ = ((
(N − ıM)(N + ıM)−1)∗)−1

,
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that is R is indeed unitary. Finally

Ker(R − 1) = Ker
(
(N − ıM)(N + ıM)−1 − 1

)

= (N + ıM) Ker
(
(N − ıM) − (N + ıM)

)

= (N + ıM) Ker(M).

But a vector w in the kernel of M produces a vector �w = �∨Nw in the intersection
of F and E . This implies the claim. The last one follows from [24]. 
�
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