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A B S T R A C T

Scene text detection plays a vital role for scene text understanding, but arbitrary-shaped text detection

remains a significant challenge. To extract discriminative features, most recent state-of-the-art meth-

ods adopt heavy networks, resulting in parameter redundancy and inference inefficiency. For accurate

and efficient scene text detection, in this paper we propose a novel recurrent feature refinement net-

work (RFRN). RFRN, as a recurrent segmentation framework, contains a recurrent path augmentation

that refines the previous feature maps as inner states, which not only helps improve the segmentation

quality, but also fully facilitates the reuse of parameters and low computational cost. During testing,

RFRN discards redundant prediction procedures for efficient inference, and achieves a good balance

between speed and accuracy of inference. We conduct experiments on four challenging scene text

benchmarks, CTW1500, Total-Text, ICDAR2015 and ICDAR2017-MLT, which include curved texts

and multi-oriented texts with complex background. The results show that the proposed RFRN achieves

competitive performance on detection accuracy while maintaining computational efficiency.

1. Introduction

Owing to the rapid development of convolutional neu-

ral network (CNN), the performance of scene text detec-

tion has obtained a significant improvement [1–7]. Differ-

ent architectures have been proposed to treat scene texts as

one specific target and use feature pyramid network (FPN)

[8] to extract multi-scale features. However, two remaining

challenges constrain the wide application of these deep net-

works. The first challenge is the visual diversity of scene

texts, in shape, scale and appearance. In order to improve

the performance of arbitrary-shaped text detection, many ef-

forts have been made and achieved impressive results, such

as TextSnake [9], MSR [10] and PSENet [11]. But the re-

sults of these methods are still unsatisfactory in detection

accuracy, due to the insufficient learning of discriminative

features. The second challenge is the demand for a good

balance between the inference efficiency and accuracy. Re-

cent state-of-the-art methods show good detection accuracy

by adopting heavy networks, at the expense of suffering from

redundant parameters and high computational cost.

In order to solve the above-mentioned challenges, we

propose a recurrent feature refinement network (RFRN), as

illustrated in Figure 1, focusing on learning discriminative

features and simultaneously reducing parameter redundancy,

thus striking a good balance between the efficiency and ac-

curacy of inference.

FPN is widely applied in recent text detection meth-

ods, however, the multi-scale information may not be ad-

equately fused by these methods due to the limited recep-

tive field. Therefore, different from them, the proposed

RFRN leverages FPN under a recurrent segmentation archi-
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tecture, which enables iterative refinement of internal fea-

ture representation as inner states. That is, the key compo-

nent of our RFRN is a recurrent feature refinement module

(Figure 1(b)), which embeds in CNN some hidden and re-

finable states representing internal features, that store the

convolutional values and recurrently refine them with the

multi-scale semantic information from FPN. In the infer-

ence phase, RFRN recurrently refines its internal features by

leveraging both the previous multi-scale feature maps (green

blocks in Figure 1(b)) and the previous inner hidden states.

In this way, the semantic information at different scale is re-

fined through a recurrent route, more than the top-down fea-

ture augmentation in FPN, and thus the network can obtain

enriched semantic features to handle arbitrary-shaped texts

better. Moreover, instead of stacking parameters to achieve

a deep network, RFRN reuses its parameters for recurrent

segmentation. Each parameter hence can be learned by the

back-propagated errors of different predictions. This helps

enhance the descriptive ability of each parameter and pro-

vides low parameter redundancy. In addition, we simplify

the inference procedure in RFRN to reduce its computational

cost of recurrent prediction.

In summary, the main contributions of our work are

threefold: 1) To improve the detection accuracy, we propose

RFRN to promote the feature learning in FPN-based text de-

tection networks, by recurrently updating feature maps as

inner states and consequently refining previous predictions.

2) To reduce parameter redundancy, we embed in RFRN a

parameter-reuse strategy, which can act as a regularizer on

the shared parameters. This helps RFRN converge to an ac-

curate network, better than the one with stacked parameters.

3) To illustrate the generality and effectiveness of our ap-

proach, we conduct extensive experiments on four challeng-

ing scene text benchmarks, demonstrating that RFRN is an
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Figure 1: Pipeline of the proposed RFRN. (a) Feature Extraction. (b) Recurrent Refinement. (c) Pyramid Feature Fusion. (d)
Segmentation. Given an image, the RFRN recurrently refines its inner states of multi-scale features.

accurate and fast arbitrary-shaped text detector.

The rest of this paper is organized as follows. In Section

2, we shortly review some related work on scene text de-

tection. The proposed method is detailed in Section 3. The

experimental results are given in Section 4, and we provide

the conclusion in Section 5.

2. Related Work

In recent years, deep learning based scene text detection

methods have been extensively exploited. Following the ob-

ject detection frameworks [12, 13] or semantic segmentation

frameworks [8], many regression-based or segmentation-

based scene text detection methods have been proposed.

Based on the target to predict, recent research have two

trends: anchor-based and anchor-free methods. Some of

these methods also focus on the inference speed, as efficient

scene text detectors.

Anchor-based methods are usually adapted from vari-

ous generic object detection techniques, such as SSD (Sin-

gle Shot multibox Detector) [12] and Faster R-CNN [13].

Due to the aspect ratio of long text, TextBoxes [14] de-

ployed SSD with well designed long-scale anchor boxes

and convolution receptive field. For multi-oriented text de-

tection, TextBoxes++ [15] defined two representation ap-

proaches for multi-oriented text: quadrilateral box and ro-

tated rectangles. Then they trained SSD to regress such

box. Base on Faster-RCNN, RRPN [16] regressed the an-

gle of text boxes and proposed Rotated RoI Pooling to

align multi-oriented proposals. RRD [17] designed rotation-

sensitive and rotation-invariant features extraction to better

deal with text detection. SegLink++ [18] regressed text

local-multi-oriented boxes, and learned the attractive-and-

repulsive relationship between text local components to gen-

erate arbitrary-shaped region. Wang et al. [19] proposed re-

current neural network based adaptive text region represen-

tation to refine text proposals into arbitrary shape by an adap-

tive number of boundary points. Liu et al. [20] proposed a

two-stage tightness prior instance segmentation framework

and used the border information to adjust arbitrary-shaped

text. Most of these methods require fine prior anchor set-

ting to handle the texts in various shapes. Moreover, due to

the limitation of bounding boxes regression that predicts the

rectangle text region, some of anchor-based methods are not

able to detect curved texts. Our approach adapts to arbitrary-

shaped texts with a segmentation architecture which is sim-

pler for curved text detection.

Anchor-free methods [9, 11, 21–25] focus on how to for-

mulate the text region and perform well on curved texts.

They usually deploy fully convolutional network (FCN)

to produce pixel level prediction and then apply post-

processing to obtain text boxes. Some of these methods

tend to achieve accurate results by pixel-level regression.

EAST [21] first segmented shrunk text regions, then pre-

dicted per-pixel offsets and generated pixel level regression.

For long text detection, Lyu et al. [26] predicted four corner

points of text bounding boxes and segmented relative text

regions in such positions. For arbitrary-shaped text detec-

tion, TextSnake [9] described text instance as an ordered se-

quence of overlapping disks at the text center line. SAE [24]

mapped each pixel into embedding vector while the pixels
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of same instance have closer embedding distance. Wang et

al. [27] also predicted embedding vectors for each pixel and

proposed a pixel aggregation algorithm to locate each in-

stance. R-Net [7] introduced a bi-directional convolutional

framework to handle large scale variety for regression-based

method. Similarly, segmentation-based methods produce

per-pixel classification to distinguish text areas from back-

ground. TextMountain [6] used text border-center informa-

tion to describe arbitrary-shaped text instances and designed

a parallel post-processing. PSENet [11] directly segmented

the shrunk text instance in different scales, and then gener-

ated text region with progressive scale expansion algorithm.

CRAFT [25] reconstructed text instance by segmenting char-

acters region and corresponding affinity saliency map. DB

[2] proposed a differentiable binarization processing to bet-

ter guide a segmentation network training and applied the

deformable convolutional network [28], which greatly im-

proved the accuracy of detecting text instances of extreme

aspect ratios. Although pixel-level prediction methods ac-

curately detect curved texts, many of these methods suffer

from time-consuming inference and post-processing steps.

Heavy convolutional neural networks, such as ResNet-50

[29] and VGG-16 [30], were adopted to extract expressive

features [6, 7, 11, 19, 24], at the expense of more redun-

dant parameters and heavier computation. Moreover, a large

network is more vulnerable to overfitting due to insufficient

training data. Most text detectors utilize FPN-based net-

work to produce predictions. The low resolution feature

maps, which have higher level semantic information, are

up-sampled and fused with high resolution feature maps.

Their predictions are delivered in a top-down path, leading

to a unidirectional route. The Path Aggregation Network

(PANet) [31] and the Feature Pyramid Enhancement Module

(FPEM) [27] enriched the multi-scale information, by ap-

plying a double-path enhancement that included a top-down

path and a down-top path. In contrast, our network has a

recurrent path to refine features. It recursively predicts seg-

mentation results, resulting in a coarse-to-fine approach.

Efficient scene text detectors aim to achieve both fast

inference and accurate detection. EAST [21] applied light-

weight PVANet [32] to reduce inference time. They also

provided a multi-oriented text detection head to better train

the light-weight network. Other methods [15, 17, 33, 34]

followed the SSD [12] architecture to obtain fast inference.

They designed oriented adaptive anchors to detect text lines.

Wang et al. [27] used a light-weight backbone and a pixel

embedding branch to improve the detection accuracy on

small texts, thus the network can work for smaller input res-

olution with faster inference. DB [2] obtained fast infer-

ence with light-weight ResNet18 and simple post-processing

which directly expanded the shrunk text region. Neverthe-

less, some fast detectors are designed to detect quadrangular

texts, so they are not able to deal with arbitrary-shaped text.

The limited parameters also harm the representation ability

of extracted features, leading to unsatisfactory feature learn-

ing, while our method aims to handle such an issue.

3. Proposed Method

3.1. Overview
In this paper, we focus on developing a network archi-

tecture to achieve efficient and accurate text detection. We

propose the recurrent feature refinement network (RFRN) to

learn robust representation, through recursively refining its

internal features and reusing parameters within the network.

The overall design of RFRN is illustrated in Figure 1, which

includes four steps: feature extraction, recurrent refinement,

pyramid feature fusion and segmentation. The RFRN en-

hances the feature representation with two mechanisms: re-

current refinement, and pyramid feature fusion.

We implement recurrent refinement as iterative updating

of convolutional features. RFRN firstly extracts basic feature

maps from the input images using backbone network (Fig-

ure 1(a)). These feature maps are then taken as initial val-

ues of the internal features, from which the recurrent refine-

ment produces enhanced features (Figure 1(b)). The hyper-

parameter T controls the times of refinement. After that, the

feature fusion is applied to aggregate multi-scale informa-

tion from different scale feature maps (Figure 1(c)). Then the

segment-head predicts probability maps from the fused fea-

ture maps. Finally, we use the progressive scale expansion

algorithm [11] as the post-processing algorithm to generate

the whole text instance (Figure 1(d)).

3.2. Recurrent feature refinement module
We propose the recurrent feature refinement module

(RFRM) to refine multi-scale semantic features. RFRM is a

recurrent unit that stores and updates convolutional features

iteratively. It is applied on each hierarchy level of feature

pyramid to enhance semantic information multiple times.

The times of enhancement is determined by hyper-parameter

T , that is, RFRM refines feature maps T −1 times. The pro-

posed RFRM contains two operation stages: updating and

enhancing. The updating stage updates the internal features

by fusing the previous internal values with the multi-scale

features from FPN. Thus it refines the semantic information

in the internal feature maps. Then the enhancing stage orga-

nizes output feature maps from the current internal features

by a 3×3 convolutional layer. Figure 2 illustrates the details

of RFRM.

When t = 1, we initialize the internal features. In both

the training and testing, the first internal features ht
i

is ini-

tialized using the value of backbone feature maps xt
i
:

ht
i
= xt

i
, t = 1, i = 2, 3, 4, 5, (1)

where i denotes the hierarchy level of the feature maps in the

network, indicating a certain resolution of the feature maps

containing multi-level context information.

At the next prediction step t (t = 2,… , T ), current inter-

nal features ht
i

are updated by leveraging both the previous

inner state ht−1
i

and the previous multi-scale features yt−1
i

:

ht
i
= ℱ̃(ht−1

i
+ yt−1

i
), t = 2,… , T , i = 2, 3, 4, 5, (2)

G. Deng, Y. Ming and J.-H. Xue: Preprint submitted to Elsevier Page 3 of 14



RFRN: A Recurrent Feature Refinement Network for Accurate and Efficient Scene Text Detection

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 
 

 

:  

 

 

  

 
 

 

 

 

 
 

 
 

  

 

 

 

 
 

 

 
 

 

 

 

 
 

 

 
 

 

 

  
 

 

 

   

 
 

 

 

 

  

  

  

  
 

 

 

 

  

  

 
 

 
 

 
 

Figure 2: Upper panel: Network architecture of RFRN. “T ” denotes the times of predictions. “N” denotes the numbers of output
branches of different scales at each inference time (in both training and testing). We follow [11] to produce shrunk segment
masks at 7 different scales (N = 7) and set the scale ratio to 0.4. Lower panel: Detailed structure of RFRM.

where ℱ̃ is the activation function, yt−1
i

is the previous fea-

ture maps produced by pyramid fusion module at the ith hi-

erarchy level. We use the element-wise sum operation to

combine the context information within ht−1
i

and yt−1
i

, and

then calculate the activation value of the combined feature

maps and update internal features ht
i
. Since it is not usual

to constrain the convolutional values to a certain range like

[0, 1], we use ReLu rather than sigmoid or tanh as activation

for preserving consistency of convolutional values. This also

prevents the network from gradient vanishing.

The final step of RFRM is the enhancing stage. In this

stage, we apply a 3 × 3 convolution block to enlarge the re-

ceptive area within the inner feature maps:

gt
i
= ReLu(Convi(h

t
i
)), i = 2, 3, 4, 5, (3)

where Convi indicates the convolution operation at the ith

level. The Convi layer selects every 3 × 3 area around each

element in the internal feature maps, to learn saliency fea-

tures. In short, the updating stage combines the context in-

formation across different times and scales, and the enhanc-

ing stage gives spatial refinement.

Note that the parameters used for refinement are shared

over different steps t, which means that the same RFRM is

applied to produce g1
i
,… , gT

i
. Thus the connection of differ-

ent steps makes the feature refinement path a recurrent route.

In summary, the advantages of RFRM are mainly

twofold. Firstly, RFRM further extends the information

propagation path to a deeper network. With recurrent seg-

mentation, the internal features, namely the inner state, are

refined to have larger receptive field and more details. Sec-

ondly, it has parameter efficiency. Thanks to the parameter-

reuse strategy, the network can well promote the description

of text features, while requiring no extra parameters.

3.3. Pyramid feature fusion module
The pyramid feature fusion module aggregates the multi-

scale information from the outputs of RFRMs. It produces

the fused feature maps for predicting the final output masks.

We inherit the feature pyramid structure that efficiently re-

fines the context information with skip connection. It con-

sists of two processing stages: top-down augmentation and

feature fusion.

The feature maps produced by RFRM at four different

scales, gt
2
, gt

3
, gt

4
, gt

5
, are taken as the input of top-down aug-

mentation. These feature maps are fused from low to high

resolution, to combine the low level texture information with

high level semantic information. The top-down augmenta-

tion at the inference step t is expressed as

yt
i
= Convi(upSample(y

t
i+1

) + gt
i
), i = 2, 3, 4, (4)

where the upSample operation fills the input feature maps

to double its scale by bilinear interpolation; Convi is a 3 × 3

convolution layer to smooth the output; and yt
i

is the aug-

mentation result. After this, we obtain four scale features,
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yt
2
, yt

3
, yt

4
, yt

5
, which are not only the inputs of feature fusion

but also the inputs of RFRM. Thus the multi-scale features

are feedback to RFRM to produce more expressive ones.

Then, for further enhancement, we apply the feature fu-

sion stage to leverage all the feature maps. The four pyramid

feature maps yt
2
, yt

3
, yt

4
, yt

5
are up-sampled to have the same

size and concatenated together:

ft = Concat(yt
2
, upSp(yt

3
), upSp(yt

4
), upSp(yt

5
)), (5)

where the upSp is upSample in short; all four feature maps

are up-sampled to have the same size with yt
2
; and ft is

the fusion of these feature maps, which are concatenated on

the channel dimension while keeping the spatial dimension.

From the concatenated feature maps f t, in the segmentation

module, which consists of one 1×1 convolution and sigmoid

function, we generate per-pixel prediction.

As with RFRM, we shared the parameters of pyramid fu-

sion modules at different inference steps t = 1,… , T . Thus

the network is more compact since requiring fewer param-

eters. For comparison, we also try a cascaded segmenta-

tion network with stacked parameters. Without parameter-

sharing, it requires learning more parameters and delivers

poorer test accuracy in our experiments. The sharing of pa-

rameters can be regarded as a regularizer constraining on all

segment-heads, to force their weights to be equal, while the

cascaded parameters do not have such regularization (de-

tailed more in the ablation study in section 4). Moreover,

in the testing, we discard the segmentation procedures ex-

cept the last one for faster inference. Meanwhile, thanks to

the feature refinement, the backbone features only need to be

produced once in the entire forward pass. This also reduces

the non-essential computational cost.

3.4. Optimization
As detailed in the previous sections, the proposed RFRN

predicts T segmentation masks iteratively. We follow

PSENet [11] to segment text region and text kernels. The

text kernel is a shrunk area of the original text region. In

the testing, only the last segmentation mask is considered as

the final result. In the training, we keep all the segmentation

masks to calculate the error for better convergence.

The loss function of each mask is formulated as

Lt = �Lt
r
+ (1 − �)Lt

k
, (6)

where Lt
r

and Lt
k

denote the losses for the complete text re-

gion and the text kernels respectively; and � controls the bal-

ance between above two losses. Then, the final loss function

can be formulated as the weighted sum of all predictions:

Lall =
1

T

T
∑

t=1

�tL
t, (7)

where �t represents the weight of Lt and we discuss the in-

fluence of weights in section 4.

To compute the error, we adopt dice coefficient:

Dice(A,B) =
2
∑

x,y(Ax,y × Bx,y)
∑

x,y A
2
x,y

+
∑

x,y B
2
x,y

, (8)

whereA andB are two segmentation masks, withAx,y repre-

sents the pixel value of position (x, y) (Ax,y ∈ [0, 1]). Thus,

Lt
r

and Lt
k

can be calculate as

Lt
r
= 1 −Dice(P t, Gt), (9)

Lt
k
= 1 −

∑N−1
i

Dice(P t
i
, Gt

i
)

N − 1
, (10)

whereN is the number of output branches which include one

text region mask and N−1 text kernel masks, and P t and Gt

refer to the tth prediction and ground truth. The dice coeffi-

cient represents the similarity between two contours and it is

scale-insensitive. Thus the dice coefficient can better guide

the network training in a scale-invariant fashion.

4. Experimental Results and Analysis

In section 4.1, we first introduce four scene text bench-

mark datasets, CTW1500, Total-Text, ICDAR2015 and IC-

DAR2017 MLT, which contains curved and multi-oriented

scene text instances, and then details the implementation of

our approach. In section 4.2, we conduct the ablation study

on the CTW1500 dataset to investigate the effectiveness of

the proposed model. In section 4.3 and section 4.4, we com-

pare our methods with other state-of-the-art methods on four

benchmark datasets for curved and multi-oriented texts, re-

spectively. In section 4.5, we compare computational costs

of recent methods.

4.1. Datasets and implementation details
4.1.1. Datasets

SCUT-CTW1500 [35]: CTW1500 is a challenging

dataset containing a large amount of arbitrary-shaped texts,

where each image has more than one curved text instance.

This dataset consists of 1000 scene images for training and

500 images for testing. All the text instances are annotated in

the text-line level by using 14-vertices polygon. In addition,

the texts are different in colors, sizes and fonts.

Total-Text [36]: Total-Text is also a challenging dataset

of multi-oriented and curved texts. It consists of 1255 scene

images for training and 300 images for testing. All the text

instances are labeled by a word level polygon.

ICDAR2015 Incidental Scene Text [37]: ICDAR2015

is a commonly used dataset with multi-oriented text in-

stances. Moreover, most texts are blurred and of various

scales. The dataset contains 1000 training images and 500

testing images in natural scene. The text instances in IC-

DAR2015 have different orientations and are annotated by

using 4-vertices quadrangle.

ICDAR2017 Multi-Lingual Text [38]: ICDAR2017-

MLT includes multi-oriented scene text images of 9 lan-

guages representing 6 different scripts. Some languages are

labeled in word-level and others are labeled in line-level. It

contains 7200 training images, 1800 validation images and

9000 testing image. We use both training and validation im-

ages to train our models.
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SynthText in the Wild [39] is a large scale dataset for

pretraining the model [9, 26, 33]. All the images are gener-

ated with augments of random colors, fonts, scales, and ori-

entations in natural scene. Thus it is useful for warming up

the model. The dataset contains 800k images and provides

both character-level and word-level annotation. We only use

the word-level annotation to pretrain the model.

4.1.2. Implementation details

For maintaining both flexibility and efficiency, we adopt

the ResNet-18 network as the backbone feature extractor.

ResNet-18 generates feature maps of four scales with strides

of 4, 8, 16, 32 to the input image, respectively. The feature

maps have convolutional channels of 64, 128, 256, 512. For

computational efficiency, we also use 1×1 convolution layer

to squeeze the feature maps produced by ResNet-18 to have

64 channels. For training label design, we follow PSENet

[11] to produce text region mask and text kernel masks

in multi-scale, which does not rely on complicated hand-

craft annotation. We obtain 7 text masks K1, K2,… , K7,

by shrinking the complete text region with offset distance

di, i ∈ (1, 7]. The offset di is calculated according to [11].

For post-processing, we follow their Progressive Scale Ex-

pansion (PSE) algorithm to generate the text instance maps

from the segmentation masks.

For better demonstrating the detection capacity, we pro-

vide two pre-train strategies: 1) pre-training on SynthText

(SYN) [39] for 50k iterations, as with most recent meth-

ods [2, 9, 33]; 2) pre-training on ICDAR2017-MLT (IC17)

[39] for 20k iterations, as with [11, 40]. Then, we finetune

RFRN on evaluation datasets for 36k-74k iterations. For fair

comparison, we also train our model from scratch on these

datasets. The initial learning rate is set to 0.001 and we adopt

poly learning rate with power 0.9. We use a weight decay of

0.0005 and momentum of 0.99. For overcoming the imbal-

ance of positives and negatives, we adopt Online Hard Ex-

ample Mining (OHEM), where the negatives rate is set to

3. For data augmentation, we apply random scale, random

horizontal flip, random rotation and random crop on train-

ing images. The training images are randomly scaled as dx
times of its original size, where dx = 0.5, 1, 2, 3. Then we

randomly rotate input images in the range of −10 to 10 de-

gree. After that, the images are cropped to 640 × 640 at a

random area. In all experiments, we set batch size to 16 and

take the prediction at the second inference step (T = 2) as

the final output. In the testing, we resize the input images by

setting a suitable height while keeping the aspect ratio.

The inference speed is tested with a batch size of 1, with

a single TITAN X GPU in a single thread. We take the last

output map as the final result and discard the others so as to

achieve faster inference. We evaluate the accuracy and the

speed of proposed method on the above datasets. In addition,

to further indicate the advantages, we compare our network

with previous state-of-the-art text detectors on model size

and computational cost.

4.2. Ablation study on CTW1500
In the ablation study, we evaluate the proposed RFRN on

the CTW1500 dataset to demonstrate the effectiveness of our

framework. Table 1 lists the different settings in the ablation

study. We first compare RFRN with its baseline and variants

(Table 2) to demonstrate the effectiveness of the components

of RFRN (section 4.2.1). Then we discuss the influence of

three factors of RFRN (Table 4): 1) the times of predictions

T (section 4.2.2); 2) the weighting in the training loss (sec-

tion 4.2.3); and 3) the parameter sharing (section 4.2.4).

The Baseline model is a variant of PSENet, in which we

lighten the backbone of PSENet from ResNet-50 to ResNet-

18. For further reducing parameters, we apply 1 × 1 con-

volutional layers to squeeze the inner feature maps to have

64 channels instead 256. Our RFRN is built on the baseline,

with the following variants compared:

RFRN (T = 1). This RFRN model only makes one predic-

tion. Compared with the baseline, it contains extra

four 3 × 3 convolutional layers.

RFRN (T > 1). This is the proposed RFRN model. We

provide two strategies to train this model:

RFRN (T > 1, Shared, Last). The loss of this

model is based on the last output only.

RFRN (T > 1, Shared, All). This model is trained

with the supervision on all predictions.

RFRN (T > 1, Cascaded, All). This model is a variant of

RFRN, which cascades different segment-heads to

make multiple predictions in a unidirectional (non-

recurrent) manner. It is trained with the supervision

on all predictions.

Baseline + FPEM. This is the baseline model but with

stacks of feature pyramid enhancement modules

(FPEM) [27].

Baseline + PANet. This is the baseline model but replacing

top-down path by double-path augmentation proposed

in PANet [31].

In the ablation study on CTW1500, we train all the mod-

els for 37k iterations without extra data. In the testing, we

scale the long side of test images to 1280.

4.2.1. Effectiveness of components of RFRN

Table 2 illustrates the effectiveness of components of our

RFRN by showing the improvement over its baseline and

variants. The baseline model (PSENet with ResNet-18 as

the backbone) has less computational cost than the origi-

nal PSENet (with ResNet-50 as the backbone), but it gets

lower F-score (76.5% vs. 78.0%). Compared with the base-

line model, RFRN (T = 1) has induced only 0.15M extra

parameters, which are relatively negligible with the 11.5M

parameters of the baseline, and it is unsurprising that RFRN

(T = 1) has only minor improvement in the F-score (from

76.5% to 76.6%). Then, with the introduction of recurrent

G. Deng, Y. Ming and J.-H. Xue: Preprint submitted to Elsevier Page 6 of 14



RFRN: A Recurrent Feature Refinement Network for Accurate and Efficient Scene Text Detection

Table 1

Experimental settings of the ablation study. “T ” is the times
of predictions in the training and testing. “�t” are the loss
weights: “All” denotes the weight of each �t is 1; “Last” de-
notes the weight of the last output is set to T , and the others
are set to 0. “SegHead” represents the model structure of re-
current segmentation: “Single” means that the model applies
single segment-head for detection, which is also represented
as “Shared”; “Cascaded” means that the model has multiple
segment-heads which are cascaded.

Method RFRM T � SegHead
PSENet (ResNet-50) - 1 - Single
Baseline (PSENet, ResNet-18) - 1 - Single
RFRN (T = 1) ✓ 1 - Single
RFRN (T > 1, Shared, Last) ✓ 1-4 Last Single
RFRN (T > 1, Shared, All) ✓ 1-4 All Single
RFRN (T > 1, Cascaded, All) ✓ 1-2 All Cascaded
Baseline + FPEM - 1 - Single
Baseline + PANet - 1 - Single

refinement, RFRN (T = 2, Shared, Last/All) produces seg-

mentation masks for two times and we take the final mask

for evaluation. It shows that RFRN (T = 2, Shared, All)

improves the F-score by 2 percent to 78.5%. With another

prediction, RFRN (T = 3, Shared, All) improves the F-score

to 79.8%. This indicates the effectiveness of the proposed

recurrent refinement with parameter sharing. That is, when

T = 1, the RFRN is still a unidirectional network, in the

sense that the semantic information cannot be transmitted

back to the previous neural nodes. In contrast, when T > 1,

the network has the ability to refine its previous representa-

tion, and thus the learned features can be well enhanced.

We then compare RFRN with two similar work: the Path

Aggregation Network (PANet) [31] and the Feature Pyramid

Enhancement Module (FPEM) [27]. Both the FPEM and

Path Aggregation enhance the multi-scale information by a

top-to-down and a down-to-top augmentation. The results

show the effectiveness of these double-path propagation en-

hancement, which improve the F-score of baseline by about

1%. However, their information propagation are still uni-

directional and cannot refine the previous features by same

parameters. Note that their F-score are also close to RFRN

(T = 2, Shared, Last), which is 77.8%. With the supervision

on all the predictions and the regularization on parameters,

RFRN (T = 2, Shared, All) can improve the baseline by 2%.

Even though RFRN has higher training cost (FLOPs), it can

achieve lower inference cost by discarding non-essential pre-

diction procedures. This will be detailed in Section 4.5.

We also apply our framework to other method. We com-

bine RFRN (T = 2, Shared, All) with Differentiable Bina-

rization Network (DBNet) [2], a real-time text detector. Ta-

ble 3 shows the experimental results on ICDAR2015 dataset.

All the models are trained under the same settings. With re-

current refinement, the F-measure of DBNet is improved by

2%, which indicates both the effectiveness and generality of

our approach.

Note that the RFRN has a fixed amount of parameters no

matter how many times it predicts, which shows the concise-

ness of RFRN. The F-score of RFRN (T = 3, Shared, All)

is also higher than the original PSENet (with ResNet-50).

Nonetheless, due to fewer channels in FPN (64 in RFRN,

while 256 in PSENet), RFRN may discard some multi-scale

information thus have lower recall than the original PSENet.

4.2.2. Influence of times of predictions T
The RFRN can leverage multiple predictions. However,

the times of predictions need to be decided before training or

testing. More predictions will slow down the inference and

increase the network complexity. We prefer to find an ap-

propriate setting of prediction times to achieve a good bal-

ance between accuracy and efficiency. Table 4 and Figure

3 show the ablation study on prediction times. In the train-

ing and testing phase, we set the maximum times of predic-

tions to 3 and 4, respectively. Note that in this section, the

times of predictions Ttest in the testing phase may be dif-

ferent from the times Ttrain in training. From Table 4, we

can find that the best F-score (79.8%) is achieved by RFRN

(Shared, Ttrain = 3, Ttest = 3, All). We notice that the

FLOPs increase with the times of predictions, doubling the

basic FLOPs when Ttest = 4 (160.94G). For the balance of

the speed and accuracy, we set both Ttrain and Ttest to 2 when

comparing RFRN with other state-of-the-art methods in the

following sections.

We also notice that, although RFRN (Shared, Ttrain = 3,

Ttest = 3, All) outperforms the others, RFRN (Shared,

Ttrain = 3, Ttest = 1, All) performs (72.5%) worse than

RFRN (Shared, Ttrain = 1, Ttest = 1) (76.6%). We think

the recurrent refinement may bring larger margin on feature

learning. When using such a framework (e.g. Ttrain = 3,

All), the network needs to produce optimal results on ev-

ery output. However, the element-wise sum operation in

RFRM (Figure 2) makes the network harder to achieve the

global optimal. Thus the features of RFRN (Ttrain = 3,

Ttest = 1) is not as expressive as the one in the next pre-

diction (Ttest = 2). Therefore, the unidirectional network

RFRN (Shared, Ttrain = 1, Ttest = 1) outperforms the others

when Ttest = 1. But with extra refinement path of infor-

mation, the weak features can be enhanced, so the F-score

of RFRN (Shared, Ttrain = 3, Ttest = 3, All) is boosted to

79.8%.

The last finding is that, when Ttrain is fixed, most of the

F-scores rise with the Ttest when Ttest ≤ Ttrain. When Ttest >

Ttrain, the F-score drops in most cases.

4.2.3. Influence of weighting in the training loss

The training loss of RFRN is calculated as the weighted

sum of predictions. We compare the performance of RFRN

under two weighting schemes: one is to calculate the training

error from the final prediction only, denoted by “Last”; and

the other is to calculate the average error of all predictions,

denoted by “All”, as shown in Table 4.

We observe that using all predictions can achieve better

F-score than using the last prediction only, such as Ttrain = 2

(78.5% vs. 77.8%) and Ttrain = 3 (79.8% vs. 77.6%). The su-

pervision on all the predictions guides the RFRM to produce

more representative features in the early inference steps and
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Table 2

Ablation study of model effectiveness on CTW1500. “P”, “R” and “F” represent the preci-
sion, recall and F-score, respectively. “T ” denotes the times of predictions in both training
and testing. “Last” or “All” denotes that the training error is from the last output or every
output. “Shared” or “Cascaded” represents that the segment-head for each prediction is
the same or not. The FLOPS are calculated for the input of 1280 × 1280 × 3.

Method T #Param (M) GFLOPs P R F
PSENet (ResNet-50) 1 28.628 469.02 80.6 75.6 78.0

Baseline (PSENet, ResNet-18) 1 11.498 80.55 81.4 72.2 76.5
RFRN (T = 1): Baseline + RFRM 1 11.646 85.38 82.0 71.9 76.6

RFRN (T > 1, Shared, Last): Baseline + RFRM + Shared + Last 2 11.646 110.56 82.5 73.6 77.8
RFRN (T > 1, Shared, All): Baseline + RFRM + Shared + All 2 11.646 110.56 84.3 73.5 78.5
RFRN (T > 1, Shared, All): Baseline + RFRM + Shared + All 3 11.646 135.75 85.3 74.9 79.8

RFRN (T > 1, Cascaded, All): Baseline + RFRM + Cascaded + All 2 12.054 110.56 83.5 71.3 76.9
Baseline + 2 * FPEM 1 11.881 89.422 82.1 72.6 77.0
Baseline + 3 * FPEM 1 12.374 96.357 83.8 71.9 77.4

Baseline + PANet 1 11.621 81.936 83.4 72.5 77.5

Table 3

Combination of RFRN and DBNet on ICDAR2015. “P”, “R” and “F” represent the precision,
recall and F-score, respectively. “T ” denotes the times of predictions in both training and
testing.

Method T P R F
DBNet (re-implement) 1 85.5 77.7 81.4

DBNet (re-implement) + RFRM (Shared, All) 2 87.2 79.6 83.3

thus improves the final accuracy. But it is also computation-

ally most costly when training the “ALL” models.

4.2.4. Influence of parameter sharing

The idea of recurrent predictions was firstly proposed in

AutoContext [41] and has inspired many recent approaches.

The proposed RFRN reuses parameters for recurrent predic-

tions, leading to a single segment-head for predictions. To

investigate the advantages of parameter sharing, we imple-

ment a cascaded-version of the proposed RFRN, by stacking

two different segment-heads. Each cascaded-head contains

four RFRMs followed by the top-down augmentation lay-

ers to produce probability maps. The parameter-sharing of

segment-head makes RFRN a recurrent segmentation net-

work, while the cascaded segment-heads is still a unidirec-

Table 4

Ablation study of three factors on CTW1500: 1) times of predictions (T ); 2) training
supervision; 3) network structure (Shared vs. Cascaded). “P”, “R” and “F” represent the
precision, recall and F-score, respectively. The FLOPS are calculated for the input of
1280 × 1280 × 3.

Method Train-T Test-T Supervision #Param(M) GFLOPs P R F

RFRN (Shared)

1 1 - 11.646 85.38 82.0 71.9 76.6
2 1 Last 11.646 85.38 79.3 61.0 72.6
2 2 Last 11.646 110.56 82.5 73.6 77.8
2 3 Last 11.646 135.75 82.5 71.5 76.6
3 1 Last 11.646 85.38 78.5 61.3 68.8
3 2 Last 11.646 110.56 79.9 71.2 75.3
3 3 Last 11.646 135.75 82.4 73.3 77.6
3 4 Last 11.646 160.94 82.8 74.2 78.3
2 1 All 11.646 85.38 82.3 64.6 72.4
2 2 All 11.646 110.56 84.3 73.5 78.5
2 3 All 11.646 135.75 79.7 73.9 76.7
3 1 All 11.646 85.38 89.6 32.2 72.5
3 2 All 11.646 110.56 87.9 63.4 73.7
3 3 All 11.646 135.75 85.3 74.9 79.8

3 4 All 11.646 160.94 80.9 76.9 78.8

RFRN (Cascaded)
2 1 All 11.646 85.38 82.6 70.5 76.1
2 2 All 12.054 110.56 83.5 71.3 76.9
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Figure 3: Influence of the times of predictions in training and
testing. The figure shows the F-score of four models, which
are trained with different Ttrain (Train-T ) and loss functions
(Last vs. All). Ttest (Test-T ) is the times of predictions during
testing. “1.0x, 1.3x, 1.6x, 1.9x” denote the normalized FLOPs.

tional model. Table 4 shows the comparison results between

these two schemes: parameter sharing of RFRN vs. parame-

ter stacking of cascaded-RFRN. The cascaded-RFRN deliv-

ers poorer F-score on the CTW1500 dataset. When T > 1,

the shared-RFRN (Ttrain = 2, Ttest = 2, All) with 78.5% F-

score is more accurate than the cascaded-RFRN (Ttrain = 2,

Ttest = 2, All) with 76.9% F-score, while having less param-

eters (11.646M vs. 12.054M).

The shared-RFRN can be regarded as a cascaded-RFRN

adequately trained with a regularization enforcing the shar-

ing of parameters. As all segment-heads should be very cor-

related when predicting segmentation masks, the parameters

of each head can be more suitable to be shared than diverse.

In our experiments, sharing these correlated parameters in-

deed helps the network converge better.

Moreover, as each head of the cascaded-RFRN is mainly

trained by its own segmentation results, its F-score (76.9%)

is close to that of the baseline model (76.5%) in Table 2.

4.3. Results on curved texts
To demonstrate the ability of RFRN in detecting curved

texts, we conduct experiments on CTW1500 and Total-Text.

In the testing, we fix the long side of input images to 1280

or 960 while keeping the aspect ratio. As we adopt the pro-

gressive scale expansion algorithm proposed in PSENet for

post-processing, we follow their settings to post-process the

image on smaller resolution in order to achieve higher speed.

This setting is denoted as “4s”, which means that the output

size of our RFRN is 1∕4 of the original image.

SCUT-CTW1500: Table 5 lists the experimental re-

sults. RFRN (1s-1280, T = 2) achieves 82.4% F-score

with external pre-training (IC17), outperforming most pre-

vious state-of-the-art methods. RFRN (4s-960, T = 2)

achieves 81.0% F-score, better than some recent methods

such as SAE [24] (80.1%) and Wang et al. [19] (80.1%),

while our model can run at 31 FPS, which is 10x and 3x

faster than the latter two. DB (ResNet18) [2] obtains the

highest speed due to their simple post-processing, but it has

lower F-score (81.0%) even though they apply deformable

convolution [28]. The best performer in F-score, CRAFT

(83.5%), is 1.1% better than ours, but it has higher computa-

tional cost. More comparison on computational cost will be

given in Section 4.5. In short, thanks to recurrent refine-

ment framework, our method obtains competitive F-score

with high inference speed.

Some qualitative results of the proposed method on

CTW1500 are given in Figure 4. Note that the long side

of these images is resized to 1280 while keeping the aspect

ratio. RFRN (T = 1) fails to detect some tiny-scale cases

(Figure 4(c)), but with a second prediction added, RFRN

(T = 2) successfully detects these tiny-scale texts. Although

RFRN has a smaller model size, it obtains more texts with re-

current refinement, while CRAFT and PSENet cannot han-

dle such challenging cases. In fact, the CTW1500 dataset

also contains many multi-oriented texts and has complex

background. The proposed RFRN can handle these text in-

stances, which indicates the robustness of the our method

to text appearance and shape. More qualitative results on

CTW1500 are shown in Figure 6(a).

Total-Text: Tabel 6 lists the results on Total-Text.

The F-score of the finetuned model RFRN (1s-1280, T =

2, IC17) is 2% higher than the original PSENet (82.8%

vs. 80.9%) and runs faster (10.8 vs. 3.9 in FPS). The recur-

rent segmentation method RFRN (1s-1280, T = 2) also out-

performs most previous methods. With the well trained pixel

embedding branch, Wang et al. [27] can run at the resolution

of 640×640 and achieves the highest F-score and the second

best FPS. Some detection results on Total-Text are given in

Figure 6(b), where the word-level irregular texts can be cor-

rectly detected by RFRN.

4.4. Results on multi-oriented texts
For validating the generalization ability of RFRN in

text detection, we conduct experiments on ICDAR2015 and

ICDAR2017-MLT, both of which contain complex multi-

oriented texts in scenes.

ICDAR2015: Table 7 lists the experimental results. In

the testing, we scale the short side of input images to 1152

and 960. RFRN (4s-1152, T = 2) achieves 80.8% F-score

when training from scratch. Pre-training on external data

ICDAR2017-MLT can further improve the F-score to 85.3%,

which is competitive with recent state-of-the-art methods.

However, the post-processing algorithm is slow due to the

large size of input images. With small input resolution (768),

the RFRN achieves 20 FPS but its F-score drops 5%. To

keep F-score on a competitive level, the input images are

not resized to smaller resolution. Thus, our method on IC-

DAR2015 is not as fast as on CTW1500. The RFRN (4s-

1152, T = 2) achieves 9.8 FPS and 85.3% F-score, which is

still faster and more accurate than most of the previous meth-

ods. Compared with DB (ResNet18) [2], even though they
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Table 5

The single-scale results on CTW1500. “Ext.” means external data; * indicates the results
from [35]; “1s” and “4s” mean that the output size is 1/1 and 1/4 of the input image.

Method Ext.
CTW1500

Precision Recall F-score FPS
SegLink∗ [33] - 42.3 40.0 40.8 10.7
EAST∗ [21] - 78.7 49.1 60.4 21.2

CTD+TLOC [35] - 77.4 69.8 73.4 13.3
Liu et al. [20] - 79.7 79 79.4 1.6

Wang et al. [27] - 84.6 77.7 81.0 39.8

PSENet-1s [11] - 80.6 75.6 78.0 3.9
RFRN-1s (1280, T = 2) - 84.3 73.5 78.5 10.8
RFRN-4s (1280, T = 2) - 83.0 74.1 78.0 18.7
RFRN-4s (960, T = 2) - 81.2 72.0 76.3 31.5

TextSnake [9] ✓ 67.9 85.3 75.6 -
LOMO [42] ✓ 89.2 69.6 78.4 -
CSE [40] ✓ 81.1 76.0 78.4 2.6

Wang et al. [19] ✓ 80.1 80.2 80.1 10.0
SAE [24] ✓ 82.7 77.8 80.1 3
MSR [10] ✓ 85.0 78.3 81.5 -

CRAFT [25] ✓ 86.0 81.1 83.5 -
ICG [18] ✓ 82.8 79.8 81.3 -

Wang et al. [27] ✓ 86.4 81.2 83.7 39.8
TextMountain [6] ✓ 81.3 82.4 81.9 -

TextField [6] ✓ 83.0 79.8 81.4 -
DB (ResNet18) [2] ✓ 84.8 77.5 81.0 55

R-Net [7] ✓ 74.6 71.0 72.8 -
PSENet-1s [11] ✓ 84.8 79.7 82.2 3.9

RFRN-1s (1280, T = 2) ✓(SYN) 85.4 77.5 81.2 10.8
RFRN-1s (1280, T = 2) ✓(IC17) 84.9 80.0 82.4 10.8
RFRN-4s (1280, T = 2) ✓(IC17) 84.5 79.5 81.9 18.7
RFRN-4s (960, T = 2) ✓(IC17) 85.0 77.3 81.0 31.5

Table 6

The single-scale results on Total-Text. The rest captions are as in Table 5.

Method Ext.
Total-Text

Precision Recall F-score FPS
PSENet-1s [11] - 82.7 74.5 78.4 3.9
Liu et al. [20] - 79.1 74.5 76.7 -

Wang et al. [27] - 88.0 79.4 83.5 39.6

RFRN-1s (1280, T = 2) - 80.9 77.2 79.0 10.8
RFRN-4s (1280, T = 2) - 80.3 76.4 78.3 18.7
RFRN-4s (960, T = 2) - 79.9 70.2 74.7 31.5

TextSnake [9] ✓ 82.7 74.5 78.4 -
CSE [40] ✓ 81.4 79.1 80.2 2.4

LOMO [42] ✓ 87.6 79.3 83.3 -
Wang et al. [19] ✓ 80.9 76.2 78.5 -

MSR [10] ✓ 83.8 74.8 79.0 -
CRAFT [25] ✓ 87.6 79.9 83.6 -

ICG [18] ✓ 82.1 80.9 81.5 -
TextField [6] ✓ 81.2 79.9 80.6 -

DB (ResNet18) [2] ✓ 88.3 77.9 82.8 50

Wang et al. [27] ✓ 89.3 81.0 85.0 39.6
PSENet-1s [11] ✓ 84.0 78.0 80.9 3.9

RFRN-1s (1280, T = 2) ✓(SYN) 82.9 80.9 81.9 10.8
RFRN-1s (1280, T = 2) ✓(IC17) 84.3 81.4 82.8 10.8
RFRN-4s (1280, T = 2) ✓(IC17) 84.6 79.9 82.2 18.7
RFRN-4s (960, T = 2) ✓(IC17) 84.9 74.5 79.3 31.5
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Table 7

The single-scale results on ICDAR2015. The rest captions are as in Table 5.

Method Ext.
ICDAR2015

Precision Recall F-score FPS
EAST [21] - 83.6 73.5 78.2 13.2
RRPN [16] - 82.0 73.0 77.0 -

Wang et al. [27] - 82.9 77.8 80.3 26.1

PSENet-1s [11] - 81.5 79.7 80.6 1.6
RFRN-4s (1152, T = 2) - 84.5 77.3 80.8 9.8
RFRN-4s (960, T = 2) - 82.5 75.7 79.0 13.3
RFRN-4s (768, T = 2) - 81.7 72.2 76.6 20.5

SegLink [33] ✓ 73.1 76.8 75.0 5.5
RRD [17] ✓ 85.6 79.0 82.2 6.5

Lyu et al. [26] ✓ 94.1 70.7 80.7 3.6
TextSnake [9] ✓ 84.9 80.4 82.6 1.1

MSR [10] ✓ 86.6 78.4 82.3 4.3
SAE [24] ✓ 88.3 85.0 86.6 -

CRAFT [25] ✓ 89.8 84.3 86.9 -
Liu et al. [20] ✓ 86.6 87.6 87.1 -

ICG [18] ✓ 83.7 80.3 82.0 7.1
CSE [40] ✓ 92.3 79.9 85.7 -
Wang [27] ✓ 84.0 81.9 82.9 26.1

TextMountain [6] ✓ 89.5 83.1 86.2 9.7
DB [2] ✓ 86.8 78.4 82.3 48

R-Net [7] ✓ 88.7 82.8 85.6 21.4
PSENet-1s [11] ✓ 86.9 84.5 85.7 1.6

RFRN-4s (1152, T = 2) ✓(SYN) 84.8 80.2 82.4 9.8
RFRN-4s (1152, T = 2) ✓(IC17) 88.1 82.6 85.3 9.8
RFRN-4s (960, T = 2) ✓(IC17) 85.8 79.8 82.7 13.3
RFRN-4s (768, T = 2) ✓(IC17) 85.0 65.6 79.9 20.5

Table 8

The single-scale results on ICDAR2017-MLT. The rest captions are as in Table 5.

Method Ext.
IC17-MLT

Precision Recall F-score FPS
SARI_FDU_RRPN_V1 [26] - 71.2 55.6 62.4 -

Sensetime_OCR [26] - 56.9 69.4 62.6 -
SCUTDLVlab1 [26] - 80.3 54.5 65.0 -

e2e_ctc01_multi_scale [26] - 79.8 61.2 69.3 -
Lyu et al. [26] ✓ 83.8 55.6 66.8 -
CRAFT [25] ✓ 80.6 68.2 73.9 -
LOMO[42] ✓ 80.2 67.2 73.1 -

TextMountain [6] ✓ 82.8 68.1 74.7 -
DB (ResNet18) [2] ✓ 81.9 63.8 71.7 41

PSENet-1s [11] - 73.8 68.2 70.9 -
RFRN-1s (T = 2) - 77.5 64.9 70.6 -

are the fastest method, the RFRN (4s-1152, T = 2) is 3%

higher in F-score. Liu et al. [20] achieves both the highest

recall and F-score with the tightness prior framework, but

the two-stage methods can be more time-consuming due to

its processing of proposals.

Some detection results on ICDAR2015 of the proposed

method are shown in Figure 5, along with the results of re-

cent models. The basic model RFRN (T = 1) fails to detect

large scale texts (Figure 5(c)). When predicting a second

time, the RFRN (T = 2) captures the missing texts. Because

of the complex background (such as the most left and right

samples in Figure 5) and the limited receptive field of unidi-

rectional network, these large scale texts cannot be well de-

tected by segmentation-based methods such as CRAFT and

PSENet. We also notice that the RFRN can handle non-Latin

text line. The results indicate that RFRN enlarges the recep-

tive field of the network, and has the advantages in dealing

with various scales and background complexity. The results

on multi-oriented texts also indicate the good generalization

ability of recurrent refinement. More qualitative results on

ICDAR2015 are given in Figure 6(c).

ICDAR2017-MLT: Table 8 shows the results on
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Table 9

The network processing cost of the proposed RFRN
with/without discarding the non-essential prediction proce-
dures. The FLOPS are calculated for the input of 1280 ×

1280 × 3.

Method Ttest GFLOPs GFLOPs after discard

RFRN

1 85.38 (1.0x) 85.38 (1.0x)
2 110.56 (1.3x) 95.34 (1.1x)
3 135.75 (1.6x) 105.42 (1.2x)
4 160.94 (1.9x) 115.44 (1.3x)

ICDAR2017-MLT dataset. We only use the ICDAR2017-

MLT data to train our model. In the testing, we scale up the

short side of input images to double their original sizes. This

dataset has the largest test set of scene texts, covering many

challenging cases such as diverse scales and blurred texts.

Although a larger backbone is more flexible to handle these

difficult images, the RFRN (1s, T = 2) still achieves 70.6%

F-score, which is closed to PSENet, while our RFRN uses

a lighter network. Qualitative results on ICDAR2017-MLT

are provided in Figure 6(d), where the proposed RFRN suc-

cessfully detects multilingual texts of arbitrary orientations

and variant scales.

4.5. Computational cost
As illustrated in Table 5, the total inference time of

RFRN (1s-1280, T = 2, ResNet18) is about 90 ms (10.8

FPS), which includes the time cost of network and post-

processing. We achieve that speed by: 1) simplifying the

network processing; 2) optimizing the post-processing al-

gorithm. Firstly, in the network processing, we discard the

non-essential prediction procedures and only maintain the

last one. The network processing time can be reduced by

about 10 ms. In Table 9, we list more information about

the speed boost obtained from such a discarding for differ-

ent Ttest. Secondly, for faster post-processing, we optimize

the code of PSE algorithm [11], which generates text bound-

ing boxes from the output segmentation masks. The original

PSE algorithm is inefficient due to its excessive computa-

tion caused by: 1) traversing non-essential area in the output

masks; 2) converting a 2D list to a NumPy array. We first

filter the output masks with a 3 × 3 cross kernel, thus it only

needs to traverse the text border. Then we rewrite the c++

code of PSE to directly return a NumPy array. The post-

processing time is reduced by about 55 ms. Note that the

original post-processing time takes about 100 ms,

To further demonstrate the advantages of our method,

we provide a comprehensive comparison of efficiency with

previous state-of-the-art methods. The inference time of a

text detection method is decided by three factors: 1) input

resolution; 2) network cost; 3) post-processing. As our study

mainly focuses on the network architecture, the total FLOPs

and model size of compared methods are given in Table 10,

some obtained by using the source code provided by their

authors. Note that the FLOPs is calculated at the same input

resolution. We also report the backbone, as some methods

do not provide code or computational cost measures.

Most recent methods adopt a heavy backbone, such as

ResNet-50 and VGG-16, to achieve high F-score. Instead,

the proposed RFRN uses ResNet18 as the backbone and

reuses the parameters to become a deeper network with less

parameters. With the parameter-reuse strategy, RFRN (1s,

T = 2) achieves competitive F-score (82.4%) with smaller

size. Although CRAFT has higher F-score (83.5%), our

FLOPs and model size is 5x faster and nearly 2x smaller

than CRAFT. Although the same post-processing algorithm

in PSENet, our RFRN produces better F-score than PSENet

(82.2%), with 2x less in parameters and 4x faster in FLOPS

than PSENet. This indicates that the proposed RFRN

achieves a good balance between accuracy and speed, among

the recent methods.

Although making additional predictions, the proposed

RFRN induces no extra parameters and only takes additional

0.1x computation time. This indicates the parameter and

computational efficiency of RFRN. Moreover, for mobile

applications, it merits investigation of the combination of

RFRN and lightweight networks like ShuffleNet [5] and Mo-

bileNet [43]. We adopt MobileNetV3 as the backbone for

comparative purposes (denoted by “MobileV3”). RFRN (1s,

T = 2, MobileV3) only has 0.83M parameters and achieves

76.3% F-score, which is 0.7% higher than TextSnake.

4.6. Limitation
Although RFRN performs well in the previous experi-

ments, it still can fail to detect some difficult images, as il-

lustrated in Figure 7 on font style, text-like textures and large

character space, which are nonetheless also challenging to

other state-of-the-art methods.

5. Conclusions and Future Work

This paper proposes a new scene text detection frame-

work called the recurrent feature refinement network

(RFRN), which can enhance multi-scale feature maps itera-

tively and has low computational cost. The proposed RFRN

can handle both arbitrary-shaped and multi-orientation

scene text. Benefiting from recurrent predictions, RFRN ex-

tends the information propagating path and provides a so-

lution to reduce computational cost of the network while

maintaining high accuracy. On four benchmark datasets,

CTW1500, Total-Text, ICDAR2015 and ICDAR2017-MLT,

our approach produces competitive detection accuracy to the

recent state-of-the-art methods, even though it uses only a

lightweight backbone (ResNet18). On CTW1500, our ap-

proach is faster than most text detectors and achieves a good

balance between accuracy and speed. The future work is to

further improve the flexibility of recurrent segmentation like

with deformable convolutional network [28] and investigate

the combination of RFRN with faster post-processing tech-

niques like the differentiable binarization explored in [2].
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(a) CRAFT (VGG16) [25]

(b) PSENet (ResNet50) [11]

(c) RFRN (ResNet18, T = 1)

(d) RFRN (ResNet18, T = 2)

(e) Ground Truth

Figure 4: Comparative curve text detection results of CRAFT, PSENet and RFRN on the CTW1500 dataset. The detection
results of each method are given in green polygon. Text instances in Ground Truth are represented in different colors.
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(a) CRAFT (VGG16) [25]

(b) PSENet (ResNet50) [11]

(c) RFRN (ResNet18,T = 1)

(d) RFRN (ResNet18, T = 2)

(e) Ground Truth

Figure 5: Text detection results of CRAFT, PSENet and RFRN on the ICDAR2015 dataset. The detection results of each method
are given in green polygon. Text instances in Ground Truth are represented in different colors.
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(a)

(b)

(c)

(d)

Figure 6: Qualitative results by the proposed method on (a) SCUT-CTW500, (b) Total-Text, (c) ICDAR2015, and (d)
ICDAR2017-MLT.
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(a) Font style

(b) Text-like textures

(c) Large space

Figure 7: Failure examples of (a) font style, (b) text-like textures, and (c) large space.
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