
U-rank: Utility-oriented Learning to Rank
with Implicit Feedback

Xinyi Dai
1
, Jiawei Hou

1
, Qing Liu

2
, Yunjia Xi

1
, Ruiming Tang

2
,

Weinan Zhang
1
, Xiuqiang He

2
, Jun Wang

3
, Yong Yu

1

1
Shanghai Jiao Tong University,

2
Huawei Noah’s Ark Lab,

3
University College London

{daixinyi,hjw99868,wnzhang,yyu}@sjtu.edu.cn,{liuqing48,tangruiming,hexiuqiang1}@huawei.com,jun.wang@cs.ucl.ac.uk

ABSTRACT
Learning to rank with implicit feedback is one of the most im-

portant tasks in many real-world information systems where the

objective is some specific utility, e.g., clicks and revenue. However,

we point out that existing methods based on probabilistic ranking

principle do not necessarily achieve the highest utility. To this end,

we propose a novel ranking framework called U-rank that directly

optimizes the expected utility of the ranking list. With a position-

aware deep click-through rate prediction model, we address the

attention bias considering both query-level and item-level features.

Due to the item-specific attention bias modeling, the optimization

for expected utility corresponds to a maximum weight matching on

the item-position bipartite graph. We base the optimization of this

objective in an efficient Lambdaloss framework, which is supported

by both theoretical and empirical analysis. We conduct extensive

experiments for both web search and recommender systems over

three benchmark datasets and two proprietary datasets, where the

performance gain of U-rank over state-of-the-arts is demonstrated.

Moreover, our proposed U-rank has been deployed on a large-scale

commercial recommender and a large improvement over the pro-

duction baseline has been observed in an online A/B testing.

CCS CONCEPTS
• Information systems→ Learning to rank.

KEYWORDS
Learning to Rank, Utility Maximization, Position Bias, Implicit Feed-

back

ACM Reference Format:
Xinyi Dai, Jiawei Hou, Qing Liu, Yunjia Xi, Ruiming Tang, Weinan Zhang,

Xiuqiang He, JunWang and Yong Yu. 2020.U-rank: Utility-oriented Learning
to Rank with Implicit Feedback. In Proceedings of the 29th ACM Interna-
tional Conference on Information and Knowledge Management (CIKM ’20),
October19–23, 2020, Virtual Event, Ireland. ACM, NY, NY, USA, 8 pages.

https://doi.org/10.1145/3340531.3412756

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CIKM ’20, October 19–23, 2020, Virtual Event, Ireland
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6859-9/20/10. . . $15.00

https://doi.org/10.1145/3340531.3412756

1 INTRODUCTION
Ranking is the core of information retrieval. In the traditional web

search scenario, learning to rank (LETOR) methods are proposed

to optimize the ranked list based on human-annotated relevance la-

bels [20]. Typically these methods sort the documents according to

their probability of relevance in descending order, according to the

famous probabilistic ranking principle (PRP) [28]. Due to the lack of

annotated labels, recently, many works have focused on learning to

rank via implicit feedback, such as user’s click data, which is timely

and personalized. These works are also based on PRP, where the

relevance is estimated from implicit feedback through counterfac-

tual methods [2, 14, 16, 30, 31]. Besides the traditional web search

scenario, nowadays, ranking is also an important part of many real-

world applications, including recommender systems [17], online

advertising [29] and product search [18]. In these applications, spe-

cific utility metrics (such as clicks, conversions and revenue, etc.)

are proposed, by which the quality of a ranked list is evaluated.

In many existing works, LETOR algorithms are derived on the

basis of PRP, and then evaluated on some utility metrics [18, 35].

However, we find that the PRP based ranking framework does not

necessarily bring the highest utility in reality. To be more specific,

PRP is basically correct for items with large differences in relevance

estimation. However, for two items with close relevance estimation,

putting the item which is more sensitive to position change at the

higher position will bring a higher expected utility, even if it is

slightly less relevant. To provide a persuasive example, we show

the average click curve of five popular apps from a mainstream App

Store in the right panel of Figure 1. Consider a non-personalized

case for simplicity that we recommend App 1, App 2, and App 3 to

one user. If the apps are sorted by PRP, the ranked list will be App

1, App 2, and App 3 by their relevance in terms of click-through

rate (CTR). However, the optimal ranked list with the maximum

utility should be App 1, App 3, and App 2, since the utility gain

of promoting App 3 from the 3rd to 2nd position is 0.019, which

is larger than the utility loss 0.010 of dragging App 2 from the

2nd to 3rd position. As can be seen, sorting items by relevance

may fail to achieve the highest utility in some situations, which is

actually quite common in industrial scenarios. Therefore, we aim to

optimize the objectives that are directly related to the utility based

on user’s implicit feedback.

Optimizing the utility metric like CTR of the whole ranked list

is not as easy as it seems. One direct solution might be estimating

only one unique CTR of each query-item pair and then optimizing

the certain metric w.r.t. the whole list using the estimated CTR [33].

However, bias will be introduced in this solution since user’s CTR is

not a static property like relevance. To be clear, for the same query-

item pair, the CTR might change with its presented position. As

ar
X

iv
:2

01
1.

00
55

0v
1

 [
cs

.I
R

]
 1

 N
ov

 2
02

0

https://doi.org/10.1145/3340531.3412756

1 App 1 __ 1.000

2 App 2 __ 0.294 1.471

3 App 3 __ 0.177

Total
CTR

1 App 1 __ 1.000

2 App 3 __ 0.196 1.480

3 App 2 __ 0.284

0.294

0.196 0.177

0.284

Position App name CTR

Figure 1: The CTR analysis w.r.t. query/item features. The
data is collected through a 120 days’ click log on random
recommendation traffic in a mainstream App Store.

shown in Figure 1, the CTR decreases as the presented position goes

from top to bottom, and moreover, the magnitude of the decrease

is different among items and device types.

In order to design effective utility-oriented algorithms, we need

to figure out why this phenomenon happens and then investigate

how to deal with it. The decrease of user’s CTR mainly results from

the decrease of user attention, which is supported by eye-tracking

studies [21, 22]. Most existing works have treated such attention

bias as position bias [16, 30], i.e., more attention is paid to the top

positions than the bottom ones. In the literature, position bias is

considered to be decorrelated with the ranked items, i.e., makes the

same effect on all items [8, 27], which is generally correct in the

traditional 10 blue links scenario. Under such assumption, following

PRP achieves the goal of the highest expected utility since the click

curves of different positions across different items have the same

shape despite the different scales.

However, we argue that in many real-world applications, a user’s

attention on items does not only depend on the positions but also

the item attributes and the user contexts. For the App recommen-

dation case as demonstrated in Figure 1, visual difference in the

thumbnail of a product or the preview frame of videos leads to item-

specific attention bias. In web search, an example of item-specific

attention bias is vertical bias, commonly observed when the page

contains vertical search results (such as images, videos, maps, etc.).

For example, Metrikov et al. [24] found that an image in search

result can raise CTR and flatten the click curve at the same time. A

visually attractive content, like a vertical search result or an item

with a fancy thumbnail, can still attract user’s attention even it is

placed at a lower position, leading to a flatter click curve. In other

words, such visually attractive results are less sensitive to the posi-

tion change. In the example above, CTR of App 2 is less sensitive

in whether placing it in position 2 or position 3 compared to App 3.

Placing items of which CTR is more sensitive to position change

at top positions often leads to a higher utility. Besides, query-level

features like device type, as shown in Figure 1, also leads to differ-

ent attention biases. Hence, to obtain unbiased CTR estimation, we

need to exploit both the item-level and the query-level features to

model the dependency between click and position.

Based on these considerations, in this work, we propose a rank-

ing framework called U-rank that directly optimizes expected utility

from implicit feedback. Instead of ranking according to PRP, we

first derive a new list-wise learning objective, of which the expec-

tation is the utility metric we want to maximize. Then to obtain an

unbiased estimation of the expected utility, we address the attention

bias considering both the query-level and item-level features with

a position-aware deep CTR model. Finally, to efficiently optimize

the expected utility, we formulate it as an item-position matching

problem as shown in Figure 2, and learn a scoring function towards

the best matching through pairwise permutations inspired by Lamb-

daloss framework [32], which reduces the complexity in inference

stage from 𝑂 (𝑁 3) to 𝑂 (𝑁). Theoretical analysis demonstrates that

we solve an upper bound problem of the matching problem.

We conduct thorough experiments on three benchmark LETOR

datasets and a large-scale real-world commercial recommendation

dataset to verify the effectiveness of U-rank. Further, U-rank has

been deployed on the recommender system of a mainstream App

Store, where a 10-day online A/B test shows that U-rank achieves

an average improvement of 19.2% on CTR and 20.8% on conversion

rate over the production baseline.

2 RELATEDWORK
Generative click models are introduced to study user browsing

behavior and extract unbiased relevance feedbacks from click data.

For example, Position-based model (PBM) [27] assumes that a click

only depends on the position and the relevance of the document.

Cascade model [8] assumes that user browses a search web page

sequentially from top to bottom until a relevant document is found.

Following these two classical click models, more sophisticated ones

(e.g., UBM [9], DBN [7], CCM [11] and NCM [4]) have been pro-

posed. These click models estimate the relevance of each item in

a point-wise manner instead of considering the relative order of

the items as in pairwise or listwise approaches. Recently, a new

line of research, referred to as counterfactual methods, utilizes

inverse propensity score (IPS) weighting to address position bias

in a learning to rank framework. Wang et al. [30] and Joachims

et al. [16] proposed the IPW-based framework of debiasing click

data in a learning to rank framework. In both works, the propen-

sity estimation relies on randomizing search results displayed to

users, which obviously degrades users’ search experience. Consid-

ering this, Agarwal et al. [1] proposed PBM to estimate propensity

without Intrusive Interventions. CPBM [10], on the basis of PBM,

learns a query-dependent propensity estimation. However, multiple

rankers are required to learn, which makes them inconvenient to

deploy in real-world applications. Besides, another branch of unbi-

ased learning to rank works [2, 14, 31] jointly learn the propensity

model with a relevance model, which results in biased estimation

of propensity unless the relevance estimation is very accurate.

3 PROBLEM FORMULATION
When a user issues a new request 𝑞, the system delivers a ranked

list (𝑓𝑖 , 𝑏𝑖)
𝑛𝑞
𝑖=1

of 𝑛𝑞 items to the user according to a ranking model

over all the candidate items. The feature vector 𝑓𝑖 of each item 𝑖

consists of item features, context features, and user/query features.

The scalar 𝑏𝑖 denotes the utility value related to each item 𝑖 , e.g.,
the watch time of each video in video recommendation, or the bid

price of each ad in sponsored search.

The users’ click logs are a set 𝑆 = {(𝑓𝑖 , 𝑘𝑖 , 𝑏𝑖 , 𝑐𝑖,𝑘𝑖)
𝑛𝑞
𝑖=1

}𝑞∈𝑄 , where
𝑘𝑖 is the position of item 𝑖 , and 𝑐𝑖,𝑘𝑖 is the users’ implicit feedback

on item 𝑖 when displaying at position 𝑘𝑖 , i.e., 𝑐𝑖,𝑘𝑖 = 1 for click

and 𝑐𝑖,𝑘𝑖 = 0 for non-click. To distinguish between the position of

item 𝑖 in users’ click logs and in the current ranking model, in the

Figure 2: Themaximization of the utility can be seen as solv-
ing the maximum-weight matching on the item-position bi-
partite graph, where the edge weight between an item and a
position denotes the utility of placing the item at this posi-
tion, i.e., the product of item’s CTR at this position and the
utility value of this item.

following parts, we use 𝑘ℎ
𝑖
to denote the position of item 𝑖 in click

logs and keep 𝑘𝑖 as the position of item 𝑖 in the current ranking

model.

The ultimate goal of this system is to find the best permutation

of candidate items for each query 𝑞 to maximize the utility. The

utility is defined as the expected sum of weighted clicks of each

item over the whole ranked list, as follows,

𝑈𝑞 = E
[𝑛𝑞∑︁
𝑖=1

c𝑖,𝑘𝑖 · 𝑏𝑖
]
=

𝑛𝑞∑︁
𝑖=1

𝑃 (c𝑖,𝑘𝑖 = 1) · 𝑏𝑖 , (1)

where 𝑃 (c𝑖,𝑘𝑖 = 1) is the probability of the item 𝑖 being clicked

if displayed at position 𝑘𝑖 . Maximizing utility 𝑈𝑞 is equivalent to

solving a maximum weight matching problem on the item-position

bipartite graph, where 𝑃 (c𝑖,𝑘𝑖 = 1) · 𝑏𝑖 is the edge weight between
the item 𝑖 and the position 𝑘𝑖 in the graph, as shown in Figure 2.

4 MODEL FRAMEWORK
In this section, we present a general ranking framework, i.e., U-rank,
to maximize the utility 𝑈𝑞 in Eq. (1) directly. Firstly, we derive an

unbiased metric of utility from click logs, the expectation of which

is the utility𝑈𝑞 . Secondly, we design an efficient learning to rank

method to optimize this metric, of which the loss function is an

upper bound of the utility regret.

4.1 Unbiased Estimation of the Utility
The main difficulty of existing methods of learning to rank via

implicit feedback lies in the estimation of the underlying attention

bias (or position bias), since we do not observe them directly from

the data. With the new learning objective, we do not need to infer

relevance or the attention bias explicitly. Instead, we have to deal

with another mismatch problem, which is between the CTR of

the historical presented position and that of the final presented

position. For example, if one item is ranked first in the click logs but

presented at the 10th position in the final ranking, then its utility

is overestimated. To correct this bias, we need an accurate model

of user’s CTR on different positions.

The estimation of CTR on different position 𝑃 (𝑐𝑖,𝑘𝑖 = 1) refers
to one of the most well-studied tasks in recommender systems,

i.e., CTR estimation. Deep CTR models [26, 34] can take position

and the rich query-item features as input, to model the complex

user interaction in feature space from the click logs. It is pointed

out that position 𝑘𝑖 is a very important feature in CTR estima-

tion [3, 13]. However, if we directly used a CTR estimation model

as the ranking model, the position feature is vacant at the infer-

ence stage. Therefore, we design a position-aware deep CTR model

as a debiasing module instead of directly using it as a ranking

model. Assume that the probability function of item 𝑖 displayed at

position 𝑘𝑖 is a function 𝑔𝜃 of item feature 𝑓𝑖 and position 𝑘𝑖 , i.e.,

𝑃 (𝑐𝑖,𝑘𝑖 = 1) = 𝑔𝜃 (𝑓𝑖 , 𝑘𝑖). Then we can estimate the parameter 𝜃 via

the standard cross-entropy minimization:

L𝑐 (𝜃) =
∑︁
𝑞∈𝑄

𝑛𝑞∑︁
𝑖=1

𝑙
(
𝑐𝑖,𝑘𝑖 , 𝑔𝜃 (𝑓𝑖 , 𝑘𝑖)

)
, (2)

where 𝑙 (𝑝, 𝑞) = −𝑝 log𝑞 − (1 − 𝑝) log(1 − 𝑞) is the cross-entropy
loss.

Based on users’ click logs and the estimated CTR, we derive an

unbiased metric of utility𝑈𝑞 as

𝑈 ′
𝑞 =

𝑛𝑞∑︁
𝑖=1

𝑐
𝑖,𝑘ℎ

𝑖
·
𝑃 (𝑐𝑖,𝑘𝑖 = 1)
𝑃 (𝑐

𝑖,𝑘ℎ
𝑖
= 1) · 𝑏𝑖 . (3)

We prove that our derived utility 𝑈 ′
𝑞 is unbiased w.r.t. 𝑈𝑞 in

Eq. (1), by showing that the expectation of𝑈 ′
𝑞 is equivalent to𝑈𝑞 ,

as

E[𝑈 ′
𝑞] = E

[𝑛𝑞∑︁
𝑖=1

𝑐
𝑖,𝑘ℎ

𝑖
·
𝑃 (𝑐𝑖,𝑘𝑖 = 1)
𝑃 (𝑐

𝑖,𝑘ℎ
𝑖
= 1) · 𝑏𝑖

]
=

𝑛𝑞∑︁
𝑖=1

𝑃 (𝑐
𝑖,𝑘ℎ

𝑖
= 1) ·

𝑃 (𝑐𝑖,𝑘𝑖 = 1)
𝑃 (𝑐

𝑖,𝑘ℎ
𝑖
= 1) · 𝑏𝑖

=

𝑛𝑞∑︁
𝑖=1

𝑃 (c𝑖,𝑘𝑖 = 1) · 𝑏𝑖 = 𝑈𝑞 .

(4)

4.2 Learning to Optimize the Utility
One straightforward way to optimize𝑈𝑞 is to perform maximum-

weight matching algorithm (e.g., Kuhn-Munkres algorithm [19, 25])

on the bipartite graph directly (each query corresponds to one

graph), given 𝑔𝜃 (𝑓𝑖 , 𝑘𝑖). However, the complexity for such a graph

matching algorithm to run in the inference stage is 𝑂 (𝑁 3) (𝑁 de-

notes the number of candidate items), which is unacceptable in a

production system. Therefore, in this section, we propose a parame-

terized scoring function Φ(·) to approximate the maximum-weight

matching procedure on each query, still aiming at maximizing the

utility, so that the complexity at the inference stage can be reduced

to 𝑂 (𝑁). For each item 𝑖 , the scoring function Φ(·) gives a ranking
score as 𝑠𝑖 = Φ(𝑓𝑖 , 𝑏𝑖). For each query 𝑞, we compute the score 𝑠𝑖 of

each item 𝑖 , and the result list is generated by sorting their scores

in descending order.

According to Eq. (3), we define the utility of displaying item 𝑖

at position 𝑘𝑖 as 𝑢 (𝑖, 𝑘𝑖) = 𝑐𝑖,𝑘ℎ
𝑖
· 𝑃 (𝑐𝑖,𝑘𝑖 =1)
𝑃 (𝑐

𝑖,𝑘ℎ
𝑖
=1) · 𝑏𝑖 . With 𝑘∗

𝑖
being the

optimal position assigned to item 𝑖 by the graphmatching algorithm,

the regret of the utility is defined as

L𝑟 (Φ, 𝑞) =
𝑛𝑞∑︁
𝑖=1

𝑢 (𝑖, 𝑘∗𝑖) −
𝑛𝑞∑︁
𝑖=1

𝑢 (𝑖, 𝑘𝑖) . (5)

Minimizing the regret of the utility L𝑟 (Φ, 𝑞) directly is infeasible as
𝑘𝑖 ’s are discrete values. Therefore, we adapt the LambdaLoss frame-

work [32] to learn a ranking model towards the optimal ranking

by optimizing our proposed loss function (which will be presented

in Eq. (7)) with iterative pairwise permutation. Like in LambdaLoss

we follow an EM procedure that in E step we obtain the ranked

list based on current scoring function Φ(𝑡)
and in M step we re-

estimate the scoring function Φ(𝑡+1)
to minimize our loss function.

The learning procedure of U-rank is as follows.

We first initialize the scoring function with random initializa-

tion of Φ(0)
. Inspired by the re-weighting technique used in Lamb-

daRank [6], we compute the difference between the unbiased utility

Δ𝑈𝑡𝑖𝑙 (𝑖, 𝑗) when the positions of two items 𝑖 and 𝑗 are swapped, as

Δ𝑈𝑡𝑖𝑙 (𝑖, 𝑗) = 𝑢 (𝑖, 𝑘 𝑗) + 𝑢 (𝑗, 𝑘𝑖) − 𝑢 (𝑖, 𝑘𝑖) − 𝑢 (𝑗, 𝑘 𝑗) . (6)

Then this difference value is used as the weight in the pairwise loss

for each pair of items. Following [5, 6], we design our loss function

in the form of logistic loss, as

L′
𝑟 (Φ, 𝑞) =

𝑛𝑞∑︁
𝑖=1

∑︁
𝑗 :𝑘 𝑗<𝑘𝑖

Δ𝑈𝑡𝑖𝑙 (𝑖, 𝑗) log
(
1 + 𝑒−𝜎 (𝑠𝑖−𝑠 𝑗)

)
, (7)

where 𝑘𝑖 and 𝑘 𝑗 denote the position assigned to item 𝑖 and 𝑗 by

ranking model at the last step (by the scoring function Φ(𝑡)
). This

loss is minimized, so that we get a new scoring function Φ(𝑡+1)
.

Then the process is repeated until convergence.

Notice that in a standard LambdaLoss framework, the Lamb-

daLoss is defined as

L𝜆 (Φ, 𝑞) =
𝑛𝑞∑︁
𝑖=1

∑︁
𝑗 :𝑦𝑖>𝑦 𝑗

|Δ𝑁𝐷𝐶𝐺 (𝑖, 𝑗) | log
(
1 + 𝑒−𝜎 (𝑠𝑖−𝑠 𝑗)

)
. (8)

Note that the differences between our objective (7) and the Lamb-

daLoss objective (8) lie in (i) the subscript of the summation symbol

and (ii) the absolute value symbol of the difference term Δ. In Lamb-

daLoss framework, the pairwise label of each item pair (𝑖, 𝑗) is
determined. The optimal ranking order is known to us by ranking

all the items according to relevance label or click label (denoted

by 𝑦𝑖 for item 𝑖), in descending order. However, in our framework,

we cannot obtain the explicit label 𝑦𝑖 for item 𝑖 . An item is treated

as the positive item if it is placed at a lower position by scoring

function Φ(𝑡)
and the swap of the item pair brings utility gain, and

vise versa. We cannot access the optimal ranking order in each

query beforehand, where the optimal order is achieved through

iterative pairwise permutation.

4.3 Theoretical Analysis
In this section, we theoretically prove that our proposed training

objective L′
𝑟 (Φ, 𝑞) is an upper bound of the utility regret L𝑟 (Φ, 𝑞).

To make the proof easier to understand, we construct a function:

L′′
𝑟 (Φ, 𝑞) =

𝑛𝑞∑︁
𝑖=1

∑︁
𝑗 :𝑠𝑖<𝑠 𝑗

|𝑢 (𝑖, 𝑘 𝑗) − 𝑢 (𝑖, 𝑘𝑖) |. (9)

We start with several lemmas which will be used in our proof.

Lemma 4.1. Given an indicator function 𝑓 (𝑥) = I(𝑥 ≤ 0) and a
function 𝑔(𝑥) = log(1 + 𝑒−𝜎𝑥) where 𝜎 is a constant in R, it holds
that 𝑓 (𝑥) ≤ 𝑔(𝑥) for all 𝑥 ∈ R.

Lemma 4.2. Given an indicator function 𝑓 (𝑥) = I(𝑥 ≥ 0) and a
function 𝑔(𝑥) = max{log(1 + 𝑒𝜎𝐶), 2} − log(1 + 𝑒−𝜎𝑥) where 𝜎 is a
constant in R, it holds that 𝑓 (𝑥) ≤ 𝑔(𝑥) for 𝑥 ∈ [−𝐶,𝐶].

Lemma 4.3. Given a sum function 𝑓 (𝑥) = ∑
𝑖 𝑥𝑖 and a max func-

tion 𝑔(𝑥) = max𝑖 𝑥𝑖 , it holds that 𝑓 (𝑥) ≥ 𝑔(𝑥) for 𝑥𝑖 ≥ 0,∀𝑖 .

Now we are ready to derive the main theoretical result.

Theorem 4.4. Assume 𝑢 (𝑖, 𝑘𝑖) is a monotonic decreasing function
w.r.t 𝑘𝑖 and the ranking score 𝑠𝑖 is bounded in the range of [-C,C]. Let
𝐶1 =𝑚𝑎𝑥{𝑙𝑜𝑔(1+𝑒𝑥𝑝 (2𝜎𝐶)), 2} and𝐶2 = 𝐶1·

∑𝑛𝑞
𝑗=1

∑
𝑖:𝑘𝑖>𝑘 𝑗 (𝑢 (𝑗, 𝑘 𝑗)−

𝑢 (𝑗, 𝑘𝑖)). Then we have L′′
𝑟 (Φ, 𝑞) ≤ L′

𝑟 (Φ, 𝑞) +𝐶2.

Proof.

L′′
𝑟 (Φ, 𝑞) =

𝑛𝑞∑︁
𝑖=1

𝑛𝑞∑︁
𝑗=1

|𝑢 (𝑖, 𝑘 𝑗) −𝑢 (𝑖, 𝑘𝑖) |I(𝑠𝑖 < 𝑠 𝑗)

=

𝑛𝑞∑︁
𝑖=1

∑︁
𝑗 :𝑘 𝑗<𝑘𝑖

(𝑢 (𝑖, 𝑘 𝑗) −𝑢 (𝑖, 𝑘𝑖))I(𝑠𝑖 < 𝑠 𝑗) +
𝑛𝑞∑︁
𝑗=1

∑︁
𝑖 :𝑘𝑖>𝑘 𝑗

(𝑢 (𝑗, 𝑘 𝑗)

−𝑢 (𝑗, 𝑘𝑖))I(𝑠 𝑗 < 𝑠𝑖)

≤
𝑛𝑞∑︁
𝑖=1

∑︁
𝑗 :𝑘 𝑗<𝑘𝑖

(𝑢 (𝑖, 𝑘 𝑗) −𝑢 (𝑖, 𝑘𝑖)) log
(
1 + 𝑒−𝜎 (𝑠𝑖−𝑠 𝑗)

)
−

𝑛𝑞∑︁
𝑖=1

∑︁
𝑗 :𝑘 𝑗<𝑘𝑖

(𝑢 (𝑗, 𝑘 𝑗) −𝑢 (𝑗, 𝑘𝑖)) [log
(
1 + 𝑒−𝜎 (𝑠𝑖−𝑠 𝑗)

)
+𝐶1]

=

𝑛𝑞∑︁
𝑖=1

∑︁
𝑗 :𝑘 𝑗<𝑘𝑖

Δ𝑈𝑡𝑖𝑙 (𝑖, 𝑗) log
(
1 + 𝑒−𝜎 (𝑠𝑖−𝑠 𝑗)

)
+𝐶2 (10)

=L′
𝑟 (Φ, 𝑞) +𝐶2 (11)

where the inequality holds due to Lemma 4.1 and Lemma 4.2. □

Theorem 4.4 states that L′′
𝑟 (Φ, 𝑞) is upper bounded by our ob-

jective L′
𝑟 (Φ, 𝑞) plus 𝐶2. 𝐶2 is a constant since in the M step 𝐶2

only depends on the current scoring function Φ(𝑡)
. Notice that the

assumptions in the theorem are not restrictive in practice. As illus-

trated in Figure 1, the real utility basically satisfies the monotonic

decreasing assumption. Moreover, the ranking score is often clipped

in implementation to avoid explosion in exponential function.

Theorem 4.5. Assume the utility𝑢 (𝑖, 𝑘𝑖) is amonotonic decreasing
function w.r.t 𝑘𝑖 . Then L𝑟 (Φ, 𝑞) is upper bounded by L′′

𝑟 (Φ, 𝑞).
Proof.

L′′
𝑟 (Φ, 𝑞) =

𝑛𝑞∑︁
𝑖=1

∑︁
𝑗 :𝑠𝑖<𝑠 𝑗

|𝑢 (𝑖, 𝑘 𝑗) −𝑢 (𝑖, 𝑘𝑖) | =
𝑛𝑞∑︁
𝑖=1

𝑘𝑖−1∑︁
𝑘=1

|𝑢 (𝑖, 𝑘) −𝑢 (𝑖, 𝑘𝑖) |

=

𝑛𝑞∑︁
𝑖=1

𝑘𝑖−1∑︁
𝑘=1

(𝑢 (𝑖, 𝑘) −𝑢 (𝑖, 𝑘𝑖)) ≥
𝑛𝑞∑︁
𝑖=1

𝑢 (𝑖, 1) −
𝑛𝑞∑︁
𝑖=1

𝑢 (𝑖, 𝑘𝑖)

≥
𝑛𝑞∑︁
𝑖=1

𝑢 (𝑖, 𝑘∗𝑖) −
𝑛𝑞∑︁
𝑖=1

𝑢 (𝑖, 𝑘𝑖) = L𝑟 (Φ, 𝑞) (12)

where the first inequality holds due to Lemma 4.3. □

Table 1: Comparison of different unbiased learning to rank models on three benchmark datasets.

Ranking model

Yahoo! LETOR set 1 MSLR-WEB10K Istella-S LETOR

MAP nDCG # Click CTR MAP nDCG # Click CTR MAP nDCG # Click CTR

SVMRank

None 0.702 0.845 0.599 0.0641 0.498 0.735 0.834 0.0827 0.773 0.808 0.931 0.0939

Randomization 0.639 0.787 0.544 0.0574 0.433 0.686 0.820 0.0799 0.742 0.787 0.909 0.0910

CPBM 0.701 0.843 0.594 0.0637 0.477 0.721 0.751 0.0746 0.752 0.793 0.923 0.0919

Groundtruth 0.718 0.859 0.612 0.0656 0.515 0.748 0.872 0.0870 0.775 0.816 0.958 0.0952

LambdaRank

None 0.700 0.847 0.606 0.0641 0.498 0.736 0.834 0.0828 0.776 0.810 0.945 0.0941

Randomization 0.680 0.828 0.582 0.0621 0.451 0.700 0.813 0.0808 0.748 0.793 0.924 0.0923

CPBM 0.718 0.857 0.613 0.0651 0.514 0.744 0.836 0.0836 0.779 0.813 0.941 0.0941

Groundtruth 0.719 0.859 0.618 0.0657 0.521 0.748 0.882 0.0883 0.781 0.815 0.948 0.0948

DNN

DLA 0.639 0.782 0.553 0.0589 0.430 0.682 0.830 0.0839 0.676 0.703 0.828 0.0824

CTR-1 0.647 0.792 0.551 0.0577 0.477 0.722 0.829 0.0814 0.733 0.771 0.894 0.0895

U-rank 0.719 0.861* 0.618* 0.0659* 0.492 0.725 0.903* 0.0915* 0.783* 0.816* 0.959* 0.0953*
KM (oracle model) 0.935 0.987 0.684 0.0737 0.710 0.723 0.976 0.0969 0.993 0.995 1.132 0.1126

∗ denotes statistically significant improvement (measured by t-test with p-value<0.05) over all baselines. Note: baselines in italic is not included.

Theorem 4.6. Under the assumption of Theorem 4.4 and Theorem
4.5, we have that L𝑟 (Φ, 𝑞) ≤ L′

𝑟 (Φ, 𝑞) +𝐶2.

The proof of Theorem 4.6 is trivial due to Theorem 4.4 and The-

orem 4.5. Theorem 4.6 demonstrates that the utility regret L𝑟 (Φ, 𝑞)
is bounded by our proposed objective L′

𝑟 (Φ, 𝑞) plus a constant. It
implies that optimizing our proposed objective is actually mini-

mizing the upper bound of the utility regret, which guarantees the

effectiveness of U-rank theoretically.

5 SEMI-SYNTHETIC EXPERIMENTS
The semi-synthetic setup is widely applied in unbiased learning to

rank [10] which allows us to explore different settings
1
.

5.1 Datasets
• Yahoo! LETOR set 12 is used in Yahoo! Learning-to-Rank Chal-

lenge. The dataset consists of 700 features normalized in [0, 1],
which are extracted from query-document pairs.

• MSLR-WEB10K3
is a large-scale dataset released by Microsoft

Research. It contains 10,000 queries and 1,200,193 documents.

There are 136 features extracted from query-document pairs.

• Istella-S LETOR4
[23] is one of the largest public available

datasets. Istella-S is composed of 33,018 queries, where for each

query-document pair there are 220 features.

5.2 Click Data Generation
We mainly follow Fang et al. [10] to generate synthetic click data

with item-specific attention bias for the three datasets. In the follow-

ing part, oracle model refers to this click generation model. Similar

to [10], the attention bias which is related to both position and the

item feature is calculated by 𝑃 (𝑜𝑖 = 1|𝑘𝑖 , 𝑥𝑖) = 1/𝑘max(𝑤⊤𝑥𝑖+1,0)
𝑖

.

In our setting, 𝑥𝑖 is the set of item features, while in the setting

of [10], 𝑥𝑖 is the set of query features which is shared among all

the items for a same query. The parameter vector𝑤 is drawn from

a uniform distribution over [−𝜂, 𝜂) and is normalized such that∑
𝑗=1𝑤 𝑗 = 0. Following Hu et al. [14], the relevance probability is

defined as 𝑃 (𝑟𝑖 = 1) = 𝜖 + (1 − 𝜖) 2
𝑦𝑖 −1

2
𝑦max−1 , where 𝑦𝑖 denotes the

relevance label of 𝑥𝑖 and 𝑦𝑚𝑎𝑥 is the highest level of relevance. 𝜖

1
Code for our experiments is available at https://github.com/xydaisjtu/U-rank

2
https://webscope.sandbox.yahoo.com

3
https://www.microsoft.com/en-us/research/project/mslr/

4
http://quickrank.isti.cnr.it/istella-dataset/

is set to 0.1, which denotes the CTR of irrelevant documents. The

overall CTR is calculated by 𝑃 (𝑐𝑖 = 1) = 𝑃 (𝑜𝑖 = 1) · 𝑃 (𝑟𝑖 = 1). The
maximal position 𝑘𝑚𝑎𝑥 is set to be 10.

5.3 Baselines
We implement eight baselines that explore the performance of two

standard learning to rank methods (i.e., SVMRank [15] and Lamb-
daRank [6]), with four propensity estimation methods, which are

detailed as follows. (1)None uses the original click data without de-
biasing. (2) Randomization [16] estimates propensity with online

randomized experiments. (3) CPBM [10] estimates examination

probability w.r.t different queries based on intervention harvesting.

(4)Groundtruth uses the groundtruth examination probability for

oracle model as propensity. The result of this method is the upper

bound of the results of other IPS approaches based on the same rank-

ing model. Other methods we implement include (5) CTR-1, the
position-aware click model used in our framework which assigns

position 1 to each item during online inference. (6)DLA [2] is a dual

learning algorithm that jointly learns an unbiased ranker and an un-

biased propensity model. We also explore the performance of KM
(oracle model) which solves the maximum-weight graph match-

ing problem via Kuhn-Munkres (KM) algorithm [19, 25], given the

groundtruth CTR. It is supposed to produce the best utility we can

achieve on the test data.

5.4 Overall Performance
In this section, we assume the utility value of each item to be 1

in order to consistently and fairly compare U-rank with existing

(unbiased) learning to rank methods. We evaluate the performance

of the baseline approaches and U-rank in terms of the relevance

based metrics, i.e., MAP and nDCG (nDCG denotes nDCG@10), and
utility based metrics, i.e., # Click and CTR. Here, The # Click and CTR
are utility metrics based on oracle click model denoting clicks per
query and CTR per document, respectively. The overall performance

on the three benchmark datasets is shown in Table 1. Firstly, our
method U-rank achieves consistently the best performance over the

state-of-the-art baseline approaches on the utility-based metrics,

i.e., #Click and CTR. For example, U-rank achieves 1% improvement

in Yahoo LETOR set 1 and 8.3% improvement in MSLR-WEB10K on

CTR comparing to the best baseline methods
5
. Secondly, U-rank

5
The baseline in italic use the information from oracle click model, so they are not

included for comparison.

Figure 3: Comparison of the result lists of different methods on the first query of MSLR-WEB10K.

also outperforms most of the baselines in terms of the relevance

based metrics, i.e., MAP and nDCG, though it does not always

perform the best especially on MSLR-WEB10K dataset where the

disagreement between utility-based metric and relevance-based

metric is larger than that on the other two datasets. Thirdly, the
method Groundtruth achieves the best utility among the counter-

factual learning approaches, demonstrating the effectiveness of the

IPS-based framework when the propensity estimation is accurate.

Randomization fails to perform well because it assumes that the

user’s attention only relates to the position which is not true in our

setting where the user’s attention relies on both the position and

the item feature. CPBM achieves the second-best utility among the

IPS-based methods since it models the propensity of each query

by taking query features into consideration. Lastly, U-rank and

CTR-1 share the same click model. However, U-rank outperforms

CTR-1 mainly because CTR-1 ranks items by their estimated CTR

at position 1, which is suboptimal in case of item-specific attention

bias. U-rank also outperforms DLA since DLA relies heavily on the

accuracy of the estimated propensity, which is hard to achieve.

5.5 Empirical Analysis
RQ1: How does our model achieve higher CTR? In Figure 4,

we show the average CTR on each position of U-rank and Lamb-

daRank(Groundtruth) , the upper bound of counterfactual learning

methods in Table 1. We also plot the results of KM (oracle model)
for reference.

Figure 4: Average CTR on each position.
Firstly, comparing the results of the two datasets in Figure 4, we

observe a steeper decline of average CTR to positions of the KM (or-

acle model) method on Yahoo dataset than that on the MSLR dataset.

This suggests that on this dataset, positions have a very strong im-

pact on users’ click. Thus, to optimize the utility, a well-performed

approach should put more relevant items at higher positions. In

MSLR-WEB10K, on the other hand, the average CTR of the optimal

matching tends to be equally distributed on the positions, compared

to the Yahoo dataset. We find that our method is adaptive to different

Table 2: Comparison of two different architecture of the po-
sition aware click estimation.

AUC

click CTR

train test validation

A1 0.695 0.684 0.687 0.903 0.915

A2 0.701 0.693 0.692 0.852 0.847

severity of position bias. In Yahoo dataset, our model focuses more

on top positions than LambdaRank, while in the MSLR dataset,

our model learns a flatter distribution. Notably, on both datasets,

our model achieves a larger sum of click probabilities over all the

positions than LambdaRank.

Secondly, we analyze the result of a single query in detail. The

experiment is conducted on the first query of the MSLR-WEB10K

dataset. Figure 3 shows the click probabilities of the ten items for

this query and their click probabilities if placed at each position

according to our oracle click data generation model. The position of

each item assigned by different methods is denoted in orange color.

We can see that although LambdaRank performs better in nDCG

with a groundtruth propensity. It, however, achieves a lower CTR

than our method U-rank. This is because, similar to the KM (oracle

model), U-rank will take the position sensitivity of different items
into consideration. For example, document 6 is of high relevance

and relatively not sensitive to the position change. LambdaRank

displays it at the second position while our method and KM both

display it at a lower position, so that the second position is kept for

an item that is more sensitive to the position change.

RQ2:What kind of architecture should we use to implement
the position-aware click estimation? We implement two kinds

of architecture for the position-aware click estimation. A1 is a neu-

ral network, with the item features as input and a 𝐾-dim vector

as output, where the 𝑘-th dimension denotes the CTR of the item

at position 𝑘 , and 𝐾 denotes the number of positions. A2 is also a

neural network, with the concatenation of item feature and posi-

tion in one-hot encoding as its input and a single value as output,

representing the CTR of the item at the given position. The result

on MLSR-WEB10K is presented in Table 2. Although A2 achieves

better AUC, we utilize A1 as the click model to pursue higher utility.

6 REAL-WORLD DEPLOYMENT
In order to verify the effectiveness of our proposed model in real-

world applications, we conduct experiments in two recommen-

dation scenarios in Company X’s App Store. This App Store has

hundreds of millions of daily active users who create hundreds of

billions of user logs every day in the form of implicit feedback such

as browsing, clicking, and downloading behaviors.

Table 3: Comparison of different unbiased learning to rank models on real-world recommendation scenarios.

Ranking model

Scenario 1 (without bid) Scenario 2 (with bid)

click # click@1 # click@3 # click@5 Revenue Revenue@1 Revenue@3 Revenue@5

SVMRank

None 1.586 0.500 1.107 1.348 3.602 0.959 2.177 2.788

Groundtruth 1.617 0.536 1.154 1.386 3.619 1.015 2.229 2.825

LambdaRank

None 1.750 0.701 1.327 1.556 3.586 0.964 2.178 2.774

Groundtruth 1.826 0.781 1.429 1.640 3.637 1.009 2.245 2.837

DLA 1.665 0.624 1.338 1.520 3.631 0.958 2.233 2.827

DeepFM 1.790 0.762 1.379 1.593 3.753 1.131 2.289 2.881

U-rank 1.859* 0.841* 1.474* 1.676* 3.966* 1.264* 2.607* 3.214*
∗ denotes statistically significant improvement (measured by t-test with p-value<0.05) over all baselines.

6.1 Offline Evaluation
Setups.We conduct offline experiments based on two recommenda-

tion scenarios with different utility settings. In Scenario 1, we only

consider the downloads of the Apps as the utility, while in Scenario

2, the bid price of each App download needs to be considered. In

both scenarios, we use seven consecutive days’ data for training

and the eighth day’s data for testing. As in the semi-synthetic ex-

periments, we also implement two LETOR methods, i.e., SVMrank

and LambdaRank as baselines. The propensity estimation method

Randomization is not applicable here since we are not allowed to

randomly swap two items of a ranked list in a live recommender

system. Similarly, CPBM is not applicable either since in practice

we cannot obtain the ranking results of the same user from multiple

rankers at the same time. Thus, we only compare U-rank with the

ranker learned with biased click data, i.e., None, and the ranker

with groundtruth propensity, i.e., Groundtruth. The groundtruth
propensity is the same as the propensity that we use in evaluation

in the next paragraph. DeepFM is included as a baseline as it is the

production baseline in this App recommendation online system.

It trains with position feature and takes default position 1 in the

inference stage. To make a fair comparison, we perform DeepFM

architecture in both click model and ranking model in U-rank.
Metrics. Unlike in the semi-synthetic experiments, here we do not

know the underlying user click model. Thus, we have to debias the

click data generated by a historical ranker with a pre-estimated

propensity to obtain the click signals on the new positions. We esti-

mate the propensity for each category of items from 120 days’ click

data on random traffic. This category-wise propensity estimation

is a coarse approximation of the groundtruth propensity, which is

not available. The propensity is defined as 𝑄 (𝑜𝑖 = 1|category𝑖 , 𝑘𝑖),
where category𝑖 denotes the category of item 𝑖 . This propensity

is only used for evaluation except in the 𝐺𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ methods in

Table 3, where this propensity is used for debiasing.

The utility in Scenario 1 is defined as the expected number of

debiased clicks at the top-𝐾 positions in a session, i.e., #𝑐𝑙𝑖𝑐𝑘@𝐾 =∑𝐾
𝑘𝑖=1

𝑄 (𝑜𝑖=1 |category𝑖 ,𝑘𝑖)
𝑄 (𝑜𝑖=1 |category𝑖 ,𝑘ℎ𝑖)

𝑐
𝑖,𝑘ℎ

𝑖
. We use #𝑐𝑙𝑖𝑐𝑘 to denote the case

when𝐾 = 𝑛𝑞 . The utility in Scenario 2 is defined as the expected rev-

enue at top-𝐾 positions in a session after debasing, i.e., 𝑟𝑒𝑣𝑒𝑛𝑢𝑒@𝐾 =∑𝐾
𝑘𝑖=1

𝑄 (𝑜𝑖=1 |category𝑖 ,𝑘𝑖)
𝑄 (𝑜𝑖=1 |category𝑖 ,𝑘ℎ𝑖)

𝑐
𝑖,𝑘ℎ

𝑖
· 𝑏𝑖 where 𝑏𝑖 is the bid of item 𝑖 . We

use 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 to denote the case when 𝐾 = 𝑛𝑞 .

Results. The overall performance on the two real-world datasets

is shown in Table 3. We have the following observations. Firstly,
U-rank achieves the best performance comparing to the state-of-the-

art baselines. Specifically, in Scenario 1, U-rank achieves 1.8%, 7.7%,

Figure 5: Online experimental results of click through rate.

Figure 6: Online experimental results of conversion rate.

3.1% and 2.2% improvement over the best baseline method in terms

of #click, #click@1, #click@3 and #click@5, respectively. In the

experiment with bid in Scenario 2, the improvements are 2.5%, 13%,

6.7% and 3.9% in terms of Revenue, Revenue@1, Revenue@3 and

Revenue@5, respectively. These results demonstrate the superiority

of our approach over the baselines in optimizing the utility, which

motivates us to deploy U-rank in the live recommender system.

Secondly, U-rank performs better than DeepFM because U-rank
considers item-specific attention bias while DeepFM learns from

biased data. We do not elaborate on the other results since they are

consistent with the results in the semi-synthetic experiments.

6.2 Online Evaluation
Setups.We conduct A/B testing in a recommendation scenario in

Company X’s App store, comparing the proposed model U-rank
with the current production baseline DeepFM [12] that supports

multiple scenarios such as “Must-have Apps” and “Novel and Fun”.

The whole online experiment lasts 24 days, fromMay 6, 2020 to May

29, 2020. We monitor the results of A/A testing for the first seven

days, conduct A/B testing for the following ten days, and conduct

A/A testing again in the last seven days. 15% of the users are ran-

domly selected as the experimental group and another 15% of the

users are in the control group. During A/A testing, all the users are

served by DeepFM model [12]. During A/B testing, users in the con-

trol group are presented with recommendation by DeepFM, while

users in the experimental group are presented with the recommen-

dation by our proposed model U-rank. Note that the click model of

U-rank shares the same network architecture and parameter com-

plexity with DeepFM in order to verify whether the improvement

is brought by the objective function design of the ranker in U-rank.

To deployU-rank, we utilize a single node with 48 core Intel Xeon
CPU E5-2670 (2.30 GHZ), 400 GB RAM and as well as 2 NVIDIA

TESLA V100 GPU cards, which is the same as the training environ-

ment of the baseline DeepFM. For model training, U-rank requires

minor changes to the current training procedure due to the pair-

wise loss function. For model inference, U-rank shares the same

pipeline as DeepFM, which means there is no extra engineering

work needed in model inference, to upgrade DeepFM model (or

other similar deep models) to U-rank.
Metrics.We examine twometrics in the online evaluation. They are

Click-through rate:𝐶𝑇𝑅 = #𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑𝑠
#𝑖𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠 and Conversion rate:𝐶𝑉𝑅 =

#𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑𝑠
#𝑢𝑠𝑒𝑟𝑠 , where # downloads, # impressions and #users are the

number of downloads, impressions and visited users, respectively.

Results. Figure 5 and Figure 6 show the improvement of the exper-

imental group over the control group with respective to CTR and

CVR, respectively. We can see that the system is rather stable where

both CTR and CVR fluctuated within 8% during the A/A testing. Our

U-rank model is launched to the live system on Day 8. From Day 8,

we observe a significant improvement over the baseline model with

respect to both CTR and CVR. The average improvement of CTR

is 19.2% and the average improvement of CVR is 20.8% over the

ten days of A/B testing. These results clearly demonstrate the high

effectiveness of our proposed model in improving the total utility

which refers to the number of downloads in this scenario. From Day

18, we conduct A/A testing again to replace our U-rank model with

the baseline model in the experimental group. We observe a sharp

drop in the performance of the experimental group, which once

more verify that the improvement of online performance in the

experimental group is indeed introduced by our proposed model.

7 CONCLUSION
In this paper, we propose a novel framework U-rank, which directly

optimizes the expected utility of the ranked list without any extra

assumption on relevance nor examination. Specifically, U-rank first

uses a position-aware deep CTR model to perform an unbiased

estimation of the expected utility, and then optimizes the objective

with an efficient algorithm based on a LambdaRank-like objective.

Extensive studies on three benchmark datasets and two real-world

datasets based on different scenarios have shown the effectiveness

of our work. We also deploy this ranking framework on a commer-

cial recommender system and observe a large utility improvement

over the production baseline via online A/B testing. In future work,

we plan to consider other biases like selection bias and propose a

more general debiasing framework.

ACKNOWLEDGEMENT
The corresponding author Weinan Zhang thanks the support of

NSFC (61702327, 61772333, 61632017). The work is also sponsored

by Huawei Innovation Research Program.

REFERENCES
[1] Aman Agarwal, Ivan Zaitsev, Xuanhui Wang, Cheng Li, Marc Najork, and

Thorsten Joachims. 2019. Estimating Position Bias without Intrusive Interven-

tions. In WSDM.

[2] Qingyao Ai, Keping Bi, Cheng Luo, Jiafeng Guo, and W. Bruce Croft. 2018. Unbi-

ased Learning to Rank with Unbiased Propensity Estimation. In SIGIR.
[3] Xiao Bai, Reza Abasi, Bora Edizel, and Amin Mantrach. 2019. Position-aware

deep character-level CTR prediction for sponsored search. TKDE (2019).

[4] Alexey Borisov, Ilya Markov, Maarten de Rijke, and Pavel Serdyukov. 2016. A

Neural Click Model for Web Search. In WWW.

[5] Christopher Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole

Hamilton, and Gregory N Hullender. 2005. Learning to rank using gradient

descent. In ICML.
[6] Christopher J Burges, Robert Ragno, and Quoc V Le. 2007. Learning to rank with

nonsmooth cost functions. In NeuIPS.
[7] Olivier Chapelle and Ya Zhang. 2009. A Dynamic Bayesian Network Click Model

for Web Search Ranking. In WWW.

[8] Craswell, Nick, Zoeter, Onno, Taylor, Michael Lyu, Ramsey, and Bill. 2008. An

experimental comparison of click position-bias models. In WSDM.

[9] Georges E. Dupret and Benjamin Piwowarski. 2008. A User Browsing Model to

Predict Search Engine Click Data from Past Observations.. In SIGIR.
[10] Zhichong Fang, Aman Agarwal, and Thorsten Joachims. 2019. Intervention

Harvesting for Context-Dependent Examination-Bias Estimation. In SIGIR.
[11] Fan Guo, Chao Liu, Anitha Kannan, Tom Minka, Michael Taylor, Yi-Min Wang,

and Christos Faloutsos. 2009. Click Chain Model in Web Search. In WWW.

[12] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.

DeepFM: A Factorization-Machine based Neural Network for CTR Prediction. In

IJCAI.
[13] Huifeng Guo, Jinkai Yu, Qing Liu, Ruiming Tang, and Yuzhou Zhang. 2019.

PAL: A Position-Bias Aware Learning Framework for CTR Prediction in Live

Recommender Systems. In Recsys.
[14] Ziniu Hu, Yang Wang, Qu Peng, and Hang Li. 2019. Unbiased LambdaMART: An

Unbiased Pairwise Learning-to-Rank Algorithm. In WWW.

[15] Thorsten Joachims. 2006. Training Linear SVMs in Linear Time. In KDD.
[16] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. 2017. Unbiased

Learning-to-Rank with Biased Feedback. In WSDM.

[17] Alexandros Karatzoglou, Linas Baltrunas, and Yue Shi. 2013. Learning to rank

for recommender systems. In Recsys.
[18] Shubhra Kanti Karmaker Santu, Parikshit Sondhi, and ChengXiang Zhai. 2017.

On application of learning to rank for e-commerce search. In SIGIR.
[19] HaroldW Kuhn. 1955. The Hungarian method for the assignment problem. Naval

research logistics quarterly (1955).

[20] Tie-Yan Liu. 2011. Learning to rank for information retrieval. Springer Science &
Business Media.

[21] Lori Lorigo, Maya Haridasan, Hrönn Brynjarsdóttir, Ling Xia, Thorsten Joachims,

Geri Gay, Laura Granka, Fabio Pellacini, and Bing Pan. 2008. Eye tracking and

online search: Lessons learned and challenges ahead. Journal of the American
Society for Information Science and Technology (2008).

[22] Lori Lorigo, Bing Pan, Helene Hembrooke, Thorsten Joachims, Laura Granka,

and Geri Gay. 2006. The influence of task and gender on search and evaluation

behavior using Google. Information Processing & Management (2006).
[23] Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego,

Fabrizio Silvestri, and Salvatore Trani. 2016. Post-Learning Optimization of Tree

Ensembles for Efficient Ranking. In SIGIR.
[24] Pavel Metrikov, Fernando Diaz, Sebastien Lahaie, and Justin Rao. 2014. Whole

Page Optimization: How Page Elements Interact with the Position Auction.

[25] James Munkres. 1957. Algorithms for the assignment and transportation prob-

lems. Journal of the society for industrial and applied mathematics (1957).
[26] Yanru Qu, Bohui Fang, Weinan Zhang, Ruiming Tang, Minzhe Niu, Huifeng

Guo, Yong Yu, and Xiuqiang He. 2018. Product-based neural networks for user

response prediction over multi-field categorical data. TOIS (2018).
[27] Richardson, Matthew, Dominowska, Ewa, Ragno, and Robert. 2007. Predicting

clicks: Estimating the click-through rate for new ads. In WWW.

[28] Stephen E Robertson. 1977. The probability ranking principle in IR. Journal of
documentation (1977).

[29] Yukihiro Tagami, Shingo Ono, Koji Yamamoto, Koji Tsukamoto, and Akira Tajima.

2013. Ctr prediction for contextual advertising: Learning-to-rank approach. In

Proceedings of the Seventh International Workshop on Data Mining for Online
Advertising.

[30] Xuanhui Wang, Michael Bendersky, Donald Metzler, and Marc Najork. 2016.

Learning to Rank with Selection Bias in Personal Search. In SIGIR.
[31] Xuanhui Wang, Nadav Golbandi, Michael Bendersky, Donald Metzler, and Marc

Najork. 2018. Position Bias Estimation for Unbiased Learning to Rank in Personal

Search. In WSDM.

[32] Xuanhui Wang, Cheng Li, Nadav Golbandi, Mike Bendersky, and Marc Najork.

2018. The LambdaLoss Framework for Ranking Metric Optimization. In CIKM.

[33] Liang Wu, Diane Hu, Liangjie Hong, and Huan Liu. 2018. Turning clicks into

purchases: Revenue optimization for product search in e-commerce. In SIGIR.
[34] Weinan Zhang, Tianming Du, and JunWang. 2016. Deep learning over multi-field

categorical data. In ECIR.
[35] Zhe Zhao, Lichan Hong, Li Wei, Jilin Chen, Aniruddh Nath, Shawn Andrews,

Aditee Kumthekar, Maheswaran Sathiamoorthy, Xinyang Yi, and Ed Chi. 2019.

Recommending what video to watch next: a multitask ranking system. In Recsys.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Model Framework
	4.1 Unbiased Estimation of the Utility
	4.2 Learning to Optimize the Utility
	4.3 Theoretical Analysis

	5 Semi-synthetic Experiments
	5.1 Datasets
	5.2 Click Data Generation
	5.3 Baselines
	5.4 Overall Performance
	5.5 Empirical Analysis

	6 Real-world Deployment
	6.1 Offline Evaluation
	6.2 Online Evaluation

	7 Conclusion
	References

