2004.14288v3 [cs.RO] 15 Jul 2020

arxXiv

Actor-Critic Reinforcement Learning for Control
with Stability Guarantee

Minghao Han!, Lixian Zhang', Jun Wang?, and Wei Pan?

Abstract— Reinforcement Learning (RL) and its integration
with deep learning have achieved impressive performance in
various robotic control tasks, ranging from motion planning
and navigation to end-to-end visual manipulation. However,
stability is not guaranteed in model-free RL by solely using
data. From a control-theoretic perspective, stability is the most
important property for any control system, since it is closely
related to safety, robustness, and reliability of robotic systems.
In this paper, we propose an actor-critic RL framework for
control which can guarantee closed-loop stability by employing
the classic Lyapunov’s method in control theory. First of
all, a data-based stability theorem is proposed for stochastic
nonlinear systems modeled by Markov decision process. Then
we show that the stability condition could be exploited as the
critic in the actor-critic RL to learn a controller/policy. At
last, the effectiveness of our approach is evaluated on several
well-known 3-dimensional robot control tasks and a synthetic
biology gene network tracking task in three different popular
physics simulation platforms. As an empirical evaluation on the
advantage of stability, we show that the learned policies can
enable the systems to recover to the equilibrium or way-points
when interfered by uncertainties such as system parametric
variations and external disturbances to a certain extent.

[. INTRODUCTION

Reinforcement learning is promising to highly nonlinear
control robotic systems with large state and action space
[1]. Until recently, significant progress has been made by
combining advances in deep learning with reinforcement
learning. Impressive results are obtained in a series of high-
dimensional robotic control tasks where sophisticated and
hard-to-engineer behaviors can be achieved [2], [3], [4],
[5]. However, the performance of an RL agent is by large
evaluated through trial-and-error and RL could hardly provide
any guarantee for the reliability of the learned control policy.

Given a control system, regardless of which controller
design method is used, the first and most important property
of a system needs to be guaranteed is stability, because an
unstable control system is typically useless and potentially
dangerous [6]. A stable system is guaranteed to converge to
the equilibrium or reference signal and it could recover to
these targets even in the presence of parametric uncertainties
and disturbances [7]. Thus stability is closely related to the
robustness, safety, and reliability of the robotic systems.

The most useful and general approach for studying the
stability of robotic systems is Lyapunov’s method [8], which

1Minghao Han and Lixian Zhang are with the Department of Con-
trol Science and Engineering, Harbin Institute of Technology, China.
mhhan@hit.edu.cn,lixianzhang@hit.edu.cn.

2Jun Wang is with the Department of Computer Science, University
College London, UK. jun.wang@cs.ucl.ac.uk.

3Wei Pan is with the Department of Cognitive Robotics, Delft University
of Technology, Netherlands. wei.pan@tudelf.nl.

is dominant in control engineering [9], [10]. In Lyapunov’s
method, a scalar “energy-like” function called Lyapunov
function L is constructed to analyze the stability of the
system. The controller is designed to ensure that the difference
of Lyapunov function along the state trajectory is negative
definite for all time instants so that the state goes in the
direction of decreasing the value of Lyapunov function and
eventually converges to the equilibrium [11], [12]. In learning
methods, as the dynamic model is unknown, the “energy
decreasing” condition has to be verified by trying out all
possible consecutive data pairs in the state space, i.e., to
verify infinite inequalities L;y; — Ly < 0. Obviously, the
“infinity” requirement is impossible thus making the direct
exploitation of Lyapunov’s method impossible.

In this paper, we propose a data-based stability theorem
and an actor-critic reinforcement learning algorithm to jointly
learn the controller/policy and a Lyapunov critic function
both of which are parameterized by deep neural networks,
with a focus on stabilization and tracking tasks in robotic
systems. The contribution of our paper can be summarized as
follows: 1) a novel data-based stability theorem where only
one inequality on the expected value over the state space needs
to be evaluated; 2) a sample approximation of the stability
condition proposed above is exploited to derive an actor-
critic algorithm to search for a controller with asymptotic
stability guarantee (in the number of data points); 3) we
show through experiments that the learned controller could
stabilize the systems when interfered by uncertainties such
as unseen disturbances and system parametric variations of a
certain extent. In our experiment, we show that the stability
guaranteed controller is more capable of handling uncertain-
ties compared to those without such guarantees in nonlinear
control problems including classic CartPole stabilization tasks,
control of 3D legged robots and manipulator, and reference
tracking tasks for synthetic biology gene regulatory networks.

A. Related Works

In model-free reinforcement learning, stability is rarely
addressed due to the formidable challenge of analyzing and
designing the closed-loop system dynamics in a model-free
manner [13], and the associated stability theory in model-free
RL remains as an open problem [13], [14].

Recently, Lyapunov analysis is used in model-free RL
to solve control problems with safety constraints [15], [16].
In [15], the Lyapunov-based approach for solving constrained
Markov decision processes is proposed with a novel way
of constructing the Lyapunov function through linear pro-
gramming. In [16], the above results were further generalized

to continuous control tasks. Even though Lyapunov-based
methods were adopted in these results, neither of them
addressed the stability of the system. In this paper, the
sufficient conditions for a dynamic system being stable are
derived. Furthermore, it is shown that these conditions can
be verified through sampling and ensured through model-free
learning.

Other interesting results on the stability of learning-based
control systems are reported in recent years. In [17], an initial
result is proposed for the stability analysis of deterministic
nonlinear systems with optimal controller for infinite-horizon
discounted cost, based on the assumption that discount is
sufficiently close to 1. However, in practice, it is rather diffi-
cult to guarantee the optimality of the learned policy unless
certain assumptions on the system dynamics are made [18].
Furthermore, the exploitation of multi-layer neural networks
as function approximators [19] only adds to the impracticality
of this requirement. In this paper, it is shown that it is
sufficient to ensure stability by satisfying the Lyapunov
criterion that is evaluated on samples and thus one is exempt
from finding the optimal/suboptimal solutions. In [20], local
stability of Lipschitz continuous dynamic systems is analyzed
by validating the “energy decreasing” condition on discretized
points in the subset of state space with the help of a learned
model (Gaussian process). Nevertheless, the discretization
technique may become infeasible as the dimension and space
of interest increases, limiting its application to rather simple
and low-dimensional systems. In this paper, the proposed
method is applicable to the general class of stochastic dynamic
systems modeled by MDP and does not need to learn a model
for stability analysis and controller design.

II. PROBLEM STATEMENT

In this paper, we focus on the stabilization and tracking
tasks for systems modeled by Markov decision process (MDP).
The state of a robot and its environment at time ¢ is given
by the state s; € S C R™, where S denotes the state space.
The robot then takes an action a; € A C R™ according
to a stochastic policy m(a¢|st), resulting in the next state
s¢+1- The transition of the state is modeled by the transition
probability P(s;41|st, at). In both stabilization and tracking
tasks, there always is a cost function c(s, a;) to measure
how good or bad a state-action pair is.

In stabilization tasks, the goal is to find a policy m such
that the norm of state ||s;|| goes to zero eventually, where
|| - || denotes the Euclidean norm. In this case, cost function
c(st,at) = Ep(s,,an)llSe41]]. In tracking tasks, we divide
the state s into two vectors, s' and s2, where s' is composed
of elements of s that are aimed at tracking the reference
signal r, while s? contains the rest. The reference signal
could be the desired velocity, path and even the picture
of grasping an object in a certain pose. For tracking tasks,
s, a) = EP("Styat)||Stl+1 =l

From a control perspective, both stabilization and tracking
tasks are related to the asymptotic stability of the closed-loop
system (or error system) under 7, i.e., starting from an initial
point, the trajectories of state always converge to the origin

or reference trajectory. Let c,(s;) = Eqrc(ss,as) denote
the cost function under the policy 7, the definition of stability
studied in this paper is given as follows.

Definition 1: The stochastic system is said to be stable

in mean cost if lim;_, o, Eg, ¢ (s¢) = 0 holds for any initial
condition sg € {so|cx(so) < b}. If b is arbitrarily large then
the stochastic system is globally stable in mean cost.
The above definition is equivalent to the mean square stability
[21], [22] when the cost ¢ is chosen to be the norm of the
state; it is also equivalent to the partial stability [23], [24]
when c(s¢, a¢) = Ep(.|s,,a,) |5t 1 — |- Thus the stabilization
and tracking tasks can be collectively summarized as finding
a policy 7 such that the closed-loop system is stable in mean
cost according to Definition [T}

Before proceeding, some notations are to be defined.
p(so) denotes the distribution of starting states. The closed-
loop transition probability is denoted as Py (s'|s) =
Sy m(als)P(s'|s,a)da. We also introduce the closed-loop
state distribution at a certain instant ¢ as P(s|p,7,t),
which could be defined iteratively: P(s|p,7,t + 1) =
Js Pr(s'|s)P(s|p,m,t)ds,Vt € Zy and P(s|p,m,0) = p(s).

ITII. DATA-BASED STABILITY ANALYSIS

In this section, we propose the main assumptions and a
new theorem for stability analysis of stochastic systems. We
assume that the Markov chain induced by policy 7 is ergodic
with a unique stationary distribution ¢,

¢x(s) = lim P(s|p,m,t)

as commonly exploited by many RL literature [25], [26],
[27], [28].

In Definition [I] stability is defined in relation to the set of
starting states, which is also called the region of attraction
(ROA). If the MSS system starts within the ROA, its trajectory
will be surely attracted to the equilibrium. To build a data-
based stability guarantee, we need to ensure that the states
in ROA are accessible for the stability analysis. Thus the
following assumption is made to ensure that every state in
ROA has a chance to be sampled as the starting state.

Assumption 1: There exists a positive constant b such that
p(s) > 0,Vs € {s|cr(s) < b}.

Our approach is to construct/find a Lyapunov function
L : S — R, of which the difference along the state trajectory
is negative definite, so that the state goes in the direction of
decreasing the value of Lyapunov function and eventually
converges to the origin. The Lyapunov’s method has long been
used for stability analysis and controller design in control
theory [29], but mostly exploited along with a known model so
that the energy decreasing condition on the entire state space
could be transformed into one inequality regarding model
parameters [6], [30]. In the following, we show that without
a dynamic model, this “infinity” problem could be solved
through sampling and sufficient conditions for a stochastic
system to be stable in mean cost are given.

Theorem 1: The stochastic system is stable in mean cost
if there exists a function L : § — R4 and positive constants

a1, oo and «s, such that

arer (8) < L(s) < ageq (9) (D
Esnpn (ES/NPWL(S/) - L(S)) < —agEsnp, Cn (S) 2

where
pr(s) = lim —ZP st = s|p,m,t)

N—o0
is the (infinite) sampling distribution.

Proof: The existence of the sampling distribution
tr(s) is guaranteed by the existence of ¢.(s). Since the
sequence {P(s|p,m,t),t € Z,} converges to ¢r(s) as t
approaches co, then by the Abelian theorem, the sequence
(£ SN, P(slp,m,t), N € Z } also converges and pi-(s) =
¢ (s). Combined With the form of i, () infers that

/8 Jim —ZP slos) Ep, w19y L(5') — L(s))ds

N—oco N
=0

< —agEsnqg.cr (5)
3)
First, on the left-hand-side, L(s) < asc,(s) for all s €
S according to (I)). Since the probability density function
P(s|p,m,t) is (assumed to be) a bounded function on S for
all ¢, thus there exists a constant M such that

P(slp,mt)L(s) < Mage, (s),Vs € S,Vt € Z4

Second, the sequence {+ SN | P(s|p,m,t)L(s), N € Z4}
converges point-wise to the function ¢, (s)L(s). According
to the Lebesgue’s Dominated convergence theorem [31], if a
sequence f,(s) converges point-wise to a function f and is
dominated by some integrable function g in the sense that,

|fn(8)] < g(s),Vs € S,Vn

Then we get

lim fn()dSZ/ lim f,(s)ds
s

n—00 n— oo

Thus the left—hand-51de of (@)

/‘S]&@OO*ZP s|p, 1) / (s'|s)L(s")ds’ — L(s))ds

N+1

Z Ep(sio,mnL(s)

1
= lim i (Ep(sipmn+1)L(s) =

N—o00

= lim —
N—)oo

ZEP(s |p,m t)L))

Ep(5)L(3))

Thus taking the relations above into consideration, (3))
infers

1
i N (Ep(sipmn+1)L(s) = Eps)L(s)) @

<—-a3 hHolo E’P(s\pﬂr,t)cﬂ <5>

Since [E,(5)L(s) is a finite value and L is positive definite,

it follows that

. 1 1
lim Ep(ypr4)cr (s) < lim —(a—sEP(S)L(s)) =0 (5

t—o0 N—oc0

Suppose that there exists a state sg € {so|cr(s0) < b} and a

positive constant d such that lim; ;o Ep(s|se,x,0)Cr (5) = d,

or limy 00 Ep(s|s,me)Cr (8) = o0. Since p(sq) > 0 for
all starting states in {so|cz(so) < b} (Assumption ,
it follows that lim; o E,,~p(.|r,pCx (5¢) > 0, which is
contradictory with (5). Thus Vso € {solex(s0) < b},
limy 00 Ep(s|sg,r,¢)Cr () = 0. Thus the system is stable
in mean cost by Definition [T} u

(I) directs the choice and construction of Lyapunov
function, of which the details are deferred to Section
(2)) is called the energy decreasing condition and is the major
criterion for determining stability.

Remark 1: This remark is on the connection to previous
results concerning the stability of stochastic systems. It should
be noted that the stability conditions of Markov chains have
been reported in [21], [32], however, of which the validation
requires verifying infinite inequalities on the state space if S
is continuous. On the contrary, our approach solely validates
one inequality related to the sampling distribution u,
which further enables data-based stability analysis and policy
learning.

IV. ALGORITHM

In this section, we propose an actor-critic RL algorithm to
learn stability guaranteed policies for the stochastic system.
First, we introduce the Lyapunov critic function L. and show
how it is constructed. Then based on the maximum entropy
actor-critic framework, we use the Lyapunov critic function
in the policy gradient formulation.

A. Lyapunov Critic Function

In our framework, the Lyapunov critic L. plays a role in
both stability analysis and the learning of the actor. To enable
the actor-critic learning, the Lyapunov critic is designed to
be dependent on s and a and satisfies L(s) = E,urL.(s,a)
with the Lyapunov function L(s), such that it can be exploited
in judging the value of (2). In view of the requirement above,
L. should be a non-negative function of the state and action,
L. : S x A — Ry. In this paper, we construct Lyapunov
critic with the following parameterization technique,

Le(s,a) = fo(s,a)" fs(s,a) (6)

where fy is the output vector of a fully connected neural
network with parameter ¢. This parameterization ensures the
positive definiteness of L.(s,a), which is necessary since
L(s) is positive definite according to (I) and L(s) is the
expectation of L.(s,a) over the distribution of actions.
Theoretically, some functions, such as the norm of state
and value function, naturally satisfy the basic requirement of
being a Lyapunov function (I)). These functions are referred
to as Lyapunov candidates. However, Lyapunov candidates
are conceptual functions without any parameterization, thus
their gradient with respect to the controller is intractable and
are not directly applicable in an actor-critic learning process.
In the proposed framework, the Lyapunov candidate acts as a
supervision signal during the training of L.. During training,
L. is updated to minimize the following objective function,

1
J(Lc) =Ep §(LC(S,CL) - Ltarget(s’a))z)

where Liare 1S the approximation target related to the chosen
Lyapunov candidate, L(s) = Eqx Liarget(s, @) and D is the
set of collected transition pairs. In [15] and [20], the value
function has been proved to be a valid Lyapunov candidate
where the approximation target is

Ltarget(sa a) =c+ H};}X ’}/LIC(S/, a’) (8)

where L! is the target network parameterized by ¢’ as
typically used in the actor-critic methods [33], [19]. L/, has the
same structure as L., but the parameter ¢’ is updated through
exponentially moving average of weights of L. controlled by
a hyperparameter 7 € R 1), ¢, 1 < T¢r + (1 — 7)}.

In addition to value function, the sum of cost over a finite
time horizon could also be employed as Lyapunov candidate,
which is exploited in model predictive control literature [34],

[10] for stability analysis. In this case,
t+N

Ltarget(sv CL) = Z]Ect (9)
t

Here, the time horizon N is a hyperparameter to be tuned, of
which the influence will be demonstrated in the experiment
in Section [Vl

The choice of the Lyapunov candidate plays an important
role in learning a policy. Value function evaluates the infinite
time horizon and thus offers a better performance in general
but is rather difficult to approximate because of significant
variance and bias [35]. On the other hand, the finite horizon
sum of cost provides an explicit target for learning a Lyapunov
function, thus inherently reduces the bias and enhances
the learning process. However, as the model is unknown,
predicting the future costs based on the current state and action
inevitably introduces variance, which grows as the prediction
horizon extends. In principle, for tasks with simple dynamics,
the sum-of-cost choice enhances the convergence of learning
and robustness of the trained policies, while for complicated
systems the choice of value function generally produces better
performance. In this paper, we use both value function and
sum-of-cost as Lyapunov candidates. Later in Section [V] we
will show the influence of these different choices upon the
performance and robustness of trained policies.

B. Lyapunov Actor-Critic Algorithm

In this subsection, we will focus on how to learn the
controller in a novel actor-critic framework called Lyapunov
Actor-Critic (LAC), such that the inequality is satisfied.
The policy learning problem is summarized as the following
constrained optimization problem,

find 7y (10)
s.t. Ep(Le(s', fo(e,5")) — Le(s,a) + aze) (11)
— Eplog(m(als)) > Hi (12)

where the stochastic policy 7y is parameterized by a deep
neural network fy that is dependent on s and a Gaussian
noise €. The constraint (1)) is the parameterized inequality
(2), which can be evaluated through sampling. One may be
curious why in the second term of (I3), only one Lyapunov
critic is explicitly dependent on the stochastic policy, while

the other dependent on the samples of the action. First, note
that this estimator is also unbiased estimation of (2), although
the variance may be increased compared to replacing a with
fo(s). From a more practical perspective, having the second
Lyapunov critic explicitly dependent on 6 will introduce a
term in the policy gradient that updates 6 to increase the value
of L(s), which is contradictory to our goal of stabilization.
(12) is the minimum entropy constraint borrowed from the
maximum entropy RL framework to improve the exploration
in the action space [33], and H, is the desired bound. Solving
the above constrained optimization problem is equivalent to
minimizing the following objective function,

J(0) =E(s,a,5,c)~p[B(log(ma(fo(e, 5)|s)) + H)

+ AMLe(s, fole, s')) — Le(s,a) + azc)) (13)

where 5 and A are Lagrange multipliers that control the
relative importance of constraint(T1]) and (12).

In the actor-critic framework, the parameters of the policy
network are updated through stochastic gradient descent of
(13), which is approximated by

VoJ(0) =BV log(mg(als))+
BV 4 log(ma(als))Va fo(e, s)+
AV L.(s',a

)WV fo(e,s)

(14)

The value of Lagrange multipliers S and A are adjusted
by gradient ascent to maximize the following objectives
respectively while being clipped to be positive,

J(B) = BEpllogmg(als) + H]
JA) = MEp[L.(s, fo(s',€)) — Le(s,a) + asc]

During training, the Lagrange multipliers are updated by

A < max(0, A + 6VrJ (X))
B+ max(0, 8+ 6VgJ(5))

where ¢ is the learning rate. The pseudo-code of the proposed
algorithm is shown in Algorithm [T}

Algorithm 1 Lyapunov-based Actor-Critic (LAC)
Require: Maximum episode length N and maximum update
steps M
repeat
Sample s according to p
fort=1to N do
Sample a from 7y(als) and step forward
Observe ', ¢ and store (s,a,¢,s’) in D
end for
for i =1 to M do
Sample mini-batches of transitions from D and update
L., m, Lagrange multipliers with (7),
end for
until is satisfied

— SPPO 400l — SppO
— SAC — SAC
400l — LAC 300f =— LAC

|
300 200
200
100
100
o
0

160 200 300 400 500 600 700 800 900

10 200 300 400 s00 600 700 800 900

(a) CartPole (b) HalfCheetah

60

SPPO 000 SPPO

—— SAC —— SAC

n—s LAC — LAC
3000

2000

1000

50 100 130 260 250 300 20 @0 60 80 100

(c) FetchReach (d) GRN
mo{ —— SPPO
ol ane | R [—
9] — LAC 1200 — LAC
e T
Ao At e s

a0 1000
7

° 800
&

I\A/\«,\/\,\,\/VW e0o0
P T ED % 3 w0 100

(f) Minitaur

% 0 75 100 135

(e) Swimmer

Fig. 1. Cumulative control performance comparison. The Y-axis indicates
the total cost during one episode and the X-axis indicates the total time steps
in thousand. The shadowed region shows the 1-SD confidence interval over
10 random seeds. Across all trials of training, LAC converges to stabilizing
solution with comparable or superior performance compared with SAC and
SPPO.

V. EXPERIMENT

In this section, we illustrate five simulated robotic control
problems to demonstrate the general applicability of the
proposed method. First of all, the classic control problem
of CartPole balancing from control and RL literature [36]
is illustrated. Then, we consider more complicated high-
dimensional continuous control problems of 3D robots,
e.g., HalfCheetah and FetchReach, using MuJoCo physics
engine [37], a multi-joint Swimmer robot [38], and a full
quadruped (Minitaur) simulated by PyBullet platform [39].
Last, we extend our approach to control autonomous systems
in the cell, i.e., molecular synthetic biological gene regulatory
networks (GRN). Specifically, we consider the problem of
reference tracking for two GRNs [40].

The proposed method is evaluated for the following aspects:

« Convergence: does the proposed training algorithm
converge with random parameter initialization and does
the stability condition (2 hold for the learned policies;

o Performance: can the goal of the task be achieved or
the cumulative cost be minimized;

« Stability: if (2) hold, are the closed-loop systems stable
indeed and generating stable state trajectories;

o Robustness: how do the trained policies perform when
faced with uncertainties unseen during training, such as
parametric variation and external disturbances;

o Generalization: can the trained policies generalize to
follow reference signals that are different from the one

seen during training.

We compare our approach with soft actor-critic (SAC) [33],
one of the state-of-the-art actor-critic algorithms that outper-
form a series of RL methods such as DDPG [41], PPO [42]
on the continuous control benchmarks. The variant of safe
proximal policy optimization (SPPO) [16], a Lyapunov-based
method, is also included in the comparison. The original
SPPO is developed to deal with constrained MDP, where
safety constraints exist. In our experiments, we modify it to
apply the Lyapunov constraints on the MDP tasks and see
whether it can achieve the same stability guarantee as LAC. In
CartPole, we also compare with the linear quadratic regulator
(LQR), a classical model-based optimal control method for
stabilization. For both algorithms, the hyperparameters are
tuned to reach their best performance.

The outline of this section is as follows. In Section [V-A]
the performance, and convergence of LAC are demonstrated
and compared with SAC. In Section a straight forward
demonstration of stability is made by comparing with the
baseline method. In Section [V-C| the ability of generalization
and robustness of the trained policies are evaluated and
analyzed. Finally, in Section we show the influence of
choosing different Lyapunov candidates upon the performance
and robustness of trained policies.

The hyperparameters of LAC and the detailed experiment
setup are deferred to Appendix [43]. The code for reproduc-
tion can be found in our GitHub repository ﬂ

A. Performance

In each task, both LAC, SAC, and SPPO are trained 10
times with random initialization, average total cost, and its
variance during training are demonstrated in In the
examples (a)-(c) and (e), SAC and LAC perform comparably
in terms of the total cost at convergence and the speed
of convergence, while SPPO could converge in Cartpole,
FetcheReach, and Swimmer. In GRN and CompGRN (see
[Figure T(d) and Fig. S9(b) in the supplementary material),
SAC is not always able to find a policy that is capable of
completing the control objective, resulting in the bad average
performance. In the Minitaur example (see [Figure 1{f)), SAC
and SPPO can only converge to suboptimal solutions. On
the contrary, LAC performs stably regardless of the random
initialization. As shown in LAC converges stably
in all experiments.

B. Evaluation of Stability

In this part, further comparison between the stability-
assured method (LAC) and that without such guarantee (SAC)
is made, by demonstrating the closed-loop system dynamic
with the trained policies. A distinguishing feature of the
stability assured policies is that it can force and sustain
the state or tracking error to zero. This could be intuitively
demonstrated by the state trajectories of the closed-loop
system.

Ihttps://github.com/hithmh/Actor-critic-with-stab
ility—-guarantee

https://github.com/hithmh/Actor-critic-with-stability-guarantee
https://github.com/hithmh/Actor-critic-with-stability-guarantee

We evaluated the trained policies in the GRN and Comp-
GRN and the results are shown in In our experi-
ments, we found that the LAC agents stabilize the systems
well. All the state trajectories converge to the reference signal
eventually (see a and c). On the contrary, without
stability guarantee, the state trajectories either diverge (see
b), or continuously oscillate around the reference

trajectory (see d).

.| —/Protein 1
— Reference

@] — Protein 1
—— Reference

—— length=2.0

—— length=1.0

—— length=1.5
original

S length=2.0

— length=1.0

| — length=1.5

original

(a) LAC-CartPole

(b) SAC-CartPole

ws{ —— K=5
o] —— a=48
—— noise level=0.5

— Ki=5

©1 — a=438

—— noise level=0.5

(a) LAC-GRN

—— Protein 1
u{ — Reference

—— Protein 1
*1 — Reference

(c) LAC-CompGRN (d) SAC-CompGRN

Fig. 2. State trajectories over time under policies trained by LAC and SAC
in the GRN and CompGRN. In each experiment, the policies are tested over
20 random initial states and all the resulting trajectories are displayed above.
The X-axis indicates the time and Y-axis shows the concentration of the
target protein— Protein 1.

C. Empirical Evaluation on Robustness and Generalization

It is well-known that over-parameterized policies are prone
to become overfitted to a specific training environment.
The ability of generalization is the key to the successful
implementation of RL agents in an uncertain real-world
environment. In this part, we first evaluate the robustness
of policies in the presence of parametric uncertainties and
process noise. Then, we test the robustness of controllers
against external disturbances. Finally, we evaluate whether the
policy is generalizable by setting different reference signals.
To make a fair comparison, we removed the policies that did
not converge in SAC and only evaluate the ones that perform
well during training. During testing, we found that SPPO
appears to be prone to variations in the environment, thus
the evaluation results are contained in Appendix [43].

1) Robustness to dynamic uncertainties: In this part,
during the inference, we vary the system parameters and
introduce process noises in the model/simulator to evaluate the
algorithm’s robustness. In CartPole, we vary the length of pole
l. In GRN, we vary the promoter strength a; and dissociation
rate K;. Due to stochastic nature in gene expression, we also
introduce uniformly distributed noise ranging from [—, ¢]
(we indicate the noise level by 0) to the dynamic of GRN.
The state trajectories of the closed-loop system under LAC
and SAC agents in the varied environment are demonstrated
in

As shown in Figure |§| (a, ¢), the policies trained by LAC
are very robust to the dynamic uncertainties and achieve high

“ — a=32 -
—— k=10
° noise level=1

25— ai=32 I
ol —— Ki=10
noise level=1

e original [| \‘ | " original

so0 YR \ & \/ 1 /s =
Y \/] \s \/

ALY NV VY Y

(c) LAC-GRN

(d) SAC-GRN

Fig. 3. LAC and SAC agents in the presence of dynamic uncertainties.
The solid line indicates the average trajectory and shadowed region for the
1-SD confidence interval. In (a) and (b), the pole length is varied during
the inference. In (c) and (d), three parameters are selected to reflect the
uncertainties in gene expression. The X-axis indicates the time and Y-axis
shows the angle of the pole in (a,b) and concentration of target protein in
(c,d), respectively. The dashed line indicates the reference signal. The line
in orange indicates the dynamic in the original environment. For each curve,
only the noted parameter is different from the original setting.

tracking precision in each case. On the other hand, though
SAC performs well in the original environment (Figure |§| (b,
d)), it fails in all of the varied environments.

2) Robustness to disturbances: An inherent property of a
stable system is to recover from perturbations such as external
forces and wind. To show this, we introduce periodic external
disturbances with different magnitudes in each environment
and observe the performance difference between policies
trained by LAC and SAC. We also include LQR as the model-
based baseline. In CartPole, the agent may fall over when
interfered by an external force, ending the episode in advance.
Thus in this task, we measure the robustness of controllers
through the death-rate, i.e., the probability of falling over
after being disturbed. For other tasks where the episodes are
always of the same length and we measure the robustness
of controller by the variation in the cumulative cost. Under
each disturbance magnitude, the policies are tested for 100
trials and the performance is shown in

As shown in the controllers trained by LAC
outperform SAC and LQR to a great extent in CartPole and

GRN (lower death rate and cumulative cost). In HalfCheetah,
SAC and LAC are both robust to small external disturbances
while LAC is more reliable to larger ones. In FetchReach,
SAC and LAC perform reliably across all of the external
disturbances. The difference between SAC and LAC becomes
obvious in GRN, Swimmer, and Minitaur, where the dynamics
are more vulnerable to the external disturbances. In all of the
experiments, SPPO agents could hardly sustain any external
disyrlopaiessalization over different tracking references: In
this part, we introduce four different reference signals that are
unseen during training in the GRN: sinusoids with periods
of 150 (brown) and 400 (blue), and the constant reference of

—— SAC
200{ — LAC

80 — SPPO

— LOR “a0
— LAC
—— SAC 50
. — sero }

035 050 075 100 125 150 175 200

(a) CartPole (b) HalfCheetah

—— SAC
— LAC

—SAC ~—\ |~
1000000

— LAC

—— SPPO 800000 = SPPO
15 \/\/\/\/ 600000

400000
200000

5 o

200000
0
025 050 075 100 125 150 175 2.0 02 o 06 08 10

(¢) FetchReach (d) GRN

SAC 900 SAC

—1AC —/_\/—— — laC /\/\
501 — sppo 800 ——SPPO

Taa " 600
A N 7

o /_/\/

01 o0z 03 04 05 06 07 08 09 01 o0z 03 04 05 06 07 08 09

(e) Swimmer (f) Minitaur

Fig. 4. Performance of LAC, SAC, SPPO and LQR in the presence of
persistent disturbances with different magnitudes. The X-axis indicates the
magnitude of the applied disturbance. The Y-axis indicates the death rate in
CartPole (a) and the cumulative cost in other examples (b)-(d). All of the
trained policies are evaluated for 100 trials in each setting.

il
|

(a) LAC

(b) SAC

Fig. 5. State trajectories under policies trained by LAC and SAC when
tracking different reference signals. The solid line indicates the average
trajectory and shadowed region for the 1-SD confidence interval. The X-
axis indicates the time and Y-axis shows the concentration of protein to
be controlled. Dashed lines in different colors are the different reference
signals: sinusoid with a period of 150 (brown); sinusoid with a period of
200 (sky-blue); sinusoid with a period of 400 (blue); constant reference of
8 (red); constant reference of 16 (green).

8 (red) and 16 (green). We also show the original reference
signal used for training (skyblue) as a benchmark. Reference
signals are indicated in by the dashed line in
respective colors. All of the trained policies are tested for 10
times with each reference signal. The average dynamics of
the target protein are shown in with the solid line,
while the variance of dynamic is indicated by the shadowed
area.

As shown in the policies trained by LAC could
generalize well to follow previously unseen reference signals
with low variance (dynamics are very close to the dashed
lines), regardless of whether they share the same mathematical
form with the one used for training. On the other hand, though
SAC tracks the original reference signal well after the training

trials without convergence being removed (see the sky-blue
lines), it is still unable to follow some of the reference signals
(see the brown line) and possesses larger variance than LAC.

D. Influence of Different Lyapunov candidates

As an independent interest, we evaluate the influence
of choosing different Lyapunov candidates in this part.
First, we adopt candidates of different time horizon N €
{5,10,15,20, 00} to train policies in the CartPole example
and compare their performance in terms of cumulative cost
and robustness. Here, N = oo implies using value function
as the Lyapunov candidate. Both of the Lyapunov critics
are parameterized as @ For evaluation of robustness, we
apply an impulsive force F' at 100y, instant and observe the
death-rate of trained policies. The results are demonstrated

in Figure 0

infinite horizon 100
4004 —— SAC
— N=5
300 N=20
N=15

(a) Horizon-Training (b) Horizon-Robustness

Fig. 6. Influence of different Lyapunov candidates. In (a), the Y-axis
indicates cumulative cost during training and the X-axis indicates the total
time steps in thousand. (b) shows the death-rate of policies in the presence
of instant impulsive force F' ranging from 80 to 150 Newton.

As shown in both choices of Lyapunov candidates
converge fast and achieve comparable cumulative cost at
convergence. However, in terms of robustness, the choice of
N plays an important role. As observed in (b), the
robustness of the controller decreases as the time horizon N
increases. Besides, it is interesting that LQR is more robust
than SAC when faced with instant impulsive disturbance.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we proposed a data-based approach for
analyzing the stability of discrete-time nonlinear stochastic
systems modeled by Markov decision process, by using the
classic Lyapunov’s method in control theory. By employing
the stability condition as a critic, an actor-critic algorithm
is proposed to learn a controller/policy to ensure the closed-
loop stability in stabilization and tracking tasks. We eval-
uated the proposed method in various examples and show
that our method achieves not only comparable or superior
performance compared with the state-of-the-art RL algorithm
but also outperforms impressively in terms of robustness to
uncertainties such as model parameter variations and external
disturbances. For future work, it might be interesting to extend
this method to constrained Markov decision process in which
state and action constraints are considered. Also, to quantify
the robustness induced by the stability will be investigated.

REFERENCES

[1] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238-1274, 2013.

[2]

[3

[t}

[5]

[6]

[7]
[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

J. Peters and S. Schaal, “Reinforcement learning of motor skills with
policy gradients,” Neural networks, vol. 21, no. 4, pp. 682-697, 2008.
S. Lockel, J. Peters, and P. Van Vliet, “A probabilistic framework for
imitating human race driver behavior,” IEEE Robotics and Automation
Letters, 2020.

Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and
A. Farhadi, “Target-driven visual navigation in indoor scenes using
deep reinforcement learning,” in 2017 IEEE international conference
on robotics and automation (ICRA). 1EEE, 2017, pp. 3357-3364.
S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement
learning for robotic manipulation with asynchronous off-policy updates,”
in 2017 IEEE international conference on robotics and automation
(ICRA). 1EEE, 2017, pp. 3389-3396.

J.-J. E. Slotine, W. Li, et al., Applied nonlinear control.
Englewood Cliffs, NJ, 1991, vol. 199, no. 1.

M. Vidyasagar, Nonlinear systems analysis. Siam, 2002, vol. 42.
A. M. Lyapunov, The general problem of the stability of motion (in
Russian). PhD Dissertation, Univ. Kharkov, 1892.

K. J. Astrdm and B. Wittenmark, Adaptive control.
Corporation, 1989.

D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert, “Con-
strained model predictive control: Stability and optimality,” Automatica,
vol. 36, no. 6, pp. 789-814, 2000.

M. Corless and G. Leitmann, “Continuous state feedback guaranteeing
uniform ultimate boundedness for uncertain dynamic systems,” IEEE
Transactions on Automatic Control, vol. 26, no. 5, pp. 1139-1144,
1981.

A. Thowsen, “Uniform ultimate boundedness of the solutions of
uncertain dynamic delay systems with state-dependent and memoryless
feedback control,” International Journal of control, vol. 37, no. 5, pp.
1135-1143, 1983.

L. Busoniu, T. de Bruin, D. Tolié, J. Kober, and I. Palunko, “Re-
inforcement learning for control: Performance, stability, and deep
approximators,” Annual Reviews in Control, 2018.

D. Gorges, “Relations between model predictive control and reinforce-
ment learning,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 4920-4928,
2017.

Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh,
“A lyapunov-based approach to safe reinforcement learning,” arXiv
preprint arXiv:1805.07708, 2018.

Y. Chow, O. Nachum, A. Faust, M. Ghavamzadeh, and E. Duenez-
Guzman, “Lyapunov-based safe policy optimization for continuous
control,” arXiv preprint arXiv:1901.10031, 2019.

R. Postoyan, L. Busoniu, D. Nesi¢, and J. Daafouz, “Stability analysis
of discrete-time infinite-horizon optimal control with discounted cost,”
IEEE Transactions on Automatic Control, vol. 62, no. 6, pp. 2736-2749,
2017.

J. J. Murray, C. J. Cox, and R. E. Saeks, “The adaptive dynamic
programming theorem,” in Stability and control of dynamical systems
with applications. Springer, 2003, pp. 379-394.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint larXiv:1509.02971, 2015.

F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause, “Safe model-
based reinforcement learning with stability guarantees,” in Advances
in neural information processing systems, 2017, pp. 908-918.

L. Shaikhet, “Necessary and sufficient conditions of asymptotic mean
square stability for stochastic linear difference equations,” Applied
Mathematics Letters, vol. 10, no. 3, pp. 111-115, 1997.

P. Bolzern, P. Colaneri, and G. De Nicolao, “Markov jump linear
systems with switching transition rates: mean square stability with
dwell-time,” Automatica, vol. 46, no. 6, pp. 1081-1088, 2010.

V. 1. Vorotnikov, “Partial stability and control: The state-of-the-art
and development prospects,” Automation and Remote Control, vol. 66,
no. 4, pp. 511-561, 2005.

W. M. Haddad et al., “Finite-time partial stability and stabilization,
and optimal feedback control,” Journal of the Franklin Institute, vol.
352, no. 6, pp. 2329-2357, 2015.

R. S. Sutton, H. R. Maei, and C. Szepesvdri, “A convergent o(n)
temporal-difference algorithm for off-policy learning with linear
function approximation,” in Advances in neural information processing
systems, 2009, pp. 1609-1616.

N. Korda and P. La, “On td (0) with function approximation: Concen-
tration bounds and a centered variant with exponential convergence,”
in International Conference on Machine Learning, 2015, pp. 626-634.

Prentice hall

Courier

[27]

[28]

[29]

[30]

[31]
[32]
[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

[48]

[49]

J. Bhandari, D. Russo, and R. Singal, “A finite-time analysis of temporal
difference learning with linear function approximation,” arXiv preprint
arXiv:1806.02450, 2018.

S. Zou, T. Xu, and Y. Liang, “Finite-sample analysis for sarsa with
linear function approximation,” in Advances in Neural Information
Processing Systems, 2019, pp. 8665-8675.

E. Boukas and Z. Liu, “Robust stability and h/sub/spl infin//control of
discrete-time jump linear systems with time-delay: an Imi approach,” in
Decision and Control, 2000. Proceedings of the 39th IEEE Conference
on, vol. 2. IEEE, 2000, pp. 1527-1532.

S. Sastry, Nonlinear systems: analysis, stability, and control.
Science & Business Media, 2013, vol. 10.

H. L. Royden, Real analysis. Krishna Prakashan Media, 1968.

S. P. Meyn and R. L. Tweedie, Markov chains and stochastic stability.
Springer Science & Business Media, 2012.

T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan,
V. Kumar, H. Zhu, A. Gupta, P. Abbeel, et al., “Soft actor-critic
algorithms and applications,” arXiv preprint arXiv:1812.05905, 2018.
D. Q. Mayne and H. Michalska, “Receding horizon control of nonlinear
systems,” IEEE Transactions on automatic control, vol. 35, no. 7, pp.
814-824, 1990.

J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
arXiv preprint arXiv:1506.02438, 2015.

A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive
elements that can solve difficult learning control problems,” IEEE
transactions on systems, man, and cybernetics, no. 5, pp. 834-846,
1983.

E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. 1EEE, 2012, pp. 5026-5033.

Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas, D. Budden,
A. Abdolmaleki, J. Merel, A. Lefrancq, et al., “Deepmind control suite,”
arXiv preprint arXiv:1801.00690, 2018.

E. Coumans and Y. Bai, “Pybullet, a python module for physics simu-
lation for games, robotics and machine learning,” GitHub repository,
2016.

M. B. Elowitz and S. Leibler, “A synthetic oscillatory network of
transcriptional regulators,” Nature, vol. 403, no. 6767, p. 335, 2000.
T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint larXiv:1509.02971, 2015.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, ‘“Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

M. Han, L. Zhang, J. Wang, and W. Pan, “Actor-critic reinforce-
ment learning for control with stability guarantee,” arXiv preprint
arXiv:2004.14288, 2020.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

N. Strelkowa and M. Barahona, “Switchable genetic oscillator operating
in quasi-stable mode,” Journal of The Royal Society Interface, vol. 7,
no. 48, pp. 1071-1082, 2010.

A. Sootla, N. Strelkowa, D. Ernst, M. Barahona, and G.-B. Stan, “On
periodic reference tracking using batch-mode reinforcement learning
with application to gene regulatory network control,” in 52nd IEEE
conference on decision and control. 1EEE, 2013, pp. 4086—4091.

Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu, “Advances in
optimizing recurrent networks,” in 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing. 1EEE, 2013, pp. 8624—
8628.

1. Bello, B. Zoph, V. Vasudevan, and Q. V. Le, “Neural optimizer search
with reinforcement learning,” in Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org, 2017, pp.
459-468.

Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and
N. De Freitas, “Dueling network architectures for deep reinforcement
learning,” arXiv preprint larXiv:1511.06581, 2015.

Springer

http://arxiv.org/abs/1805.07708
http://arxiv.org/abs/1901.10031
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1806.02450
http://arxiv.org/abs/1812.05905
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1801.00690
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/2004.14288
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1511.06581

Appendix

S1. EXPERIMENT SETUP

We set up the experiment using OpenAi Gym [44], DeepMind Control Suite [38] and PyBullet physics simulation platforms
[39]. A snapshot of the adopted environments in this paper can be found in Figure

=

(a) Cartpole (b) HalfCheetah (c) FetchReach (d) Swimmer (e) Minitaur

Fig. S7. Snapshot of environments using OpenAl Gym.

A. CartPole

In this experiment, the controller is expected to maintain the pole vertically at a target position = 0. This is a
modified version of CartPole in [44] with continuous action space. The action is the horizontal force applied upon the
cart (a € [—20,20]). Zihreshold and Oypreshola TEpresents the maximum of position and angle, respectively, Zreshola = 10 and
Onreshola = 20°. The episode ends if |z| > Zireshold OF @] > Oinreshola and the episodes end in advance. Cost function
r= (ﬁy + 20 = (szhold)z‘ The episodes are of length 250. For robustness evaluation in Section ﬁC we apply an
impulsive disturbance force £ on the cart every 20 seconds, of which the magnitude ranges from 80 to 150 and the direction
is opposite to the direction of control input. In Section [V-D} the impulsive disturbance has the same magnitude range and

direction with that in Section [V-C| but only applied once at instant ¢ = 100.

B. HalfCheetah

HalfCheetah is a modified version of that in Gym’s robotics environment [44]. The task is to control a HalfCheetah (a
2-legged simulated robot) to run at the speed of 1 m/s. The reward is r = (v — 1)? where v is the forward speed of the
HalfCheetah. The control input is the torque applied on each joint, ranging from -1 to 1. The episodes are of length 200.

For robustness evaluation in Section [V-C| we apply an impulsive disturbance torque on each joint every 20 seconds, of
which the magnitude ranges from 0.2 to 2.0 and the direction is opposite to the direction of control input.

C. FetchReach

We modify the FetchReach in Gym’s robotics environment [44] to a cost version, where the controller is expected to
control the manipulator’s end effector to reach a random goal position. The cost is designed as ¢ = d, where d is the distance
between goal and end-effector. The control input is the torque applied on each joint, ranging from -1 to 1. The episodes are
of length 200.

For robustness evaluation in Section [V-C| we apply an impulsive disturbance torque on each joint every 20 seconds, of
which the magnitude ranges from 0.2 to 2.0 and the direction is opposite to the direction of control input.

D. Swimmer

Swimmer is a modified version based on the environment in the DeepMind control suite [38]. The task is to control a
multi-joint snake robot to run at a speed of 1 m/s. The reward is r = (v — 1)? where v is the forward speed of the Swimmer.
The control input is the torque applied on each joint, ranging from -1 to 1. The episodes are of length 250.

For robustness evaluation in Section [V-C| we apply an impulsive disturbance torque on each joint every 20 seconds, of
which the magnitude ranges from 0.2 to 1.0 and the direction is opposite to the direction of control input.

E. Minitaur

This example is borrowed from the PyBullet environment [39]. In Minitaur, the agent controls the Ghost Robotics Minitaur
quadruped to run forward at the speed of 1 m/s. The reward is 7 = (v — 1)? where v is the forward speed of the robot. The
control input is the desired pose of each actuator. The episodes are of length 500.

For robustness evaluation in Section we apply an impulsive disturbance on the input channel every 20 seconds, of
which the magnitude ranges from 0.2 to 1.0 and the direction is opposite to the direction of control input.

S2. SYNTHETIC BIOLOGY GENE REGULATORY NETWORKS

Since the gene regulatory networks (GRN) considered here is in nano-scale whose physical property is different from the
ones considered in Section [ST} Also, GRN can exhibit interesting oscillatory behavior. We illustrate this example separately
in this section.

A. Mathematical model of GRN

In this example, we consider a classical dynamical system in systems/synthetic biology, the repressilator, which we use to
illustrate the reference tracking task at hand. The repressilator is a synthetic three-gene regulatory network where the dynamics
of mRNAs and proteins follow an oscillatory behavior [40]. A discrete-time mathematical description of the repressilator,
which includes both transcription and translation dynamics, is given by the following set of discrete-time equations:

xﬂb+nzxﬂﬂ+ﬁ-;ﬁmﬂ®+Kl+%w)+m:+&GL

Z'Q(t + 1) = :Eg(t) + dt - :—’72562(?5) + I(Q—Fiiz(t) + U2: + 52(t)a

z3(t+ 1) = x3(t) +dt - _*%Is(t) + Kg,—l(—ligxg(t) + U3_ +&3(t), (15
x4(t + 1) = x4(t) + dt - [—craa(t) + Brai(t)] + &a(t),

1‘5(t + 1) = $5(t) + dt - [—Cz$5(k) + 52532(t)] + E5(t)a

xe(t + 1) = x6(t) + dt - [—caxe(t) + Psxs(t)] + &6(t).

Here, x1, 22, x3 (resp. x4, 5, xg) denote the concentrations of the mRNA transcripts (resp. proteins) of genes 1, 2, and 3,
respectively. &;, Vi are i.i.d. uniform noise ranging from [—4, 4], i.e., & ~ U(—0,). During training, § = 0 and for evaluation
0 is set to 0.5 and 1 respectively in Section a1, a2, a3 denote the maximum promoter strength for their corresponding
gene, v1,72,73 denote the mRNA degradation rates, ¢, co, cs denote the protein degradation rates, (1, 32, B3 denote the
protein production rates, and K7, K5, K3 are the dissociation constants. The set of equations in Eq.@) corresponds to a
topology where gene 1 is repressed by gene 2, gene 2 is repressed by gene 3, and gene 3 is repressed by gene 1. dt is the
discretization time step.

In practice, only the protein concentrations are observed and given as readouts, for instance via fluorescent markers (e.g.,
green fluorescent protein, GFP or red fluorescent protein, mCherry). The control scheme u; will be implemented by light
control signals which can induce the expression of genes through the activation of their photo-sensitive promoters. To simplify
the system dynamics and as it is usually done for the repressilator model [40], we consider the corresponding parameters of
the mRNA and protein dynamics for different genes to be equal. More background on mathematical modeling and control of
synthetic biology gene regulatory networks can be referred to [45], [46]. In this example, the parameters are as follows:

Vi: K;=1,a; = 1.6, = 0.16, 3; = 0.16,¢; = 0.06,dt = 1

In FigS8] a single snapshot of the state temporal evolution without ¢ is depicted. We uniformly initialized between 0 to 5,
i.e., z;(0) ~ U(0,5), which is the range we train the policy in Section [V| persistent oscillatory behavior is also exhibiting

similar to the snapshot in Fig [S§]
"7l —— mRNA?2
sl —— MRNA 3
—— Protein 1
91 —— Protein 2
,s/ — Protein 3
\\\\\‘;\\\1\\;
\ \\ “““““‘\“\
VWYYYVYYVYYVYYVYYVYYVA

— mRNA 1

(R

0 200 400 61 1000 1200

Fig. S8. A snapshot of the natural oscillatory behavior of a repressilator system consisting of 3 genes. The oscillations have a period of approximately 150
arbitrary time units. The X-axis denotes time and Y-axis denotes the value/concentration of each state.

—— SPPO -~ SPPO
4000 400000
— SAC saRc T |
— LAC — LAC
3000 1 | 3000001
200000
2000
100000 {
1000
ol
\f__‘_‘
0
~100000
0 20 40 60 80 100 } | | |
0 20 40 60 80 100
(a) GRN (b) CompGRN

Fig. S9. Cumulative control performance comparison for synthetic GRN. The Y-axis indicates the total cost during one episode and the X-axis indicates the
total time steps in thousand. The shadowed region shows the 1-SD confidence interval over 10 random seeds. Across all trials of training, LAC converges to
stabilizing solution with comparable or superior performance compared with SAC and SPPO. Figure.S9 (a) is identical to Figure.l (d).

TABLE S1
HYPERPARAMETERS OF LAC

Hyperparameters CartPole FetchReach ~ HalfCheetah GRN CompGRN Swimmer Minitaur
Lyapunov candidate Sum of cost Sum of cost Value Sum of cost ~ Sum of cost Value Value
Time horizon N 5 5 00 5 5 o0 o)
Minibatch size 256 256 256 256 256 256 256
Actor learning rate le-4 le-4 le-4 le-4 le-4 le-4 le-4
Critic learning rate 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4
Lyapunov learning rate 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4
Target entropy -1 -5 -6 -3 -4 -2 -8
Soft replacement(T) 0.005 0.005 0.005 0.005 0.005 0.005 0.005
Discount(y) NAN NAN 0.995 NAN NAN 0.995 0.995
o3 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Structure of fg (64,64,16) (64,64,16) (256,256,16) (256,256,16) (256,256,16) (64,64,16) (256,256,16)

S3. HYPERPARAMETERS

For LAC, there are two networks: the policy network and the Lyapunov critic network. For the policy network, we use
a fully-connected MLP with two hidden layers of 256 units, outputting the mean and standard deviations of a Gaussian
distribution. As mentioned in it should be noted that the output of the Lyapunov critic network is a square term,
which is always non-negative. More specifically, we use a fully-connected MLP with two hidden layers and one output
layer with different units as in outputting the feature vector ¢(s, a). The Lyapunov critic function is obtained by
L.(s,a) = ¢T(s,a)é(s,a). All the hidden layers use Relu activation function and we adopt the same invertible squashing
function technique as [33] to the output layer of the policy network.

S4. CONVERGENCE OF LAGRANGE MULTIPLIERS

(a) Cartpole (b) HalfCheetah (c) FetchReach (d) GRN (e) CompGRN (f) Swimmer (g) Minitaur

Fig. S10. Value of Lagrange multiplier A during the training of LAC policies. The Y-axis indicates the value of A and the X-axis indicates the total time
steps in thousand. The shadowed region shows the 1-SD confidence interval over 10 random seeds. The value of A gradually drops and becomes zero at
convergence, which implies the satisfaction of stability condition.

The convergence of LAC and validation of the stability guarantee can also be checked by observing the value of Lagrange
multipliers. When is satisfied, A will continuously decrease until it becomes zero. Thus by checking the value of A,
the satisfaction of stability condition during training and at convergence could be validated. In practice, the value of X is
clipped under the maximum value 1 in case that \ grows too large due to the violation of stability condition during the
early training stage, resulting in the inappropriate step length for the policy update. Clipping is a useful technique to prevent

instability of optimization, especially in gradient-based methods, see [42], [47], [48], [49]. In the value of \
during training is demonstrated. Across all training trials in the experiments, A converges to zero eventually, which implies
that the stability guarantee is valid. It is also shown that the clipping technique only makes effect in the early training stage
in the FetchReach (see (c)) while in other experiments it is not triggered.

S5. ROBUSTNESS AND GENERALIZATION EVALUATION OF SPPO

In this part, we evaluate the robustness and generalization ability of policies trained by SPPO in the same. First, the
robustness of the policies is tested by perturbing the parameters and adding noise in the Cartpole and Repressilator environment,
as described in Section [V-C.1} Generalization of the policies is evaluated by setting reference signals that are unseen during
training. State trajectories of the above experiments are demonstrated in |[Figure S11| and [Figure S12| respectively. As
demonstrated in the figures, the SPPO policies could hardly deal with previously unseen uncertainty or reference signals and
failed in all of the Repressilator experiments.

The SPPO algorithm is originally developed for the control tasks with safety constraints, i.e. keeping the expectation of
discounted cumulative safety cost below a certain threshold. Though Lyapunov’s method is exploited, the approach is not
aimed at providing stability guarantee.

3 80
o 60
< . — K.i=5
-1 —— noise level=0.5
i — a_i=4.8
. —— length=2.0 30 — a_i=3.2
— length=1.0 " — K.i=10
—— length=1.5 noise level=1
- original o original
[
0 50 100 150 200 250 [50 100 150 200 250 300 350 400
(a) Cartpole (b) GRN

Fig. S11. State trajectories over time under policies trained by SPPO and tested in the presence of parametric uncertainties and process noise, for CartPole
and Repressilator. The setting of the uncertainties is the same as in Section [V-C.1]

(a) Repressilator

Fig. S12. State trajectories under policies trained by SPPO when tracking different reference signals. The setting of the uncertainty is the same as in

Section [V-C 3]

	I INTRODUCTION
	I-A Related Works
	II PROBLEM STATEMENT
	III DATA-BASED STABILITY ANALYSIS

	IV ALGORITHM
	IV-A Lyapunov Critic Function
	IV-B Lyapunov Actor-Critic Algorithm

	V EXPERIMENT
	V-A Performance
	V-B Evaluation of Stability
	V-C Empirical Evaluation on Robustness and Generalization
	V-C.1 Robustness to dynamic uncertainties
	V-C.2 Robustness to disturbances
	V-C.3 Generalization over different tracking references

	V-D Influence of Different Lyapunov candidates

	VI CONCLUSIONS and DISCUSSIONS
	References

	S1 Experiment Setup
	S1 CartPole
	S2 HalfCheetah
	S3 FetchReach
	S4 Swimmer
	S5 Minitaur
	S2 Synthetic Biology Gene Regulatory Networks
	S1 Mathematical model of GRN

	S3 Hyperparameters
	S4 Convergence of Lagrange Multipliers
	S5 Robustness and Generalization Evaluation of SPPO

