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Abstract  

Behavioural researchers often seek to experimentally manipulate, measure, and analyse 

latent psychological attributes, such as memory, confidence, or attention. The best 

measurement strategy is often difficult to intuit. Classical psychometric theory, mostly 

focused on individual differences in stable attributes, offers little guidance. Hence, 

measurement methods in experimental research are often based on tradition and differ 

between communities. Here, we propose a criterion, which we term retrodictive validity, 

that provides a relative numerical estimate of the accuracy of any given measurement 

approach. It is determined by performing calibration experiments to manipulate a latent 

attribute, and assessing the correlation between intended and measured attribute values. 

Our approach facilitates optimising measurement strategies, and quantifying uncertainty in 

the measurement. Thus, it allows power analyses to define minimally required sample sizes. 

Taken together, our approach provides a metrological perspective on measurement practice 

in experimental research that complements classical psychometrics. 
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Introduction 

When planning behavioural experiments, researchers must decide which observables to 

collect (observation), and how to pre-process them (transformation), before performing 

statistical analyses. In many fields of behavioural science and psychology, there are no hard 

criteria to make these decisions, although they can have a drastic impact on the conclusions 

from a given study 1-3. Often they are based on common laboratory practice or expert 

consensus (e.g. 4, 5), under the implicit assumption that tradition and expertise have evolved 

to approximate the best method. However, recent research has highlighted a wide variability 

in observation 6 and transformation 2, 3, 7, 8 methods within different fields of psychology. In 

this paper, we develop a quantitative criterion for evaluating measurement methods in the 

context of experimental research. We ground our approach in classical validity theory and 

seek to surmount its shortcomings by integrating metrological concepts from technology.  

Experimental measurement in psychology 

We constrain our focus to the experimental study of the human mind, which includes many 

fields of psychology. As the mind is not directly observable, its attributes are assessed from 

observable behaviour, such as verbal expressions, motor responses, or physiological 

processes. Thus, the psychological inverse problem is how to infer a latent psychological 

attribute from an observation 9, a process often termed measurement. 

Across sciences, there are at least two questions associated with measurement: whether it is 

meaningful, and whether it is accurate. The first question is addressed by measurement 

theory, concerned with the formal representation of empirical observations as numbers, and 

the rules that can be applied to these numbers 10. For example, a majority of psychologists 
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represent observations such as response times with real numbers and treat them as if they 

were on an interval scale, i.e. additive 11. Measurement theory prescribes fundamental 

axioms any representation must obey to be truly additive 10. These axioms can be empirically 

tested. For example, two equal weights combined must weigh as much as the sum of the 

individual weights, an operation termed concatenation. Because one cannot concatenate 

psychological attributes in this way, representational measurement theory provides 

alternative tests of additivity 10. Measurement theory operates on idealised empirical 

observations. For example, the measurement of the same weight with the same instrument 

is regarded as invariant 10, which does not account for the measurement error present in 

even the most precise weight measurements 12. For weight measurement, this error is 

relatively small, and can be “averaged out” by repeated measurement. This situation is 

rather different in psychology, where measurement error can be on the same order of 

magnitude as differences between experimental conditions. This makes any test of 

measurement axioms challenging – and indeed they have only been investigated in the 

subdisciplines of psychophysics, item-response theory, and behavioural economics 10. 

The second question is addressed by metrology, which is concerned with the quantification 

of measurement error through calibration, and its reduction by suitable technology 13. A 

related field in psychology is psychometrics. Metrology assumes a true attribute score 

(without any realist claims on its existence outside measurement), and an (often 

probabilistic) measurement model that describes how this true score relates to the 

observation. Measurement can be cast as inference on the true score 12. The quality of a 

measurement is judged by its accuracy. Given hypothetical repetitions of the measurement, 

accuracy can be decomposed into two components: low variability of the inferred attribute 

under constant true scores (precision, i.e. low random measurement error, also termed 
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variance), and low average distance from the true scores (trueness, i.e. low systematic 

measurement error, also termed bias) 14. We note that “trueness” alone is sometimes 

referred to as “accuracy” in the wider literature; here we use metrological conventions.   

Our proposal is grounded in this second, metrological perspective and aims at reducing 

measurement error. In doing so, we hope to advance the first perspective as well, by 

facilitating empirical tests of measurement axioms.  

Classical psychometric concepts: construct validity and reliability 

According to a psychometric perspective, measurement methods should be valid and 

reliable 15. These crucial concepts were developed to evaluate the measurement of stable 

attributes for which the true scores are unknown 16. To evaluate the measured score, the 

unknown true score is surrogated with a known variable, termed criterion: a concurrent 

measurement related to the attribute in question (concurrent validity), a process or 

observation that is influenced by the attribute (predictive validity), or properties of the 

measurement instrument itself (content validity) 17. However, because there is usually no 

singular criterion, researchers form a nomological net that defines how the studied 

attribute, in theory, relates to other attributes or observables. A measurement of the 

attribute is considered to have construct validity if it occupies the same place in the 

nomological net as the attribute itself 16. Because there is no method to combine the 

observed correlations within the nomological net into a single number 16, and because the 

predicted correlations are usually specified in loose terms rather than as precise coefficients 

16, 18, the concept of construct validity cannot serve to quantify trueness and precision. 
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Classical reliability, on the other hand, assesses how interindividual differences in the 

measurement are stable across repetitions - over time or over test items. This addresses 

measurement precision but not trueness 16. Indeed, improving reliability may even reduce 

trueness. For example, if one replaces a standard intelligence test score with a measurement 

of index finger length, the inferred attribute will be very reliable, but is unlikely to have a 

strong relation with actual intelligence. Thus, interpreting reliability metrics requires a 

criterion to guarantee trueness 16.  

Retrodictive validity  

Classical validity theory is built on the premise that the true score is unknown, and that 

there is no observable variable (outside the measurement to be evaluated) that captures all 

relevant variance in the true score. Therefore, classical validity theory cannot provide a 

single criterion for validity assessment. However, in experimental research on volatile 

attributes, the true score can be influenced by experimental manipulation. This creates an 

opportunity to apply the metrological concept of calibration, which is based on 

measurement in a standardized experiment. We propose that intended values of the true 

score in such a calibration experiment can provide a singular criterion to assess accuracy 

(Figure 1A). We term this type of criterion validity "retrodictive validity", since the aim is to 

retrodict the (experimentally induced) values of the psychological attribute. Note that we 

have previously used the term "predictive validity" 19, 20, which confusingly refers to a 

different concept in classical validity theory and as such we have dropped it in more recent 

publications 21. We illustrate this approach with a worked example before discussing the 

general conditions under which this framework will yield improved accuracy. Table 1 
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provides an exemplary and non-exhaustive list of further application examples across 

different subfields of psychology. 

 

 

 

Figure 1. Retrodiction and calibration. A: A standardised experiment with intended attribute 

scores e generates true scores t. The measured attribute, y, is generated by transforming 

some observed data. Retrodictive validity denotes the observable correlation between e and 

y, and is influenced by the measurement error as well as by the correlation between 

experimental aberration and measurement error, Cor(ω, ε). B: The calibration process. 

Expert consensus defines calibration experiments. Different observables and 

transformations can be optimised and evaluated. The calibration report is fed back to the 

community and inspires refined calibration experiments, observables, and measurement 

models.  
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Table 1: Example latent attributes from different subfields of psychology for which 

calibration experiments appear feasible 

Subfield Latent attribute Possible 
calibration 
experiments 

Specification of 
intended values 
per theory 

Application 
outside calibration 

Perception Perceived stimulus 
property (e.g. 
length) 

Manipulation of 
true stimulus 
property 

Interval scale with 
arbitrarily many 
levels (true 
stimulus property)  

Investigating 
Bayesian 
integration of prior 
expectation 

Learning  Stimulus-stimulus 
or stimulus-
response 
association 

Pavlovian 
conditioning, 
operant 
conditioning 

Interval scale with 
3 or more levels 
(associative 
learning theory) 

Evaluation of 
learning 
interventions 

Memory Declarative 
memory 

Number of 
repetitions in word 
lists 

Interval scale with 
3 or more levels 
(retrieved context 
theory) 

Measuring clinical 
memory 
impairments 

Cognition Spatial attention Spatial cueing task Ordered levels Investigating 
influence of spatial 
attention on 
evidence 
accumulation in 
value-based 
decision-making 

Decision-making Utility Food-deprived vs. 
satiated state 

Ordered levels Comparing 
theories of 
economic choice 

Metacognition Decision 
confidence 

High vs. low noise 
in perceptual 
decision 

Ordered levels  Comparing 
metacognition 
across domains 

Emotion Subjective feeling 
of ‘disgust’ 

Disgust-eliciting 
video exposure vs. 
neutral video 

Ordered levels Investigating the 
role of disgust in 
trauma-related 
disorders 

Social psychology Physical attraction Exposure to photos 
of attractive 
physiques of 
preferred vs. non-
preferred sex 

Ordered levels Investigating the 
dynamics of 
emerging social 
media platforms 
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Worked example 1: quantifying implicit learning 

We consider a group of clinical psychologists who have proposed a novel technique to 

reduce trauma memory. To evaluate their intervention in healthy individuals, they 

experimentally create aversive associations and seek to reduce them with their novel 

method. To this end, they conduct an experiment in which a person associates a geometric 

cue with an electric shock (CS+) and another cue with no shock (CS-), a procedure often 

termed fear conditioning. They want to measure the ensuing associative memory after the 

subsequent intervention, compared to a control group with no intervention. They record 

each person's skin conductance response to the geometric symbols, which is known to be 

influenced by implicit memory for the electric shock. Then they need to find the best 

possible transformation for quantifying the attribute ‘implicit associative threat memory’ 

from the observed skin conductance responses. A related question is whether a different 

observation (such as cardiac responses) may provide an even better measurement.  

In the absence of any memory intervention, a plethora of research has demonstrated in 

healthy individuals and using various measurement methods that CS+ is more strongly 

associated with electric shock than CS-. We can transform this ordinal prediction into real-

valued intended values, which we denote with e: CS+ is assumed to instil a higher level of 

aversive memory (e = 1) than CS- (e = 0). One could also create more than two levels of e by 

leveraging classical associative learning theory. Here, one prediction is that the difference 

from CS- aversive memory for a third cue C has half the size of that for CS+ if an association 

was established with compound cue CX (e = 0.5).  

Our proposal is to perform an independent pilot experiment, without the experimental 

intervention, and measure skin conductance. One can then select the data transformation 
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(pre-processing) method that yields the highest correlation between intended associative 

memory values e, and measured associative memory values y, i.e. the highest retrodictive 

validity. We term this a calibration experiment. In our example, the calibration procedure 

can be identical to control group in the planned substantive experiment, just without the 

planned intervention, which additionally allows power analyses (see below). The formal 

calibration process now proceeds in three steps. 

1. Defining the measurand: The procedure that is used to create fear memory for calibration 

includes specifying the CS (e.g. triangles with specific size and colour), the US (e.g. electric 

shock with defined strength), the reinforcement schedule, the CS-US interval, the inter trial 

interval, the number of trials, the instructions, the preparation of the participant, and so on.  

2. Validity conditions: These are the measurement conditions under which the optimised 

measurement method is assumed to be optimal. For example, fear memory-induced skin 

conductance responses occur with some latency after CS presentation. This latency is 

influenced by the duration and regularity of the CS-US interval, and so the CS-US interval is 

an important validity condition. In a future experiment with deviating CS-US interval, the 

optimised measurement method from the calibration experiment may not be optimal 

anymore. In contrast, discriminability of CS+ and CS- colour is not among validity conditions. 

Discriminability is suspected to influence the effectiveness of the experimental procedure, 

that is, the variability in true scores between participants. This impacts on retrodictive 

validity but is independent from any specific measurement method and is not known to 

influence measurement error. The next section clarifies the relation between variability in 

true scores (which we term experimental aberration), and measurement error. 



 
11 

 

3. Reporting the relationship: In the simple case of discriminative fear conditioning, 

researchers will report Cohen’s d or Hedge’s g for the CS+/CS- difference across participants. 

They will compare several methods in one sample and report the ranking of the methods. 

The planned memory-editing experiment consists of a control group that receives the same 

treatment as in the calibration experiment, and an intervention group in which this 

treatment is followed by the memory-editing intervention. In this situation, we can assume 

that both the experimental aberration and the measurement error in the control group are 

the same as in the calibration experiment. This situation allows performing a power analysis 

for the planned experiment (Figure 2, see ref 22 for an example). Imagine that in the 

calibration experiment, the method with highest retrodictive validity achieved an effect size 

of (Cohen’s) d = 1.2 for the within-subject CS+/CS- difference. If the intervention itself has no 

variation across participants (which is a best-case assumption), then it will simply shift this 

distribution towards zero in the intervention group. The researchers want to be able to 

detect a reduction in fear memory of 50% or more, with 80% power in a one-tailed t-test at 

p < .05. The difference between a control group that is similar to the calibration experiment, 

and an intervention group with 50% less fear memory, corresponds to an effect size of 

Cohen’s d = 0.6, resulting in N = 72 participants. Any variation in the effectiveness of the 

intervention would increase the experimental aberration in the experimental group and 

further increase the required sample size. 
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Figure 2: Power analysis. Standard normally distributed scores y in a calibration experiment 

(black) are affected by measurement error and experimental aberration. In this example, an 

experimental treatment is composed of the same manipulation as in the calibration 

experiment and either an additional intervention (red lines), or no intervention (control, 

black lines). In the best-case scenario of no intervention variability, the distribution of 

measured scores in the intervention group will be the same as in the control group with 

shifted mean. In this example, d = 1.2 in the calibration experiment, and a 50% fear memory 

reduction in the intervention corresponds to a between-group effect size of d = 0.6, resulting 

in N = 72 participants to measure this fear memory reduction with 80% power at p < .05 in a 

one-tailed t-test. 

 

0 0.6 1.2
SCR(CS+) - SCR(CS-)

Intervention
Control
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Retrodictive validity and measurement accuracy 

For a formal treatment, we now define key terms (see Figure 1A for illustration and 

supplemental material for mathematical detail). As in classical test theory and other true 

score theories 23, 24, we assume the existence of real-valued true scores of a psychological 

attribute, which we denote t. We assume a priori that they are measurable (in a 

measurement-theoretic sense 10) and on interval scale. With our (within- or between-

subjects) experimental manipulation, we seek to achieve intended differences in t; we 

denote these experimentally intended values with e. We note that psychological theories 

differ in how quantitative their predictions are. Some theories, such as associative learning 

theory or perceptual decision theory, prescribe the intended values on several levels of an 

interval scale. Other theories may make only ordinal predictions for two levels of the 

attribute. In such cases, we specify e by assuming a fixed average difference in intended true 

score, which brings e on an interval scale. This additional assumption will usually not affect 

accuracy assessment, as we will see later.  

We are interested in an error-free measurement of the true score from some observable 

quantity. We make no assumption on the measurement model that is used to transform the 

observable. We denote the resulting estimate of the true score with y and assume it is on an 

interval scale. Thus, when we evaluate the measurement method that generates y, we 

evaluate the observation method together with a measurement model or transformation 

method.  

In the ideal case of an error-free measurement, since psychological attributes have no 

natural scale, there is an arbitrary linear mapping between e, t, and y. Any non-linearity in 

the mapping between these variables constitutes a misspecification of the intended values  
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Figure 3: The retrodiction approach. A: The ideal relation between intended and true scores 

is a linear mapping with arbitrary coefficients (grey line), but the true relation is possibly 

non-linear (systematic aberration, black line) and imprecise (distribution of red dots). 

Because there are only two values of experimental manipulation in this example, the 

systematic aberration does not influence the correlation between e and t. B: Similarly, the 

relation of true scores and measured scores includes systematic error and imprecision. C: 

Resulting mapping from intended to measured scores is assessed by their correlation, that is, 

a linear mapping (grey line), but the true relation may be non-linear (black line, composition 

of the two non-linear functions in A and B), and imprecise (distribution of data points). D-F: 

Same model but with three (not equidistant) intended scores. Here, the systematic 

aberration impacts the resulting error in F. G-I: Correlation between e and y under three 

different levels of measurement error ε. In I, ε=0, but experimental aberration renders the 

resulting error non-zero.   
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in the underlying theory, or a misspecification of the measurement model, and so we regard 

it as an error term. 

Our goal is to evaluate trueness and precision of y. If we have several measurements (e.g. 

participants) per level of e, the total measurement error is jointly influenced by trueness and 

precision. Our goal is to minimize the total measurement error.  

First, we consider the mapping from e to t. In an ideal experiment, this would be a non-

stochastic linear mapping. Any deviation from this situation constitutes experimental 

aberration 𝜔. Aberration can be decomposed into two terms. The first is non-linearity, a 

systematic (i.e. across subjects) misspecification of e, which reduces the trueness of the 

experimental model. This is illustrated in Figure 3A where the black line denotes the actual 

non-linear dependency between e and t, which is contrasted to a linear relationship 

illustrated by the grey line. If there are just two levels of e, then this systematic aberration 

vanishes at the considered levels of e and therefore becomes irrelevant, but this is not the 

case for more than two levels of e (Figure 3D). The second component is stochastic variation 

in the effectiveness of the manipulation, such that for the same value of e, t takes different 

values in different subjects or repetitions of the experiment. This means the model of our 

experimental manipulation is imprecise. This is illustrated by the distribution of red dots in 

Figure 3A which depict the true score differences under a constant value of e.  

Next, we consider the mapping from t to y (see Figure 3B). Again, we assume a potential 

systematic misspecification in the measurement model, that is, a lack of trueness, and 

stochastic error, that is, an imprecision. Together, they constitute the measurement error 𝜀.  

In the supplementary material, we mathematically derive the conditions under which 

maximising the (observable) correlation between intended and estimated scores, Cor(e, y), 
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minimizes measurement error. The main result is that these conditions are defined by the 

correlation between experimental aberration and measurement error, Cor(𝜔, 𝜀).  

Because the experimental manipulation is usually distinct from the measurement method, it 

is generally reasonable to assume Cor(𝜔, 𝜀) = 0. In this case, increasing Cor(e, y)  is 

guaranteed to increase measurement accuracy. Additionally, for any fixed measurement 

method, Cor(e, y) prescribes a lower bound on measurement accuracy. This is a standard 

case and will apply in most circumstances. In other cases, discussed in the supplementary 

material, increasing Cor(e, y) may still increase measurement accuracy, but this not 

guaranteed. However, we argue that these are identifiable edge cases.  

The only assumption the model makes is that the correlations between e, t, and y, are 

strictly positive – but they can be small. Thus, one can use weak theories or calibration 

experiments to improve measurement. In particular, the transformation of an ordinal theory 

into an interval-scaled variable e does not diminish the viability of the approach. 

Calibration 

Calibration is the evaluation of a measurement method under controlled circumstances, and 

can be broken up into several parts 13. 

Defining the measurand 

What is being measured in the calibration process 13 is known as the measurand – the true 

values of the measured attribute in our case. We need to define how they are created. We 

suggest using an experimental manipulation that has a relatively specific impact on the 

psychological attribute in question, and precisely defining the procedure by which e is 
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manipulated. Details will depend on the substantive research field and will generally include 

a definition of the population from which the test sample is drawn.  

Validity conditions 

The calibration results are only valid under the specified validity conditions 13. These are 

conditions known to impact on the measurement method. Conditions known to impact on 

the experimental aberration are less important here, as they do not speak to future use of 

the measurement method in other experimental contexts. 

Reporting the relationship 

In metrology, the relationship between measured and reference values are usually reported 

separately as a trueness and precision 13. Because of the presumably large aberration in 

psychology, these two terms cannot be separated and are jointly minimized. Because 

aberration influences observed retrodictive validity, we would expect that retrodictive 

validity rankings of different methods will be more generalizable than the actual effect sizes. 

Therefore, we suggest comparing several measurement methods in the same calibration 

experiment.  

Iteration 

Sample size of calibration studies should be reasonably large, to avoid overfitting a method 

to particular data sets. Often, the goal is to compare different measurement models (or 

transformation methods) which can be applied retrospectively to previously acquired data 

sets. To facilitate this in an iterative process (see Figure 1B), we suggest compiling and 

sharing data from calibration experiments across laboratories in standardized format (for an 

example see ref 25). Current developments in data management automation could possibly 

enable fully automated benchmark testing as soon as a new calibration data set is published. 
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Further application 

Besides the main goal of improving measurement accuracy, retrodictive validity allows 

further applications. First, by specifying measurement uncertainty 26, it allows power 

analyses. Often, the true size of a hypothesized effect is not known a priori, and published 

effect sizes tend to overestimate the true effect size 27. In many cases, retrodictive validity 

can determine the maximum achievable effect size (see Figure 2 and worked Example 1). 

This will often render it possible to compute minimum sample sizes, required under the 

best-case assumptions that an experimental manipulation has no variation. This also 

provides a direct route to compare financial costs associated with different measurement 

methods.  

Next, when the measurement method is kept constant, retrodictive validity is only 

influenced by experimental aberration, which can depend on laboratory standards and staff 

training. For example, testing in noisy rooms with many participants may result in lower 

retrodictive validity than testing the same measurement method in a quiet room. 

Retrodictive validity could enable quality control, by comparing different laboratories or 

trainees in standardised experiments. We note that current scientific practices implicitly 

incentivize large effect sizes in hypothesis tests 28. Replacing these incentives with success in 

calibration experiments could potentially improve research culture.  

Finally, one can use the retrodiction model to optimise experimental manipulations. 

Maximising retrodictive validity will then yield the experimental manipulation with lowest 

combined aberration and measurement error. This can aid experimental design. As an 

example, we have used this approach to empirically find the optimal number of trials to 

measure fear memory recall. Here, more trials mean less measurement error but at the 
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same time reduction of the true effect due to extinction (i.e. increased aberration). The 

optimal balance is difficult to intuit but can be found empirically 29. 

Worked example 2: measuring decision confidence 

To see how the framework can be applied in diverse research settings, we here give another 

concrete example. A research team seeks to characterise the influence of social conformity 

on decision confidence. They plan to use a perceptual decision-making task and provide 

social information before measuring participants' confidence. They further plan to record 

explicit confidence ratings, reaction time of the ratings, and key stroke force. Their goal is to 

identify the most precise method for integrating these observables into a confidence 

measure. 

It is well known from decision-making research that the quality of perceptual evidence 

influences one’s decision confidence. As calibration experiment, the researchers can thus 

use a random dot motion task with high and low coherence, and predict that decision 

confidence is higher in the high coherence condition (e = 1) than in the low coherence 

condition (e = 0). Using data from this experiment, they can now compute y under various 

different measurement models, for example a model only taking into account the explicit 

ratings, or multiple regression models that also incorporate reaction times and/or key force 

30. They will finally select the method with highest retrodictive validity. 

The researchers can then set up their substantive experiment, perhaps using only a single, 

staircased level of random dot motion coherence, and test their hypothesis about the effect 

of social conformity on confidence in such a setting. For instance, different conditions of the 

experiment may provide the participant with helpful or unhelpful advice about the correct 
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decision on each trial. Importantly, despite the experiment no longer containing variation in 

coherence, the researchers can be sure that, due to selecting a confidence measure based 

on its high retrodictive validity, they have chosen the most accurate metric of perceptual 

decision confidence against which to evaluate their hypothesis. 

Discussion 

Retrodictive validity corresponds to accuracy of inference on a true score. It provides a 

framework for rational selection between, and optimisation of, measurement methods, and 

can be established and exploited in a calibration process. We note that this approach also 

applies to non-behavioural measures, such as inferring a psychological attribute (e.g. pain)  

from neuroimaging data 31.  

As anticipated by classical validity theory 16, the method does not allow separating trueness 

and precision, but jointly improves both. Assessment of reliability can help in disentangling 

these two, as it depends on precision alone (see supplementary discussion for details). Our 

method is guaranteed improve accuracy as long as the experimental aberration is 

uncorrelated with the measurement error. It is difficult to come up with plausible cases 

where this condition is violated, but if substantive research reveals circumstantial evidence 

for any such violations then the proposed method should be used with caution.  

Tradition remains the mainstay of justification for data collection and pre-processing 

methods in many subfields of psychology, but this comes with a range of theoretical, 

statistical, and practical problems, including low reproducibility. Widespread researcher 

degrees of freedom have been criticized 7, and there are increasing calls to plan and pre-

register data pre-processing before a study is being conducted 32, 33. This leaves research 
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practitioners in the uncomfortable situation of having to select between methods without 

good reason. Collecting huge samples increases reproducibility but imposes a heavy cost if 

the method itself is not optimised. Here, we propose a generic solution that can be applied 

across different branches of psychology and may alleviate several challenges experimental 

psychology is currently confronted with.  
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1 Retrodiction model: derivation
In this section, we derive the model on the sample level; the next section then
develops a probabilistic perspective. We use the formalism of linear regres-
sion models, but we do not seek to invoke any implicit assumptions about the
identifiability of parameters, or about error distributions; all assumptions are
explicitly stated.

We take a repeated measurement under m > 1 levels, j = 1, ...,m, of the
experimental manipulation, in a sample of n subjects i = 1, ..., n. Let eij be the
intended change of the psychological attribute, tij the true score of the attribute,
and yij the estimated (i.e. measured) true score, in subject i and condition j.

First, we write t as a function of e. We are only interested in score differences
between conditions, and not in baseline values, and so include an intercept term
in our model. For within-subjects designs, this can be a subject-specific baseline;
for between-subjects designs it is a group-level baseline:

tij = t0i + f(eij) + ωij , (1)
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where, t0i is an (unknown) baseline value of the attribute, f the (unknown
and potentially non-linear) mapping from e to changes in t, and ωij an (un-
known) imprecision term that captures variations in f between subjects as well
as variation in the effectiveness of the experimental manipulation.

Since t is on an arbitrary scale, the ideal relationship between e and t is not
generally an identity mapping but a linear mapping, and we decompose eq. (1)
into a linear part and a residual (R) non-linearity fR:

tij = ti + γeij + fR (eij) + ωij , (2)

where γ > 0 a scalar. For within-subjects designs, ti is the (unknown) within-
subject expected value of t across levels of e, and for between-subjects designs,
ti := t is the expected value of t across levels of e and over subjects.

Since we cannot empirically separate these aberration terms, we combine
them into a total (T ) aberration ωTij := fR(eij) + ωij . Thus, our final linear
model is:

tij = ti + γeij + ωTij . (3)

For a fixed value of e and a fixed subject, we assume that ω is independent of
other subjects and of other experimental levels. However, because it includes
systematic aberration, the expected value may be non-zero for a fixed value of e.
Notably, we are not interested in estimating the coefficient γ since the scaling
of psychological attributes is arbitrary. In the next section, we will uniquely
specify γ and ωTij on the population level.

Next, we write the estimated score y as a function of the true score t. Again,
we assume a potential systematic misspecification g in the measurement model,
that is, a lack of trueness, and a subject-specific error εij , that is, an imprecision.
Then we can write

yij = y0i + g(tij) + εij , (4)

where y0i is a baseline. Because the ideal relationship between t and y is linear,
we again rewrite this as the sum of a linear term and a residual non-linearity,
noting that we cannot generally assume gR(tij) = 0:

yij = yi + β(tij − ti) + gR(tij) + εij . (5)

Here, β > 0 a scalar. For within-subject designs, yi is the within-subject ex-
pected value of t across levels of e, and for between-subjects designs, yi := y is
the expected value of y across levels of e and over subjects. We denote the total
error εTij := gR(tij) + εij such that our final true score model is:

yij = yi + β(tij − tij) + εTij . (6)
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2 Retrodiction model: probabilistic analysis
In this section, we consider the retrodiction model on a probabilistic level and
expand it in tutorial style. Let (Ω,A,P) be an arbitrary probability space.
Denote expectation and variance with E and V, respectively.

Let E : Ω → {e11, .., emn} be a discrete random variable that takes the a
priori defined intended values. The scaling of E is arbitrary and hence we can
set, without loss of generality:

E (E) := 0, E
(
E2
)

= V (E) := 1. (7)

Let T : Ω→ R be a random variable that takes values tij − ti, and Y : Ω→ R a
random variable that takes values yij − yi. Let ωT : Ω→ R and εT : Ω→ R be
random variables that will be defined later. Assume that Cov (E, T ) > 0 and
Cov (T, Y ) > 0.

Now we can rewrite eq. (3) and (6) as:

T = γE + ωT (8)

and

Y = βT + εT (9)

From the definition of T and Y , it follows that

E (T ) = E (Y ) = E (ωT ) = E (εT ) = 0. (10)

Up to now, the values of the coefficients γ, β and the random variables ωT , εT
are unspecified. As in ordinary least squares regression, we now define γ such
that V (ωT ) takes its minimum, by setting

∂V (ωT )

∂γ
=
∂V (T − γE)

∂γ
=
∂
(
V (T ) + γ2V (E)− 2γCov (E, T )

)
∂γ

= 0, (11)

which leads us to

2γV (E)− 2Cov (E, T ) = 0 (12)

such that

γ :=
Cov (E, T )

V (E)
= Cov (E, T ) . (13)

This choice of γ ensures that

Cov (E,ωT ) = E (E (T − γE))

= E (ET )− γE
(
E2
)
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= Cov (E, T )− γ = 0.

Similarly, let

β :=
Cov (T, Y )

V (T )
, (14)

such that V (εT ) is minimised and Cov (T, εT ) = 0. Now all terms in our
model are defined.

To simplify the sequel, and to make our main result independent of arbitrary
rescalings of Y , we now define the standardised experimental aberration

ω :=
ωT

γ
, (15)

and the standardised measurement error

ε :=
εT
βγ

, (16)

such that

T = γE + γω (17)

and

Y = βT + βγε = βγE + βγω + βγε. (18)

To prepare the derivation of our main result, we note the following identities:

V (T ) = V (γE + γω) = γ2 (1 + V (ω)) (19)

V (Y ) = V (βT + βγε) = β2γ2 (1 + V (ω) + V (ε)) (20)

Cov (E, ε) = E ((E + ω) ε− ωε) (21)

= E
(

1

γ
Tε

)
− E (ωε) (22)

= −Cov (ωε) . (23)

Using the definition of β and expressions (19, 20), we can expand the corre-
lation between true and measured score:

Cor (T, Y ) =
Cov (TY )√
V (T )V (Y )

(24)

=
βV (T )

γ
√

(1 + V (ω))βγ
√

(1 + V (ω) + V (ε))
(25)
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=
βγ2 (1 + V (ω))

βγ2
√

1 + V (ω)
√

1 + V (ω) + V (ε)
(26)

=

√
(1 + V (ω))√

1 + V (ω) + V (ε)
. (27)

After all this preparation, we can now finally expand retrodictive validity:

Cor (E, Y ) =
Cov (EY )√
V (E)V (Y )

(28)

=
E (E (βγE + βγω + βγε))

βγ
√

1 + V (ω) + V (ε)
(29)

=
βγE

(
E2 + Eω + Eε

)
βγ
√

1 + V (ω) + V (ε)
(30)

=
1− Cov (ω, ε)√
1 + V (ω) + V (ε)

(31)

=
1−

√
V (ε)V (ω)Cor (ω, ε)√
1 + V (ω) + V (ε)

. (32)

If Cor (ω, ε) = 0 then

Cor (E, Y ) =
1√

1 + V (ω) + V (ε)
(33)

and we can see that

Cor (T, Y ) =
√

1 + V (ω)Cor (E, Y ) . (34)

To see how changes in Cor (ω, ε) 6= 0 and in V (ε) influence Cor (E, Y ), we
differentiate eq. (32) with respect to these two variables.

First, if all variances are strictly positive, we see that for all values of V (ε)

∂Cor (E, Y )

∂Cor (ω, ε)
< 0. (35)

In words, as Cor (ω, ε) decreases, retrodictive validity increases.
Next, we analyse the impact of changes in V (ε). We have:

∂Cor (E, Y )

∂V (ε)
= −

√
V (ω)V (ε) +

(
V (ω)

2
+ V (ω)

)
Cor (ω, ε)

2
√

V (ω)V (ε) (1 + V (ω) + V (ε))
3
2

. (36)

If all variances are strictly positive, this expression is negative if

Cor (ω, ε) > −
√

V (ω)V (ε)

V (ω)
2

+ V (ω)
(37)
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= −
√

V (ε)√
V (ω) (V (ω) + 1)

. (38)

In words, if Cor (ω, ε) is larger than the bound stated above, then decreas-
ing V (ε) increases retrodictive validity. Otherwise, increasing V (ε) increases
retrodictive validity.

3 Result
Theorem 1. Assume a calibration experiment with intended values E, E (E) =
0, V (E) = 1. Let T be the true score with associated standardised aberration

ω =
T

Cov (E, T )
− E,

which does not depend on the measurement method. Let Y be a measured score
with associated standardised error

ε =
1

Cov(E, T )

(
V (Y )

Cov (T, Y )
Y − T

)
.

Similarly define, for the same experiment, Y1, Y2, ε1 and ε2.
(1) If Cor (ω, ε1) = Cor (ω, ε2) = 0, then Cor (E, Y2) > Cor (E, Y1) =⇒

V (ε2) < V (ε1) .
(2) If Cor (ω, ε) = 0, then Cor (T, Y ) =

√
1 + V (ω)Cor (E, Y ).

(3) If Cor (E, Y2) > Cor (E, Y1) then at least one of the following three
statements is true:

(a) Cor (T, Y2) > Cor (T, Y1) and Cor (ω, εi) > −
√

V(ω)V(εi)
V(ω)2+V(ω)

, i = 1, 2.
(b) Cor (ω, ε2) < Cor (ω, ε1) .

(c) Cor (ω, ε2) ≤ −
√

V(ω)V(ε2)
V(ω)2+V(ω)

.

Proof. (1) follows directly from eq. (33). (2) follows from eq. (34). (3a-c) follow
from eqs. (32) and (38).

Without proof, we note that an analogous theorem holds in a finite sample,
as can be demonstrated geometrically (see version 1 of this paper’s pre-print:
[1]).

In the following, we explain this theorem and give an intuition about how
it can be used. In general it is reasonable to assume Cor (ω, ε) = 0. In this
case, selecting Y to increase retrodictive validity Cor (E, Y ) also reduces V (ε),
the standardised measurement error, and thus increases measurement accuracy,
Cor (T, Y ). Otherwise, if Cor (ω, ε) is positive, or if the standardised measure-
ment error is large compared to the experimental aberration, then selecting Y
with large retrodictive validity may still either ensure large accuracy, but could
also decrease Cor (ω, ε) (i.e. make aberration and error more anticorrelated). If
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Cor (ω, ε) is already negative and below the bound stated above (implying that
the measurement error is small compared to the experimental aberration), then
increasing retrodictive validity may actually reduce accuracy.

Below, we explore situations where the assumption Cor (ω, ε) = 0 is vio-
lated, but we note that we regard these scenarios as edge cases. Notably, the
theorem makes assumptions about the relation between aberration and error,
but not on the size of the aberration as long as Cor (E, T ) > 0. Even a weakly
effective experimental manipulation can serve to evaluate accuracy of a mea-
surement method. Although the estimates of retrodictive validity will be more
uncertain in such cases, this can be mitigated by larger sample sizes. Crucially,
in cases where theory only predicts ordinal differences between two conditions,
we need to make additional assumptions to use the method – namely that the
achieved difference in true score is constant over participants. This additional
assumption however will increase aberration but will not impact on the ranking
of measurement methods, as long as aberration and error are uncorrelated.

4 Examples

Scenario 1. No noise correlation (calibrating a reward learn-
ing measure)
A research team seeks to optimise a measure of subjective value estimates in
operant reward conditioning. In a 2-alternative forced choice task, subjects
decide on which (reward-predicting) cue they want to obtain. Researchers use
these choices as observables, together with a measurement model that takes
the form of a sigmoid curve (e.g., logistic regression), to infer subjective values.
However, they have noticed a large variability in reaction times, and developed
a drift-diffusion model that takes account of this variability in reaction times
in order to estimate subjective value. As a retrodiction experiment, they use
an experimental manipulation with 2 values (low reward vs. high reward) and
overtrain subjects in this task. It is likely that this overtraining procedure
minimises the imprecision component of experimental aberration. Because there
are only two levels of the experimental manipulation, there is no systematic
aberration term. Finally, it seems unlikely that the experimental aberration
and the measurement error are correlated: there is no plausible reason why the
measurement model would attenuate the estimated value difference for subjects
with higher true value differences, and amplify estimated value difference for
subjects with lower true value differences. No hidden stable confounds are
known that impact on subjective value and behavioural preference in opposing
directions.

Scenario 2. Estimating measurement uncertainty
A research team investigates presurgical epilepsy patients and has discovered
orbitofrontal neurons with firing that closely corresponds to intended subjective
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values in the calibration experiment from scenario 1 - much more closely than the
estimate derived from observable behaviour. The residual unexplained variance
in the relation between intended values and neural firing can thus serve to
estimate an upper bound on ω, which yields an upper bound on Cor (T, Y ) =√

1 + V (ω)Cor (E, Y ).

Scenario 3. Anticorrelated imprecision (calibrating a pain
measure)
A research team is interested in assessing subjective pain intensity in subjects
who cannot communicate. To this end, they use pupil size as the observable,
together with a biophysical model of the pupil response. As a retrodiction exper-
iment, they use 2 levels of pain (low versus high) in healthy subjects. It is known
that there is biological variability in pain perception, introducing variability in
the difference between low and high subjective pain. What the researchers do
not know in this (entirely hypothetical) scenario is that because of genetic link-
age, subjects with high pain sensitivity tend to have smaller pupils, thus limiting
the dynamic range for pain-induced pupil dilation. Thus, subjects with higher
true subjective pain difference will tend to have smaller pupil dilation differences
and thus smaller estimated subjective pain difference. In this case, aberration
and measurement error due to imprecision are anticorrelated. The researchers
have also asked people for their subjective pain perception. This measure has
the same measurement error variance, but here the error is uncorrelated with the
variability in pain sensitivity, i.e. aberration. Because of this, the pupil-based
measure has higher retrodictive validity and is erroneously preferred.

Proposed solution:

(a) Report known predictors of between-subjects differences in the effectiveness
of the experimental manipulation, and in the measurement. (b) Explore, report,
and if possible include in the measurement model, multiplicative scalings and
limits in the dynamic range of a measure.

Scenario 4. Anticorrelated inaccuracy (validating a mea-
sure on itself; Figure S1)
A research team seeks to validate a novel method of measuring subjective va-
lence of a stimulus. As a retrodiction experiment, they take a database of
pictures that have been previously rated by a large sample in terms of their
valence. They use 4 distinct valence levels and show the pictures to a new
sample of subjects, in which they assess both their subjective rating (red dots
in Figure S1) and the novel measure (green dots in Figure S1). To define in-
tended score differences e, they take advantage of the previous picture ratings.
However, in this hypothetical example, subjects’ reported valence follows their
true (i.e. actually experienced) subjective valence by a sigmoid function (Figure
S1 left). The relation between the previous ratings (intended scores) and the
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Figure 1: Scenario 4, validating a measure on itself. The systematic aberration
in the experimental model is exactly the inverse of systematic error in the mea-
surement model. The resulting estimated scores (red dots) are linearly related
to intended scores. In comparison, a measurement model without systematic
error (green dots) appears to have a larger error. In this case, aberration and
error are perfectly anti-correlated, such that reducing the measurement error ε
would counterintuitively reduce retrodictive validity. This edge case arises from
an invalid calibration procedure.

actually induced true scores is thus the perfect inverse of this function (Figure
S1 middle). Hence, the relation between intended valence, and valence mea-
sured by self-report, will be almost perfectly linear (Figure S1 right, grey dots),
while the novel measure has a lower correlation with e. At the request of a
reviewer, the researchers repeat their analysis by using pairs of levels of e. This
removes (almost) all systematic aberration from the relation between e and t,
and consequently the two measures showed equally good retrodictive validity in
this analysis. To the researchers (who don’t know about the true relationship
between e, t, and y) this means that there must be an systematic aberration in
the specification of e or a systematic error in the measurement of y.

Proposed solution:

For multiple values of e, always perform an auxiliary analysis on pairs of levels,
thus removing anticorrelated systematic aberration and trueness. If this auxil-
iary analysis consistently yields conclusions that are different from the primary
analysis, then further investigation is required.

5 Discussion
Here, we highlight some substantive questions associated with selection of cal-
ibration experiments. Our criterion guarantees sensitivity but not specificity -
as common in experimental psychology, specificity must be guaranteed by the
experimental procedures that are used for calibration and for substantive exper-
iments. Therefore, the first question is whether a manipulation can be entirely
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specific. For example, some theories of Pavlovian aversive conditioning posit
that at least two independent forms of aversive memory are established concur-
rently: implicit and declarative memory [2, 6]. In this case, a fear conditioning
experiment would affect both attributes, with possibly different experimental
aberration. If we use a fear conditioning experiment to select between different
aversive memory measurement methods, then maximising retrodictive validity
may unintentionally prioritise the contribution of the lower-aberration attribute
(e.g. declarative memory) to the estimated score, over the higher-aberration one
(e.g. implicit memory). It appears unlikely that this could happen when com-
paring two transformation methods for the same observable. However, it has
been suggested that different observables - skin conductance and startle eye-
blink, for example - are influenced to a different degree by implicit and declar-
ative memory [7]. In this case, basing the choice of observables on retrodictive
validity may be problematic. Of course, if psychological attributes are generally
indistinguishable by observation, then it makes limited sense to separate them
theoretically. A second question is the specificity of the estimated score. For
example, skin conductance responses are influenced not only by aversive mem-
ory but by a range of other psychological attributes [3]. We can carefully ensure
these other attributes are not affected in the retrodiction experiment. However,
if they are not held constant in a substantive experiment, then inference on
the psychological attribute is limited. Notably, both of these issues limit mea-
surement methods independent of which approach we select to validate them.
Here, we suggest making these issues explicit by specifying validity conditions
for a retrodiction experiment. Furthermore, we suggest reporting all empiri-
cal data and previous knowledge that may suggest the presence or absence of
(anti)correlated experimental aberration and measurement error. For example,
this may include known stable predictors of interindividual differences in the ex-
perimental effect on the observable, or known predictors of the dynamic range
of the observable. In the case of more than two experimental levels, we suggest
auxiliary analysis with pairs of levels to confirm the conclusions.

One limitation of our criterion is that it does not separately assess trueness
and precision of measurement. We note that if two measures of T have exactly
the same retrodictive validity, then trueness and precision can be decomposed
by assessing reliability, which is affected only by precision and not by trueness
[4]: the estimate with higher reliability will have higher precision and lower
trueness, and vice versa. Assessing reliability in experimental contexts is how-
ever not without challenges. First, the number of observables is usually limited,
often to one observable at a time, such that stability over observables cannot be
assessed. Secondly, because we are concerned with volatile attributes, assessing
stability of measurement requires ensuring that the attribute itself is stable over
measurements, which requires a calibration approach. Third, as [4] illustrate,
under constant measurement precision, reliability scales with interindividual
variability in the psychological attribute. However, experimental manipulations
have often evolved to minimise, rather than maximise, individual differences in
the psychological attribute [5], which minimises metrics of reliability. Without
strong assurance of trueness, reliability can be erroneously increased by infer-
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ring a different attribute that has higher interindividual variability. Fourth,
when interindividual variability and temporal volatility of the attribute are on
the same order of magnitude, stable hidden confounds with high interindividual
variability become important. As an example, systematic differences in skin
composition can multiplicatively scale skin conductance responses, and thereby
can have an impact on the measures scores. This interindividual variability is
presumably much more stable than interindividual variability in the psycholog-
ical attribute, which will likely result in lower reliability once such confounds
are accounted for.
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