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Abstract. This paper presents rules of inference for a binary quantifier
I for the formalisation of sentences containing definite descriptions within
intuitionist positive free logic. I binds one variable and forms a formula
from two formulas. Ix[F, G] means ‘The F is G’. The system is shown to
have desirable proof-theoretic properties: it is proved that deductions in it
can be brought into normal form. The discussion is rounded up by com-
parisons between the approach to the formalisation of definite descriptions
recommended here and the more usual approach that uses a term-forming
operator ι, where ι

xF means ‘the F’.
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1. Introduction

In two recent papers, I presented a binary quantifier for the formalisation
of definite descriptions, which was added to a system of natural deduction
for an intuitionist negative free logic.1 In the simplest case, I forms a
formula from two predicates, binding a variable. For example, if F is
‘x is present King of France’ and G is ‘x is bald’, then Ix[F, G] means
‘The present King of France is bald’. In the general case, formulas of any

1 See (Kürbis, 2019a,c). I shall divert from the previous presentation in two
respects. First, whereas previously I used ι for the binary quantifier, I now use I to
make the distinction between it and a term-forming operator for definite descriptions
more perspicuous. Secondly, the formalisation of quantificational logic uses parame-
ters for free variables.
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complexity may take the place of F and G.2 I shall use F and G for any
formulas where the formalisation of definite descriptions is concerned. A

and B are used for formulas in general. Where this aids the discussion,
the occurrence of a free variable in a formula is indicated by enclosing it
in brackets following the formula, as in F (x) and G(x), and replacement
of variables by terms will be indicated analogously, as in F (t) and G(t).
In official notation, Ax

t denotes the result of replacing the variable x by
the term t in the formula A. The syntax of I is that if F and G are
formulas and x is a variable, then Ix[F, G] is a formula in which x is
bound. Its intended meaning is ‘The F is G’.

In negative free logic, the meaning of ‘The F is G’ is given by its
Russellian analysis ‘There is exactly one F and it is G’, and accordingly,
Ix[F, G] is equivalent to ∃x(F ∧ ∀y(F x

y → y = x) ∧ G). Definite descrip-
tions are therefore eliminable. For this reason many free logicians prefer
positive over negative free logic. In positive free logic, the Russellian
analysis of ‘The F is G’ is rejected and only one half of the equivalence
holds: if there is exactly one F which is G, then the F is G, but not con-
versely. Positive and negative free logicians agree, however, that ‘The
F exists’ is equivalent to ‘There is exactly one F ’, and both have an
equivalent formalisation in ∃y∀x(F ↔ x = y).

The present paper investigates which rules for the binary quantifier I

are suitable additions to a positive intuitionist free logic. In preparation
for this task the more common approach to formalising definite descrip-
tions within free logic is presented, which uses a term-forming operator ι:

ιbinds a variable and forms a singular term out of a formula, where ι

xF

means ‘the F ’. ‘The F is G’ is formalised as G( ιxFx). Establishing
some of the logical properties of formulas of the form G( ι

xF ) within in-
tuitionist positive free logic presents a vital step towards the formulation
of rules for the binary quantifier I. Let me say already here that, due
to the characteristics of positive free logic, these rules are significantly
more complex than those for I in negative free logic.

The rules for I presented in the previous papers have desirable proof-
theoretic properties: a normalisation theorem showed that formula oc-
currences that are the conclusions of an introduction rule and major
premises of an elimination rule for their main connective can be removed
from deductions in the system of intuitionist negative free logic with the

2 To avoid vacuous quantification, we could require these to be formulas that
contain the variable x free. But this is not necessary.
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binary quantifier I. Following Dummett and Prawitz, the rules for I are
in harmony and thus can count as specifying its meaning. The present
paper follows a similar path. The investigation is proof-theoretical and
a normalisation theorem is established for the system of positive intu-
itionist free logic extended by rules for the binary quantifier I.3

Despite its proof-theoretic stance, occasionally the present paper
touches upon semantical considerations to illustrate and motivate the
use of the binary quantifier I. These remain at an intuitive level. The
semantic intuition behind adopting a positive free logic is that atomic
sentences containing terms that do not refer (to an object considered to
exist or to be in the domain of quantification) may nonetheless be true.
This opposes the Russellian analysis according to which they are all false.
The failure of the Russellian equivalence of ‘The F is G’ and ‘There is
exactly one F and it is G’ allows for the possibility that the F is G even
though the F does not exist. Thus according to positive free logic, it
may be true that John admires the world’s most famous detective even
though the world’s most famous detective, Sherlock Holmes, does not
exist. Furthermore, the law of self-identity holds unrestrictedly and not
just for terms that refer, so that ‘Sherlock Holmes is identical to Sherlock
Holmes’ is logically true.

Formalising sentences containing definite descriptions with the binary
quantifier I has certain advantages over the more usual approach that
employs the forming operator ι. In the latter, ι

xF denotes the only F ,
if there is one, or else an object not considered to be amongst those that
exist or nothing at all. A question arises concerning the scope of unary
operators, here only negation, but in a modal setting also the modal
operators: what does ¬G( ι

xF ) mean? Does it mean that the F is not
G or that it is not the case that the F is G?

There is a sense in which no decision is called for. In negative free
logic, G( ι

xF ) is true just in case there is a unique F and it is G. In
positive free logic G( ι

xF ) is true just in case there is a unique F and it
is G or the object assigned to ιxF that is not considered to be amongst
those that exist is G. Thus assuming the principle of bivalence, as many
prominent free logicians do, in negative free logic, ¬G( ι

xF ) is true just

3 For the philosophical importance of the normalisation of deductions, see (Dum-
mett, 1978), (Dummett, 1993, Chs. 10–13), (Prawitz, 1987, 2006). For a brief overview
of the motivations behind, challenges to and prospects for Dummett’s and Prawitz’s
approach (see Kürbis, 2015). Normalisation for classical and intuitionist logic was
first proved by Prawitz (1965).
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in case either there is no unique F or there is a unique F and it is not G;
in positive free logic, ¬G( ι

xF ) is true if either there is a unique F and it
is not G or if there is no unique F and the ‘non-existent’ object assigned
to ι

xF is not G. In the negative setting, there is a formula equivalent
to ¬G( ι

xF ) in the language that does not contain ιand conveniently
displays its truth conditions; in the positive setting, there is no such
formula, as there is no other way of expressing that the ‘non-existent’
object assigned to ι

xF is not G than ¬G( ι

xF ). In either case, ¬G( ι

xF )
has disjunctive truth conditions.

Although there is nothing wrong with disjunctive truth conditions 
disjunctions, after all, have them and are on the whole well understood 
as the discussion shows we can evidently draw a distinction between
the internal negation ‘The F is not G’ and the external negation ‘It
is not the case that the F is G’ of ‘The F is G’ and a need to do so
often arises. Hence it is desirable to have the means to express the
distinction in the formal language. For that purpose, it is necessary to
introduce markers for scope distinctions. Many authors, especially those
working with definite descriptions in modal logic, introduce an operator
λ for predicate abstraction for that purpose.4 The binary quantifier
I, by contrast, has scope distinctions built directly into the notation:
the internal negation ‘The F is not G’ is formalised as Ix[F, ¬G], the
external negation ‘It is not the case that the F is G’ as ¬Ix[F, G]. There
is thus no need for separate syntactic means to mark scope distinctions
and using the binary quantifier to formalise definite descriptions allows
for a certain economy in the language.5

Section 6 of this paper contains a formal comparison of the present
system with a system using a term-forming operator ιfor definite de-

4 See (Lambert, 2001) for a treatment of definite descriptions and scope dis-
tinctions with an abstraction operator in classical negative free logic, and (Fitting
and Mendelsohn, 1998, Chs. 9ff) and (Garson, 2013, Ch. 19) for the same in modal
extensions of classical positive free logic. Lambert and Bencivenga (1986) formalise
a system of classical positive free logic with the λ abstraction operator, but without
definite descriptions. A different approach is followed by Gratzl (2015), who employs
Russell’s method of marking the scope of a definite description by repeating it in
square brackets.

5 This is not to say that the binary quantifier only has advantages over the
term-forming operator. Although recommended by Dummett (1981, p. 162), it is not
recommended by Bostock (1997, Sec. 8.4). It is fair to say that formulas with nested
binary quantifiers can be difficult to read, but such complications are unavoidable
where scope distinctions are to be considered.
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scriptions. But first, the next section presents the system of intuitionist
positive free logic used in the present paper.6

2. Intuitionist positive free logic

The language of the system IPF of intuitionist positive free logic is stan-
dard. For simplicity I assume that there are no function symbols. The
terms of the language are constant symbols and parameters for free vari-
ables. t is used for terms of either kind. Whenever the term-forming
operator ιis concerned in later sections, t also ranges over definite de-
scriptions, unless otherwise stated.

Square brackets around top-most formulas in deductions indicate as-
sumption classes. Every formula occurrence in a deduction that is not
regarded as an axiom is in some assumption class, where formulas of
different type are in different classes, and those of the same type may
or may not be in the same class. Every assumption class receives a
label. Discharge or closing of assumptions is indicated by repeating the
label at the inferences where the formula occurrences in the assumption
class are discharged. Empty assumption classes are allowed and used in
vacuous discharge. For convenience I will only display the assumption
classes of discharged assumptions in deductions given below, and adopt
the convention that undischarged assumptions of the same type belong
to the same assumption class.

The rules for the propositional connectives are:

A B
∧I:

A ∧ B
A ∧ B

∧E:
A

A ∧ B
B

[A]i

Π
B

→I: i
A → B

A → B A
→E:

B

6 It is the positive version of the system of intuitionist negative free logic of
(Kürbis, 2019a), and thus an intuitionist version of a standard system of classical
positive free logic used by Lambert, Bencivenga and others. Indrzejczak (2020c) has
shown how to formalise a variety of classical and intuitionist negative and positive
free logic in sequent calculi that allow for cut elimination.
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A
∨I:

A ∨ B
B

A ∨ B
A ∨ B

[A]i

Π
C

[B]j

Σ
C

∨E: i,j
C

⊥
⊥E:

B

where the conclusion B of ⊥E is restricted to atomic formulas.
The rules for the quantifiers appeal to a primitive predicate ∃!, to be

interpreted as ‘exists’ or ‘refers’:

[∃!a]i

Π
Ax

a
∀I: i

∀xA
∀xA ∃!t

∀E:
Ax

t

where in ∀I, a does not occur in A nor in any undischarged assumptions
of Π except ∃!a.

Ax
t ∃!t

∃I:
∃xA

∃xA

[Ax
a]i, [∃!a]j

︸ ︷︷ ︸

Π

C
∃E: i,j

C

where in ∃E, a does not occur in A nor in C nor in any undischarged
assumptions of Π, except Ax

a and ∃!a.
Identity is governed by the Law of Self-Identity and Leibniz’ Law:

=I: t = t
t1 = t2 Ax

t1

=E:
Ax

t2

where A is an atomic formula. The general case is proved by induction
over the complexity of formulas. Requiring t1 and t2 to be different
excludes vacuous applications of =E. This is obviously no restriction
and absolves us from considering maximal formulas of the form t1 = t2.
In the unfortunate circumstances where a transformation of a deduction
results in a vacuous application of =E, it is assumed that it is removed
as part of the transformation.

The characteristic difference between positive and negative free logic
is that the former lacks the rules of strictness, which allow the derivation
of ∃!t from atomic formulas containing t, and the latter requires the
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premise ∃!t in the introduction rule for identity =In. Intuitively, this
means that in positive free logic, atomic sentences may be true even if
terms occurring in them do not refer, while such sentences are always
false in negative free logic; and in negative free logic, self-identity is
equivalent to existence, while in positive free logic, this is not in general
the case.

It will make sense to have primitive rules for the biconditional ↔:

[A]i

Π

B

[B]j

Π

A
↔I: i,j

A ↔ B

A ↔ B A
↔E1:

B
A ↔ B B

↔E2:
A

Having these rules available simplifies some of the deductions in the com-
parison of the binary quantifier and term-forming operator for definite
descriptions.

It is customary in discussions of classical free logic to observe that it
is possible to dispense with the primitive ∃! and to treat it as defined in
terms of ∃ and =, due to the following equivalence which holds also in
IPF:

(∗1) ⊢ ∃!t ↔ ∃y y = t

If ∃!t, then by = I and ∃I: ∃y y = t. If ∃y y = t, suppose a = t and ∃!a,
then by =E: ∃!t, and so by ∃E: ∃!t.

It is, however, formally convenient and philosophically preferable to
keep ∃! primitive. From the formal perspective of proving a normali-
sation theorem for IPF, if ∃! is treated as defined, we should have to
consider additional maximal formulas of the form ∃y y = t arising when
the premise ∃!t, i.e. ∃y y = t, of ∃I or ∀E is derived by ∃I. From the
philosophical perspective, and one that aims at a proof-theoretic specifi-
cation of the meanings of the logical constants, if ∃! is treated as defined,
then the meaning of the universal quantifier would be specified in terms
of the existential quantifier, that expression appearing in a premise of
its introduction rule and discharged hypothesis of its elimination rule,
and the specification of the meaning of the existential quantifier would
be circular for precisely the same reason.
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Wider philosophical considerations also support the view that ∃!
should be regarded as primitive. Logic is silent about the meanings of
the atomic sentences of the formal language and is not concerned with
the question which of them are, in fact, true and which are false. To treat
∃! as primitive is to treat formulas of the form ∃!t as being in the same
category as the other atomic formulas of the language in this respect: the
intended interpretation of ∃! is given outside logic. Notice that the formal
system does not decide whether ∃!t should mean ‘t exists’ or ‘”t” refers’.
What exists and what doesn’t, which terms refer and which don’t, is not
in general a question of logic  although it may be in very special cases,
such as the numbers for logicists. Logic has no say in what grounds the
rather crucial difference between the names ‘Jamina’ and ‘Pegasus’. The
first refers, the second does not. Jamina is a pygmy hippopotamus that
lives in Łódź Zoo. Pegasus is a winged horse from Greek mythology.
Jamina exists, Pegasus does not. ‘∃!Jamina’ is true in virtue of the
animals that are kept in Łódź Zoo and the names they have been given,
and not because of some feature of logic. The existence of Pegasus or
the assumption that ‘Pegasus’ refers stands in contradiction with what
there is, and maybe even with what there can be according to the laws
of biology, and hence ¬∃!Pegasus, but what it is that precludes that
Pegasus exists or that ‘Pegasus’ refers is again not a question of logic.

These philosophical considerations also accord with the fact that the
use of ∃! in deductions in positive free logic is rather limited. No rule
of IPF has a formula of the form ∃!t as the conclusion. There is no
introduction rule for ∃!. Its main use is as an assumption, possibly
one to be discharged. As a corollary of the normalisation theorem for
IPF it could be established rigorously under which conditions a formula
of the form ∃!t may be derived. This issue is tangential to the main
concerns of this paper, and so to do so here would go too far. For the
present discussion it suffices to point out that, aside from by being an
assumption, a subformula of one or a consequence of ⊥, a formula of
the form ∃!t may be derived by Leibniz’ Law, in which case it has been
derived from a formula of the same form, but containing a different term,
and an identity with t to its left. Assumptions of the latter kind may
be discharged by an application of ∃E, as exemplified by the proof of
the right to left direction of (∗1), which presents the only other way a
formula of the form ∃!t may be derived from premises that are consistent
and do not contain it as a subformula. Thus formulas of the form ∃!t
are only derivable if the premises are inconsistent, the formula occurs as
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a subformula amongst them, or they contain ∃ or identities, the term t

and the existential quantifier. Accordingly, in applications of the system
of positive free logic in the formalisation of a theory, for instance, or
of ordinary argumentation, typically a stock of formulas would be given
that specify what exists or which terms refer. The logic alone does not
allow us to derive a formula of the form ∃!t, but this requires assumptions
which are of a non-logical character. In the case of negative free logic,
there are also the rules of strictness that allow the derivation of formulas
of the form ∃!t, but to do so, assumptions or axioms need to be given that
are atomic formulas, and their truth is again not established by logic.

Consequently, a derivation of ‘The F is G’ requires information that
is not of a purely logical kind, be it that these are assumptions of a de-
duction or non-logical axioms of a theory. For instance, as will be seen
from the introduction rule governing I to be given in section 4, if we are
to derive that the female pygmy hippopotamus of Łódź Zoo is hungry,
then we require assumptions such as that Jamina is a female pygmy
hippopotamus of Łódź Zoo, that she exists, that she is hungry, and that
she is the only female pygmy hippopotamus of Łódź Zoo. Positive free
logic also allows for the option that a sentence ‘The F is G’ is true even if
there is no unique F , but then the logic does not specify any conditions
under which this may be the case: rather, this depends entirely on the
non-logical content of F and G. Such sentences can only be used as as-
sumptions or need to be added as non-logical axioms to theories. In this
respect, however, they are no different from axioms of theories such as
that every number has a unique successor (pace logicists) or assumptions
such as that there is only one female pygmy hippopotamus in Łódź Zoo.

The discussion of the previous paragraphs hints at a stronger con-
clusion: the meaning of ∃! cannot be given by rules of inference, at least
not by rules of a purely logical character. This is neither surprising nor
problematic. Existence and reference concern domains outside logic, and
there are other ways of giving meanings to expressions than laying down
rules of inference for them. Logic can rely on those for the meaning
of ∃!, just as it relies on them to provide the meanings of ‘is a pygmy
hippopotamus’ and ‘is a winged horse’. This may be contentious amongst
inferentialists, and as such point to a problem for the acceptability of
free logics with an existence predicate to some of them, but to address
these issues would require a paper on its own.7

7 In negative free logic, ∃! is governed by what may look like introduction rules,
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3. The term-forming

ι

operator in IPF

The binary quantifier I is intended to formalise the ordinary English
‘The F is G’. In formalisations of definite descriptions by a term-forming
operator ι, it is customary to provide axioms only for occurrences of ι-
terms to the left or right of identity and to let the logical properties of
formulas with occurrences of ι-terms in other contexts be determined by
them. As a preparation for finding suitable rules of natural deduction
governing the binary quantifier I, in this section I will consider adding a
term-forming operator ιfor definite descriptions to IPF and investigate
the properties of the more general formulas of the form G( ι

xFx), where
G need not be identity, in the resulting system.

The Russellian analysis of ‘The F is G’ as ‘There is a unique F and
it is G’ is not suitable for the framework of positive free logic, where,
semantically speaking, atomic formulas may be true even though they
contain terms that do not refer (to an object considered to exist or to
be in the domain of quantification). G( ι

xF ) is not logically equivalent
to ∃y(∀x(F ↔ x = y) ∧ G) for every choice of G. If there is a unique
F and it is G, then the F is G, but the converse holds only under the
condition that there is a unique F . If ∃y∀x(F ↔ x = y) ∧ G( ιxF ),
then ∃y(∀x(F ↔ x = y) ∧ G), and if ∃y(∀x(F ↔ x = y) ∧ G), then
G( ι

xF ). But ∃y(∀x(F ↔ x = y) ∧ G) also implies ∃y∀x(F ↔ x = y).
So in positive free logic, G( ι

xF ) ∧ ∃y∀x(F ↔ x = y) is equivalent to
∃y(∀x(F ↔ x = y)∧G). More briefly, exploiting the equivalence between
‘the F exists’ and ‘there is a unique F ’, which is retained in positive free
logic, G( ι

xF ) ∧ ∃! ιxF is equivalent to ∃y(∀x(F ↔ x = y) ∧ G).

To establish the observations of the previous paragraph formally in
IPF extended by the term-forming operator for definite descriptions, we
add Lambert’s Law as the sole axiom governing ι:

(LL) ∀y( ι

xF = y ↔ ∀x(F ↔ x = y))

where x and y are distinct.

Call the resulting system IPF

ι

.

namely the rules of strictness. Even should we treat them as such, ∃! has no elimi-
nation rules, and so the rules governing it fail to exhibit the format required of rules
that determine meanings. Should we treat the rules for the quantifiers and =In as
the elimination rules for ∃!, then the rules governing it are not harmonious, and so
again its meaning is not determined by them.
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It is generally agreed that Lambert’s Law axiomatises the minimal
theory of ι. Added to classical positive free logic, the resulting theory
is often called FD or MFD (see Bencivenga, 1986; Lambert, 2001; van
Fraassen and Lambert, 1967). I am here interested in formalising an
equally minimal theory of the binary quantifier I. As the chosen deduc-
tive apparatus of the present paper is natural deduction, and the aim is
to formulate rules with satisfactory proof-theoretic properties, the logic
is intuitionist. However, the rules for I to be given in the next section
could equally be added to classical positive free logic.8

It is easy to show that (LL) implies that there is a unique F if and
only if the F exists:

(∗2) ⊢ ∃! ιxF ↔ ∃y∀x(F ↔ x = y)

(a) By (LL) and ∀E: ∃! ιxF ⊢ ι

xF = ι

xF ↔ ∀x(F ↔ x = ι

xF ), so by
= I and ↔ E: ∃! ιxF ⊢ ∀x(F ↔ x = ι

xF )), so by ∃I: ∃! ιxF ⊢ ∃y∀x(F ↔
x = y).
(b) Conversely, assume ∃y∀x(F ↔ x = y), and suppose ∃!a and ∀x(F ↔
x = a). Then by (LL) and ∀E: ι

xF = a. So by ∃I: ∃y

ι

xF = y, and so
by (∗1): ∃! ιxF .

Next, if the F exists and it is G, then there is a unique F that is G:

(∗3) ∃! ιxF, G( ι

xF ) ⊢ ∃y(∀x(F ↔ x = y) ∧ G(y))

ιxF = ιxF

(LL) ∃! ιxF

ιxF = ιxF ↔ ∀x(F ↔ x = ιxF )

∀x(F ↔ x = ι

xF ) G( ι

xF )

∀x(F ↔ x = ι

xF ) ∧ G( ι

xF ) ∃! ιxF

∃y(∀x(F ↔ x = y) ∧ G(y))

(LL) implies that if there is a unique F that is G, then the F is G (see
the proof (I) on p. 339):

(∗4) ∃y(∀x(F ↔ x = y) ∧ G(y)) ⊢ G( ι

xF )

8 Rules adequate for the binary quantifier I in a classical sequent calculus that
allow cut elimination are the subject of another paper. Indrzejczak (2018, 2019,
2020b) provided cut-free sequent calculi for various formalisations of the term-forming

ιoperator. Czermak (1974) formalised a further cut free system for a logic of definite
descriptions. Tennant (1978, 2004) provides normalising rules for ιthat are equivalent
to Lambert’s Law in intuitionist negative free logic.
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Conversely, (LL) is derivable from (∗3) and (∗4). Let (∗3)’ and (∗4)’
be (∗3) and (∗4) with G(y) replaced by ι

xF = y (see the proof (II) on
p. 339):

(∗5) (∗3)’, (∗4)’ ⊢ (LL)

The double line stands for the derivable inference ∀x(F ↔ x = b) ∧ b =
a ⊢ ∀x(F ↔ x = a), and the labels of (∗3)’ and (∗4)’ indicate their use
in the deduction.

It follows that the minimal theory of definite descriptions can be
axiomatised equivalently by (∗3) and (∗4) instead of (LL). To formalise
suitable rules for the binary quantifier I, in the next section we will cast
(∗3) and (∗4) into rules of a system of natural deduction.

Russell and Whitehead observe that ambiguity arises from an at-
tempted definition of G( ι

xF ) by ∃y(∀x(F ↔ x = y) ∧ G(y)) ‘when ι

xF

occurs in a proposition which is part of a larger proposition’: then ‘there
is doubt whether the smaller or the larger proposition is to be taken as
the G( ι

xF ).’ ((Whitehead and Russell, 1997, p. 173), notation adjusted.)
They note that the formula G( ι

xF ) → B, B not containing the variable
that ι

xF replaces in G, can mean either of these:

∃y(∀x(F ↔ x = y) ∧ G(y)) → B

∃y(∀x(F ↔ x = y) ∧ (G(y) → B))

Replacing B with ⊥, the distinction is the one between internal and
external negation. If there is no unique F , then in negative free logic
the first is true, but the second is false. There is, therefore, a need
to distinguish them. Russell and Whitehead repeat the description in
square brackets to mark scope distinctions:

[ ιxF ]G( ι

xF ) → B

[ ιxF ](G( ι

xF ) → B)

In the first, the description has narrow scope, in the second it has wide
scope.

In formalisations of theories of definite descriptions axiomatised by
(LL), G( ι

xF ) is not defined as ∃y(∀x(F ↔ x = y) ∧ G(y)). The logical
properties of G( ι

xF ) are treated entirely in terms of consequences of
(LL). As the latter makes no provision for scope distinctions, neither
does the theory as a whole.
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(I)

∃y(∀x(F ↔ x = y) ∧ G(y))

(LL) [∃!a]1

ιxF = a ↔ ∀x(F ↔ x = a)

[∀x(F ↔ x = a) ∧ G(a)]2

∀x(F ↔ x = a)

ι

xF = a

[∀x(F ↔ x = a) ∧ G(a)]2

G(a)

G( ι

xF )
1,2

G( ι

xF )

(II)

[ ιxF = a]2
[ ιxF = a]2 [∃!a]4

∃! ιxF
(∗3)′

∃y(∀x(F ↔ x = y) ∧ y = a)

[∀x(F ↔ x = b) ∧ b = a]1

∀x(F ↔ x = a)
1

∀x(F ↔ x = a)

[∀x(F ↔ x = a)]4 a = a

∀x(F ↔ x = a) ∧ a = a [∃!a]4

∃y(∀x(F ↔ x = y) ∧ y = a)
(∗4)′

ιxF = a
2,3

ιxF = a ↔ ∀x(F ↔ x = a)
4

∀y( ιxF = y ↔ ∀x(F ↔ x = y))
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These theories can be axiomatised equivalently by (∗3) and (∗4). (∗4)
specifies the conditions under which G( ι

xF ) may be inferred and (∗3)
the consequences that follow from it. Adopting an inferentialist theory
of meaning, these determine the meaning of G( ι

xF ). One may now ask
what they tell us about ¬G( ι

xF ). There are two paths to addressing
this question. One is to contrapose (∗3) and (∗4), the other to replace
to replace G by ¬G in them. Doing so with (∗3), keeping ∃! ιxF in the
antecedent in the contraposition, yields:

(∗6) ¬∃y(∀x(F ↔ x = y) ∧ G(y)), ∃! ιxF ⊢ ¬G( ι

xF )

(∗7) ¬G( ι

xF ), ∃! ιxF ⊢ ∃y(∀x(F ↔ x = y) ∧ ¬G(y))

(∗6) and (∗7) give grounds and consequences of ¬G( ιxF ) under the as-
sumption that the F exists, in which case Russell’s internal and ex-
ternal negations are equivalent. Contraposing and replacing in (∗4) give
grounds and consequences of ¬G( ι

xF ) independently of this assumption:

(∗8) ∃y(∀x(F ↔ x = y) ∧ ¬G(y) ⊢ ¬G( ιxF )

(∗9) ¬G( ι

xF ) ⊢ ¬∃y(∀x(F ↔ x = y) ∧ G(y)

¬G( ι

xF ) thus lies between internal and external negation in logical
strength, implied by the former and implying the latter, but equiva-
lent to neither. Thus in a theory of definite descriptions axiomatised
by (LL), ¬G( ι

xF ) presents a third option besides the two countenanced
by Russell and Whitehead, and one might even say that such a theory
endorses the ambiguity they diagnose in ¬G( ι

xF ).

Russell and Whitehead have a point when they insist that it is possi-
ble to draw scope distinctions in sentences containing definition descrip-
tions, in particular with respect to negation. The binary quantifier I

provides a means of formalising a theory of definite descriptions while
building scope distinctions directly into the notation.

4. The binary quantifier I in IPF

Principle (∗4) occupies common ground between positive and negative
free logic, and so the introduction rule for the binary quantifier I of
(Kürbis, 2019a) is good for the present system, too:
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F x
t Gx

t ∃!t

[F x
a ]i, [∃!a]j

︸ ︷︷ ︸

Π
a = t

II: i,j

Ix[F, G]

where a is a fresh parameter, that is to say a is different from t, does
not occur in F or G, nor in any undischarged assumption in Π except
F x

a and ∃!a.

The elimination rules for I of (Kürbis, 2019a) need to be adjusted.
As Ix[F, G] may be true even if no unique F exists, they require the ad-
ditional premise that the F exists, which in the present symbolism is ex-
pressed by Ix[F, ∃!x]. The following elimination rule for I captures (∗3):

Ix[F, G] Ix[F, ∃!x]

[F x
a ]i, [Gx

a]j , [∃!a]k
︸ ︷︷ ︸

Π
C

IE1p′

: i,j,k
C

where a is a fresh parameter, that is to say a does not occur in F , G or
C, nor in any undischarged assumptions of Π except F x

a , Gx
a and ∃!a,

and it is not free in F or G.

Although straightforward and convenient for practical purposes, from
the proof-theoretic perspective this rule is unsatisfactory, as will be
shown shortly. A modified version fares better. This explains why its
label carries a prime.

One of the more idiosyncratic features of definite descriptions in posi-
tive free logic is that the uniqueness of the F is also only consequent upon
its existence, and so the second elimination rule for the binary quantifier
of (Kürbis, 2019a) would require the additional premise Ix[F, ∃!x], too.
This addition, however, would make the first premise redundant, and so
in the present context we are left with:

Ix[F, ∃!x] ∃!t1 ∃!t2 F x
t1

F x
t2

IE2p′

: t1 = t2

This rule, too, is going to be modified slightly, which explains the prime.

The problem with IE1p′

is that there is no general way of removing
a formula of the form Ix[F, ∃!x] from a deduction that is concluded by
II and the second premise of IE1p′

:
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Ix[F, G]

F x
t ∃!t ∃!t

[F x
z ]i, [∃!z]j

︸ ︷︷ ︸

Π1

z = t
i,j

Ix[F, ∃!x]

[F x
z ]k, [Gx

z ]l, [∃!z]m
︸ ︷︷ ︸

Π2

C
k,l,m

C

This may not be a dramatic shortcoming: in intuitionist negative free
logic, we cannot expect to be able to remove formulas of the form ∃!t that
have been concluded by rules of strictness and are used as the existence
premises of =In, ∃I or ∀E. We have a similar situation here, and so
it would make sense not to consider IE1p′

as an elimination rule for
Ix[F, ∃!x], and not to count formulas that are concluded by II and used
as the second premise of IE1p′

as maximal.
Contrary to the situation in intuitionist negative free logic, however,

it is possible to do better in IPF. IE1p′

can be reformulated in such a way
that the offensive formulas Ix[F, ∃!x] may be removed from deductions.
This comes at a cost in the complexity of the rules, so for the practical
purpose of carrying out deductions it is often useful to keep the simpler
rule in mind and apply it instead. The desired modification is achieved
by replacing the premise Ix[F, ∃!x] of IE1p′

by the conditions under
which it may be derived as specified by II:

Ix[F, G] F x
t ∃!t

[F x
a ]i1 , [∃!a]i2

︸ ︷︷ ︸

Π
a = t

[F x
b ]i3 , [Gx

b ]i4 , [∃!b]i5

︸ ︷︷ ︸

Σ

C
IE1p: i1...i5

C

where a and b are fresh: a is different from t, does not occur in F or
G, nor in any undischarged assumptions of Π except F x

a and ∃!a; and b

does not occur in F , G, C, nor in any undischarged assumptions of Σ

except F x
b , Gx

b and ∃!b.

Replacing IE1p′

by IE1p requires the addition of a further elimination
rule for formulas of the form Ix[F, ∃!x]:

Ix[F, ∃!x]

[F x
a ]i, [∃!a]j

︸ ︷︷ ︸

Π
C

IE3p: i,j
C

where a is fresh: it does not occur in F or C nor in any undischarged
assumptions of Π except F x

a and ∃!a.
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This is because IE1p makes stronger demands on the conditions under
which it is applicable than IE1p′

: it requires the conditions under which
the second premise of the latter may be derived, rather than just its
assumption. IE1p′

may therefore be applied under conditions where
IE1p is not applicable, namely when Ix[F, ∃!x] is assumed rather than
deduced. IE3p restores the balance: it is effectively the special case of
IE1p′

where G is ∃!.9

IE1p′

and the pair IE1p and IE3p are interderivable, given II and
IE2p′

:

(a) IE3p is the special case of IE1p′

where both premises are Ix[F, ∃!x],
but listed only once. Given F x

t , ∃!t and a deduction Π of a = t from
F x

a and ∃!a, by II derive Ix[F, ∃!x], using ∃!t twice to make up the
required number of premises, and so by IE1p′

, now using Ix[F, ∃!x] twice,
derive C.

(b) Given Ix[F, G], Ix[F, ∃!x] and a deduction Π of C from F x
a , Gx

a

and ∃!a, apply IE2p′

to Ix[F, ∃!x] and assumptions F x
b , F x

c , ∃!b and ∃!c,
where b, c are fresh and different, to derive b = c; using F x

c and ∃!c
once more as premises, apply IE1p to derive C; apply IE3p to discharge
assumptions F x

c and ∃!c. See the construction (III) on p. 346.

Thus II, IE1p, IE2p′

and IE3p capture (∗3) and (∗4), just as well as
do II and IE1p′

. But we’re not quite there yet.

As shown by (∗1), identity sometimes carries some of the character-
istics of existence, and we need additional rules to ensure this. They are
more or less IE2p′

and IE3p with ∃! replaced by an identity:

Ix[F, x = t2] ∃!t1 ∃!t2 F x
t1

IE4p′

: t1 = t2

9 It may be objected that in determining the elimination rules for I, I have
not followed any of the methods for ‘reading off’ elimination rules from introduction
rules that may be found in the literature (see, e.g., Francez and Dyckhoff, 2012;
Kürbis, 2007, 2019b; Prawitz, 1979; Read, 2010; Schroeder-Heister, 1984). I have
instead looked for proof-theoretically satisfactory rules of inference by transposing
axioms equivalent to a prominent theory of definite descriptions into rules of natural
deduction with an eye on proving a normalisation theorem. A discussion whether
this disqualifies the present approach in the eyes of some inferentialists is a broader
question and goes beyond the scope of this paper. A decision must be be left to the
reader.
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Ix[F, x = t] ∃!t

[F x
a ]i, [∃!a]j

︸ ︷︷ ︸

Π

C
IE5p : i,j

C

Notice the missing premise F x
t2

in IE4p′

and the additional premise ∃!t

in IE5p. Like IE2p′

, IE4p′

will be slightly modified, hence the prime. To
this issue, we turn next.

It is possible to avoid occurrences of identities that are concluded by
IE2p′

and used as the major premise in Leibniz’s Law by replacing the
former rule with a slight reformulation that absorbs a step by the latter:

Ix[F, ∃!x] ∃!t1 ∃!t2 F x
t1

F x
t2

Ax
t1

IE2p:
Ax

t2

where A is an atomic formula.

An induction over the complexity of formulas shows that IE2p is
derivable for formulas A of any degree. IE2p′

and IE2p are interderivable
in virtue of the rules for identity. To derive IE2p′

from IE2p, let Ax
t1

be

t1 = t1; for the converse, apply Leibniz’s Law to the conclusion of IE2p′

.
Finally, we do the same with IE4p′

:

Ix[F, x = t2] ∃!t1 ∃!t2 F x
t1

Ax
t1

IE4p:
Ax

t2

where A is an atomic formula.

An argument similar to the one given in the previous case shows
that IE4p and IE4p′

are interderivable and an induction that the rules
is derivable for formulas A of any degree.

For practical purposes IE2p′

and IE4p′

are more convenient than
IE2p and IE4p, but for proof-theoretic purposes the latter are more
interesting. So let IPFI be IPF extended by the binary quantifier I

governed by the rules II, IE1p, IE2p, IE3p, IE4p, IE5p. In the next
section we will prove a normalisation theorem for this system.

To close this section, it may not come amiss to illustrate the use of I

with a few examples. For simplicity, throughout I’ll use IE2p′

and IE4p′

instead of IE2p and IE4p. Applications of the unfamiliar rules for I will
be marked explicitly, for easier readability. The deductions also show
that IPFI provides an adequate reconstruction of a minimal theory of
definite descriptions within positive free logic. The examples correspond
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to characteristic theses of a minimal theory of definite descriptions for-
malised with a term-forming operator and axiomatised by (LL). The
correspondence between IPFI and IPF

ι

is of course not perfect, as the
latter system does not have scope distinctions. A closer comparison of
the two systems is the subject of section 6.

(∗10) ∃x(F ∧ ∀y(F x
y → y = x) ∧ G) ⊢ Ix[F, G]

See (Kürbis, 2019a, p. 91): the deduction given there only appeals to the
introduction rule for the binary quantifier, so remains correct in IPFI.

(∗11) Ix[F, G], Ix[F, ∃!x] ⊢ ∃x(F ∧ ∀y(F x
y → y = x) ∧ G)

See the proof (IV) on p. 346.

(∗12) Ix[F, ∃!x] ⊢ ∃y∀x(F ↔ x = y)

See the proof (V) on p. 349.

(∗13) ∃y∀x(F ↔ x = y) ⊢ Ix[F, ∃!x]

See the proof (VI) on p. 349.

(∗14) ⊢ Ix[F, ∃!x] ↔ ∃y∀x(F ↔ x = y)

From (∗12) and (∗13) by ↔ I.

(∗15) Ix[F, ∃!x] ⊢ ∃yIx[F, x = y]

See the proof (VII) on p. 349.

(∗16) ∃yIx[F, x = y] ⊢ Ix[F, ∃!x]

See the proof (VIII) on p. 349.

(∗17) ⊢ ∃yIx[F, x = y] ↔ Ix[F, ∃!x]

From (∗15) and (∗16) by ↔ I.

(∗17) corresponds to the special case of (∗1) in a system with a term-
forming ιoperator where t is a definite description.

(∗18) Ix[F, x = a], ∃!a ⊢ Ix[F, ∃!x]

By omitting the final application of ∃E in the proof of (∗16).



346
N

il
s

K
ü

r
b

is

(III)

Ix[F, ∃!x]

Ix[F, G] [F x
c ]k [∃!c]j

Ix[F, ∃!x] [∃!b]i1 [∃!c]j [F x
b ]i2 [F x

c ]k
IE2p′

b = c

[F x
a ]i3 , [Gx

a]i4 , [∃!a]i5

︸ ︷︷ ︸

Π

C
i1...i5 IE1p

C
j,k IE3p

C

(IV)

Ix[F, ∃!x]

Ix[F, G] [F x
d ]8 [∃!d]9

Ix[F, ∃!x] [∃!c]3 [∃!d]9 [F x
c ]4 [F x

d ]8
IE2p′

c = d (⋆)
3,4,5,6,7 IE1p

∃x(F ∧ ∀y(F x
y → y = b) ∧ G)

8,9 IE3p

∃x(F ∧ ∀y(F x
y → y = b) ∧ G)

where (⋆):

[F x
b ]5

Ix[F, ∃!x] [∃!a]2 [∃!b]6 [F x
a ]1 [F x

b ]5
IE2p′

a = b
1

F x
a → a = b

2
∀y(F x

y → y = b) [Gx
b ]7

∀y(F x
y → y = b) ∧ Gx

b

F x
b ∧ ∀y(F x

y → y = b) ∧ Gx
b

∃x(F ∧ ∀y(F x
y → y = b) ∧ G)
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(V)

Ix[F, ∃!x]

Ix[F, ∃!x] [∃!a]3 [∃!b]4 [F x
a ]1 [F x

b ]5
IE2p′

a = b

[F x
b ]5 [a = b]2

F x
a

1,2
F x

a ↔ a = b
3

∀x(F ↔ x = b) [∃!b]4

∃y∀x(F ↔ x = y)
4,5 IE3p

∃y∀x(F ↔ x = y)

(VI)

∃y∀x(F ↔ x = y)

[∀x(F ↔ x = a)]3 [∃!a]4

F x
a ↔ a = a a = a

F x
a [∃!a]4 [∃!a]4

[∀x(F ↔ x = a)]3 [∃!b]1

F x
b ↔ b = a [F x

b ]2

b = a
1,2 II

Ix[F, ∃!x]
3,4

Ix[F, ∃!x]
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(∗18) corresponds to the application of Leibniz’s Law in the derivation
of (∗5). Thus a formula corresponding to (LL) is derivable in IPFI by
adapting the proof of (∗5).

The following two propositions correspond to ∀E and ∃I when t is a
definite description:

(∗19) ∀xG, Ix[F, ∃!x] ⊢ Ix[F, G]

See (Kürbis, 2019c, 315): the proof is exactly as the one given there.

(∗20) Ix[F, G], Ix[F, ∃!x] ⊢ ∃xG

See the proof (IX) on p. 349.

5. Normalisation for IPFI

The major premise of an elimination rule is the premise that contains
the connective it governs in the general statement of the rule: they way
elimination rules are written here, it is always their leftmost premise.10

Definition 1 (Maximal Formula). A maximal formula is an occurrence
of a formula in a deduction that is the conclusion of an introduction rule
and major premise of an elimination rule.

Call the rules ∨E, ∃E, IE1p, IE3p and IE5p del-rules.

Definition 2 (Segment, Length and Degree of a Segment, Maximal
Segment). (a) A segment is a sequence of two or more formula occur-
rences C1 . . . Cn in a deduction such that C1 is not the conclusion of a
del-rule, Cn is not the minor premise of a del-rule, and for every i < n,
Ci is minor premise of a del-rule and Ci+1 its conclusion.

(b) The length of a segment is the number of formula occurrences of
which it consists, its degree is their degree.

(c) A segment is maximal if and only if its last formula is the major
premise of an elimination rule.

Definition 3 (Normal Form). A deduction is in normal form if and
only if it contains neither maximal formulas nor maximal segments.

10 The terminology in this section follows (Troestra and Schwichtenberg, 2000).
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(VII)

Ix[F, ∃!x]

[∃!a]4
[F x

a ]3 a = a [∃!a]4
Ix[F, ∃!x] [∃!b]1 [∃!a]4 [F x

b ]2 [F x
a ]3

IE2p′

b = a
1,2 II

Ix[F, x = a]

∃yIx[F, x = y]
3,4 IE3p

∃yIx[F, x = y]

(VIII)

∃yIx[F, x = y]

[Ix[F, x = a]]5 [∃!a]6
[F x

a ]3 [∃!a]4 [∃!a]4
[Ix[F, x = a]]5 [∃!b]2 [∃!a]4 [F x

b ]1
IE4p′

b = a
1,2 II

Ix[F, ∃!x]
3,4 IE5p

Ix[F, ∃!x]
5,6

Ix[F, ∃!x]

(IX)

Ix[F, ∃!x]

Ix[F, G] [F x
b ]5 [∃!b]6

Ix[F, ∃!x] [∃!a]1 [∃!b]6 [F x
a ]2 [F x

b ]5
IE2p′

a = b

[Gx
c ]3 [∃!c]4

∃xG
1,2,3,4 IE1p

∃xG
5,6 IE3p

∃xG
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Detour conversions are methods for removing maximal formulas from
deductions. Permutation conversions decrease the length of maximal
segments by permuting the application of the elimination rule to its last
formula upwards. If its first formula was derived by an introduction
rule, the procedure turns the maximal segment into a maximal formula.
I refer to both kinds of conversions collectively as reduction steps.

Definition 4 (Rank of a Deduction). The rank of a deduction Π is
the pair 〈d, l〉 where d is the highest degree of any maximal formula or
segment in Π, and l is the sum of the number of maximal formulas plus
the sum of the lengths of all maximal segments in Π. If there are no
maximal formulas or segments in Π, let its rank be 〈0, 0〉.

Ranks are ordered lexicographically: 〈d, l〉 < 〈d′, l′〉 iff either d < d′

or d = d′ and l < l′.

Reduction steps for the connectives of IPF are straightforward by
adapting those given by Prawitz (1965). We state without giving the
details:

Theorem 1. Any deduction in IPF can be brought into normal form.

Proof. By induction over the rank of deductions in IPF: applying a
reduction step to a suitably chosen maximal formula or maximal segment
of highest degree reduces the rank of a deduction.

To prove that deductions in IPFI normalise, we need to add detour
conversions to remove maximals formulas of the form Ix[F, G], where in
case the maximal formula is eliminated by IE1p, G can be any formula,
while if it is eliminated by IE2p or IE3p it is ∃!x, and if it is eliminated
by IE4p or IE5p it is x = t. I will only give detour conversions, the
permutation conversions being standard.

Detour Conversions for the Binary Quantifier I

In each case, the conditions on parameters and the fact that every de-
duction can be transformed into one in which each parameter is the
parameter of exactly one application of a rule for a quantifier ensure
that the deduction remains correct after the conversion.

1. The maximal formula is major premise of IE1p. Replace the
deduction on top of ; with the one below it (see the proof (X) on
p. 352).
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2. The maximal formula is major premise of IE2p. Replace the
deduction on top of ; with the one below it, where the double line
indicates the steps needed to derive the symmetry of identity (see the
proof (XI) on p. 352).

This last reduction step is quite interesting. It is unusual for re-
duction steps to require applications of rules of inference for a different
connective, in this case the rules for identity. As identity occurs in II,
this is what we should expect. If normalisation was possible without
applying the rules for identity, it would appear that the rules governing
I are in harmony independently of identity, so that there should be rules
governing I that do not appeal to it. But this is impossible in the present
framework, as we cannot express uniqueness without using identity.

3. The maximal formula is major premise of IE3p. Replace the
deduction to the left of ; with the one on its right (see the proof (XII)
on p. 353).

Alternatively, we could replace t by b in Π1 and Π2 or Π3, thereby
concluding F x

b and ∃!b, using them to conclude the respective open as-
sumptions of Ξ, and continue on to conclude C.

4. The maximal formula is major premise of IE4p. Replace the
deduction to the left of ; with the one on its right, where the double
line indicates the steps needed to derive the symmetry of identity (see
the proof (XIII) on p. 353).

In this reduction step, too, appeal is made to the rules for identity:
as before, this is not surprising, this time because an identity is a sub-
formula of the maximal formula to be removed.

5. The maximal formula is major premise of IE5p. Replace the
deduction to the left of ; with the one on its right, where the double
line indicates the steps needed to derive the symmetry of identity (see
the proof (XIV) on p. 353).

This completes the detour conversions for maximal formulas of the
form Ix[F, G], and we are ready to prove:

Theorem 2. Any deduction in IPFI can be brought into normal form.

Proof. By induction over the rank for deductions. Applying a reduc-
tion step to a maximal formula or maximal segment of highest degree
such that no such segments stand above it reduces the rank of the de-
duction.
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(X)

Π1

F x
t1

Π2

Gx
t1

Π3

∃!t1

[F x
a ]i, [∃!a]j

︸ ︷︷ ︸

Π4

a = t1
i,j

Ix[F, G]

Σ1

F x
t2

Σ2

∃!t2

[F x
b ]k1 , [∃!b]k2

︸ ︷︷ ︸

Σ3

a = t2

[F x
c ]k3 , [Gx

c ]k4 , [∃!c]k5

︸ ︷︷ ︸

Ξ
C

k1...k5

C

;

[F x
t1

]
Π1

, [Gx
t1

]
Π2

, [∃!t1]
Π3

︸ ︷︷ ︸

Ξc
t1

C

(XI)

Π1

F x
t1

Π2

Gx
t1

Π3

∃!t1

[F x
a ]i, [∃!a]j

︸ ︷︷ ︸

Ξ
a = t1

i,j

Ix[F, ∃!x] ∃!t2

Σ1

∃!t3

Σ2

F x
t2

Σ3

F x
t3

Σ4
Σ5

Ax
t2

Ax
t3

;

[F x
t3

]
Σ4

, [∃!t3]
Σ2

︸ ︷︷ ︸

Ξa
t3

t3 = t1

t1 = t3

[F x
t2

]
Σ3

, [∃!t2]
Σ1

︸ ︷︷ ︸

Ξa
t2

t2 = t1

t2 = t3

Σ5

Ax
t2

Ax
t3
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(XII)

Π1

F x
t

Π2

∃!t

Π3

∃!t

[F x
a ]i, [∃!a]j

︸ ︷︷ ︸

Π4

a = t
i,j

Ix[F, ∃!x]

[F x
b ]k, [∃!b]l

︸ ︷︷ ︸

Ξ
C

k,l
C

;

[F x
t ]

Π1

, [∃!t]
Π2

︸ ︷︷ ︸

Ξb
t

C

(XIII)

Π1

F x
t1

Π2

t1 = t2

Π3

∃!t1

[F x
a ]i, [∃!a]j

︸ ︷︷ ︸

Ξ
a = t1

i,j

Ix[F, x = t2]

Σ1

∃!t3

Σ2

∃!t2

Σ3

F x
t3

Σ4

Ax
t2

Ax
t3

;

Π2

t1 = t2

[F x
t3

]
Σ3

, [∃!t3]
Σ1

︸ ︷︷ ︸

Ξa
t3

t3 = t1

t3 = t2

t2 = t3

Σ4

Ax
t2

Ax
t3

(XIV)

Π1

F x
t1

Π2

t1 = t2

Π3

∃!t1

[F x
a ]i, [∃!a]j

︸ ︷︷ ︸

Π4

a = t1
i,j

Ix[F, x = t2]
Σ

∃t2

[F x
b ]k, [∃!b]l

︸ ︷︷ ︸

Ξ
C

k,l
C

;

F x
t1

Π1

, ∃!t1

Π3

︸ ︷︷ ︸

Ξx
t1

C
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6. The binary quantifier I and the term-forming

ι

operator in IPF

For reasons sufficiently indicated in the previous sections, as IPF

ι

lacks a
means for drawing scope distinctions, I will not compare the full systems
IPFI and IPF

ι

. There is, for instance, no direct, straightforward trans-
lation from one to the other. Instead, I impose two restrictions on both
systems and compare the results: (1) the G in Ix[F, G] is either ∃! or =,
and correspondingly, ι-terms occur only after ∃! or to the left or right of
identity (and not both); (2) Leibniz’s Law is restricted to constants and
parameters. (1) excludes formulas such as ¬G( ι

xF ), where questions of
scope arise, and absolves us from considering nested binary quantifiers.
It also permits us to regard Ix[A, ∃!x] and ∃! ιxA and Ix[A, x = t] and

ι

xA = t as notational variants, as was done in a previous paper (Kürbis,
2019c, Sec. 4). (2) is justified with an eye to extending IPFI by modal
operators, in which case restrictions of Leibniz’ Law are mandatory if
non-rigid terms are considered.11

There is one respect in which (1) does not present much of a restric-
tion of IPF

ι

at all. In IPF

ι

the logical force of formulas of the form
G( ι

xF ) is determined entirely by that of formulas of the form Gt and
t = ι

xF : G( ι

xF ) cannot be used in a deduction unless there is also a
formula t = ι

xF , for some term t. The consequences of G( ι

xF ) and
the conditions under which it may be inferred are then specified by (LL)
and Leibniz’s Law. Thus instead of considering G( ι

xF ), we may consider
G(t) ∧ t = ι

xF , for some term t, instead. In other respects (1) and (2)
of course present significant restrictions.

Let IPFIr and IPF

ι

r be IPFI and IPF

ι

with the respective versions
of restrictions (1) and (2) imposed. We will show them to be equivalent.

(∗5) derives (LL) from instances of (∗3) and (∗4) respecting restric-
tion (1). (∗10) and (∗11) derive the notational variants of (∗3) and (∗4)
in IPFI, and hence the required instances hold in IPFIr. (∗18) is the in-
stance of Leibniz’s Law corresponding to the one application of it to an ι

11 An even stricter approach is followed by Fitting and Mendelsohn (1998, Ch. 7),
who only allow variables to occur to the left and right of identity; in fact, the atomic
formulas of their system are formed only from predicate letters and variables (Fitting
and Mendelsohn, 1998, p. 81). To form a formula with a name, function symbol or
definite description requires a predicate formed by predicate abstraction (Fitting and
Mendelsohn, 1998, 196f, 248f). Variables are interpreted rigidly, all other terms may
be rigid or non-rigid. Leibniz’ Law holds unrestrictedly only for variables.
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term in (∗5). Any other application of Leibniz’s Law in these deductions
respects restriction (2). Thus changing notation and replacing formulas
of the form ι

xF = t in (∗5) to their notational variant Ix[F, x = t], it
follows that (LL) is derivable in IPFIr. Thus IPF

ι

r is a subsystem of
IPFIr. It is worth checking that all six rules for the binary quantifier
are used in the deductions.

To show the converse, it suffices to observe that the notational vari-
ants of II, IE1p′

, ιE2p′

, IE4p′

and IE5p in IPF

ι

r are straightforward
consequences of (LL). IPFIr is thus a subsystem of IPF

ι

r, and so we
have:

Theorem 3. IPFIr and IPF

ι

r are equivalent.

7. Conclusion

The binary quantifier I allows for the formalisation of sentences contain-
ing definite descriptions while respecting intuitive distinctions of scope
without the need for introducing an additional syntactic means for rep-
resenting them in the formal system. Its rules have desirable proof-
theoretic properties: deductions in IPFI normalise. A subsystem of IPFI

was shown to be equivalent to a system formalising the minimal theory
of a term forming ιoperator for definite descriptions within intuitionist
positive free logic. This represents the more common approach to the
formalisation of definite descriptions.

Comparing IPFI to a system that extends IPF

ι

by a device such
as a λ operator for predicate abstraction to mark scope must be left to
another occasion. Classical systems of this kind found in the literature on
free logic are not suitable to the present concerns. The system of (Lam-
bert, 2001) is designed for negative free logic, while predicate abstraction
formalised in (Lambert and Bencivenga, 1986) carries existential import.
Thus an expression of the form λxG( ι

xF ) of the latter system extended
by the ιoperator does not correspond to Ix[F, G], which does not carry
existential import.

More suitable systems may be found in the context of modal logic,
such as those of (Fitting and Mendelsohn, 1998, Ch. 9ff) and (Garson,
2013, Ch. 19). Indrzejczak has provided cut free sequent calculi for the
former (Indrzejczak, 2018) as well as the latter (Indrzejczak, 2020a).
These results inspire confidence that similarly proof-theoretically satis-
factory systems may be provided for modal logics extended by the binary
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quantifier I. An extension of IPFI by modal operators and a comparison
of the result with these systems will be the focus of future investigations.
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