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Abstract—In this paper, novel Dual-Functional Radar-
Communication (DFRC) waveforms with peak average power
ratio (PAPR) constraint are designed, which are under the
multiple-input multiple-output (MIMO) radar-communication
system. The DFRC waveforms transmitted by multiple antennas
can send communication information to many downlink cellular
users and detect radar targets simultaneously. An optimization
model is established to minimize the downlink multi-user in-
terference (MUI) under PAPR constraint. The model is non-
convex quadratically constrained quadratic programs (QCQP)
and can be derived into a convex problem and solved by
using the semi-definite relaxation (SDR) technique with rank-
one approximation. Numerical simulations demonstrate that our
proposed waveforms can achieve a better radar performance
in practical scenarios without sacrificing the communication
performance.

Index Terms—Spectral coexistence, dual-functional radar-
communication, non-convex optimization, semi-definite relax-
ation, peak average power ratio constraint

I. INTRODUCTION

N recent years, Radio Frequency (RF) spectral congestion

has become a serious problem due to the tremendous
growth of spectral demands from different wireless applica-
tions, and the current inefficient spectral allocations [1]-[6].
Sharing the spectrum among both radar and communication
signals can be a promising method of addressing this issue. In
general, there are two approaches for achieving shared spec-
trum access of radar and communication. The first approach is
to let the radar systems transmit in the spacial and frequency
domains, they are unoccupied by any communication system.
To achieve this, a spatial filter can be designed to separate
the radar and communication signals [7]-[9]. Nevertheless,
such methods will cause potential cross interference and
serious degradation in the transmitting process if the radar
and communication signals are not perfectly separated .

The second approach is the joint design of dual-functional
radar-communication (DFRC) waveforms [10]-[14], which
can detect radar targets and transmit communication informa-
tion simultaneously. DFRC waveforms can prevent cross inter-
ference while taking full advantage of current hardware edge
caching capabilities. In [10], [11], communication information
are embedded into the radar intrapulse waveforms, while the
communication information have the property of low intercept
probability. In [12], a sequence of communication bits are
embedded into several orthogonal transmitted waveforms. The
mainlobe of this DFRC waveform is used for detecting the
targets, while the sidelobes are used to transmit information

to the communication receivers. In practical scenarios, radar
waveforms are often transmitted with nonlinear amplifiers,
and the radar waveforms should be designed with constant-
modulus (CM) or low peak average power ratio (PAPR). In
[14], CM DFRC waveforms are designed by use of a branch-
and-bound (BnB) algorithm, which is however computation-
ally inefficient. To further reduce the computational overhead,
a Riemannian conjugate gradient (RCG) algorithm has been
proposed in [15] for designing CM waveforms. While the CM
waveforms are able to fully adapt to the radar’s amplifier
restrictions, they may incur performance-loss to the output
signal noise ratio (SNR).

In this paper, we propose novel DFRC waveforms which
minimizes the downlink multi-user interference (MUI) under
the total transmitted power and PAPR constraints. A trade-off
parameter is introduced to control the priority of radar and
communication performance. Assuming that the communica-
tion channel matrix coule be estimated perfectly. While the
optimization problem is non-convex and NP (non-deterministic
polynomial)-hard in general, it can be efficiently solved by the
semidefinite relaxation (SDR) technique. By applying rank-
one approximation, the near-optimal solution can be achieved.
Numerical results demonstrate that the waveforms proposed in
this article can achieve a better radar performance in practical
scenarios without sacrificing the communication performance
and our algorithm obtains better performance in the DFRC
system compared to its CM counterpart.

II. SYSTEM MODEL

We consider a multiple-input multiple-output (MIMO)
DFRC system which is shown in Fig. 1, the RadCom Base
Station is equipped with N antennas which are located in a
uniform linear array (ULA). This system has the objective
of detecting radar targets, and communicate with K single-
antenna users simultaneously. The communication and radar
signal models will be introduced, respectively.

A. Communication Model
The received signal matrix at legitimate downlink users can
be defined as:
Y =HX+7Z, (1

where H = [hy, hy, ..., hg]" € CE*N represents the
channel matrix, which is assumed to be flat Rayleigh fading
and estimated perfectly, X = [xi,Xg,...,x7] € CNXL
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Fig. 1. MIMO dual-functional Radar-Communication system.

denotes the transmitted signal matrix, with L being the
length of the radar pulse or communication frame, and
Z = [z1,22,...,21] € CKXL denotes the noise matrix,
with z; ~ CN (0, NoIy),Vl € (1,2,...,L), where CN()
denotes Gaussian distribution. If the channel matrix H is
estimated imperfectly, a min-max optimization could be used
as a variable approach [9], [16] and it will be a future
avenue of research. With a known constellation symbol matrix
S € CK*L it is desired by the legitimate downlink users.
Therefore, the received signals can be rewritten as

Y=S+HX-S+7Z, ()
—_——
MUI

The entry of S € CE*L for each downlink user can be
assumed to be taken from the same alphabet, such as a quadra-
ture phase shift keying (QPSK) constellation. The second term
in (2) is defined as the multi-user interference (MUI) signals,
and the total MUI energy can be expressed as

Pyur = |[HX - 8|17, 3)

Since the achievable sum-rate of the legitimate downlink users
is affected by the MUI energy directly [17], the Signal-to-
Interference-plus-Noise-Ratio (SINR) in each pulse for the i-th
user can be expressed as

E (|Si,j|2>
ni = ; “)
’ E (‘h?X] — Si,j’2) —|—N0

MUI energy

where s; ; denotes the (¢,7)th entry of S, and E represents
the total average in relation to the pulse width. Therefore, the
achievable sum-rate of the users is defined as

K

T'=> log, (1+m), (5)

=1

It can be observed that the power of our signal E (|sz j \2) isa
constant parameter when the energy of a known constellation
is fixed. Thus, maximizing the sum-rate turns into minimizing
the MUI energy.

B. MIMO Radar Model

It is well known that MIMO radar has many advantages such
as improving the spatial resolution and enhancing the ability
of anti-jamming due to the high Degrees of Freedom (DOFs)
[18], [19]. In addition to these points, the overall waveform
diversity of the system has also been improved which can
be advantageous in a congested or contested environment.
The general approach of MIMO radar waveform design is
focused on designing the beampattern, which is equivalent to
the covariance matrix of the transmitted signals, and it can
be solved by the convex optimization [20]. Here our radar
model only consists of the thermal noise, but in the practical
scenarios clutter and jamming could also affect the radar
performance. More complicated radar models can be used, and
some robust estimates, based on geometric considerations as
well as statistical properties of covariance matrix can be used
to improve the performance of the classic sample covariance
[21]-[23]. In our MIMO radar systems, the waveforms should
be designed with the low auto-correlation and cross-correlation
sidelobes under the CM or lower PAPR constraint [24]-[26].
Here, we focus on designing a directional beampattern, our
desired spatial covariance matrix of the DFRC transmitted
signals is expressed as

Ry = %XXH = %IN, (6)
where Iy represents the N dimensional identity matrix. Thus,
the orthogonal linear frequency modulation (LFM) waveforms
X are regraded as our reference waveforms. The (n,l)-th
sampling point of Xy(n,!) can be expressed as:

exp{j2mn(l — 1)/Lyexp{jn(l - 1)2/L}
VNP,
wheren=1,...,N,l=1,...,L, and P, is the total transmit

power. Our novel DFRC waveforms are based on the radar and
communication systems defined above.

Xo (n,1) = (7

III. TRADE-OFF BETWEEN RADAR AND COMMUNICATION
PERFORMANCE WITH PAPR CONSTRAINT

A. Conventional trade-off DFRC waveform design

We first provide the optimization problem of conventional
trade-off DFRC waveform design under the total transmitted
power constraint

min pl|HX — S|[% + (1 - p) | X — Xol[3

(3)
st.1|X|2 = P,

where p € [0,1] is the weighting coefficient that controls the
balance of radar and communication performance in DFRC
waveforms. Assuming that A = [\@HT,\/I prN]T €



CE+N)xN B — [\/EST’ G —- —pX(ﬂT e CE+N)XL, (8)

can be rewritten as:
min |AX - BJ3,
s.t.||X||%7 =LP,

It is a non-convex quadratically constrained quadratic program
(QCQP) which can be converted into a Semidefinite Program-
ming (SDP). This optimization problem can be solved by the
method of Semidefinite Relaxation (SDR), and further details
can be found in [14].

)

B. Trade-off DFRC waveform design with PAPR constraint

According to the analysis above, we combine the con-
ventional trade-off DFRC waveform design with the PAPR
constraint. PAPR is a significant parameter in the aspect of
transmitting radar waveforms, and large PAPR can distort
radar waveforms. The optimization problem can be expressed
as:

min |AX - BJ},
st ||X|% = LP, (10)
PAPR(X) < 7;

where r € [1, NL]. In the case where r = 1, it transforms
into the CM constraint. The PAPR constraint can be given as
follow [26], [27]

max |z(m)|’

PAPR(x) = —™ <r

£ -
NL

where x = vec(X) € CNEX! ;= 1,...,NL. It can be
observed that the total transmitted power and PAPR constraints
have transformed into a quadratic equality constraint and a

series of quadratic inequality constraints, respectively:

(1)

x"x = LP,,
(12)
XHme < &
where
1 i=m and j=m
E,.(i,7) = 13
m(@:7) {0 otherwise. (13)

where E,,, € RVIXNL 1n order to combine the vectorized
PAPR constraint with the objective function together, the
objective function of (10) must be vectorized. The A can be
written into one diagonal matrix:

A
A 0
A — e CE+N)LxNL (14)
0 A
A
and b = vec(B) € CE+N)EX1 Thys, (10) can be rewritten
as: -
min [|[Ax — b||?,
st. xfx=LP,
xHE,,x < %.
where (15) is a non-convex QCQP with a non-convex

quadratic equality constraint and a series of quadratic inequal-
ity constraints.

(15)

IV. SOLUTION TO THE OPTIMIZATION MODEL

The SDR techniques have been shown to be an effective
method to solve the problem of waveform design with a non-
convex QCQP. According to the analysis in [28], we apply the
matlab CVX tools [29] to solve this problem after a series of
derivations. Thus, we have the following transform:

_ %(A) —%(A) 2(K+N)Lx2NL
G= S(A) R(A) €R . (16)
s=[R(x) Sx)|" eR¥NX 17
y = [R(b) S(b)]" e RAFFMIXL - (13)

where R(C) and 3(C) denote the real value and the imaginary
value, respectively. The objective function of (15) can be
rewritten as:

min | Gs — y]|?, (19)
Here, (19) is an inhomogeneous QCQP. In order to homoge-
nize (19), we introduce one new parameter v and assume that

v? = 1. Then, (19) is equivalent to the following expression:
min vy — Gs||?, s.t. 0?=1. (20)

Thus, (20) can be expressed as a homogeneous QCQP:

GTG -GTy|[s
min [s7 v { . st vi=1
R e
2D
Assuming that § = [s7 v] € RENL+HDX1 gpg
GT'a —GTy]
D= 22
LS e 22
Then, (19) turns into the following expression:
min  §'Ds, st. =1 (23)
s,v

For the quadratic constraint in (15), based on the constraint
condition in (23), and s is used to replace the parameter x.
Thus, we have the following expression:

s's=LP +1,
re - P (24)
§TE,§ < N
where
1 i=w and j=w
E,(i,j)=41 i=NL+4+w and j=NL+w (25)
0 otherwise.

where E,, € RENLADXCNLHD) and o € [1,...,2NL + 1].
Combining (23) and (24) together, the optimization model of
DFRC waveform design with the total transmitted power and
PAPR constraints becomes:

min §7Ds,
st. vi= ,
s's=LP +1, (26)

T £ Pt?
w <_



TABLE I
THE VALUE OF AVERAGE ACHIEVABLE SUM-RATE FOR DIFFERENT
WAVEFORMS IN THE SAME PAPR, p = 0.5.

PAPR
‘Waveforms ! 15 2 25 3
AASR Zero-MUI 13.84 | 13.84 | 13.84 | 13.84 | 13.84
(bps/Hz) Chirp-Tradeoff-Total 12.69 | 12.69 | 12.69 | 12.69 | 12.69
Chirp-Tradeoff-Total-PAPR | 11.93 | 12.38 | 12.61 | 12.66 | 12.69

To further improve the objective function, the following as-
sumptions can be made S = 87§, and tr(S) = tr(s”s). (26)
can be rewritten as:

min  tr(DS),
S, v
st. S@NL+1,2NL+1) =1,

tr(S) = LP, + 1, 27)

_ . P
tr(EwS)g% w=1,... 2NL,

rank(S) = 1.

It can be observed that the only non-convex constraint is

rank(S) = 1. By using the rank-one approximation, we get
tr(DS),

st. S2NL+1,2NL+1) =1,

- 28
trS):LPt+1, ( )

(
P
tr(E,S) < % w=1

It is apparent that the optimal solution can be solved using
the SDR technique with rank-one approximation. Then, we
can get the optimal solution sopt, and inverse vectorization is
applied to obtain 8.y, Where Sopt = [Sopt  v]. The optimal
waveforms can be expressed as Topt, = Sopt,, +\/jlsoptp+m ,
where p € [1, NL]. The proposed DFRC waveform design
is a SDR problem and can be solved by matlab convex
optimization toolboxes with an interior-point algorithm, which
needs a total O((2NL + 1) log(1/e¢)) complex floating-
point-operations(flops), where one complex flop is defined as
one complex addition or multiplication and € > 0 is a solution
accuracy.

V. SIMULATION RESULTS

In this section, numerical simulations are provided to illus-
trate that our novel DFRC waveforms have improved radar per-
formance without sacrificing the communication performance
than the conventional DFRC waveforms proposed in [14].
‘Chirp-Tradeoff-Total’ and ‘Chirp-Tradeoff-Total-PAPR’ de-
note the conventional DFRC waveforms and the DFRC wave-
forms with the total transmitted power and PAPR constraints,
respectively. When r» = 1, the PAPR constraint transforms into
the CM constraint, and ‘Chirp-Tradeoff-Total-CM’ denotes the
DFRC waveforms with the total transmitted power and CM
constraints. Without loss of generality, assuming that the total
transmitted power P, = 1, and SNR = P,/N. There are
N = 8 antennas in the DFRC system, and the system transmits
information to K = 4 single-antenna receivers. The length of

SNR = 10 (dB)
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Fig. 2. Average achievable sum-rate and PAPR for different waveforms.
‘Chirp-Tradeoff-Total’ and ‘Chirp-Tradeoff-Total-PAPR’ denote the conven-
tional DFRC waveforms and the DFRC waveforms with the total transmitted
power and PAPR constraints, respectively. ‘Zero-MUI’ represents the ideal
situation where the MUI energy is zero. p is the trade-off parameter.
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Fig. 3. Average achievable sum-rate comparison for different waveforms in
the same SINR. ‘Chirp-Tradeoff-Total-CM’ denotes the DFRC waveforms
with the total transmitted power and CM constraints; ‘Chirp-Tradeoft-Total-
PAPR’ denotes the DFRC waveforms with the total transmitted power and
PAPR constraints; ‘Chirp-Tradeoff-Total’ denotes the conventional DFRC
waveforms. 7 is the PAPR constraint parameter. p is the trade-off parameter.

DFRC waveform pulse is set to be L = 20. Each entry of H
subjects to the standard complex Gaussian distribution, and
the constellation in S € {1 4+ j,1 —j,—1 + j,—1 — j} is
selected to be the QPSK alphabet, and they correspond to the
communication signal bits {00,01,10,11}.

The communication performance achieved by different ap-
proaches are shown in Fig. 2 and Fig. 3. ‘Zero-MUT’ represents
the ideal situation where the MUI energy is zero. The trade-off

TABLE I
THE VALUE OF AVERAGE ACHIEVABLE SUM-RATE FOR DIFFERENT
WAVEFORMS IN THE SAME SINR, p = 0.5.

SINR(dB)
Waveforms 202 |4 |8 12
Zero-MUI 2.8(55[73|11.5]16.3
AASR [ Chirp-Tradeoff-Total 2.8)53[69|104]13.8
(bps/Hz) | Chirp-Tradeoff-Total- PAPR,r = 1.5 2.8 5.3 6.9 10.4 | 13.7
Chirp-Tradeoff-Total-CM,r = 1 28[5.1]65]95 [12.0
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Fig. 4. Radar detection probability and SNR for different approaches and
parameters, N = 8, L =20, Ppp = 107, ‘Chirp-Tradeoff-Total-CM’ denotes
the DFRC waveforms with the total transmitted power and CM constraints;
‘Chirp-Tradeoff-Total-PAPR’ denotes the DFRC waveforms with the total
transmitted power and PAPR constraints; ‘Chirp-Tradeoff-Total’ denotes the
conventional DFRC waveforms; ‘Orthogonal-Chirp-Waveform’ denotes the
reference waveforms. r is the PAPR constraint parameter. p is the trade-off
parameter.

TABLE III
THE VALUE OF Pp FOR DIFFERENT WAVEFORMS IN THE SAME SINR.
SINR(dB)
Waveforms 2 10 2 4
Orthogonal-Chirp-Waveform 0.931.00|1.00| 1.00
Chirp-Tradeoff-Total,p = 0.5 0.630.90 | 1.00 | 1.00
P Chirp-Tradeoff-Total-CM,r = 1,p = 0.8 0.5710.75]10.8810.99
b Chirp-Tradeoff-Total-CM,r = 1,p = 0.2 0.7410.93]1.00 | 1.00
Chirp-Tradeoff-Total-PAPR,» = 1.5,p = 0.5 [ 0.61 | 1.00 | 1.00 | 1.00
Chirp-Tradeoff-Total-CM,r = 1,p = 0.5 0.6310.86[0.98]1.00

parameter p is set to be 0.5. In Fig. 2, when SNR = 10 dB, with
the increasing of r, the average achievable sum-rate (AASR) of
our novel DFRC waveforms with the total transmitted power
and PAPR constraints approaches to the AASR of conventional
DFRC waveforms. When r = 1.5, they almost cross together,
and the data can be observed in Table I. Thus, we assume
that » = 1.5 is the upper bound to limit the communication
performance. Here, we need to highlight when r = 1, PAPR
= (0 dB, and our novel DFRC waveforms are under the CM
constraint. In Fig. 3, our novel DFRC waveforms with different
PAPR constraints are shown. Our novel DFRC waveforms
which under the total transmitted power and CM constraints
obtain the worst AASR comparing with the other situations.
The data can be observed in Table II. With the increase of 7,
the AASR of our novel DFRC waveforms approaches to the
AASR of conventional DFRC waveforms.

The radar performance achieved by different approaches

TABLE IV
THE VALUE OF ACLSS AND PAPR FOR DIFFERENT WAVEFORMS.

Parameter ACSLs(dB) | r

‘Waveforms

Orthogonal-Chirp-Waveform -26.52 1.0
Chirp-Tradeoff-Total,p = 0.5 -6.41 4.0
Chirp-Tradeoff-Total-PAPR,r = 1.5,p = 0.5 -7.75 1.5

0.6 T T T

Amplitude
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—— Chirp-Tradeoff-Total, p = 0.5
Chirp-Tradeoff-Total-PAPR, r=1.5, p = 0.5
N n

0 5 10 15 20
Index

Fig. 5. The waveforms in time domain with different approaches.
‘Orthogonal-Chirp-Waveform’ denotes the reference waveforms; ‘Chirp-
Tradeoff-Total’ denotes the conventional DFRC waveforms; ‘Chirp-Tradeoff-
Total-PAPR’ denotes the DFRC waveforms with the total transmitted power
and PAPR constraints. 7 is the PAPR constraint parameter. p is the trade-off
parameter.

-10 -
<151
-20
25 {
-30

-35

Auto-correlatioin function (dB)

-40

—— Orthogonal-Chirp-Waveform
-45 —E— Chirp-Tradeoff-Total, p = 0.5
Chirp-Tradeoff-Total-PAPR, r=1.5, p = 0.5
50 h n N I I L\
-15 -10 5 0 5 10 15
The sample

Fig. 6. The auto-correlation function of the waveforms with different
approaches. ‘Orthogonal-Chirp-Waveform’ denotes the reference waveforms;
‘Chirp-Tradeoff-Total’ denotes the conventional DFRC waveforms; ‘Chirp-
Tradeoff-Total-PAPR’ denotes the DFRC waveforms with the total transmitted
power and PAPR constraints. r is the PAPR constraint parameter. p is the
trade-off parameter.

and parameters are shown in Fig. 4, Fig. 5 and Fig. 6. The
Orthogonal-Chirp-Waveforms in (6) are used as the reference
waveforms, and the detection probability Pp is applied to
determine the detection performance as a metric [8, eq.(69)].
Assuming that the target is point-like and in the far-field, and
the angle of target is 45°. The false-alarm probability of radar
is set to be Ppa = 10~ 7. With the increase of r or the
decrease of p, our novel DFRC waveforms approach to the
reference waveforms. The data can be observed in Table III.
When r = 1.5 and p = 0.5, the detection probability value
of our novel DFRC waveforms and the conventional DFRC
waveforms are overlapped together. It means that they have the
same performance of radar detection ability in the simulation.
In Fig. 5, the waveforms designed with different approaches
are shown in time domain. According to the function in
(6), the modulus of Orthogonal-Chirp-Waveforms is constant.
Thus, the blue line which stands for the Orthogonal-Chirp-



Waveforms is a straight line and regarded as the reference.
The orange line denotes the Chirp-Tradeoff-Total waveform
and the yellow line denotes the Chirp-Tradeoff-Total-PAPR
waveform. The data is shown in Table IV. It can be observed
that the conventional DFRC waveform has higher peak altitude
than our novel DFRC waveform. As assumed above, our novel
DFRC waveforms are designed under the PAPR constraint
with r = 1.5, while the PAPR of conventional DFRC wave-
form is 7 = 4 via calculations. The auto-correlation sidelobes
(ACSLs) in range direction are shown in Fig. 6, all the signals
are processed by hamming window. It can be observed that
the ACSL of Orthogonal-Chirp-Waveforms is -26.52dB, the
ACSL of Chirp-Tradeoff-Total waveforms is -6.41dB, and the
ACSL of Chirp-Tradeoff-Total-PAPR is -7.75dB. It means that
our proposed DRFC waveforms have the lower sidelobes than
the conventional DRFC waveforms. In addition, in practical
systems, the conventional DRFC waveforms will suffer from
more severe degradation due to a large distortion accrued in the
signal transmitting process. Thus, our novel DFRC waveforms
achieve better radar performances with lower PAPR.

VI. CONCLUSION

In this paper, the novel DFRC waveforms with the total
transmitted power and PAPR constraints are designed. By
minimizing the MUI energy and controlling the trade-off
parameter to allocate the priority of performance between
radar and communication system. The optimization model is a
non-convex problem with one quadratic equality constraint and
a series of quadratic inequality constraints. This problem has
been solved using the SDR technique. Numerical simulations
demonstrate that our novel DFRC waveforms achieve better
performance in radar system without sacrificing the communi-
cation performance. In the future, we will do more researches
on the DFRC waveform design when the imperfect estimations
of the channel matrix are considered.
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