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Measurement-driven transitions between extensive and subextensive scaling of the entanglement
entropy receive interest as they illuminate the intricate physics of thermalization and control in open
interacting quantum systems. While this transition is well established for stroboscopic measurements in
random quantum circuits, a crucial link to physical settings is its extension to continuous observations,
where for an integrable model it has been shown that the transition changes its nature and becomes
immediate. Here, we demonstrate that the entanglement transition at finite coupling persists if the
continuously measured system is randomly nonintegrable, and show that it is smoothly connected to the
transition in the stroboscopic models. This provides a bridge between a wide range of experimental settings
and the wealth of knowledge accumulated for the latter systems.
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Subjecting a complex quantum system to observations
can have drastic effects on its time evolution. The most
celebrated example is the quantum Zeno effect [1–3],
according to which continuous projective measurements
can freeze the dynamics of a quantum system completely.
Recent work has established [4–8] and developed [9–39] an
illuminating extension of this effect, where the quantum
dynamics change in a phase transition when stroboscopic
measurements occur with sufficient strength or frequency.
This transition is manifested in the entanglement character-
istics of the system, as captured by the entanglement
entropy

S ¼ trðρA ln ρAÞ ð1Þ

with the reduced density matrix of a subsystem A. In the
transition, the entropy changes its scaling with the system
size [5,40–45] from extensive, indicating ergodic many-
body dynamics, to subextensive, signaling localization of
the underlying quantum-coherent correlations.
A key question to make this rapidly growing body of

knowledge on stroboscopic systems applicable to physical
settings is the fate of the entanglement transition for
continuous variable-strength observations. These not only
more accurately reflect the reality of many experimental
architectures [46–55], but also enable us to apply this
knowledge to the generic effects of coupling to an
environment that may not per se have been designed to
carry out a measurement. For an integrable system, it has
been shown that the transition can indeed completely
change its nature when observations become continuous,
in that it then can occur at infinitesimal small measurement
strengths [56].

Here, we show that the transition from the stroboscopic
models is reinstated for continuous observations of a
randomly evolving, nonintegrable, system. We achieve this
by formulating a model that allows us to interpolate
between a stroboscopic random circuit and a continuously
evolving one, and trace the entanglement characteristics
numerically in terms of the entanglement entropy and
mutual information. The established link between these
limits lends further relevance to deep results arrived for the
stroboscopic circuits—such as emerging conformal sym-
metry [6,7,9–11] as well as approximations that permit us
to reach very large system sizes [4,5,7,31–34,57,58]—
giving them direct bearing on a much wider range of
experimental settings.
Model.—We base our modeling on the universal quan-

tum-circuit architecture [5,59–61] shown in Fig. 1, which

FIG. 1. We study the entanglement dynamics in a random
circuit model, combining unitary evolutionsU and measurements
M such that one can interpolate between the continuum limit
(U near the identity matrix and measurements weak) and widely
studied fully random, stroboscopic models. This is achieved by
equipping the unitary matrices with a parameter μ that determines
the physical timescale of the dynamics according to dt ∼ μ2,
and the measurements with a parameter λ so that the effective
measurement strength is given by λ0 ¼ λ=μ.
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describes the dynamics of L spins (dots) evolving under the
action of unitary gates U (rectangles) and nonunitary
measurement operationsM (diamonds) on individual spins.
Two layers of gates and measurements make up one time
step dt and iteration over n steps induces a discrete time
evolution of the quantum state jψni. In the original design
[4–6], the gates are completely random, according to
unitary matrices U drawn from a circular ensemble with
probability distribution given by the corresponding Haar
measure, while the measurements are projective, so that the
time step dt ¼ Oð1Þ in terms of physical timescales
governing the dynamics. This design can be easily adapted
to other situations, including systems with deterministic
dynamics [24–28,36,56] or other types of measurements
[8,11,22,23,28,36].
Here, we carry out two such modifications designed to

change the dynamics and observation strength over the
timescale dt, thereby allowing us to take the continuum
limit in which dt → 0.
(a) The unitary matrices U are generated from an

ensemble parametrized by 0 ≤ μ ≤ 1, which interpolates
between matrices close to the identity matrix (μ ≪ 1) and
the exact Haar measure (μ ¼ 1). This is realized using the
Poisson kernel [62],

U ¼ ðV þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − μ2
q

1Þð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − μ2
q

VÞ−1; ð2Þ

where V is a random unitary matrix distributed according
to the Haar measure. The latter is recovered for μ ¼ 1,
where U ¼ V. For μ ≪ 1, the matrices localize close to the
identity matrix,

U≈1−idtHeff ; dt≡μ2; Heff¼
i
2
ðV−1ÞðVþ1Þ−1; ð3Þ

which identifies the Cayley transform of V as the effective
HamiltonianHeff , and sets the physical timescale according
to the resulting stable Cauchy process [63]. However, this
Wiener process does not permit the exact extrapolation to
the stroboscopic case. Between these limits, the matrices
preserve unitarity and maintain randomness according to a
probabilistic maximal-entropy principle [64,67].
(b) The projective measurements are replaced by weak

measurements, implemented by coupling the z component
of a given spin to an external pointer with a continuous
readout x, prepared initially in a Gaussian state.
Measurements are of strength λ, ranging from the case
of no measurements (λ ¼ 0) to the standard case of
projective measurements ðλ → ∞Þ. These take the form
of positive-operator-value measurements [68,69] with
Kraus operators

MðxÞ ¼ Gðx − λÞΠþ
i þGðxþ λÞΠ−

i ; ð4Þ

where GðxÞ ¼ expð−x2=2Þ=π1=4 is a Gaussian of unit
width centered around zero, and Π�

i ¼ ð1� σzÞi=2 are

projection operators onto spin-up or spin-down on site i.
For a given readout x, the system state is updated via

jψi → 1
ffiffiffiffiffiffiffiffiffiffi

PðxÞp MðxÞjψi; ð5Þ

where PðxÞ ¼ hψ jMðxÞ†MðxÞjψi is the probability distri-
bution of the measurement output. For small λ, the
measurement model reduces to a generic Wiener process

jψi → N
�

1 −
X

i

ðλ2hσzi i þ δWiÞσzi
�

jψi; ð6Þ

where the random variablesWi are independently Gaussian
distributed with zero mean and variance λ2, and N is a
normalization constant.
Writing the intrinsic scale of this process as

λ2 ¼ λ20dt ¼ λ20μ
2, the effective strength of the measure-

ment in our model is therefore given by

λ0 ¼ λ=μ; ð7Þ

which has to be kept fixed as we send dt ¼ μ2 → 0. The
physical timescale for the dynamics is then given by
t ¼ ndt ¼ nμ2, where n is the number of steps through
the circuit depicted in Fig. 1. Our main result will be to
establish that an entanglement transition occurs at a finite
value of λ0, for all scenarios from the continuum limit to the
fully random stroboscopic case.
Entanglement dynamics in the continuum limit.—Figure 2

illustrates the effect of the described modifications on the
entanglement dynamics in terms of the entanglement entropy
for a subsystem of size L=2, averaged over 1000 realizations
of the dynamics initialized to a Néel state. Time is measured
as t ¼ nμ2; in each panel, λ0 ¼ λ=μ is kept fixed, while each
curve corresponds to a different value of μ.
In all cases, the entanglement entropy initially increases

with time, but then saturates in a quasistationary regime, at
a measurement-strength dependent value S∞ that we will
analyze further in the pursuit of the entanglement transition.
For the moment, the key point in the figure is the collapse
of curves at μ≲ 0.1, which therefore delineates the con-
tinuum regime. That this collapse occurs both for the rate of
entanglement spreading as well as for the saturation value
confirms the described scaling of time and measurement
strength in this regime. Outside of the continuum regime,
the entanglement dynamics display a notable dependence
on μ, both in the rate of initial entanglement spreading as
well as for the saturation value, aspects to which we return
later when we discuss the connection to the stroboscopic
case. First, we establish that an entanglement transition
occurs in the continuum regime, for which we set μ ¼ 0.05
(equivalently, dt ¼ 0.0025).
This is demonstrated in Fig. 3, which shows the average

and variance of the saturation value S∞ of the entanglement
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entropy for different system sizes L as a function of the
measurement strength λ0. As seen in panel (a), the
entanglement entropy is large and increases with system
size when the measurement strength is small, but drops to a
small, system-size-independent value when the measure-
ment strength is large. As further illustrated in the inset, this
qualitative change of the scaling occurs in the range
0.2 < λ0 < 0.4. Panel (b) shows that the sample-to-sample
fluctuations varS∞ indeed become large in this range.
While the position λmax

0 where the fluctuations are maximal
drifts to smaller values as L is increased, its extrapolation to
infinite system size (inset) yields a finite critical value

λcrit0 ≈ 0.243ð4Þ. Using this critical value for finite-size
scaling yields the critical exponent of the correlation length
ν ¼ 0.70ð1Þ [65]. Panel (c) provides further evidence for
the transition in terms of the tripartite mutual information

I3ðA∶B∶CÞ ¼ SðAÞ þ SðBÞ þ SðCÞ þ SðA ∪ B ∪ CÞ
− SðA ∪ BÞ − SðA ∪ CÞ − SðB ∪ CÞ; ð8Þ
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FIG. 2. Entanglement dynamics in the random-circuit model of
Fig. 1, as captured by the time evolution of the averaged bipartite
entanglement entropy S̄. Time is measured in units t ¼ nμ2, the
system size is L ¼ 16, and results are averaged over 1000
realizations. The different panels fix the effective measurement
strength to (a) λ0 ¼ 0, (b) λ0 ¼ 0.3, and (c) λ0 ¼ 1.0, with the
different curves corresponding to different choices of μ. Through-
out the whole dynamics, the curves collapse for μ ≲ 0.1, which
indicates entering the continuum regime. Increasing the meas-
urement strength suppresses the quasistationary value S∞, which
raises the question of an entanglement transition addressed in the
subsequent figures.
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FIG. 3. (a) Average saturation entropy S∞ and (b) correspond-
ing fluctuations var S∞, as a function of measurement strength λ0
for different system sizes L. The inset in (a) shows S∞ for fixed λ0
as L is increased, while the inset (b) shows the extrapolation of
the position λmax

0 of maximal variance to an infinite system size.
(c) Tripartite mutual information I3ðA∶B∶CÞ as a function of
measurement strength λ0 for different system sizes L, where the
subsystems are all of size L=4, as indicated in the bottom right
inset. The left inset focuses on the region where the curves cross,
while the top right inset shows the extrapolation of the crossing
positions to an infinite system size, where L̄ is the average of the
system sizes for which the crossing occurs.
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defined for three such subsystems A, B, and C. Here, the
transition is indicated by the crossing point, which has
been found to show reduced finite-size effects in the
original stroboscopic model [17]. As shown in the insets,
these features also hold in the present model, with the
position of the crossings approaching a critical value of
λcrit0 ¼ 0.253ð2Þ that agrees well with the transition point
obtained using the variance analysis [65].
Connection to the stroboscopic case.—Having estab-

lished the entanglement transition in the continuum regime,
we now come to the second main point of this Letter,
namely, its connection to the transition in the original
stroboscopic model. This is afforded in our model by being
able to tune the timescale dt ¼ μ2 from 0 to 1. Returning
to Fig. 2, outside the continuum regime the measurements
still have the effect to suppress the saturation entropy, but
down to even smaller, μ-dependent, values. For a detailed
analysis, Fig. 4(a) shows how the saturation entanglement
entropy changes with μ for fixed λ0, where differently
articulated curves correspond to different system sizes L.
Depending on the measurement strength, we find two
scenarios. For λ0 ≲ 0.4, the saturation entropy remains

essentially μ independent, and shows a systematic
system-size dependence with an extensive scaling, corre-
sponding to ergodic behavior. For larger measurement
strengths, on the other hand, the entropy displays the
above-mentioned downturn as one approaches the strobo-
scopic limit—but also becomes independent of the system
size across the whole parameter range. As shown in the
subpanels in (b), in the intermediate range between the
continuum regime and the stroboscopic case, the average
and fluctuations of the entanglement entropy display the
same qualitative behavior as in Fig. 3, with an only weak μ
dependence of the critical value λcrit0 . These results dem-
onstrate a substantial degree of universality of the entan-
glement transition in the whole range from the continuum
regime to the fully random stroboscopic case.
Conclusions.—In summary, we showed that measure-

ment-driven entanglement transitions can occur in con-
tinuously evolving and monitored systems. We established
this in a flexible extension of random-circuit models,
by which we could directly relate the transition to the
widely studied stroboscopic case. This uncovered a sig-
nificant degree of university in the entanglement dynam-
ics. As we show in Ref. [65], this universality further
extends to the variation of the measurement frequency p
(the parameter that was varied in the original studies
of the stroboscopic model), where results remain invariant
upon a simple rescaling λ0 ¼ ffiffiffiffi

p
p

λ=μ of the effective
measurement strength. In this way, results derived
for stroboscopic models gain a much larger range of
applicability.
The model described in this Letter has been designed

to not only interpolate between different scenarios, but also
to combine the most generic effects of random dynamics
and continuous measurements, and thereby, to further
inform the design of suitable experiments. In particular,
the unitary dynamics describe the local generation of
entanglement by randomly fluctuating interactions, while
the employed measurement model describes quantum
detection schemes currently employed in solid state nano-
circuits [49,51,70–72] and quantum optical devices
[73,74]. In such settings, the described universality of
the entanglement dynamics enhances our understanding
of environmental effects, and serves to provide detailed
control of the quantum dynamics in simple yet profound
ways.
All relevant data present in this publication can be

accessed at [75].
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FIG. 4. (a) Averaged saturation value S∞ of the entanglement
entropy for different values of μ in the whole range from the
continuum limit (μ → 0Þ to the fully random stroboscopic case
(μ ¼ 1). In each curve, the measurement strength λ0 ¼ λ=μ and
the system size are kept fixed. Across the whole range of μ, the
entanglement entropy changes its scaling from extensive to
subextensive around λ0 ≈ 0.3. As shown in the subpanels in
(b), the qualitative entanglement characteristics in the continuum
regime [Figs. 3(a) and 3(b)] indeed also occur for intermediate
values (μ ¼ 0.5 and μ ¼ 0.7), with μ ¼ 1 reproducing the
conventional stroboscopic case.

PHYSICAL REVIEW LETTERS 125, 210602 (2020)

210602-4



*mszynisz@gmail.com
[1] A. Degasperis, L. Fonda, and G. C. Ghirardi, Nuovo

Cimento A 21, 471 (1974).
[2] B. Misra and E. C. G. Sudarshan, J. Math. Phys. (N.Y.) 18,

756 (1977).
[3] A. Peres, Am. J. Phys. 48, 931 (1980).
[4] Y. Li, X. Chen, and M. P. A. Fisher, Phys. Rev. B 98,

205136 (2018).
[5] A. Chan, R. M. Nandkishore, M. Pretko, and G. Smith,

Phys. Rev. B 99, 224307 (2019).
[6] B. Skinner, J. Ruhman, and A. Nahum, Phys. Rev. X 9,

031009 (2019).
[7] Y. Li, X. Chen, and M. P. A. Fisher, Phys. Rev. B 100,

134306 (2019).
[8] M. Szyniszewski, A. Romito, and H. Schomerus, Phys. Rev.

B 100, 064204 (2019).
[9] C.-M. Jian, Y.-Z. You, R. Vasseur, and A.W.W. Ludwig,

Phys. Rev. B 101, 104302 (2020).
[10] Y. Li, X. Chen, A. W.W. Ludwig, and M. P. A. Fisher,

arXiv:2003.12721.
[11] X. Chen, Y. Li, M. P. A. Fisher, and A. Lucas, Phys. Rev.

Research 2, 033017 (2020).
[12] S. Choi, Y. Bao, X.-L. Qi, and E. Altman, Phys. Rev. Lett.

125, 030505 (2020).
[13] M. J. Gullans and D. A. Huse, Phys. Rev. X 10, 041020

(2020).
[14] W.-T. Kuo, A. A. Akhtar, D. P. Arovas, and Y.-Z. You,

Phys. Rev. B 101, 224202 (2020).
[15] A. Nahum and B. Skinner, Phys. Rev. Research 2, 023288

(2020).
[16] S. Roy, J. T. Chalker, I. V. Gornyi, and Y. Gefen, Phys. Rev.

Research 2, 033347 (2020).
[17] A. Zabalo, M. J. Gullans, J. H. Wilson, S. Gopalakrishnan,

D. A. Huse, and J. H. Pixley, Phys. Rev. B 101, 060301(R)
(2020).

[18] L. Zhang, J. A. Reyes, S. Kourtis, C. Chamon, E. R.
Mucciolo, and A. E. Ruckenstein, Phys. Rev. B 101,
235104 (2020).

[19] R. Fan, S. Vijay, A. Vishwanath, and Y.-Z. You, arXiv:
2002.12385.

[20] Y. Bao, S. Choi, and E. Altman, Phys. Rev. B 101, 104301
(2020).

[21] A. Bera and S. S. Roy, arXiv:2003.12546.
[22] A. Lavasani, Y. Alavirad, and M. Barkeshli, arXiv:

2004.07243.
[23] S. Sang and T. H. Hsieh, arXiv:2004.09509.
[24] M. Ippoliti, M. J. Gullans, S. Gopalakrishnan, D. A. Huse,

and V. Khemani, arXiv:2004.09560.
[25] Q. Tang and W. Zhu, Phys. Rev. Research 2, 013022 (2020).
[26] D. Rossini and E. Vicari, Phys. Rev. B 102, 035119 (2020).
[27] S. Goto and I. Danshita, Phys. Rev. A 102, 033316 (2020).
[28] Y. Fuji and Y. Ashida, Phys. Rev. B 102, 054302 (2020).
[29] K. Snizhko, P. Kumar, and A. Romito, Phys. Rev. Research

2, 033512 (2020).
[30] V. Gebhart, K. Snizhko, T. Wellens, A. Buchleitner, A.

Romito, and Y. Gefen, Proc. Natl. Acad. Sci. U.S.A. 117,
5706 (2020).

[31] M. J. Gullans and D. A. Huse, Phys. Rev. Lett. 125, 070606
(2020).

[32] J. Lopez-Piqueres, B. Ware, and R. Vasseur, Phys. Rev. B
102, 064202 (2020).

[33] O. Shtanko, Y. A. Kharkov, L. P. García-Pintos, and A. V.
Gorshkov, arXiv:2004.06736.

[34] K. Noh, L. Jiang, and B. Fefferman, Quantum 4, 318 (2020).
[35] B.-L. Fang, J. Chen, F. Chen, and L. Ye, Laser Phys. Lett.

17, 085203 (2020).
[36] O. Alberton, M. Buchhold, and S. Diehl, arXiv:2005.09722.
[37] O. Lunt and A. Pal, Phys. Rev. Research 2, 043072

(2020).
[38] X. Turkeshi, R. Fazio, and M. Dalmonte, Phys. Rev. B 102,

014315 (2020).
[39] Y. Li and M. P. A. Fisher, arXiv:2007.03822.
[40] M. Žnidarič, T. Prosen, and P. Prelovšek, Phys. Rev. B 77,

064426 (2008).
[41] J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys. 82,

277 (2010).
[42] J. H. Bardarson, F. Pollmann, and J. E. Moore, Phys. Rev.

Lett. 109, 017202 (2012).
[43] B. Bauer and C. Nayak, J. Stat. Mech. (2013) P09005.
[44] J. A. Kjäll, J. H. Bardarson, and F. Pollmann, Phys. Rev.

Lett. 113, 107204 (2014).
[45] D. J. Luitz, N. Laflorencie, and F. Alet, Phys. Rev. B 91,

081103(R) (2015).
[46] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird,

A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson,
and A. C. Gossard, Science 309, 2180 (2005).

[47] D. Kim, Z. Shi, C. Simmons, D. Ward, J. Prance, T. S. Koh,
J. K. Gamble, D. Savage, M. Lagally, M. Friesen et al.,
Nature (London) 511, 70 (2014).

[48] A. West, B. Hensen, A. Jouan, T. Tanttu, C.-H. Yang, A.
Rossi, M. F. Gonzalez-Zalba, F. Hudson, A. Morello, D. J.
Reilly et al., Nat. Nanotechnol. 14, 437 (2019).

[49] K. Murch, S. Weber, C. Macklin, and I. Siddiqi,
Nature (London) 502, 211 (2013).

[50] P. Neumann, J. Beck, M. Steiner, F. Rempp, H. Fedder, P. R.
Hemmer, J. Wrachtrup, and F. Jelezko, Science 329, 542
(2010).

[51] D. Aasen, M. Hell, R. V. Mishmash, A. Higginbotham, J.
Danon, M. Leijnse, T. S. Jespersen, J. A. Folk, C. M.
Marcus, K. Flensberg, and J. Alicea, Phys. Rev. X 6,
031016 (2016).

[52] J. Manousakis, C. Wille, A. Altland, R. Egger, K. Flensberg,
and F. Hassler, Phys. Rev. Lett. 124, 096801 (2020).

[53] J. F. Steiner and F. von Oppen, Phys. Rev. Research 2,
033255 (2020).

[54] M. I. K. Munk, R. Egger, J. Schulenborg, and K. Flensberg,
Phys. Rev. Research 2, 033254 (2020).

[55] P. Maioli, T. Meunier, S. Gleyzes, A. Auffeves, G. Nogues,
M. Brune, J. M. Raimond, and S. Haroche, Phys. Rev. Lett.
94, 113601 (2005).

[56] X. Cao, A. Tilloy, and A. D. Luca, SciPost Phys. 7, 24
(2019).

[57] J. Napp, R. L. L. Placa, A. M. Dalzell, F. G. S. L. Brandao,
and A.W. Harrow, arXiv:2001.00021.

[58] T. Zhou and A. Nahum, Phys. Rev. X 10, 031066
(2020).

[59] A. Nahum, J. Ruhman, S. Vijay, and J. Haah, Phys. Rev. X
7, 031016 (2017).

PHYSICAL REVIEW LETTERS 125, 210602 (2020)

210602-5

https://doi.org/10.1007/BF02731351
https://doi.org/10.1007/BF02731351
https://doi.org/10.1063/1.523304
https://doi.org/10.1063/1.523304
https://doi.org/10.1119/1.12204
https://doi.org/10.1103/PhysRevB.98.205136
https://doi.org/10.1103/PhysRevB.98.205136
https://doi.org/10.1103/PhysRevB.99.224307
https://doi.org/10.1103/PhysRevX.9.031009
https://doi.org/10.1103/PhysRevX.9.031009
https://doi.org/10.1103/PhysRevB.100.134306
https://doi.org/10.1103/PhysRevB.100.134306
https://doi.org/10.1103/PhysRevB.100.064204
https://doi.org/10.1103/PhysRevB.100.064204
https://doi.org/10.1103/PhysRevB.101.104302
https://arXiv.org/abs/2003.12721
https://doi.org/10.1103/PhysRevResearch.2.033017
https://doi.org/10.1103/PhysRevResearch.2.033017
https://doi.org/10.1103/PhysRevLett.125.030505
https://doi.org/10.1103/PhysRevLett.125.030505
https://doi.org/10.1103/PhysRevX.10.041020
https://doi.org/10.1103/PhysRevX.10.041020
https://doi.org/10.1103/PhysRevB.101.224202
https://doi.org/10.1103/PhysRevResearch.2.023288
https://doi.org/10.1103/PhysRevResearch.2.023288
https://doi.org/10.1103/PhysRevResearch.2.033347
https://doi.org/10.1103/PhysRevResearch.2.033347
https://doi.org/10.1103/PhysRevB.101.060301
https://doi.org/10.1103/PhysRevB.101.060301
https://doi.org/10.1103/PhysRevB.101.235104
https://doi.org/10.1103/PhysRevB.101.235104
https://arXiv.org/abs/2002.12385
https://arXiv.org/abs/2002.12385
https://doi.org/10.1103/PhysRevB.101.104301
https://doi.org/10.1103/PhysRevB.101.104301
https://arXiv.org/abs/2003.12546
https://arXiv.org/abs/2004.07243
https://arXiv.org/abs/2004.07243
https://arXiv.org/abs/2004.09509
https://arXiv.org/abs/2004.09560
https://doi.org/10.1103/PhysRevResearch.2.013022
https://doi.org/10.1103/PhysRevB.102.035119
https://doi.org/10.1103/PhysRevA.102.033316
https://doi.org/10.1103/PhysRevB.102.054302
https://doi.org/10.1103/PhysRevResearch.2.033512
https://doi.org/10.1103/PhysRevResearch.2.033512
https://doi.org/10.1073/pnas.1911620117
https://doi.org/10.1073/pnas.1911620117
https://doi.org/10.1103/PhysRevLett.125.070606
https://doi.org/10.1103/PhysRevLett.125.070606
https://doi.org/10.1103/PhysRevB.102.064202
https://doi.org/10.1103/PhysRevB.102.064202
https://arXiv.org/abs/2004.06736
https://doi.org/10.22331/q-2020-09-11-318
https://doi.org/10.1088/1612-202X/ab9901
https://doi.org/10.1088/1612-202X/ab9901
https://arXiv.org/abs/2005.09722
https://doi.org/10.1103/PhysRevResearch.2.043072
https://doi.org/10.1103/PhysRevResearch.2.043072
https://doi.org/10.1103/PhysRevB.102.014315
https://doi.org/10.1103/PhysRevB.102.014315
https://arXiv.org/abs/2007.03822
https://doi.org/10.1103/PhysRevB.77.064426
https://doi.org/10.1103/PhysRevB.77.064426
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/PhysRevLett.109.017202
https://doi.org/10.1103/PhysRevLett.109.017202
https://doi.org/10.1088/1742-5468/2013/09/P09005
https://doi.org/10.1103/PhysRevLett.113.107204
https://doi.org/10.1103/PhysRevLett.113.107204
https://doi.org/10.1103/PhysRevB.91.081103
https://doi.org/10.1103/PhysRevB.91.081103
https://doi.org/10.1126/science.1116955
https://doi.org/10.1038/nature13407
https://doi.org/10.1038/s41565-019-0400-7
https://doi.org/10.1038/nature12539
https://doi.org/10.1126/science.1189075
https://doi.org/10.1126/science.1189075
https://doi.org/10.1103/PhysRevX.6.031016
https://doi.org/10.1103/PhysRevX.6.031016
https://doi.org/10.1103/PhysRevLett.124.096801
https://doi.org/10.1103/PhysRevResearch.2.033255
https://doi.org/10.1103/PhysRevResearch.2.033255
https://doi.org/10.1103/PhysRevResearch.2.033254
https://doi.org/10.1103/PhysRevLett.94.113601
https://doi.org/10.1103/PhysRevLett.94.113601
https://doi.org/10.21468/SciPostPhys.7.2.024
https://doi.org/10.21468/SciPostPhys.7.2.024
https://arXiv.org/abs/2001.00021
https://doi.org/10.1103/PhysRevX.10.031066
https://doi.org/10.1103/PhysRevX.10.031066
https://doi.org/10.1103/PhysRevX.7.031016
https://doi.org/10.1103/PhysRevX.7.031016


[60] C. W. von Keyserlingk, T. Rakovszky, F. Pollmann, and
S. L. Sondhi, Phys. Rev. X 8, 021013 (2018).

[61] A. Nahum, S. Vijay, and J. Haah, Phys. Rev. X 8, 021014
(2018).

[62] L. Hua, Harmonic Analysis of Functions of Several
Complex Variables in the Classical Domains (American
Mathematical Society, Providence, RI, 1963).

[63] The Cauchy process arises from the Lorentzian distribution
of Heff ; see, e.g., Ref. [64]. An analogous entanglement
dynamics can be obtained from aWiener process whereHeff
is taken from the Gaussian unitary ensemble with matrix
elements Heff;lm ¼ Oð1=μÞ; for more details see Ref. [65].

[64] P. W. Brouwer, Phys. Rev. B 51, 16878 (1995).
[65] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.125.210602 for an
analysis of the transition in terms of the bipartite informa-
tion, a discussion of the role of measurement frequency, the
description and further discussion of the finite-size scaling,
and a comparison between different stochastic processes
that can be used to approach the continuum limit. This
Supplemental Material also includes a reference to [66].

[66] F. Haake, M. Kus, H.-J. Sommers, H. Schomerus, and K.
Zyczkowski, J. Phys. A 29, 3641 (1996).

[67] P. A. Mello, P. Pereyra, and T. H. Seligman, Ann. Phys.
(N.Y.) 161, 254 (1985).

[68] K. Jacobs, Quantum Measurement Theory and Its Appli-
cations (Cambridge University Press, Cambridge, England,
2014).

[69] H. M. Wiseman and G. J. Milburn, Quantum Measurement
and Control (Cambridge University Press, Cambridge,
England, 2009).

[70] M. Field, C. G. Smith, M. Pepper, D. A. Ritchie, J. E. F.
Frost, G. A. C. Jones, and D. G. Hasko, Phys. Rev. Lett. 70,
1311 (1993).

[71] A. N. Korotkov, Phys. Rev. B 60, 5737 (1999).
[72] A. Romito, Y. Gefen, and Y. M. Blanter, Phys. Rev. Lett.

100, 056801 (2008).
[73] O. Hosten and P. Kwiat, Science 319, 787 (2008).
[74] P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell,

Phys. Rev. Lett. 102, 173601 (2009).
[75] https://doi.org/10.17635/lancaster/researchdata/396.

PHYSICAL REVIEW LETTERS 125, 210602 (2020)

210602-6

https://doi.org/10.1103/PhysRevX.8.021013
https://doi.org/10.1103/PhysRevX.8.021014
https://doi.org/10.1103/PhysRevX.8.021014
https://doi.org/10.1103/PhysRevB.51.16878
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.210602
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.210602
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.210602
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.210602
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.210602
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.210602
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.210602
https://doi.org/10.1088/0305-4470/29/13/029
https://doi.org/10.1016/0003-4916(85)90080-6
https://doi.org/10.1016/0003-4916(85)90080-6
https://doi.org/10.1103/PhysRevLett.70.1311
https://doi.org/10.1103/PhysRevLett.70.1311
https://doi.org/10.1103/PhysRevB.60.5737
https://doi.org/10.1103/PhysRevLett.100.056801
https://doi.org/10.1103/PhysRevLett.100.056801
https://doi.org/10.1126/science.1152697
https://doi.org/10.1103/PhysRevLett.102.173601
https://doi.org/10.17635/lancaster/researchdata/396

